spss相关分析和回归分析.ppt

合集下载

spss中相关与回归分析

spss中相关与回归分析

定义变量:血红蛋白,贫血体征→Variables
20:41
16

建立数据文件:血红蛋 白的等级相关分析.sav.

定义变量 输入数据

开始分析

ቤተ መጻሕፍቲ ባይዱ
analyze →Correlate →Bivariate

定义变量:血 红蛋白,贫血 体征 →Variables
选择统计量: Correlation Coefficients →Spearman
20:41
34

主要结果
b Model Summary
Model 1
R .930a
R Sq uare .865
Adjusted R Sq uare .848
Std. Error of the Estimate 1.8528
a. Predictors: (Constant), 身 高 ( cm) b. Dependent Variable: 体 重 ( kg )
表 4 慢性支气管炎患者各年龄组疗效观察结果 疗效 年龄(岁) 11~ 20~ 30~ 40~ 50~ 合计 治愈 35 32 17 15 10 109 显效 1 8 13 10 11 43 好转 1 9 12 8 23 53 无效 3 2 2 2 5 14 合计 40 51 44 35 49 219
17

20:41

主要结果
Correlations 血 红 蛋 白 含 量 ( g/dl) 1.000 . 10 -.741* .014 10 贫 血 体 征 -.741* .014 10 1.000 . 10
Spearman's rho
血 红 蛋 白 含 量 ( g/dl)

第7章 相关分析与回归分析(含SPSS)

第7章 相关分析与回归分析(含SPSS)



四、偏相关分析
(一) 偏相关分析和偏相关系数 偏相关分析也称净相关分析,它在控制其他变量 的线性影响的条件下分析两变量间的线性相关性, 所采用的工具是偏相关系数(净相关系数)。

偏相关分析的主要用途是根据观测资料应用偏相 关分析计算偏相关系数,可以判断哪些解释变量对 被解释变量的影响较大,而选择作为必须考虑的解 释变量。这样在计算多元回归分析时,只要保留起 主要作用的解释变量,用较少的解释变量描述被解 释变量的平均变动量。
(7.7)

偏相关系数的取值范围及大小含义与相关系数相 同。
2、对样本来自的两总体是否存在显著的偏相关 进行推断。
(1)提出原假设:两总体的偏相关系数与零无显 著差异。
(2)选择检验统计量。偏相关系数的检验统计量 为 t 统计量。 (3)计算检验统计量的观测值和相伴概率 p 。
(4)给定显著性水平 ,并作出决策。如果相 伴概率值小于或等于给定的显著性水平,则拒绝 原假设;如果相伴概率值大于给定的显著性水平, 则不能拒绝原假设。

(二)偏相关系数在SPSS中的实现

1、建立或打开数据文件后,进入Analyze→ Correlate →Partial主对话框,如图7-6所示。
图7-6 偏相关分析主对话框
2、选择分析变量送入Valiables框,选择控制变
量进入Controlling for框。
3、在Test of Significance 栏中选择输出偏相
图7-7 偏相关分析的选项对话框
(1)Statistics 统计量选择项,有两个选项: ①
Means and standard deviations 复选项,要求
SPSSZero-order correlations 复选项,要求显示零阶

SPSS的相关分析和线性回归分析

SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影

SPSS相关性分析

SPSS相关性分析

回归分析

一元线性回归模型:
y 0 1 x
为截距,即常 其中x为自变量;y为因变量; 0 1 量; 为回归系数,表明自变量对因变量的影 响程度。

用最小二乘法求解方程中的两个参数,得到
1
( x x )( y y ) (x x)
i i 2 i
0 y bx
等级相关分析

等级相关分析 等级相关是指以等级次序排列 或以等级次序表示的变量之间的相关。主要包 括斯皮尔曼二列等级相关和肯德尔和谐系数多 列等级相关。
Spearman等级相关系数—定序变量之 间的相关性的度量

