传热系数与给热系数

合集下载

导热系数、传热系数(热阻值R、导热系数λ、修正系数、厚度

导热系数、传热系数(热阻值R、导热系数λ、修正系数、厚度

导热系数、传热系数(热阻值R、导热系数λ、修正系数、厚度导热系数: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表⾯的温差为1度(K,℃),在1⼩时内,通过1平⽅⽶⾯积传递的热量,单位为⽡/⽶·度(W/m·K,此处的K可⽤℃代替)。

传热系数: 传热系数以往称总传热系数。

国家现⾏标准规范统⼀定名为传热系数。

传热系数K值,是指在稳定传热条件下,围护结构两侧空⽓温差为1度(K,℃),1⼩时内通过1平⽅⽶⾯积传递的热量,单位是⽡/平⽅⽶·度(W/㎡·K,此处K可⽤℃代替)。

(节能)热⼯计算:1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m) λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)]2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表⾯换热阻(m.k/w)(⼀般取0.11) Re —外表⾯换热阻(m.k/w)(⼀般取0.04) R —围护结构热阻(m.k/w)3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中: Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)] Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m.k)] Fp—外墙主体部位的⾯积 Fb1、Fb2、Fb3—外墙周边热桥部位的⾯积4、单⼀材料热⼯计算运算式 ①厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)]②热阻值R(m.k/w) = 1 / 传热系数K [W/(㎡·K)]③厚度δ(m) = 导热系数λ[W/(m.k)] / 传热系数K [W/(㎡·K)]5、围护结构设计厚度的计算 厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)] *修正系数R值和U值是⽤于衡量建筑材料或装配材料热学性能的两个指标。

传热系数、换热系数和导热系数

传热系数、换热系数和导热系数

传热系数、换热系数和导热系数传热系数、换热系数和导热系数是热传导过程中的重要参数。

它们在热工学和工程领域中被广泛应用,用于描述物质传热性能的好坏。

首先,我们来了解一下传热系数。

传热系数是指单位时间内单位面积上的热量传递量与温度差之比。

它是描述物质传热能力的一个重要参数。

传热系数的大小与物质的导热性能、传热方式、传热介质等因素有关。

一般来说,传热系数越大,物质的传热能力越强。

传热系数的单位是W/(m²·K)。

接下来,我们来了解一下换热系数。

换热系数是指单位时间内单位面积上的热量传递量与温度差之比,同时考虑了传热表面的特性。

换热系数是传热系数的一种特殊形式,它描述了传热表面的传热能力。

换热系数的大小与传热表面的形状、材料、表面粗糙度等因素有关。

一般来说,换热系数越大,传热表面的传热能力越强。

换热系数的单位也是W/(m²·K)。

最后,我们来了解一下导热系数。

导热系数是指单位时间内单位长度上的热量传递量与温度差之比。

它是描述物质导热性能的一个重要参数。

导热系数的大小与物质的导热性能有关,一般来说,导热系数越大,物质的导热能力越强。

导热系数的单位是W/(m·K)。

传热系数、换热系数和导热系数在工程领域中有着广泛的应用。

例如,在建筑领域中,我们需要考虑墙体的传热系数和导热系数,以确定墙体的保温性能。

在制冷和空调领域中,我们需要考虑换热器的换热系数,以确定制冷和空调设备的制冷效果。

在工业生产中,我们需要考虑传热系数和导热系数,以确定生产设备的传热效率。

总之,传热系数、换热系数和导热系数是热传导过程中的重要参数,它们描述了物质的传热性能和导热性能。

在工程领域中,我们需要根据这些参数来评估和设计热传导系统,以确保系统的高效运行。

通过合理选择材料和优化传热表面,我们可以提高传热系数和换热系数,从而提高热传导系统的传热效率。

空气在圆直管内作强制湍流时给热系数测定实验

空气在圆直管内作强制湍流时给热系数测定实验

实验三空气在圆直管内作强制湍流时给热系数测定实验一、实验目的1、学习测定传热系数和给热系数的方法。

2、加强对传热理论的理解。

3、学习化工中常用的准数关联方法及对数坐标纸的使用。

二、实验原理1、从传热原理知道,对于稳态传热有:Q=Vs·ρ·Cp·(t2-t1)=K·A·Δtm=α·A·Δt即K= Vs·ρ·Cp·(t2-t1)/ A·Δtm其中Δtm= t2-t1 / ln[(T-t2)/(T-t1)] (℃)由于蒸汽冷凝热阻与黄铜管壁热阻远小于内管空气对流给热热阻,可以忽略不计,故有K ≈α2、由因次分析可得知,空气在圆直管内强制湍流传热中,有:Nu=C·Rem 式中μρdu=Re将上式两边取对数得:lgNu=lgC+mlgRe可见,若以Nu与Re在双对数坐标纸上标绘,应得斜率为m截距为lgC的直线。

3、上面式中符号意义Q ——传热速率,W;Vs——空气在实验状态下的体积流量,m3/sA——传热面积,m2K——总传热系数,W/(m2·K)Δtm——传热平均温度差,℃α——空气侧对流给热系数,W/(m2·K)Δt——给热温度差,℃t1 、t2——被加热流体进出口温度,℃ρ——空气在实验状态下的密度,m3/KgCp——空气比定压热容,J/(kg·K)4、有关参数的测定空气温度t1 、t2——用热电偶测出电位数值,经转换用数码显示仪显示空气流量——用转子流量计测出蒸汽压力——用弹簧压力计测得三、实验装置1、实验装置结构及流程见图2、套管换热器尺寸:内管为黄铜管,Φ31mm×3.5mm,L=1.6m,套管为50mm水煤气管,并覆以保温材料。

