高中物理竞赛讲义:动量
高中物理竞赛辅导第五讲 动量与角动量
高中物理竞赛辅导第五讲 动量与角动量一、知识点击1.动量定理⑴ 质点动量定理:0t F ma mtυυ-==合,即0t F t m m υυ=-合I P =∆合 即合外力的冲量等于质点动量的增量.⑵质点系动量定理:将质点动量定理推广到有n 个质点组成的质点系,即可得到质点系的动量定理.令I 外和I 内分别表示质点系各质点所受的外力和内力的总冲量,则t P 和0P 表示质点系中各质点总的末动量和初动量之矢量和,则:t I I P P P +=-=∆外内 而0I =内,因质点系内各质点之间的相互作用力是成对出现的,且等值反向0t I P P =-外。
即所有外力对质点系的总冲量等于质点系总动量的增量 2.动量守恒定律⑴内容:系统不受外力或所受外力的合力为零,这个系统的动量就保持不变. ⑵表达式:系统内相互作用前总动量P 等于相互作用后总动量P ':P P '=。
系统总动量的变化量为零:0P ∆=对于两个物体组成的系统可表达为:相互作用的两个物体的动量的变化量大小相等,方向相反12P P ∆=-∆。
或者作用前两物体的总动量等于作用后的总动量:12121212m m m m υυυυ''+=+⑶适用范围:动量守恒定律适用于宏观、微观,高速、低速.⑷定律广义:质点系的内力不能改变它质心的运动状态—质心守恒.质点系在无外力作用或者在外力偶作用下,其质心将保持原来的运动状态。
质点系的质心在外力作用下作某种运动,则内力不能改变质心的这种运动。
质心运动定理:作用在质点系上的合外力等于质点系总质量与质心加速度的乘积,即c F ma =,其质心加速度:iic m aa M=∑。
定理只给出质心运动情况,并不涉及质点间的相对运动及它们绕质心的运动。
3.碰撞问题⑴弹性碰撞:碰撞时无机械能损失.1102201122m m m m υυυυ+=+ ①2222110220112211112222m m m m υυυυ+=+ ② 由①②可得:12102201122m m m m m υυυ-+=+(),21201102122m m m m m υυυ-+=+()(2)非弹性碰撞:碰撞时有动能损失。
《动量》 讲义
《动量》讲义一、什么是动量在物理学中,动量是一个非常重要的概念。
简单来说,动量就是物体运动的“量度”。
想象一下,一辆快速行驶的大卡车和一辆缓慢行驶的小汽车,如果它们要停下来,哪一个更难?很明显是大卡车。
这是因为大卡车具有更大的动量。
动量的定义是:物体的质量乘以其速度。
用公式表示就是 p = m v ,其中 p 表示动量,m 是物体的质量,v 是物体的速度。
这个公式告诉我们,质量越大、速度越快的物体,其动量就越大。
举个例子,一个重 100 千克、速度为 10 米每秒的物体,它的动量就是 1000 千克·米每秒。
而一个重 50 千克、速度为 20 米每秒的物体,动量则是 1000 千克·米每秒。
虽然它们质量和速度各不相同,但动量是相同的。
二、动量的特性1、矢量性动量是一个矢量,这意味着它不仅有大小,还有方向。
速度的方向就是动量的方向。
比如说,一个物体向左以 5 米每秒的速度运动,它的动量方向就是向左。
如果它改变运动方向向右运动,那么动量的方向也会随之改变为向右。
2、相对性动量的大小和方向会因所选择的参考系不同而有所不同。
假设在一辆匀速行驶的火车上,有一个人在车厢内向前走。
对于火车上的观察者来说,这个人的动量是某个值。
但对于站在地面上的观察者来说,由于火车本身也在运动,这个人的动量就会是另一个值。
三、动量守恒定律动量守恒定律是物理学中一个极其重要的定律。
它表述为:在一个不受外力或者所受合外力为零的系统中,系统的总动量保持不变。
为什么会有这样的定律呢?我们可以通过一些简单的例子来理解。
比如,在光滑水平面上,有两个质量相等、速度大小相等、方向相反的小球发生碰撞。
碰撞前,系统的总动量为零。
碰撞后,两个小球的速度会发生变化,但它们的总动量仍然为零。
再比如,火箭发射时,火箭向下喷射高速气体,火箭本身则向上运动。
喷射气体的动量和火箭的动量之和在整个过程中始终保持不变。