斯皮尔曼等级相关系数:


两个变量为定序变量。 一个变量为定序变量,另一个变量为尺度数据,且 两总体不是正态分布,样本容量n不一定大于30。 数据的秩:秩rank,是一种数据排序的方式,可以 知道某变量值在该列所有值中的名次。秩是对应数 值由大到小的,例如有100个数据都不一样的话, 最大的数值对应的秩就是100,最小的就是1。有重 复数据时候,会按同名称排列。

残差是指由回归方程计算得到的预测值与实际 样本值之间的差距,定义为:
ˆi yi (0 1x1 2 x2 ... p x p ) ei yi y
对于线性回归分析来讲,如果方程能够较好的 反映被解释变量的特征和规律性,那么残差序 列中应不包含明显的规律性。残差分析包括以 下内容:残差服从正态分布,其平均值等于0 ;残差取值与X的取值无关;残差不存在自相 关;残差方差相等。



设样本量为n,考察两个变量X和Y之间的相关 关系,X和Y的取值记为xi,yi。所有像(xi,yi) 2 对的个数为n(n-1)/2(也就是 Cn)。和分别 表示和的秩次,如果对于任意k,有我们称 (xk,yk)为同序对;否则,称为逆序对。 总的同序对的个数记为U,逆序对的个数记为V, 则Kendall的Tau系数的定义为:

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现

相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS软件进行相关分析与回归分析;具体包括:(1)皮尔逊pearson简单相关系数的计算与分析(2)学会在SPSS上实现一元及多元回归模型的计算与检验..(3)学会回归模型的散点图与样本方程图形..(4)学会对所计算结果进行统计分析说明..(5)要求试验前;了解回归分析的如下内容..参数α、β的估计回归模型的检验方法:回归系数β的显着性检验t-检验;回归方程显着性检验F-检验..二、试验原理1.相关分析的统计学原理相关分析使用某个指标来表明现象之间相互依存关系的密切程度..用来测度简单线性相关关系的系数是Pearson简单相关系数..2.回归分析的统计学原理相关关系不等于因果关系;要明确因果关系必须借助于回归分析..回归分析是研究两个变量或多个变量之间因果关系的统计方法..其基本思想是;在相关分析的基础上;对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定;确立一个合适的数据模型;以便从一个已知量推断另一个未知量..回归分析的主要任务就是根据样本数据估计参数;建立回归模型;对参数与模型进行检验与判断;并进行预测等..线性回归数学模型如下:在模型中;回归系数是未知的;可以在已有样本的基础上;使用最小二乘法对回归系数进行估计;得到如下的样本回归函数:回归模型中的参数估计出来之后;还必须对其进行检验..如果通过检验发现模型有缺陷;则必须回到模型的设定阶段或参数估计阶段;重新选择被解释变量与解释变量及其函数形式;或者对数据进行加工整理之后再次估计参数..回归模型的检验包括一级检验与二级检验..一级检验又叫统计学检验;它是利用统计学的抽样理论来检验样本回归方程的可靠性;具体又可以分为拟与优度评价与显着性检验;二级检验又称为经济计量学检验;它是对线性回归模型的假定条件能否得到满足进行检验;具体包括序列相关检验、异方差检验等..三、试验演示内容与步骤1.连续变量简单相关系数的计算与分析在上市公司财务分析中;常常利用资产收益率、净资产收益率、每股净收益与托宾Q值4个指标来衡量公司经营绩效..本试验利用SPSS对这4个指标的相关性进行检验..操作步骤与过程:打开数据文件“上市公司财务数据连续变量相关分析.sav”;依次选择“分析→相关→双变量”打开对话框如图;将待分析的4个指标移入右边的变量列表框内..其他均可选择默认项;单击ok提交系统运行..图5.1 Bivariate Correlations对话框结果分析:表给出了Pearson简单相关系数;相关检验t统计量对应的p值..相关系数右上角有两个星号表示相关系数在0.01的显着性水平下显着..从表中可以看出;每股收益、净资产收益率与总资产收益率3个指标之间的相关系数都在0.8以上;对应的p值都接近0;表示3个指标具有较强的正相关关系;而托宾Q值与其他3个变量之间的相关性较弱..表5.1 Pearson简单相关分析Correlations每股收益率净资产收益率资产收益率托宾Q值每股收益率PearsonCorrelation1.877.824-.073Sig.2-tailed..000.000.199N315315315315净资产收益率Pearson.8771.808-.001 CorrelationSig..000..000.983 2-tailedN315315315315资产收益率Pearson.824.8081.011 CorrelationSig..000.000..849 2-tailedN315315315315托宾Q值Pearson-.073-.001.0111 CorrelationSig..199.983.849.2-tailedN315315315315 Correlation is significant at the 0.01 level 2-tailed.2.一元线性回归分析实例分析:家庭住房支出与年收入的回归模型在这个例子里;考虑家庭年收入对住房支出的影响;建立的模型如下:其中;yi是住房支出;xi是年收入线性回归分析的基本步骤及结果分析:1绘制散点图打开数据文件;选择图形-旧对话框-散点/点状;如图5.2所示..图5.2 散点图对话框选择简单分布;单击定义;打开子对话框;选择X变量与Y变量;如图5.3所示..单击ok提交系统运行;结果见图5.4所示..图5.3 Simple Scatterplot 子对话框从图上可直观地看出住房支出与年收入之间存在线性相关关系..图5.4 散点图2简单相关分析选择分析—>相关—>双变量;打开对话框;将变量“住房支出”与“年收入”移入variables列表框;点击ok运行;结果如表5.2所示..表5.2 住房支出与年收入相关系数表CorrelationsCorrelation is significant at the 0.01 level 2-tailed.从表中可得到两变量之间的皮尔逊相关系数为0.966;双尾检验概率p值尾0.000<0.05;故变量之间显着相关..根据住房支出与年收入之间的散点图与相关分析显示;住房支出与年收入之间存在显着的正相关关系..在此前提下进一步进行回归分析;建立一元线性回归方程..3 线性回归分析步骤1:选择菜单“分析—>回归—>线性”;打开Linear Regression 对话框..将变量住房支出y移入Dependent列表框中;将年收入x移入Independents列表框中..在Method 框中选择Enter 选项;表示所选自变量全部进入回归模型..图5.5 Linear Regresssion对话框步骤2:单击Statistics按钮;如图在Statistics子对话框..该对话框中设置要输出的统计量..这里选中估计、模型拟合度复选框..图5.6 Statistics子对话框估计:输出有关回归系数的统计量;包括回归系数、回归系数的标准差、标准化的回归系数、t统计量及其对应的p值等..置信区间:输出每个回归系数的95%的置信度估计区间..协方差矩阵:输出解释变量的相关系数矩阵与协差阵..模型拟合度:输出可决系数、调整的可决系数、回归方程的标准误差、回归方程F检验的方差分析..步骤3:单击绘制按钮;在Plots子对话框中的标准化残差图选项栏中选中正态概率图复选框;以便对残差的正态性进行分析..图5.7 plots子对话框步骤4:单击保存按钮;在Save子对话框中残差选项栏中选中未标准化复选框;这样可以在数据文件中生成一个变量名尾res_1 的残差变量;以便对残差进行进一步分析..图5.8 Save子对话框其余保持Spss默认选项..在主对话框中单击ok按钮;执行线性回归命令;其结果如下:表5.3给出了回归模型的拟与优度R Square、调整的拟与优度Adjusted R Square、估计标准差Std. Error of the Estimate以及Durbin-Watson统计量..从结果来看;回归的可决系数与调整的可决系数分别为0.934与0.93;即住房支出的90%以上的变动都可以被该模型所解释;拟与优度较高..表5.4给出了回归模型的方差分析表;可以看到;F统计量为252.722;对应的p值为0;所以;拒绝模型整体不显着的原假设;即该模型的整体是显着的..表5.5给出了回归系数、回归系数的标准差、标准化的回归系数值以及各个回归系数的显着性t检验..从表中可以看到无论是常数项还是解释变量x;其t统计量对应的p值都小于显着性水平0.05;因此;在0.05的显着性水平下都通过了t检验..变量x的回归系数为0.237;即年收入每增加1千美元;住房支出就增加0.237千美元..表5.3 回归模型拟与优度评价及Durbin-Watson检验结果Model Summaryba Predictors: Constant;年收入千美元b Dependent Variable:住房支出千美元表5.4 方差分析表ANOVAba Predictors: Constant; 年收入千美元b Dependent Variable: 住房支出千美元表5.5 回归系数估计及其显着性检验Coefficientsaa Dependent Variable: 住房支出千美元为了判断随机扰动项是否服从正态分布;观察图5.9所示的标准化残差的P-P图;可以发现;各观测的散点基本上都分布在对角线上;据此可以初步判断残差服从正态分布..为了判断随机扰动项是否存在异方差;根据被解释变量y与解释变量x的散点图;如图5.4所示;从图中可以看到;随着解释变量x的增大;被解释变量的波动幅度明显增大;说明随机扰动项可能存在比较严重的异方差问题;应该利用加权最小二乘法等方法对模型进行修正..图5.9 标准化残差的P-P图四、备择试验现有1987~2003年湖南省全社会固定资产投资总额NINV与GDP两个指标的年度数据;见下表..试研究全社会固定资产投资总额与GDP的数量关系;并建立全社会固定资产投资总额与GDP之间的线性回归方程..。

