不定积分及积分公式

合集下载

不定积分公式总结

不定积分公式总结

不定积分公式总结在微积分的学习中,不定积分是一个非常重要的概念,它是求导的逆运算。

掌握不定积分公式对于解决各种积分问题至关重要。

接下来,就让我们一起系统地总结一下常见的不定积分公式。

一、基本积分公式1、常数的积分:∫C dx = Cx + C₁(其中 C 为常数,C₁为任意常数)这意味着任何常数乘以自变量 x 的积分,结果是该常数乘以 x 再加上一个任意常数。

2、幂函数的积分:∫xⁿ dx =(1/(n + 1))xⁿ⁺¹+ C (n ≠ -1)∫x⁻¹ dx = ln|x| + C3、指数函数的积分:∫eˣ dx =eˣ + C∫aˣ dx =(1 /ln a) aˣ + C (a > 0 且a ≠ 1)4、对数函数的积分:∫ln x dx = x ln x x + C5、三角函数的积分:∫sin x dx = cos x + C∫cos x dx = sin x + C∫tan x dx = ln|cos x| + C∫cot x dx = ln|sin x| + C6、反三角函数的积分:∫arcsin x dx = x arcsin x +√(1 x²) + C∫arccos x dx =x arccos x √(1 x²) + C∫arctan x dx = x arctan x (1/2) ln(1 + x²) + C二、凑微分法相关公式凑微分法是一种非常重要的积分方法,通过将被积表达式凑成某个函数的微分形式,然后进行积分。

例如:∫f(ax + b) dx =(1/a) ∫f(u) du (其中 u = ax + b)常见的凑微分形式有:1、∫cos(ax + b) dx =(1/a) sin(ax + b) + C2、∫sin(ax + b) dx =(1/a) cos(ax + b) + C三、换元积分法相关公式换元积分法分为第一类换元法(凑微分法)和第二类换元法。

不定积分公式大全 含求积分通用方法及例题

不定积分公式大全 含求积分通用方法及例题

不定积分小结一、不定积分基本公式(1)∫x a dx=x a+1a+1+C(a≠−1) (2)∫1xdx=ln|x|+C(3)∫a x dx=a xln a+C(4)∫sin x dx=−cos x+C(5)∫cos x dx=sin x+C(6)∫tan x dx=−ln|cos x|+C (7)∫cot x dx=ln|sin x|+C(8)∫sec x dx=ln|sec x+tan x|+C (9)∫csc x dx=ln|csc x−cot x|+C(10)∫sec2x dx=tan x+C (11)∫csc2x dx=−cot x+C(12)∫dx1+x2=arctan x+C(13)∫dxx2+a2=1aarctan xa+C(14)∫dxx2−a2=12aln|a−xa+x|+C(15)∫dxa2−x2=12aln|a+xa−x|+C(16)∫√1−x2=arcsin x+C(17)√a2−x2=arcsin xa+C(18)√x2±a2=ln|x+√x2±a2|+C(19)∫√a2−x2dx=x2√a2−x2+a22arcsinxa+C(20)∫√x2±a2dx=x2√x2±a2±a22ln|x+√x2±a2|+C二、两个重要的递推公式(由分部积分法可得)(1)D n=∫sin n x dx(详情请查阅教材166页)则D n=−cos x sin n−1xn+n−1nD n−2(求三角函数积分)易得D n:n为奇数时,可递推至D1=∫sin x dx=−cos x+C;n为偶数时,可递推至D2=∫sin2x dx=x2−sin2x4+C;(2)I n=∫dx(x2+a2)n(详情请查阅教材173页)则I n+1=12na2x(x2+a2)n+2n−12na2I n易得I n可递推至I1=∫dxx2+a2=1aarctan xa+C迅捷P DF编辑器(这是有理函数分解后一种形式的积分的求法,大家可以回顾课本恢复记忆)三、普遍方法(一)换元积分法:第一类换元积分法(凑微分法)这类方法需要敏锐的观察力,即观察出某个函数的导数,这就要求我们熟悉常见函数的导数。

不定积分概念及公式

不定积分概念及公式

5.1 不定积分的概念一.原函数的概念定义1:设 f (x) 是定义在区间上的已知函数,若存在一个函数F(x) 对于该区间上的每一点都有: F (x) f (x) 或dF(x) f ( x) dx 。