四、实验方法1、首先熟悉实验原理和实验装置结构及流程2、正确操作顺序:(1)启动罗茨鼓风机,并打开空气调节阀,使空气进入套管换热器内管(2)打开电热锅炉注水阀,向锅炉注水至1/2~2/3液面处,打开加热器开关,加热并产生一定压力的蒸汽(3)打开电热锅炉的出口调节阀,让蒸汽进入套管,并排放套管内空气,仪表盘动态显示系统各温度值(4)按动“显示数据”按钮,调入原始数据记录表(5)待系统稳定后,按动“确定”按钮,当前一组数据计入原始数据表,在整个测量范围内划分为8个以上测点,并按上述方法记录各组数据(6)按动“处理数据”按钮,进入数据处理环境界面,按动“显示结果”按钮,便可查看数据处理结果数据表、曲线及其回归方程式五、实验结果1、PCE-ES处理结果:2、Excel数据处理结果:六、思考题1、影响对流传热系数的因素有哪些?答:①流体的物性与种类;②流体流动的原因;③流体流动的状态;④传热面的形状;⑤位置与大小等;即可用表达式表示为α=f(ρ,μ,Cp,λ,u,L,βg△T)。

实验三 传热系数K和给热系数α的测定

实验三  传热系数K和给热系数α的测定

实验三 传热系数K 和给热系数α的测定一、 实验目的1. 了解间壁式传热元件和给热系数测定的实验组织方法;2. 学会给热系数测定的试验数据处理方法;3. 了解影响给热系数的因素和强化传热的途径。

二、实验原理在工业生产中,间壁式换热器是经常使用的换热设备。

热流体借助于传热壁面,将热量传递给冷热体,以满足生产工艺的要求。

影响换热器传热速率的参数有传热面积、平均温度差和传热系数三要素。

为了合理选用或设计换热器,应对其性能有充分的了解。

除了查阅文献外,换热器性能实测是重要的途径之一。

传热系数是度量换热器性能的重要指标。

为了提高能量的利用率,提高换热器的传热系数以强化传热过程,在生产实践中是经常遇到的问题。

列管换热器是一种间壁式的传热装置。

冷热液体间的传热过程是由热流体对壁面的对流传热、间壁的热传导、以及壁面对冷流体的对流传热这三个传热子过程组成,其所涉及的热量衡算为:1212()()()()h h w c c w mw w Q KA T t Q A T t Q A t t A Q t t ααλδ=-=-=-=- 1122111w w w w h h m c c T t t t t t T tQ A A A KA δαλα----==== 1h h m c cK A A A A A A δαλα=++在所考虑的这个传热过程忠,所涉及的参数共有13个,采用因次分析方法 :π=13-4=9个无因次数群。

该方法的基本处理过程是将研究的对象分解成两个或多个子过程 。

即:12(,)K f αα≈分别对α1、α2进行研究:1111111(,,,,,)p f d u c αρμλ=无因次处理得:0(,)Re Pr p b c c d du f Nu a μαρλμλ=→= 1)传热系数K 的实验测定热量衡算式:21()c c pc Q q c t t ρ=- 传热速率式:m Q KA t =∆ 其中:12211221()()lnm T t T t t T t T t ---∆=--两式联立,得:21()c c pc mq c t t K A t ρ-=∆2)给热系数α的实验测定热量衡算式:21()c c pc Q q c t t ρ=- 传热速率式: c mc Q A t α=∆ 其中:2121()()lnw w mc w w t t t t t t t t t ---∆=--下上上下两式联立,得:21()c c pc c mcq c t t A t ρα-=∆三、实验装置及流程图本实验选用空气作为冷流体 华理是冷却水,水蒸汽作为热流体。

导热系数、传热系数(热阻值R、导热系数λ、修正系数、厚度

导热系数、传热系数(热阻值R、导热系数λ、修正系数、厚度

导热系数、传热系数(热阻值R、导热系数λ、修正系数、厚度导热系数: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表⾯的温差为1度(K,℃),在1⼩时内,通过1平⽅⽶⾯积传递的热量,单位为⽡/⽶·度(W/m·K,此处的K可⽤℃代替)。

传热系数: 传热系数以往称总传热系数。

国家现⾏标准规范统⼀定名为传热系数。

传热系数K值,是指在稳定传热条件下,围护结构两侧空⽓温差为1度(K,℃),1⼩时内通过1平⽅⽶⾯积传递的热量,单位是⽡/平⽅⽶·度(W/㎡·K,此处K可⽤℃代替)。