相关分析与回归分析 PPT

相关分析与回归分析 PPT
距离相关分析通过计算广义距离 度量样品或变量间得相似程度。
2022/9/20
26
距离相关分析一般不单独使用, 而就是作为聚类分析、因子分析等得 预处理过程。
距离相关分析根据统计量得不同, 分为不相似性测度和相似性测度。对 于不相似性测度,通过计算距离来表 示,距离越大,相似性越弱;对于相似性 测度,通过计算 Pearson 相关系
数据得采集也就是建立回归模型 得重要一环。
大多数建模竞赛题目会提供相关 数据,但这些数据可能包含了一些无 用得信息,个别数据缺失甚至失真。
在建模前,需要对数据进行适当
2022/9/20
45
处理。比如标准化,剔除个别过大或 过小得“野值”,用插值方法补齐空 缺数据等。 (3) 回归模型形式得确定
收集、处理好数据后,首先要确 定适当得数学模型来描述这些变量间 得统计关系。
显然,样品间得相关系数都接近
于1,很难辨别出其相似程度。
2022/9/20
31
例4 5名考官给10名应聘者得面
试分数如下,请问各考官评分得一致
性如何?哪位考官得可信度较小?各
应聘者分数得差异就是否明显?
解 若第1问改为:请问不同考官
对应聘者面试分数得影响就是否显著,
则勉强可用方差分析。因为考官给10
相关分析与回归分析
一、引 言
2022/9/20
2
在很多研究领域中,往往需要研
究事物间得关系。如收入与受教育程
度,子女身高与父母身高,商品销售额
与广告费用支出,农作物产量与施肥
量,上述两者间有关系吗?如果有关
系,又就是怎么样得关系呢?如何来
度量这种关系得强弱?
解决上述问题得统计方法就是相