则:F(x)为f(x)的一个原函数。

例:(x3) 3x2,则:x3是3x2的一个原函数,另外由于(x31) 3x2,(x31) 3x2,(x33) 3x2,。

即:x31,x31, x3 3 , 。

等等也都是3x2的原函数。

即:x3 C ( C常数)全为3x2的原函数。

所以,有下面定理。

定理:一个函数 f (x) ,若有一个原函数F(x) ,则必有无穷多个。

而这写原函数只相差一个常数。

F(x) C是f(x) 的全体原函数。

例:设e x cosx是 f (x) 的原函数,求: f (x)。

解:由原函数概念可知,若e x cosx是f (x) 的原函数则有(e x cosx) e x sin x f (x) ,所以 f(x) (e x sin x) =e x cosx 二.不定积分的定义定义2。

设函数F(x)为函数 f (x)的一个原函数,则f(x) 的全部原函数F(x) C ( C为任意常数)称为函数 f (x) 的不定积分。

记作: f (x)dx。

即: f (x)dx F(x) C 。

f (x) :被积函数, f ( x)dx :被积表达式,x :积分变量,:积分号, C :积分常数。

存在原函数的函数为:可积函数。

求已知函数的不定积分,只要求出它的一个原函数,再加一个 C (任意常数)。

例:求积分3x 2dx解:( x3) 3x2∴ 3x2dx x 3 C例:求积分cosxdx解:(sin x) cos x∴ cosdx sin x C例:求积分e x dx解:(e x) e x∴ e x dx e x C例:求积分1dxx1 1 15) 2dx ( ) d ;6) dx ( ) d x1解:( ln x) ,(x 0)x 11[ln( x)] 1 ( 1) 1 ,(x 0) xx 1dx ln x Cx不定积分 (互逆)求导数。

常见的不定积分(公式大全)

常见的不定积分(公式大全)

常见的不定积分(公式大全)一、基本积分公式1. $ \int x^n dx = \frac{x^{n+1}}{n+1} + C $,其中 $ n \neq 1 $。

2. $ \int dx = x + C $。

3. $ \int a dx = ax + C $,其中 $ a $ 为常数。

4. $ \int e^x dx = e^x + C $。

5. $ \int \ln x dx = x \ln x x + C $。

6. $ \int \frac{1}{x} dx = \ln |x| + C $。

7. $ \int \sin x dx = \cos x + C $。

8. $ \int \cos x dx = \sin x + C $。

9. $ \int \tan x dx = \ln |\cos x| + C $。

10. $ \int \cot x dx = \ln |\sin x| + C $。

二、换元积分法1. $ \int f(ax + b) dx = \frac{1}{a} \int f(ax + b) d(ax + b) $。

2. $ \int f(x^n) dx = \frac{1}{n} \int f(x^n) d(x^n) $。

3. $ \int f(\sqrt{ax^2 + bx + c}) dx = \frac{1}{a} \int f(\sqrt{ax^2 + bx + c}) d(\sqrt{ax^2 + bx + c}) $。

4. $ \int f(\sqrt{a^2 x^2}) dx = \frac{1}{a} \intf(\sqrt{a^2 x^2}) d(\sqrt{a^2 x^2}) $。

5. $ \int f(\sqrt{x^2 a^2}) dx = \frac{1}{a} \intf(\sqrt{x^2 a^2}) d(\sqrt{x^2 a^2}) $。