(节能)热⼯计算:1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m) λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)]2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表⾯换热阻(m.k/w)(⼀般取0.11) Re —外表⾯换热阻(m.k/w)(⼀般取0.04) R —围护结构热阻(m.k/w)3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中: Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)] Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m.k)] Fp—外墙主体部位的⾯积 Fb1、Fb2、Fb3—外墙周边热桥部位的⾯积4、单⼀材料热⼯计算运算式 ①厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)]②热阻值R(m.k/w) = 1 / 传热系数K [W/(㎡·K)]③厚度δ(m) = 导热系数λ[W/(m.k)] / 传热系数K [W/(㎡·K)]5、围护结构设计厚度的计算 厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)] *修正系数R值和U值是⽤于衡量建筑材料或装配材料热学性能的两个指标。

导热系数传热系数热阻值概念及热工计算方法

导热系数传热系数热阻值概念及热工计算方法

导热系数传热系数热阻值概念及热工计算方法导热系数是一个物质传导热量的能力的物理量,通常用符号λ表示,单位是W/(m·K)。

它表示单位面积上,厚度为1米的物质在温度差为1摄氏度时,横向通过热传导而传递的热量。

物质的导热系数与物质自身的性质有关,常用于计算材料的热传导过程。

传热系数是指对流传热和传导传热之和。

对流传热是指流体通过对流方式(例如空气对流、液体对流)传递热量的过程。

传导传热是指通过材料内部的分子热传导以及材料之间的热传导传递热量的过程。

传热系数通常用符号α表示,单位是W/(m^2·K)。

传热系数是描述单位面积的物质与流体(例如空气、液体)之间的热量传递能力的参数。

热阻值是描述物质抵抗热传导流动的能力的物理量。

热阻值通常用符号R表示,单位是m^2·K/W。

热阻值可以通过物质的导热系数和物质的厚度计算得到。

热阻值越大,就意味着物质抵抗热量传递的能力越强。

从计算角度来看,热阻值可以用于确定材料层的热传导系数和有效厚度。

在热工计算中,常常需要计算传热过程中的各种参数。

一般来说,可以使用一维热传导方程对传热进行描述。

该方程是基于能量守恒原理建立的,用于计算热传导。

在实际计算中,可以使用有限差分法、有限元法等数值方法求解热传导方程。

对于复杂的传热过程,例如对流传热,可以使用强化传热表达式或经验公式来估算传热系数。

这些经验公式基于实验数据和经验得出,用于估计传热系数。

根据具体的工程问题,可以选择适合的传热模型和传热参数进行计算。

需要注意的是,热传导过程中考虑的因素很多,包括材料的导热性质、热传导路径、表面特性、传热介质等等。

因此,在进行热工计算时,需要综合考虑各种因素,选择合适的传热模型和参数,以确保计算结果的准确性和可靠性。

导热系数、传热系数、热阻值概念及热工计算方法简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法导热系数λ[W/(m.k)]:导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。

导热系数可通过保温材料的检测报告中获得或通过热阻计算。

传热系数K [W/(㎡?K)]:传热系数以往称总传热系数。

国家现行标准规范统一定名为传热系数。

传热系数K 值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。

传热系数可通过保温材料的检测报告中获得。

热阻值R(m.k/w):热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。

单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。

传热阻:传热阻以往称总热阻,现统一定名为传热阻。

传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。

(节能)热工计算:1、围护结构热阻的计算单层结构热阻: R=δ/λ式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)]多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn式中: R1、R2、---Rn—各层材料热阻(m.k/w)δ1、δ2、---δn—各层材料厚度(m)λ1、λ2、---λn—各层材料导热系数[W/(m.k)]2、围护结构的传热阻R0=Ri+R+Re式中: Ri —内表面换热阻(m.k/w)(一般取0.11)Re —外表面换热阻(m.k/w)(一般取0.04)R —围护结构热阻(m.k/w)3、围护结构传热系数计算K=1/ R0式中: R0—围护结构传热阻外墙受周边热桥影响条件下,其平均传热系数的计算Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3)式中:Km—外墙的平均传热系数[W/(m.k)]Kp—外墙主体部位传热系数[W/(m.k)]Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m.k)]Fp—外墙主体部位的面积Fb1、Fb2、Fb3—外墙周边热桥部位的面积4、单一材料热工计算运算式①热阻值R(m.k/w) = 1 / 传热系数K [W/(㎡?K)]②导热系数λ[W/(m.k)] = 厚度δ(m) / 热阻值R(m.k/w)③厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)]④厚度δ(m) = 导热系数λ[W/(m.k)] / 传热系数K [W/(㎡?K)]5、围护结构设计厚度的计算厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)] *修正系数(见下表)R值和λ值是用于衡量建筑材料或装配材料热学性能的两个指标。