SPSS5-相关与回归分析

SPSS5-相关与回归分析
用F值作为标准
在回归方程中包括常项 缺失值的处理方式
用均值代替缺失值
一、线性回归分析( Linear Regression)
2、一元线性回归:
示例1:教材P260数据:20章_数据1.sav
识字量对阅读能力的影响有多大?
步骤:
(1)依据散点图检验线性关系 (2)操作过程:Analyze-Regression-Linear (3)结果输出观察重点:
二、双变量相关分析(Bivariate)
示例1:大学生人格(神经质、内外向程度) 与心理健康(SCL-90总分)之间有无相关?
SPSS操作:
1、绘制散点图,判定两变aphs-Scatter
2、打开Bivarite Correlations主对话框
偏相关分析的思想:控制其它变量的变化,即在剔 除其它变量影响的情况下,计算两变量之间的相 关关系。
两个变量间的线性相关关系,用偏相关系数表示。 应用条件:均为连续性变量。
Partial Correlations 对话框
分析变量
显著性检验 显示实际的显著性水平
控制变量
Options 对话框
均值及标准差 零阶相关矩阵(即:Pearson相关矩阵)
Model 1
Regression Residual Total
Sum of Squares 1845.333 899.634 2744.967
a. Predictors: (Constant), 识 字 量
b. Dependent Var iable: 阅 读 能力
ANOV Ab
df 1
28 29
解释回归平方和在总平方各中所占的比率,即解释回 归效果, r2=0.672,则表示因变量(阅读能力)的 变异中有67.2%是由自变量(识字量)而引起的。

相关分析和回归分析SPSS

相关分析和回归分析SPSS

人均 国民收入
1068.8 1169.2 1250.7 1429.5 1725.9 2099.5
人均 消费金额
643 690 713 803 947 1148
计算结果

解:根据样本相关系数的计算公式有
r
n x x n y y
2 2 2
n xy x y
回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释 变量(因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
回归分析与相关分析的区别
1. 相关分析中,变量 x 变量 y 处于平等的地位, 是对称的双向关系;回归分析中,变量 y 称为因 变量,处在被解释的地位, x 称为自变量,用于 预测因变量的变化,是一种不对称的单向关系。 2. 相关分析中所涉及的变量 x 和 y 都是随机变量 ;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量。 3. 相关分析主要描述两个变量间线性关系的密切程 度;回归分析不仅可以揭示变量 x 对变量 y 的 影响大小,还可以由回归方程进行预测和控制。
一元线性回归模型(概念要点)

对于只涉及一个自变量的简单线性回归模型可表示 为 y = b + b x +
模型中,y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 • 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 • 是不能由 x 和 y 之间的线性关系所解释的变异性 b0 和 b1 称为模型的参数
Bivariate过程用于进行两个或多个变量间的相关分析,如为
多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受到其他 变量的影响时,就可以利用偏相关分析对其他变量进行控制 ,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间进行相似 性分析,一般不单独使用,而作为聚类分析和因子分析等的 预分析。

Spss线性回归分析讲稿ppt课件

Spss线性回归分析讲稿ppt课件
绘制各自变量与因变量之间的关系散点图,观
察其与因变量之间是否具有线性关系。然后,
将自变量进行组合,生成若干自变量的子集,再
针对每一个自变量的子集生成回归分析报告。
比较调整后的R2值,挑选最优的自变量子集,
生成回归分析模型。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
①一元线性回归:y=a+bx (有一个自变量)
②多元线性回归:
(有两个或两个以上的自变量)
(2)按回归曲线的形态分
①线性(直线)回归
②非线性(曲线)回归
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
回归分析
(二)回归分析的主要内容
即销售量的95%以上的变动都可以被该模型所解释,拟和优度较高。
表3
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归分析
表4给出了回归模型的方差分析表,可以看到,F统计量为
734.627,对应的p值为0,所以,拒绝模型整体不显著的
图1
奖金-销售量表
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归
以奖金-销售量表图1做回归分析
2、绘制散点图
打开数据文件,选择【图形】-【旧对话框】-【散点/点状】
图2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去