三、分部积分法1. $ \int u dv = uv \int v du $。

不定积分公式大全24个

不定积分公式大全24个

不定积分公式大全24个不定积分公式大全24个具体如下:1、∫x^ndx=x^(n+1)/(n+1) +C, 其中n≠-1.2、∫1/xdx=ln|x|+C, 即当n=-1时的幂函数类型.3、∫x/(a+bx)dx=(bx-aln|a+bx|)/b^2+C.4、∫x/(a+bx)^2dx=(a/(a+bx)+ln|a+bx|)/b^2+C.5、∫x^2/(a+bx)dx=(-bx(2a-bx)/2+a^2ln|a+bx|)/b^3+C.6、∫x^2/(a+bx)^2dx=(bx-a^2/(a+bx)-2aln|a+bx|)/b^3+C.7、∫x^2/(a+bx)^3dx=(2a/(a+bx)-a^2/(2(a+bx)^2)+ln|a+bx|)/b^3 +C.8、∫1/(x(a+bx))dx=ln|x/(a+bx)| /a+C.含有二次二项式的平方和差类型有如下的基本公式:(其中结果出现反三角函数的也可以归为反三角函数类型)9、∫1/(a^2+x^2)dx=arctan(x/a) /a+C. 特别地,当a=1时,∫1/(1+x^2)dx=arctanx+C.10、∫1/(x^2-a^2)dx= -∫1/(a^2-x^2)dx= ln|(x-a)/(x+a)|/(2a)+C.11、∫1/根号(a^2-x^2)dx= arcsin (x/a)+C. 特别地,当a=1时,∫1/根号(1-x^2)dx= arcsinx +C.12、∫1/(x根号(x^2-a^2))dx= arccos (a/x) /a+C. 特别地,当a=1时,∫1/(x根号(x^2-1))dx= arccos(1/x)+C.三角函数类型不定积分公式有很多,以下列举出最常见的,它们都是成对出现的:13、∫sinxdx=-cosx+C;∫cosxdx=sinx+C.14、∫(sinx)^2dx=(x-sinxcosx)/2+C;∫(cosx)^2dx=(x+sinxcosx)/2+C.15、∫xsinxdx=sinx-xcosx+C;∫xcosxdx=cosx+xsinx+C.16、∫tanxdx=-ln|cosx|+C;∫cotxdx=ln|sinx|+C.17、∫(tanx)^2dx=-x+tanx+C;∫(cotx)^2dx=-x-cotx+C.18、∫secxdx=ln|secx+tanx|+C; ∫cscxdx=ln|cscx-cotx|+C.19、∫(secx)^2dx=tanx+C;∫(cscx)^2dx=-cotx+C.同样也有反三角函数类型的不定积分公式:20、∫arcsinxdx=xarcsinx+根号(1-x^2)+C;∫arccosxdx=xarccosx-根号(1-x^2)+C21、∫arctanxdx=xarctanx-ln(1+x^2) /2+C;∫arccotxdx=xarccotx+ln(1+x^2) /2+C.22、∫arcsecxdx=xarcsecx-ln|x+根号(x^2-1)|+C;∫arccscxdx=xarccscx+ln|x+根号(x^2-1)|+C.最后是指数函数和对数函数形式的不定积分公式:23、∫a^xdx=a^x /lna+C, 特别地,当a=e时,∫exdx=ex+C.24、∫lnxdx=x(lnx-1) +C.。

常用的24个不定积分公式及证明

常用的24个不定积分公式及证明

常用的24个不定积分公式及证明一、基本积分公式。

1. ∫ kdx = kx + C(k为常数)- 证明:根据求导公式(kx + C)'=k,所以∫ kdx = kx + C。

2. ∫ x^n dx=frac{x^n + 1}{n+1}+C(n≠ - 1)- 证明:对frac{x^n + 1}{n+1}+C求导,根据求导公式(x^m)'=mx^m - 1,可得(frac{x^n+1}{n + 1}+C)'=frac{(n + 1)x^n+1-1}{n+1}=x^n,所以∫ x^n dx=frac{x^n +1}{n+1}+C(n≠ - 1)。

3. ∫(1)/(x)dx=lnx+C- 证明:当x>0时,(ln x)'=(1)/(x);当x < 0时,[ln(-x)]'=(1)/(-x)×(-1)=(1)/(x)。

所以∫(1)/(x)dx=lnx+C。

4. ∫ e^x dx=e^x+C- 证明:因为(e^x)' = e^x,所以∫ e^x dx=e^x+C。

5. ∫ a^x dx=(a^x)/(ln a)+C(a>0,a≠1)- 证明:设y = a^x,则ln y=xln a,y = e^xln a。

对y=(a^x)/(ln a)+C求导,((a^x)/(ln a)+C)'=(1)/(ln a)× a^xln a=a^x,所以∫ a^x dx=(a^x)/(ln a)+C(a>0,a≠1)。

6. ∫sin xdx=-cos x + C- 证明:因为(-cos x)'=sin x,所以∫sin xdx =-cos x+C。

7. ∫cos xdx=sin x + C- 证明:因为(sin x)'=cos x,所以∫cos xdx=sin x + C。

8. ∫(1)/(cos^2)xdx=tan x + C- 证明:因为(tan x)'=sec^2x=(1)/(cos^2)x,所以∫(1)/(cos^2)xdx=tan x + C。