传热实验报告及思考题-化工实验

传热实验报告及思考题-化工实验
教师审阅意见:
二、实验记录
1原始数据表
裸管
冷凝液量
热电偶读数/℃
时间/s
体积/mL
冷凝水流量mL/s
保温包蒸汽温度/
裸管壁面温度1
裸管壁面温度2
裸管壁面温度3
60
5.25
0.088
98.3
97.8
97.6
96.9
60
5
0.083
98.3
97.8
97.7
96.9
60
5.2
0.087
98.2
97.8
97.6
4实验步骤及注意事项
(1)熟悉设备流程,检查个阀门的开关情况,排放汽包中的冷凝水。
(2)打开锅炉紧随发,加水至液面计高度的2/3。
(3)将电热棒接上电源,并将调压器从0调至220V,满功率加热,带有正气后,再
将加热功率调制适宜值。
(4)打开套管换热器冷却水进口阀,调节冷却水流量为某一值,注意该值应与加热
根据
=/(Δ)=2753.8W/(0.32×78.8℃)
可求得
=1165W/(m2∙℃)
(2)计算裸管的自然对流给热系数α(W /(m2⋅°C) )
Φ=16×1.5;管长L=0.67m。
与(1)中同理可求得放热量
Q=W汽r=∙∙r =998×0.086×10−6×2257.2×103W=193.7W
(1) 测定汽-水套管的传热系数K(W /(m2⋅°C)):
(2)测定裸管的自然对流给热系数α(W /(m2⋅°C) ):
(3)测定保温材料的导热系数λ(W/(m⋅°C)):
3流程装置
该装置主体设备为“三根管”:汽-水套管、裸管和保温管。这“三根管”与锅炉、汽包、高位槽、智能数字显示控制仪等组成整个测试系统,见图1。

传热系数的测定

传热系数的测定

传热系数的测定传热系数是在热传导中的一个重要参数,它表征了热量在物体内部传递的能力大小。

在工程和科学领域中,传热系数的测定是非常重要的,因为它可以用来判断材料或设备的热传递特性是否符合设计要求,以及优化热传递过程的效率。

本文将介绍传热系数的测定方法以及具体实验中需要注意的问题。

物体内部传递热量的能力可以由传热系数来描述。

传热系数k是物体中单位时间内单位面积上表面与相邻物体间传递的热量(Q)与温度差(ΔT)的比值。

即:k = Q / (A×ΔT)其中,Q表示传递的热量;A表示传递的热量所在表面的面积;ΔT表示两侧温度差。

传热系数可以用来衡量材料的导热性能。

一般来说,材料的导热性能越好,它的传热系数就越大。

在实验中,传热系数一般通过测量材料的温度分布和热量传递速率来推导得到。

一、实验装置和步骤传热系数的测定实验最基本的装置是热传导试样,它可以是任何形状和大小的固体,一般具有矩形、圆形或球形等形状。

试样的表面通常涂有黑色或复合材料,以增大吸收热量的面积。

通常的实验步骤如下:1. 在实验准备阶段,将试样制备好,并在表面涂上黑色吸热材料。

2. 将试样的一侧置于水槽中,以便能够通过加热水来改变试样的温度。

3. 在给定的时间内,在试样的另一侧测量温度,以确定温差。

4. 通过测量这段时间内给试样加的热量和温度差来计算传热系数。

这能够确定给定的温度差下的导热率。

二、注意事项在进行传热系数测定实验时,需要注意以下几个问题:1. 试样的准确温度测量是非常关键的。

在实验中,温度测量应该在试样的另一侧进行,并通过多个点上的测量来确定平均温度,从而减小因测量误差而导致的传热系数偏差。

2. 正确的数据分析和处理非常重要。

数据的处理应该严格按照实验过程所需的参数计算公式进行,并考虑到可能的误差来源,如温度测量设备精度等因素。

3. 确保实验的稳定性。

在进行实验时,应尽可能地保持试样的表面温度均匀,以消除由于表面温度不均匀而导致的传热系数偏差。

3 蒸汽冷凝时传热和给热系数测定实验-2

3 蒸汽冷凝时传热和给热系数测定实验-2
实验三 蒸汽冷凝时传热和给热系数测定实验
一、实验目的
1、熟悉冷凝换热器实验台的工作原理和使用方法; 2、掌握冷凝换热器的换热量 Φ 和表面传热系数 h 及总传热系数 K 的测试 和计算方法; 3、理解蒸汽冷凝换热的传热规律。
二、实验装置
1、装置整体组装,带脚轮,用户接电源和上、下水后即可使用。 2、可测蒸汽在水平管内冷凝(管外为自来水)时的传热系数和给热系数。 其工作原理及流程如附图所示。 3、管子的内壁面温度用事先埋好的两支热电偶(求平均温度)测量。 4、电热蒸汽发生器功率为 4.5KW,最大工作压力为 0.08Mpa。
四、测试数据整理
(一)整理实验数据的有关公式 管内径:d 内=17mm 1、蒸汽凝结放热量 Q1 = Gz(i1 - i 2) 2、冷水获热量 Q 2 = Gz(i 4 - i 3) 3、平均热量
Q Q1 Q 2 2
管外径:d 外=20mm
管长:L=1100mm
[W]
[W]
[W]
4、热平衡误差
t3、t4 —— 冷水进口和出口温度 [℃]
7、焓值表
(二)实验数据整理表 进 水 焓 值 出 水 焓 值 蒸汽进口焓 蒸汽出口焓 冷凝时的表面 总传热系数 传热系数 2 ( W m C ) ( KJ Kg ) ( KJ Kg ) ( KJ Kg ) 值 ( KJ Kg ) 值 2 ( W m C )
五、实验报告要求
1、简述实验目的、实验原理、实验步骤。 2、对实验数据进行处理,计算传热系数。 3、分析热平衡误差。
5、总传热系数
Q1 - Q 2 100% Q
K
Q F t
[ W m 2 C ]
6、蒸汽冷凝给热系数

Q F(t z - t b)