[课件]相关性分析PPT

[课件]相关性分析PPT

SPSS的运行方式
SPSS主要有3种运行方式。 1.批处理方式 2.完全窗口菜单运行方式 3.程序运行方式
SPSS的数据编辑窗口
SPSS主界面主要有两个,一个是SPSS数据 编辑窗口,另一个是SPSS输出窗口。 数据编辑窗口由标题栏、菜单栏、工具栏、 编辑栏、变量名栏、内容区、窗口切换标 签页和状态栏组成,如图1-2所示。
实现步骤
6.2.3 结果和讨论
outline
• 线性相关(linear Correlation)
• 秩相关(rank correlation) • 分类变量的关联性分析
秩相关
也称等级相关,最常用的Spearman秩相关。
资料类型 不服从正态分布的资料 总体分布未知的资料 等级资料
该窗口下方有两个标签:“Data View”(数据视图 )和“Variable View”(变量视图)。 如果使用过电子表格,如Microsoft Excel等,那么 数据编辑窗口中“Data View”所对应表格许多功 能应该已经熟悉。但是它和一般的电子表格处理 软件还有以下区别。
(1) 一个列对应一个变量,即每一列代表一个变 量(Variable)或一个被观测量的特征。例如问 卷上的每一项就是一个变量。 (2) 行是观测,即每一行代表一个个体、一个观 测、一个样品,在SPSS中称为事件(Case)。 例如,问卷上的每一个人就是一个观测。
χ² 检验
χ² 检验 秩和检验
Logistic回归分析
测量级别 类-类 (类-序)
相关 系数 λ
取值范 围 [0.1]
PRE意义 λ
检验方 法 χ2
SPSS程序 crosstabs Crosstabs/ correlation crosstabs/ Oneway/ means crosstabs/ correlation /linear

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

实验二 偏相关分析
❖ 实验目的
准确理解偏相关分析的方法原理和使用前提; 熟练掌握偏相关分析的SPSS操作; 了解偏相关分析在中介变量运用方法。
实验二 偏相关分析
❖ 准备知识
偏相关分析的概念
在多元相关分析中,由于其他变量的影响,Pearson相关系数 只是从表面上反映两个变量相关性,相关系数不能真正反映两 个变量间的线性相关程度,甚至会给出相关的假想。因此,在 有些场合中,简单的Pearson相关系数并不是测量相关关系的 本质性统计量。当其他变量控制后,给定的任意两个变量之间 的相关系数叫做偏相关系数。偏相关系数才是真正反映两个变 量相关关系的统计量。
(3)点击“选项”按钮,见图,选择 零阶相关系数(也就是两两简单相关系 数,可以用与偏相关系数比较)。点击 “继续”按钮回到主分析框。点击“确 定”按钮。
❖ 实验结果
描述性统计分析
偏相关分析
实验三 简单线性回归分析
❖ 实验目的
准确理解简单线性回归分析的方法原理; 熟练掌握简单线性回归分析的SPSS操作与分析; 了解相关性与回归分析之间关系; 培养运用简单线性回归分析解决实际问题的能力。
实验二 偏相关分析
❖ 实验步骤
(1)在SPSSl7.0中打开数据文件6-2.sav,通过选择“文件— 打开”命令将数据调入SPSSl7.0的工作文件窗口 。
❖ 旅游投资数据文件
(2)从菜单上依次选择“分析-相关-偏相关”命令,打开其 对话框,如图所示。选择“商业投资”与“经济增长”作为相 关分析变量,送入变量框中;选择“游客增长率”作为控制变 量,用箭头送入右边的控制框中。
实验一 相关分析
❖ 实验内容
❖ 某大学一年级12名女生的胸围(cm)、肺活量(L)身 高(m),数据见表6-1-1。试分析胸围与肺活量两个变 量之间相关关系。

spss第五讲回归分析PPT课件

spss第五讲回归分析PPT课件
关于x的残差图 关于y的残差图 标准化残差图
2、用于判断误差的假定是否成立 3、检测有影响的观测值
34
残差图
(形态及判别)