高等数学常用不定积分公式

高等数学常用不定积分公式

高等数学常用不定积分公式一、基本不定积分公式:1. 常数函数的不定积分:∫k dx = kx + C,其中k为常数,C为任意常数。

2. 幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n≠-1,C为任意常数。

3. 对数函数的不定积分:∫1/x dx = ln,x, + C,其中C为任意常数。

4. 指数函数的不定积分:∫e^x dx = e^x + C,其中C为任意常数。

5.三角函数的不定积分:a) ∫sinx dx = -cosx + C,其中C为任意常数。

b) ∫cosx dx = sinx + C,其中C为任意常数。

c) ∫sec^2(x) dx = tanx + C,其中C为任意常数。

d) ∫cosec^2(x) dx = -cotx + C,其中C为任意常数。

e) ∫sec(x)tan(x) dx = secx + C,其中C为任意常数。

f) ∫cosec(x)cot(x) dx = -cosecx + C,其中C为任意常数。

6.反三角函数的不定积分:a) ∫1/√(1-x^2) dx = arcsinx + C,其中C为任意常数。

b) ∫1/√(1+x^2) dx = arctanx + C,其中C为任意常数。

c) ∫1/(x^2+1) dx = arctanx + C,其中C为任意常数。

二、常用不定积分公式:1. ∫sin^2x dx = (1/2)(x - sinx cosx) + C,其中C为任意常数。

2. ∫cos^2x dx = (1/2)(x + sinx cosx) + C,其中C为任意常数。

3. ∫tan^2x dx = tanx - x + C,其中C为任意常数。

4. ∫cot^2x dx = -cotx - x + C,其中C为任意常数。

5. ∫sec^3(x) dx = (1/2)(secx tanx + ln,secx + tanx,) + C,其中C为任意常数。

不定积分的性质与基本积分公式

不定积分的性质与基本积分公式

2
= arctan x + C
=
−arccot x + C.
前页 后页 返回
由导数线性运算法则可得到不定积分的线性运算
法则. 定理 8.3 (不定积分的线性运算法则)
若函数 f 与 g 在区间 I 上都存在原函数, k1, k2为
任意常数, 则 k1 f + k2g 在 I上也存在原函数, 且
∫ ∫ ∫ ( k1 f ( x) + k2g( x) )dx = k1 f ( x)dx + k2 g( x)dx.
∫ s (t ) = v0 dt = v0 t + C .
若 t0 时刻质点在 s0 处, 且速度为 v0, 则有 s (t ) = v0(t − t0 ) + s0 .
前页 后页 返回
四、基本积分表
由基本求导公式可得以下基本积分公式:
1. ∫ 0dx = C.
2. ∫1dx = ∫dx =x + C. ∫3. xαdx = xα+1 + C (α ≠ −1, x > 0).
dx 所以(1)式成立.
前页 后页 返回
第一换元积分法亦称为凑微分法, 即
∫ g(ϕ( x))ϕ′( x)dx = ∫ g(ϕ( x))dϕ( x) = G(ϕ( x)) + C,
其中 G′(u) = g(u). 常见的凑微分形式有
(1) adx = d(ax);
(2) dx = d( x + a);
前页 后页 返回
§2 换元积分法与分部积分法
不定积分是求导运算的逆运算, 相应 于复合函数求导数的链式法则和乘法 求导公式, 不定积分有换元积分法和分 部积分法.

不定积分的四则运算公式

不定积分的四则运算公式

不定积分的四则运算公式1.加法运算:设函数f(x)和g(x)在区间上连续,则它们的和函数F(x)的不定积分满足如下公式:∫[f(x) + g(x)]dx = ∫f(x)dx + ∫g(x)dx + C2.减法运算:设函数f(x)和g(x)在区间上连续,则它们的差函数F(x)的不定积分满足如下公式:∫[f(x) - g(x)]dx = ∫f(x)dx - ∫g(x)dx + C3.乘法运算:设函数f(x)和g(x)在区间上连续,则它们的乘积函数F(x)的不定积分满足如下公式:∫[f(x) * g(x)]dx ≠ ∫f(x)dx * ∫g(x)dx乘法的不定积分不能直接用乘法法则,而是需要通过换元法、分部积分等方法来计算。

4.除法运算:设函数f(x)和g(x)在区间上连续,且g(x)不等于0,则它们的商函数F(x)的不定积分满足如下公式:∫[f(x) / g(x)]dx ≠ ∫f(x)dx / ∫g(x)dx除法的不定积分也不能直接用除法法则,而是需要通过换元法、分部积分等方法来计算。

此外,还有一些辅助的运算公式可以用于简化不定积分的计算:5.常数倍公式:如果k为常数,则有:∫k * f(x)dx = k * ∫f(x)dx + C6.积分换元公式:设y=g(x)是函数g的一个可导函数,而f是g的一个原函数,则有:∫f(g(x)) * g'(x)dx = F(g(x)) + C其中,F表示函数f的一个原函数。

7.分部积分公式:设函数u(x)和v(x)在区间上连续且可导,则有如下公式:∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx + C以上是不定积分的四则运算公式及其辅助公式。