传热系数和导热系数的区别和联系

传热系数和导热系数的区别和联系

传热系数和导热系数的区别和联系传热系数是一个重要的概念,它对材料设计、结构设计等都有重要的指导意义。

传热系数和导热系数是不同的物理概念,但它们之间又有着密切联系。

为了正确认识传热系数与导热系数在工程中的应用,有必要进行比较分析,以使读者掌握两者的概念和规律。

传热系数是从传热的角度来反映材料传热能力的物理量。

导热系数则是从导热的角度来反映材料导热能力的物理量。

两者概念不同,适用范围也不同。

传热系数是基本物性参数,主要用于选择保温隔热材料、优化热工设备及冷热介质管道系统设计,而导热系数主要用于评价材料隔热、保温效果。

传热系数不仅在不同温度和不同传热介质下不同,在相同的条件下,随着传热介质及其温度的变化,其值也会发生很大的变化。

同时,不同传热介质的导热系数差异也很大,特别是流体介质的导热系数非常小,所以传热系数是衡量传热介质传热能力的一个极其重要的物理量。

传热系数一般以热阻率来表示,单位为mW/( mK),用“ K”来表示。

传热系数的符号为C。

导热系数是基本物性参数,在不同温度下,导热系数可用下式表示: Q=ρY( 1)通常情况下,导热系数表示为μ,即在给定温度下,每单位长度的材料垂直通过单位面积的热量。

其中,ρ是材料的密度,表示单位体积的材料中的质量;λ是传热系数,表示单位时间内通过单位截面积的热量; Y表示传热面积,通常用单位面积上的热流量来表示。

由此可见,导热系数表示的是传热速率。

从导热的角度看,它是反映了导热过程中传热系数的大小,即热量由高温向低温传递的快慢。

因此,导热系数越大,传热速度就越快。

导热系数的单位为mW/( mK),用“ W/( mK)”表示。

它们之间的换算关系为:导热系数=0.0485( w/ mK)传热系数与导热系数是完全不同的两个物理概念,但它们之间又存在着密切联系。

3、按照实际用途和功能要求,合理选取传热系数和导热系数传热系数只是反映了传热过程中某一特定的传热现象,例如传热过程中的热传导、热对流和热辐射等,而导热系数则反映了不同传热介质中的导热过程,它描述的是不同传热介质中的导热过程的速率,因此它更适用于对不同传热介质的导热系数进行比较。

给热系数的计算公式

给热系数的计算公式

给热系数的计算公式1、围护结构热阻的计算单层结构热阻R=δ/λ(m2.K/w)式中:δ—材料层厚度(m)λ—材料导热系数[W/(m.k)]多层结构热阻R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn式中: R1、R2、---Rn—各层材料热阻(m2.k/w)δ1、δ2、---δn—各层材料厚度(m)λ1、λ2、---λn—各层材料导热系数[W/(m.k)]2、围护结构的传热阻R0=Ri+R+Re式中: Ri —内表面换热阻(m2.k/w)(一般取0.11)Re—外表面换热阻(m2.k/w)(一般取0.04)R —围护结构热阻(m2.k/w)3、围护结构传热系数计算K=1/ R0 (w/(m2.k))式中: R0—围护结构传热阻外墙受周边热桥影响条件下,其平均传热系数的计算Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m2.k)]Kp—外墙主体部位传热系数[W/(m2.k)]Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m2.k)] Fp—外墙主体部位的面积Fb1、Fb2、Fb3—外墙周边热桥部位的面积4、铝合金门窗的传热系数的计算Uw =(Af*Uf+Ag*Ug+Lg*Ψg)/(Af+Ag)式中:Uw —整窗的传热系数W/m2·KUg —玻璃的传热系数W/m2·KAg —玻璃的面积m2Uf —型材的传热系数W/m2·KAf —型材的面积m2Lg —玻璃的周长mΨg —玻璃周边的线性传热系数W/m2·K。

传热系数导热系数的定义和区别

传热系数导热系数的定义和区别

传热系数与导热系数的定义和区别传热系数和导热系数是热传导和对流传热过程中常用的物理量,但它们的定义和应用场景有所不同。

本文将介绍它们的定义和区别,并探讨它们在实际应用中的应用。

下面是本店铺为大家精心编写的3篇《传热系数与导热系数的定义和区别》,供大家借鉴与参考,希望对大家有所帮助。

《传热系数与导热系数的定义和区别》篇1一、传热系数的定义和应用传热系数(Heat Transfer Coefficient,简称 HTC)是指在稳定传热条件下,围护结构两侧空气温差为 1 度 (K/),单位时间内通过 1 平方米面积传递的热量,单位是瓦/(平方米·度)(W/·K,此处K 可用代替)。

传热系数不是描述物质物理性的物理量,它会随着不同的外界条件而发生变化,例如温度、流速、流量等。

传热系数通常用于描述热传导和对流传热过程中的热量传递速率。

在热传导过程中,传热系数与材料的热导率、厚度、表面温度等因素有关;在对流传热过程中,传热系数与流体的速度、温度、粘度等因素有关。

二、导热系数的定义和应用导热系数(Thermal Conductivity,简称 k)是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为 1 度 (K/),在 1 小时内,通过 1 平方米面积传递的热量,单位为瓦/米·度(W/m·K,此处的[UNK] 可用代替)。