0




0
0
x
(a)满意模式
x
(b)非常数方差
x
(c)模型不合适
35
二、检验正态性 标准化残差(standardized residual)
2. E(y0) 在1-置信水平下的置信区间为
yˆ0 t 2 (n 2)se
1
n
x0 x 2
n
xi x 2
i 1
式中:se为估计标准误差
29
个别值的预测区间
1. 利用估计的回归方程,对于自变量 x 的一个给定值 x0 ,求出因变量 y 的一个个别值的估计区间,这一
区间称为预测区间(prediction interval) 2. y0在1-置信水平下的预测区间为
一、变差 1、因变量 y 的取值是不同的,y 取值的这种波动称为变
差。变差来源于两个方面
由于自变量 x 的取值不同造成的 除 x 以外的其他因素(如x对y的非线性影响、测量误差等)
的影响
2、对一个具体的观测值来说,变差的大小可以通过该 实际观测值与其均值之差y y 来表示
16
误差分解图
y
(xi , yi )
32
一、检验方差齐性
残差(residual)
1、因变量的观测值与根据估计的回归方程求 出的预测值之差,用e表示
ei yi yˆi
2、反映了用估计的回归方程去预测而引起的 误差
3、可用于确定有关误差项的假定是否成立 4、用于检测有影响的观测值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这里n为样本数
表内的数值
代表不同的
置信水平下
相关系数
ρ=0的临界
2020/10/28
值,即ra 13
相关系数的显著性检验步骤
相关系数r的具体检验方法步骤如下: (1)计算相关系数r
(2)给定显著水平α,按n-2查相关系数临界值, 查出相应的临界值
(3)比较r的绝对值与临界值的大小。当r的绝 对值大于或等于临界值时,说明两变量在α水平 上达到显著性;若小于临界值,则说明两变量没
一般情况下,相关系数的检验,是在给定的
置信水平下,通过查相关系数检验的临界值表来
完成的。 2020/10/28
12
检验相关系数ρ=0的临界值(ra)表 p{|r|>ra}=α
a代表不同的 公式p={|r|>ra}=a的意
显著性水平 思是当所计算的相关系数r的 绝对值大于在a水平下的临界
f值称为自由度, 值ra时,两要素不相关(即 其数值为f=n-2, ρ=0)的可能性只有a。
有达到所要求的精度。如果仍需研究二者的关系 ,可考虑降低精度,即修改显著性水平α、
2020/10/28
14
2、等级相关系数的计算公式及检验
——等级相关系数,又称顺序相关系数是将两 要素的样本值按数值的大小顺序排列位次,以 各要素样本值的位次代替实际数据而求得的一 种统计量。实际上,它是位次分析方法的数量 化。
它的形状象一块橄榄状的 云,中间的点密集,边沿 的点稀少,其主要部分是 一个椭圆。
6 2020/10/28
★正相关 ★负相关 ★完全正相关 ★完全负相关 ★零相关
7 2020/10/28
二 地理要素间的相关类型
按变量 多少 按质量
两个变量 两个以上
变量
直线相关(线性相关)
曲线相关(非线性相关) 复相关 偏相关
21
2020/10/28
(二)简单非线性相关程度的测度(见课本)
(三)多要素间相关程度的测定
1.偏相关系数的计算与检验
在多要素所构成的地理系统中,当我们研究
某一个要素对另一个要素的影响或相关程度时,
把其它要素的影响视为常数(保持不变),即
暂不考虑其它要素的影响,而单独研究那两个
要素之间的相互关系的密切程度时,则称为偏
——相关分析仅限于测定两个或两个以 上变量具有相关关系者,其主要目的在 于计算出表示两个或两个以上变量间相 关程度和性质。
2020/10/28
4
所谓地理相关,就是运用相关分 析法来研究各地理要素间的相互关 系和联系强度的一种度量指标。
5 图 地理事物的空间分布类型
2020/10/28
为了研究父亲与成年儿子 身高之间的关系,卡尔.皮 尔逊测量了1078对父子 的身高。把1078对数字 表示在坐标上,如图。
——表示两个变量顺序间直线相关程度和方向 的系数,称为等级(或顺序)相关系数。等级 相关系数不仅适用于数量指标的相关分析,同 时亦适用于质量指标的相关分析。
15
2020/10/28
ቤተ መጻሕፍቲ ባይዱ
(1)等级相关系数的计算公式
n
di2
Rd
1
6
*
i 1
n(n2
1)
16
2020/10/28
(2)等级相关系数的计算及检验
第四章 相关分析和回归分析
相关分析和回归分析
第一节 地理要素间的相关分析 第二节 地理要素间的回归分析
2020/10/28
2
第一节 地理要素间的相关分析
一 相关分析的概念 二 地理要素的相关类型 三 相关程度的程度方法及显 著性检验
2020/10/28
3
一 相关分析的概念
——就是测度各个变量之间的关系 密切程度的数学方法。
●相关系数的绝对值越大。表示两个要素间相关程度越密切。
当r=+1时,为完全正相关。R=-1时,为完全负
相关;r=0则完全无关。
10
2020/10/28
相关系数公式简化:

Lxy
n i1
(xi
x )( yi
y)
n i1
xi yi
1 n
n i1
xi
n i1
yi
Lxx
n i 1
(xi
2020/10/28
9
1、常用的相关系数的计算公式及检验
n
(xi x)(yi y)
r
i 1
n
2 n
2
(xi x) * ( yi y)
i 1
i 1
(1)相关系数的性质
●相关系数的分布范围,介于-1和+1之间
●当相关系数为正值时,表示两个要素(或变数)之间呈正相关,
相关系数为负值时,表示两个要素(或变数)之间为负相关;
等级相关(顺序相关)
品质相关
2020/10/28
8
三 相关程度的测度方法及显著性检验
由于地理相关类型各不相同,因此测度的方法也不同。
(一)线性相关程度的测度
所谓相关程度,就是研究它们之间的相互关系是否密切。 所谓相关方向,又可以分两种,即正相关和负相关。
用来测度直线相关程度和方向的指标就是相关系数。
x)2
n i 1
xi 2
1 n
n i1
xi
2
Lyy
n i1
( yi
y)2
n i1
yi 2
1 n
n i1
yi
2
公式可简化为
rxy
Lxy
Lxx Lyy
11
2020/10/28
(2)相关系数的显著性检验
为什么?
相关系数是根据要素之间的样本值计算出来 的,它随着样本数的多少或取样方式的不同而不 同,因此它只是要素之间的样本相关系数,只有 通过检验,才能知道它的可信度。
1985年全国各省(市,区)总人口与社会总产值
17
2020/10/28
18
2020/10/28
即:总人口(x)与社会总产值(y)的等级相关系 数为0.726
19
2020/10/28
等级相关系数检验的临界值
20
2020/10/28
等级相关系数检验结果
在上例中,n=29,表中没有给出相应的样本数 下的临界值ra,但我们发现,在同一显著水平 下 , 随 着 样 本 数 的 增 大 , 临 界 值 ra 减 少 。 在 n=28 时 , 查 表 可 知 : r0.05=0.317 , r0.01=0.448,由于r′xy=0.726>r0.01=0.448, 故r′xy在a=0.01的置信水平上是显著的。
相关。用以度量偏相关程度的统计量,称为偏
相关系数。
2020/10/28
22
当研究2个相关变量x1、x2的关系时,用直线相关
系数r12表示x1与x2线性相关的性质与程度。此时固定的
变量个数为0,所以直线相关系数r12又叫做零级偏相关
系数。
当研究3个相关变量x1、x2、x3的相关时,我们
把x3保持固定不变,x1与x2的相关系数称为x1与x2的偏
相关文档
最新文档