在实际计算中,根据具体的函数表达式,可以灵活运用这些公式来简化不定积分的计算。

不定积分26个基本公式

不定积分26个基本公式

不定积分26个基本公式不定积分是微积分中的一个重要概念,它是对一些函数的原函数进行求解。

当我们求解不定积分时,可以利用一些基本的公式来简化计算。

下面将介绍26个常用的基本不定积分公式。

1.幂函数的不定积分:如果k不等于-1,那么∫x^k dx = (1/(k+1)) * x^(k+1) + C2.指数函数的不定积分:∫e^x dx = e^x + C3.三角函数的不定积分:(1) ∫sin(x) dx = -cos(x) + C(2) ∫cos(x) dx = sin(x) + C(3) ∫tan(x) dx = -ln,cos(x), + C(4) ∫cot(x) dx = ln,sin(x), + C(5) ∫sec(x) dx = ln,sec(x) + tan(x), + C(6) ∫csc(x) dx = ln,csc(x) - cot(x), + C4.反三角函数的不定积分:(1) ∫1/(√(1-x^2)) dx = arcsin(x) + C(2) ∫1/(1+x^2) dx = arctan(x) + C(3) ∫1/,x,(x≠0) dx = sign(x) ln,x, + C,其中sign(x)是x的符号函数5.对数函数的不定积分:(1) ∫1/x dx = ln,x, + C,其中x≠0(2) ∫ln(x) dx = xln,x, - x + C,其中x≠06.双曲函数的不定积分:(1) ∫sinh(x) dx = cosh(x) + C(2) ∫cosh(x) dx = sinh(x) + C(3) ∫tanh(x) dx = ln,cosh(x), + C(4) ∫coth(x) dx = ln,sinh(x), + C(5) ∫s ech(x) dx = arctan(sinh(x)) + C(6) ∫csch(x) dx = ln,tanh(x/2), + C7.反双曲函数的不定积分:(1) ∫1/(√(x^2+1)) dx = arsinh(x) + C(2) ∫1/(√(x^2-1)) dx = arcosh(x) + C,其中x≥1(3) ∫1/x dx = arcoth(x) + C,其中,x,>1(4) ∫1/x dx = arcosech(x) + C,其中0<x≤1(5) ∫1/x dx = arccsch(x) + C,其中,x,≥18.部分分式的不定积分:∫(A/(x-a) + B/(x-b)) dx = A ln,x-a, + B ln,x-b, + C,其中a≠b9.三角函数复合函数的不定积分:(1) ∫sin(kx) dx = - (1/k) cos(kx) + C(2) ∫cos(kx) dx = (1/k) sin(kx) + C10.反函数的不定积分:∫f'(x) / f(x) dx = ln,f(x), + C11.方根的不定积分:(1) ∫√(a^2-x^2) dx = (1/2) (x √(a^2-x^2) + a^2arcsin(x/a)) + C,其中,x,≤a(2) ∫√(x^2+a^2) dx = (1/2) (x √(x^2+a^2) + a^2 ln,x + √(x^2+a^2),) + C12.有理函数的不定积分:∫(P(x)/Q(x)) dx = F(x) + C,其中F(x)是P(x)/Q(x)的一个原函数这些是常见的基本不定积分公式,掌握了这些公式可以在计算不定积分时减少计算量和复杂性。

不定积分的基本积分公式与性质

不定积分的基本积分公式与性质

不定积分的基本积分公式与性质积分是微积分的重要概念之一、在微积分中,不定积分是指对一个函数进行求导的逆运算。

不定积分也被称为原函数或反导数。

虽然具体的函数积分求解可以有多种方法,但是基本积分公式和性质对于积分的研究和运算有着重要的意义。

首先,我们来介绍一些基本的积分公式。

这些公式可以帮助我们求得一些常见函数的不定积分。

1.常数函数的不定积分对于常数函数f(x)=C(C为常数),它的不定积分即为Cx+C0,其中C0为常数项。

2.幂函数的不定积分函数f(x)=x^n(n为实数,且n≠-1)的不定积分为:F(x)=(1/(n+1))*x^(n+1)+C,其中C为常数项。

3.三角函数的不定积分① 不定积分∫sin(x)dx = -cos(x) + C② 不定积分∫cos(x)dx = sin(x) + C③ 不定积分∫1/cos^2(x)dx = tan(x) + C4.指数函数的不定积分① 不定积分∫e^x dx = e^x + C② 不定积分∫a^x dx = (a^x)/(lna) + C (其中a为正实数,且a≠1)5.对数函数的不定积分不定积分∫1/x dx = ln,x, + C (其中ln表示自然对数,C为常数项)以上是一些常见函数的不定积分公式。