导热系数是表明物质导热能力大小的一个指标,只决定于物质本身的物理特性,而与外部条件没有关系。

导热系数通常用于描述材料的热传导性能,如金属、陶瓷、塑料等。

它的大小决定了材料传导热量的能力,导热系数越大,材料传导热量的能力越强。

在实际应用中,导热系数常用于材料的选材和热传导系统的设计。

三、传热系数与导热系数的区别传热系数和导热系数都是描述热传导和对流传热的物理量,但它们的定义和应用场景有所不同。

1. 定义不同:传热系数是一个过程量,不是描述物质物性的物理量。

玻璃传热系数与得热系数

玻璃传热系数与得热系数

玻璃传热系数与得热系数
玻璃的传热系数和得热系数是描述玻璃材料传热特性的重要参数。

传热系数(也称热导率)是指材料单位厚度上的热量传导率,
通常用λ表示,单位是W/(m·K)。

而得热系数(也称热阻)是指
材料的厚度对热量传递的阻碍程度,通常用U值表示,单位是
W/(m²·K)。

首先来看传热系数,它是描述材料导热性能的参数。

对于玻璃
材料来说,传热系数的大小直接影响着玻璃的保温性能。

一般来说,传热系数越小,说明材料的绝热性能越好,保温效果越显著。

因此,在建筑领域,选择传热系数较小的玻璃材料可以有效提高建筑物的
保温性能,降低能源消耗。

其次是得热系数,它是描述建筑结构或材料整体的保温性能的
参数。

得热系数越小,表示材料具有较好的保温性能,能够在一定
时间内阻止热量的流失。

在玻璃窗户或墙体的设计中,通常会考虑
到玻璃的得热系数,以确保建筑在保温效果和采光性能之间取得平衡。

总的来说,玻璃的传热系数和得热系数都是与其保温性能密切
相关的重要参数。

通过合理选择传热系数较小的玻璃材料,并结合建筑结构的得热系数要求,可以达到提高建筑保温性能的目的。

同时,这两个参数也在工程实践中起着重要的指导作用,帮助设计和选择合适的玻璃材料,以满足建筑物的保温需求。

传热系数与给热系数

传热系数与给热系数

传热系数K 和给热系数α的测定一. 实验目的1. 了解间壁式传热元件的研究和给热系数测定的实验组织方法;2. 掌握借助于热电偶测量壁温的方法;3. 学会给热系数测定的试验数据处理方法;4. 了解影响给热系数的因素和强化传热的途径。

二. 基本原理1.传热系数K 的理论研究在工业生产和科学研究中经常采用间壁式换热装置来达到物料的冷却和加热。

这种传热过程系冷、热流体通过固体壁面进行热量交换。

它是由热流体对固体壁面的对流给热,固体壁面的热传导和固体对冷流体的对流给热三个传热过程所组成。

如图1所示。

由传热速率方程知,单位时间所传递的热量Q=()t T KA - (1) 而对流给热所传递的热量,对于冷、热流体均可由牛顿冷却定律表示Q=()1w h h t T A -α (2)或 Q=()t t A w c c -2α (3)对固体壁面由热传导所传递的热量,则由傅立叶定律表示为 Q ()21w w m t t A -⋅=δλ (4) 由热量平衡和忽略热损失,可将(2)、(3)、(4)式写成如下等式Q=KAt T A t t A t t A t T c c w m w w h h w 1112211-=-=-=-αλδα (5)所以 c c m h h A A A K αλδα111++=(6) ()22222111111,,,,,,,,,,,,u c u c d f K p p λμρδλλμρ==()5,2,6f (7)图1传热过程示意图从上式可知,除固体的导热系数和壁厚对传热过程的传热性能有影响外,影响传热过程的参数还有12个,这不利于对传热过程作整体研究。

根据因次分析方法和π定理,热量传递范畴基本因次有四个:[L],[M],[T],[t] ,壁面的导热热阻与对流给热热阻相比可以忽略K ≈()21,ααf (8)要研究上式的因果关系,尚有π=13-4=9个无因次数群,即由正交网络法每个水平变化10次,实验工作量将有108次实验,为了解决如此无法想象的实验工作量,过程分解和过程合成法由此诞生。

蓄热系数、导热系数、传热系数相关定义

蓄热系数、导热系数、传热系数相关定义

蓄热系数、导热系数、传热系数相关定义
在节能保温分部工程中,经常出现材料的蓄热系数、导热系数及传热系数等术语,现将这些术语定义及解释归纳如下,以供参考:
一、材料蓄热系数:当某一足够厚度的单一材料层一侧受到谐波热作用时,通过表面的热流波幅与表面温度波幅的比值,其值越大,材料的热稳定性越好。