通过这些公式,我们可以求得许多函数的不定积分。

但是需要注意的是,并不是所有函数的不定积分都可以通过这些公式直接求解,还需要运用一些积分的技巧和方法。

不定积分有一些基本的性质,它们在积分的计算中起到了重要的作用。

下面我们来介绍一些常见的不定积分的性质。

1.线性性质若f(x)和g(x)的不定积分都存在,则对于任意实数a、b,有∫(af(x) + bg(x)) dx = a∫f(x) dx + b∫g(x) dx2.逐项积分性质若f(x)的不定积分存在,则f(x)的幂函数逐项求积分后,仍然可以求得不定积分。

即∫[f(x)]^n dx = (1/(n+1)) * [f(x)]^(n+1) + C (其中C为常数项)3.牛顿-莱布尼兹公式若F(x)是f(x)的一个原函数,则对于区间[a,b]上的任意一点x,有∫[a,b] f(x) dx = F(b) - F(a)4.整体性定理若f(x)的原函数F(x)在区间[a,b]上存在,并且F'(x)=f(x),则对于任意曲线上的两个点a、b,有∫[a,b] f(x) dx = F(x) ,[a,b] = F(b) - F(a)以上是一些常见的不定积分公式和性质,它们在积分的计算中非常有用。

不定积分计算公式

不定积分计算公式

不定积分计算公式不定积分是微积分中的一个重要概念,用于求函数的原函数。

在求不定积分时,我们需要掌握一系列的计算公式和方法。

本文将介绍常见的不定积分计算公式,并通过具体例题进行演示,帮助读者更好地理解和掌握不定积分的计算方法。

一、基本积分公式1. 幂函数的积分(1)若n≠-1,有∫x^n dx = (1/n+1)x^(n+1) + C,其中C为常数。

(2)若n=-1,有∫x^(-1) dx = ln|x| + C,其中C为常数。

2. 三角函数的积分(1)∫sinx dx = -cosx + C(2)∫cosx dx = sinx + C(3)∫sec^2x dx = tanx + C(4)∫csc^2x dx = -cotx + C(5)∫secx tanx dx = secx + C(6)∫cscx cotx dx = -cscx + C3. 反三角函数的积分(1)∫1/(a^2+x^2) dx = (1/a)arctan(x/a) + C,其中a为常数。

(2)∫1/(a^2-x^2) dx = (1/2a)ln|(x+a)/(x-a)| + C,其中a为常数。

(3)∫1/√(x^2±a^2) dx = ln|x+√(x^2±a^2)| + C,其中a为常数。

4. 指数函数的积分(1)∫e^x dx = e^x + C(2)∫a^x dx = (1/lna)·a^x + C,其中a为常数且a>0。

5. 对数函数的积分∫lnx dx = xlnx - x + C6. 双曲函数的积分(1)∫sinhxdx = coshx + C(2)∫coshxdx = sinhx + C(3)∫sech^2xdx = tan hx + C(4)∫csch^2xdx = -cothx + C(5)∫sechxtanhxdx = -sechx + C(6)∫cschxcosechxdx = -cosechx + C以上是常见函数的基本积分公式,掌握了这些公式,可以很方便地进行不定积分的计算。

不定积分最全公式

不定积分最全公式

常见不定1)∫0dx=c2)∫x^udx=(x^u+1)/(u+1)+c3)∫1/xdx=ln|x|+c4))∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c15)∫1/√(a^2-x^2) dx=arcsin(x/a)+c16) ∫sec^2 x dx=tanx+c;17) ∫shx dx=chx+c;18) ∫chx dx=shx+c;19) ∫thx dx=ln(chx)+c;1.∫adx = ax+C (a 为常数)2.∫sin(x)dx = -cos(x)+C3.∫cos(x)dx = sin(x)+C4.∫tan(x)dx = -loge |cos(x)|+C = loge|sec(x)|+C5.∫cot(x)dx = loge|sin(x)|+C6.∫sec(x)dx = loge|sec(x)+tan(x)|+C7. ∫sin 2(x)dx= 1 (x-sin(x)cos(x))+C 2= 1 x - 1 sin(2x)+C 2 48. ∫cos 2(x)dx= 1 (x+sin(x)cos(x))+C 2= 1 x + 1 sin(2x)+C 2 49. ∫tan 2(x)dx = tan(x)-x+C10.∫cot 2(x)dx = -cot(x)-x+C11.∫sin(ax)sin(bx)dx= sin((a-b)x) - sin((a+b)x) +C 2(a-b) 2(a+b)12.∫sin(ax)cos(bx)dx= - cos((a-b)x) - cos((a+b)x) +C 2(a-b) 2(a+b)13.∫cos(ax)cos(bx)dx= sin((a-b)x) + sin((a+b)x) +C 2(a-b) 2(a+b)14.∫xsin(x)dx = sin(x)-xcos(x)+C15.∫xcos(x)dx = cos(x)+xsin(x)+C16.∫x 2sin(x)dx = (2-x 2)cos(x)+2xsin(x)+C17.∫x 2cos(x)dx = (x 2-2)sin(x)+2xcos(x)+C18.∫e x dx = e x +C∫ ?a? dx = a log |x| ? (a 为常数) x仅供个人用于学习、研究;不得用于商业用途。

不定积分的基本公式和直接积分法

不定积分的基本公式和直接积分法



1
1 x2dx


1 x

arctan
x

C.
例2 求下列不定积分
(1) sin2
xdx 2
(2)
cos 2x cos x sin
x
dx

(1)原式


1

cos 2
x
dx

1 2
(1 cos
x)dx

1 2
[
dx


cos
xdx]

1 2
(
x

sin
x)

C
(2)原式 cos2 x sin2 x dx
ln a
(2) exdx ex C (Q (e x ) e x )
4 三角函数:
(1) sin xdx cos x C (2) cos xdx sin x C
( (cosx) sin x) ( (sin x) cosx)
(3) sec x tan xdx sec x C ( (secx) sec x tan x)
x)

1 1 x2
, (arc
cot
x)


1 1 x2
基 (1) kdx kx C (k是常数);


(2)
xdx x1 C ( 1); 1


(3)

dx x

ln
|
x
|
C;
说明: x 0,
dx ln x C,
x
x 0, [ln( x)] 1 ( x) 1 ,

不定积分的基本积分公式与性质

不定积分的基本积分公式与性质

不定积分的基本积分公式与性质不定积分是微积分中的重要概念,是求解函数的原函数的过程。

本文将介绍不定积分的基本积分公式和性质。

一、基本积分公式1.定积分求导与不定积分定积分和不定积分是互为逆运算的,即对一个函数进行积分再求导,或者先求导再积分,所得到的结果是相同的。

这个性质表现为两个基本定理:(1)定积分的基本定理:若函数f(x)在区间[a, b]上连续,则有∫[a, b]f(x)dx = F(b) - F(a),其中F(x)为f(x)的一个原函数。

(2)不定积分的基本定理:若函数f(x)在区间I上连续,则有∫f(x)dx = F(x) + C,其中C为常数,F(x)为f(x)的一个原函数。

2.基本积分公式(1)常数函数:∫kdx = kx + C,其中k为常数。

(2)幂函数:∫x^ndx = (1 / (n+1)) * x^(n+1) + C,其中n≠-1(3)指数函数:∫e^xdx = e^x + C。

(4)三角函数:∫sinxdx = -cosx + C,∫cosxdx = sinx + C。

(5)反三角函数:∫1/√(1-x^2)dx = arcsinx + C,∫1/√(1+x^2)dx = arctanx + C。

二、不定积分的性质对于任意常数a、b,函数f(x)和g(x),有以下性质:(1)∫(af(x) + bg(x))dx = a∫f(x)dx + b∫g(x)dx。

(2)∫f'(x)dx = f(x) + C。

2.替换性质:对于一个可导函数u(x)和原函数f(u),有以下性质:∫f'(u)u'(x)dx = ∫f'(u)du。

3.分部积分法:对于可导函数u(x)和v(x),有以下积分公式:∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx。

4.换元积分法:对于函数f(u)和可导函数u(x),有以下积分公式:∫f(u)du = ∫f(u(x))u'(x)dx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4i
(C : z 2正向圆周)
(C为包含单(C位: z圆周1在正内向的) 任何一条正向简单闭曲线) 2
Note.利用待定系数法将被积函数分解成简单分式的和.
NUDT
练习题
Exercise1.
? 试问:
dz
?

dz
C1 3z 2 1 C2 3z 2 1
其中:C1是 z (4 正向圆周),
C

f (z)d z
z2 z1
f (z)dz
与连接起点与终点的路线无关.
D z1.
.z2 C2
C1
Note.实际上Cauchy-Goursat基本定理与定理1等价.
定义:变上限积分
z

f ( )d F(z)
z0
NUDT
§4 原函数与不定积分
定理2 如果函数 f (z)在单连通区
设 C : z z(t) x(t) iy(t) ( t ),则
C
f
(z) d
z



f
[ z(t )]z(t ) d t
什么是基本定理?
定理(Cauchy-Goursat基本定理)设函数 f (z) 在单连 通区域 D 内解析,C 为 D 内的闭曲线,则 f (z)在C上的 积分等于零,即
C2是以x 1, y 1为边的正向正方形。
---闭路变形原理/复合闭路定理
(1)将被积函数分解成简单分式
dz 1
dz
dz