蓄热系数是材料的一种热特性,通俗的讲就是材料储存热量的能力。

在《建筑物理》这本书中,蓄热系数的定义是:在建筑热工学中,把半无限厚度物体表面热流波动的振幅Aq0与温度振幅Af的比值称为物体在谐波作用下的材料蓄热系数。

用S表示单位为W/cm².k材料的蓄热系数可通过计算确定,各种建筑材料的蓄热系数值可从《民用建筑热工设计规范》(GB50176)附录四附表4.1中查取。

二、导热系数
导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1小时内,通过1平方米面积传递的热量。

导热系数的单位:瓦/米·度(W/m·K,此处的K可用℃代替)导热系数与材料的组成结构、密度、含水率、温度等因素有关。

非晶体结构、密度较低的材料,导热系数较小。

材料的含水率、温度较低时,导热系数较小。

通常把导热系数较低的材料称为保温材料,而把导热系数在0.05W/m·K以下的材料称为高效保温材料。

三、传热系数(也称为总传热系数)
国家现行标准规范统一定名为传热系数。

传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米·度(W/㎡·K,此处K可用℃代替)。

给热系数

给热系数

Principles of Chemical Engineering
21:27
10
(1)定性温度 由于沿流动方向流体温度的逐渐变化,在 处理实验数据时就要取一个有代表性的温度以确 定物性参数的数值,这个确定物性参数数值的温 度称为定性温度。 定性温度的取法:1)流体进出口温度的平 均值tm=(t2+t1)/2; 2)膜温t= (tm+tW )/2。 (2)特性尺寸 它是代表换热面几何特征的长度量,通常选 取对流动与换热有主要影响的某一几何尺寸。 另外,实验范围是有限的,准数关联式的使 用范围也就是有限的。 Principles of Chemical Engineering
21:27
4
4.传热面的形状、大小和位置 不同的壁面形状、尺寸影响流型;会造成边界层分离, 产生旋涡,增加湍动,使增大。 (1)形状:比如管、板、管束等; (2)大小:比如管径和管长等; (3)位置:比如管子的排列方式(如管束有正四方形 和三角形排列);管或板是垂直放置还是水平放置。 对于一种类型的传热面常用一个对对流传热系数有决定 性影响的特性尺寸L来表示其大小。 5.是否发生相变 主要有蒸汽冷凝和液体沸腾。发生相变时,由于汽化或 冷凝的潜热远大于温度变化的显热。一般情况下,有相 变化时对流传热系数较大,机理各不相同,复杂。
0.14 对于液体,加热时: ( ) 1.05 w
0.14 0.95 冷却时:( ) w Principles of Chemical Engineering
21:27
19
(2)Gr>25000时,自然对流的影响不能忽略时, 乘以校正系数
f 0.8(1 0.015 Gr
A 1 A2 A3
A A

传热系数 定义

传热系数 定义

传热系数定义传热系数是热传递过程中一个重要的物理量,用来描述物体的导热性能。

它是指单位时间内通过单位面积的物体的热量传递量与温度差之比。

传热系数的大小决定了热量在物体中的传递速度和效率,对于热工领域的许多问题都具有重要的意义。

在工程实践中,传热系数是一个非常关键的参数。

它的大小与物体的导热性能有直接关系,导热性能好的物体具有较大的传热系数,热量能够更快地传递出去。

而导热性能差的物体传热系数较小,热量传递较慢。

因此,了解和掌握传热系数的概念和计算方法对于热工工程的设计和优化具有重要的意义。

传热系数的计算可以根据不同的传热方式进行。

常见的传热方式有三种:传导、对流和辐射。

传导是指物体内部的热量传递,主要取决于物体的导热性能。

对流是指物体表面与流体的热量传递,主要取决于流体的流动状态和物体的表面特性。

辐射是指物体与周围环境之间的热量传递,主要取决于物体的表面温度和辐射特性。

在传导传热中,传热系数可以通过导热性能和物体几何形状来计算。

导热性能越好,传热系数越大。

物体的几何形状也会对传热系数产生影响,比如孔隙率较大的材料传热系数较小,而孔隙率较小的材料传热系数较大。

在对流传热中,传热系数可以通过流体的流动状态和物体的表面特性来计算。

流体的流动状态越好,传热系数越大。

物体的表面特性也会对传热系数产生影响,比如表面粗糙度较大的物体传热系数较小,而表面粗糙度较小的物体传热系数较大。

在辐射传热中,传热系数可以通过物体的表面温度和辐射特性来计算。

物体的表面温度越高,传热系数越大。

物体的辐射特性也会对传热系数产生影响,比如表面发射率较大的物体传热系数较小,而表面发射率较小的物体传热系数较大。

传热系数是描述物体导热性能的重要参数,它的大小决定了热量传递的速度和效率。

了解和掌握传热系数的概念和计算方法对于热工工程的设计和优化具有重要的意义。

在实际应用中,我们需要根据具体问题选择合适的计算方法,并考虑物体的导热性能、几何形状、流动状态、表面特性和辐射特性等因素,以获得准确的传热系数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传热系数K 和给热系数α的测定
一. 实验目的
1. 了解间壁式传热元件的研究和给热系数测定的实验组织方法;
2. 掌握借助于热电偶测量壁温的方法;
3. 学会给热系数测定的试验数据处理方法;
4. 了解影响给热系数的因素和强化传热的途径。

二. 基本原理
1.传热系数K 的理论研究
在工业生产和科学研究中经常采用间壁式换热装置
来达到物料的冷却和加热。

这种传热过程系冷、热流
体通过固体壁面进行热量交换。

它是由热流体对固体
壁面的
对流给热,固体壁面的热传导和固体对冷流体的对
流给热三个传热过程所组成。

如图1所示。

由传热速率方程知,单位时间所传递的热量
Q=()t T KA - (1) 而对流给热所传递的热量,对于冷、热流体均可由牛顿冷却定律表示
Q=()1w h h t T A -α (2)
或 Q=()t t A w c c -2α (3)
对固体壁面由热传导所传递的热量,则由傅立叶定律表示为 Q ()21w w m t t A -⋅=δ
λ (4) 由热量平衡和忽略热损失,可将(2)、(3)、(4)式写成如下等式 Q=KA
t T A t t A t t A t T c c w m w w h h w 1
112211-=-=-=-αλδα (5)所以 c c m h h A A A K αλδα111
++= (6)
()22222111111,,,,,,,,,,,,u c u c d f K p p λμρδλλμρ==()5,2,6f (7) 图1传热过程示意图
从上式可知,除固体的导热系数和壁厚对传热过程的传热性能有影响外,影响传热过程的参数还有12个,这不利于对传热过程作整体研究。

根据因次分析方法和π定理,热量传递范畴基本因次有四个:[L],[M],[T],[t] ,壁面的导热热阻与对流给热热阻相比可以忽略
K ≈()21,ααf (8)
要研究上式的因果关系,尚有π=13-4=9个无因次数群,即由正交网络法每个水平变化10次,实验工作量将有108次实验,为了解决如此无法想象的实验工作量,过程分解和过程合成法由此诞生。

该方法的基本处理过程是将(7)式研究的对象分解成两个子过程如(8)式所示,分别对21,αα进行研究,之后再将21,αα合并,总体分析对K 的影响,这有利于了解影响传热系数的因素和强化传热的途径。

当1α>>2α时,2α≈K ,反之当1α<<2α时,1α≈K 。

欲提高K 设法强化给热系数小的一侧α,由于设备结构和流体已定,从(9)式可知,只要温度变化不大,1α只随1u 而变,
()1111111,,,,,λμραp c u d f = (9) 改变1u 的简单方法是改变阀门的开度,这就是实验研究的操作变量。

同时它提示了欲提高K 只要强化α小的那侧流体的u 。

而流体u 的提高有两种方法: (1)增加流体的流量;
(2)在流体通道中设置绕流内构件,导致强化给热系数。

由(9)式,π定理告诉我们,π=7-4=3个无因次数群,即:
()1111111,,,,,λμραp c u d f = ⇒
⎪⎪⎭⎫ ⎝⎛=λμμ
ρλαp c du f d , (10) 经无因次处理,得: c b o a Nu Pr Re = (11) 如果温度对流体特性影响不大的系统,并且温度变化范围不大,则式(11)可改写为:b a Nu Re =
式中:c o a a Pr =。

2.传热系数K 和α的实验测定
实验装置的建立依据如下热量衡算式和传热速率方程式,它是将(5)和(6)式联立,则
KA ∆t m = W c ρc C pc (t 2-t 1) (12)
其中 1
212m t T t T ln )t T ()t T (t -----=∆ (13) m
pc c c t A t t C W K ∆-=)
(12ρ (14) ()
()
1212t t c W t A t t c W t A pc c c mh h h pc c c mc c c -=∆-=∆ραρα 其中: 1
212ln )()(t t t t t t t t t m m m m mc -----=∆下上下上 (15) 下上下上m m m m mh t T t T ln )t T ()t T (t -----=
∆ (16) ---------若实验物系选定水与水蒸汽,由(8)、(9)式告诉我们,实验装置中需要确定的参数和安装的仪表有:
A-------------由换热器的结构参数而定;
W c ------------测冷流体的流量计;
t 1、t 2---------测冷流体的进、出口温度计;
T 、P---------测热流体的温度计,蒸汽压力;
C pc ------------由冷流体的进、出口平均温度决定;
下上、m m t t ---由热电偶温度计测定。

将以上仪表、换热器、气源、及管件阀门等部件组建成如下实验装置图。

三.实验装置图
四.实验步骤
1.先开蒸汽加热开关, 再开气源和空气转子流量计。

2.打开不凝性气体放气阀,“开-关”重复三次。

3.整个实验操作控制蒸汽压力恒定在0.05Mpa以下某一刻度,改变唯一操作变量即空气转子流量计阀门开度,达到改变流速的目的。

4.实验布点采用小流量和打流量分别布点集中原则,因为是直线原因。

5.待冷流体出口温度显示值保持5min以上不变时方可同时采集实验数据。

6.实验结束时,先关蒸汽进口调节阀,保持空气继续流动10min,以足够冷却壁温,保护热电偶接促正常。

7.上机数据处理的直线相关系数要求R≥0.93,否则,实验重做。

五.实验结果及数据处理
六.实验结果讨论与分析
1、从理论及经验公式可知:Nu=0.023R
e
0.8Pr0.4。

而此公式适用的条件是:
(1)光滑管内R e>10000即流动是充分湍流的,这一点是重要的;
(2)0.7<P r<160;
(3)流体是低粘度的(不大于水粘度的2倍);
(4)l/d>30~40即进口段只占总长的很小一部分,而管内流动是充分发展的。

本实验关联的N u=0.030R e0.778P r0.4与理论公式作比较有偏差,造成偏差的原因可能有哪些?
2、整理
2.0
4.08.0
8.0
4.0 023
.0
d u
μρ
λ
α=,由此式分析:物性参数中ρ、u、d对给热系数α的影响,其中哪个参数影响最大?。

相关文档
最新文档