C2 3z2 1 2
[
3
C2
z

3i
C2
z
]0 3i
3
3
(2)利用复合闭路定理与 (3)利用留数定理 Cauchy积分公式
NUDT
练习题
Exercise2.
提问: 函数满足什么条件下一定存在原函数? Note. 单连通区域内的解析函数
一定存在原函数且不唯一.
定义 把f (z)的原函数的一般表达式称为 f (z) 的不定积分.

f (z)dz F (z) C(C为任意的复常数 )
NUDT
§4 原函数与不定积分
牛顿-莱布尼兹公式
定理3 如果函数 f (z) 在单连通区域 D 内解析,G(z) 为 f (z) 在
z.
域 D 内解析,那么函数
F(z)

z
z0
f
( )d
在D 内解析,且
F(z) f (z) (z D).
D
C
z
.
0
Note.实际上该定理只需证得一个结论即可.
NUDT
定理2的证明
定理2 如果函数 f (z) 在单连通 区域 D内解析,那么函数
F(z) f (z) (z D).
单闭曲线,C1,C2,,Cn为 C 内的简单闭曲线,它们互不包
含也互不相交,并且以 C, C1,C2,,Cn 为边界的闭区域全
在 D 内.如果f (z) 在 D 内解析,则
n
蜒 (1)
f (z)d z
C k 1
f (z)d z
Ck
其中C及Ck均取正方向;
(2)Ñ f (z) d z 0.
闭路变形原理:在区域内的一个解析函数沿
闭曲线的积分,不因闭曲线在该区域内作连续 变形而改变它的值,只要在变形过程中曲线不 经过函数的不解析点。
庞加莱猜想:在一个三维空间中,假如每一条
封闭的曲线都能收缩成一点,那么这个空间一 定是一个三维的球体。
NUDT
§3 复合闭路定理
定理(复合闭路定理)设 C 为多连通区域D 内的一条简
z1 z0
f
(z)d z
G(z0)
NUDT
三个例题
积分技巧:分部积分法,降阶法,“凑”微分法,
换元积分法,有理函数积分法等等.
Example1.
试求:C dz ? (C 表示连接起点a和终点b的任一光滑曲线)

1 z
zz[ z
f
( )
f
( z )] d
1
z z
f ( ) f (z) d
z z
NUDT
§4 原函数与不定积分
定义 如果函数 (z) 在区域 D 内的导数等于f (z),即
(z) f (z) (z D),
那么称 (z) 为 f (z) 在区域 D 内的原函数.
NUDT
第三章 复变函数的积分
§1 复变函数积分的概念 §2 柯西—古萨(Cauchy-Goursat)基本定理 §3 复合闭路定理 §4 原函数与不定积分 §5 柯西积分公式 §6 解析函数的高阶导数 §7 解析函数与调和函数的关系
NUDT
上次课主要内容的回顾
复积分的计算方法有哪些?
试求:C sin zdz ? C:以原点为起点
沿 z 1 1的上半圆周以2为终点的圆弧。 y
0 试问在什么条件下积分将与路径无关?
2x
NUDT
§4 原函数与不定积分
再谈积分与路径无关的问题
Cauchy-Goursat基本定理
定理1 如果函数 f (z) 在单连通区
域 D 内解析,那么积分
..z z

z
.D z0
lim 1
z z
f ( )d
z0 z z
f
(z)
F(z)

lim
z0
F(z
z) z
F(z)

lim 1 [ zz
z0 z z0
f
( )d
z z0
f
( )d ]
F(z

z) z
F(z)

f
(z)
C C1 C2 L Cn
D
C1 C
C2
NUDT
例题
Example1.
C
z
dz z0
2?i
(C : z z0 r,正方向)
Note. 事实上C可推广到包含 z0点的正向简单闭曲线
该结果仍然成立.
? Example2.
ÑC
2z z2
Hale Waihona Puke 1dz zC f (z)d z 0.
Theorem2. If a function f is analytic at all points interior to and on a simple closed contour C, then
ÑC f (z)dz 0
NUDT
上次课主要内容的回顾
What is the principle of deformation of paths?
D 内的原函数,那么
z1 z0
f
(z)d
z

G(z1)

G( z0 ),
这里 z0, z1为区域 D 内的两点.
Proof. G(z) F (z) C0
D z0 .
. z1
(C0为某个复常数)
G(z0 ) F (z0 ) C0 C0
G(z1) F(z1) C0
相关文档
最新文档