动量守恒定律在很多领域都有广泛的应用。
高中物理竞赛(动量)概论
动 量一.冲量、动量定理1.冲量:I =Ft ,相当于F -t 图象的面积。
2.动量定理:Ft =mv 2-mv 1(是矢量关系)。
3.动量定理的推广:∑∑=v m t F ∆∆。
1. 如图所示,水平面上有二个物体A 和B ,质量分别为m A =2Kg,m B =1Kg,A 与B 相距一定的距离,A 以v 0=10m/s 的初速度向静止的B 运动,与B 发生正碰后分开,分开后A 仍向原方向运动,已知A 从开始运动到停下来共运动6s 时间.求碰后B 能滑行的时间.(略去A 、B 的碰撞时间,A 和B 与地面之间的动摩擦因数都为0.1,重力加速度g =10m/s 2) (答案:8s )解:对系统,有动量定理:-μm A gt A -μm B gt B =0-m A v 0,t B =8s.2. 以速度大小为v 1竖直向上抛出一小球,小球落回地面时的速度大小为v 2,设小球在运动过程中受空气阻力大小与速度大小成正比,求小球在空中运动的时间.[答案:(v 1+v 2)/g ]解:因小球在运动过程中受到的阻力大小是变化的,所以无法直接用牛顿定律解,把物体运动过程分成无数段,则∑=s t v ∆。
上升过程,有动量定理:-mg ∆t -kv ∆t =m ∆v ,求和得:mgt 上+ks =mv 1. 同理下落过程:mgt 下-ks =mv 2.两式相加得:t =t 上+t 下=(v 1+v 2)/g .3. 质量为m 的均匀铁链,悬挂在天花板上,其下端恰好与水平桌面接触,当上端的悬挂点突然脱开后,求当有一半的铁链在水平桌面上时,铁链对桌面的压力. (答案:3mg /2)解:设铁链长为L ,则单位长度的质量为m /L ,当有一半的铁链在水平桌面上时,铁链对桌面的压力为:桌面上的铁链的重力F 1=mg /2和落到桌面上的铁链对桌面的冲力F 2之和. 取刚落到桌面上的一小段铁链作为研究对象,它的初速度v 0=gL gL=22,末速度v =0,质量∆m =v 0∆tm /L .有动量定理:22()0(),得.m m F mg t m Lg F Lg mg Lg mg tt∆∆-∆∆=-∆-=+∆≈=∆∆所以铁链对桌面的压力F =F 1+F 2=3mg /2.(F 2不能用动能定理,为什么?)4. 一根均匀柔软绳长为L ,质量为m ,对折后两端固定在一个钉子上.其中一端突然从钉子上脱落,如图所示.求下落端的端点离钉子的距离为x 时,钉子对绳子另一端的作用力.[答案:21mg (1+3x /L )] 解:当左边绳端离钉子的距离为x 时,左边绳长为x =21(L -x ),速度gx v 2=.右边绳长为21(L +x ),又经一段很短时间∆t 后,左边的绳子又有长度为21v ∆t 的一小段转移到右边去了,我们就分析这一小段绳子,这一小段绳子受两个力作用:上面绳子对它的拉力T 和它本身的重力21v ∆t λg (λ=m /L ,为绳子的线密度),根据动量定理(不能用动能定理,因在绳子受T 的作用过程有动能损失),设向上方向为正:(T -21v ∆t λg )∆t =0-(-21v ∆t λv ), 由于∆t 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略。
高二物理竞赛动量定理动量守恒定律PPT(课件)
质点系的动量定理:质点系所受外力的总冲量等于质点系的总动量的增量。
y 设有三个质点系m1、m2、m3
定义dt时间间隔内力的冲量:
2y
1y
y
2y
1y
又设 时间内质点总动量由
t1 若研究对象不止一个质点,情况如何?
(2)求10秒内力的冲量及作的功
t 一个质点的机械运动由两个物理量来表征,一个是动能,是标量;
i1
(t2 n F i )dt t1 i1
i
mi vi2
i
mi vi1
说明: 1)若某个方向上合外力为零,则该方向上动量守恒,
尽管总动量可能并不守恒 。
2)当外力<<内力且作用时间极短时,如碰撞,可 认为动量近似守恒。
3)动量守恒定律适用于惯性系。
4)动量守恒定律比牛顿定律更普遍、更基本,它也 适用于高速,微观领域。
质点动量2的改变量决定于所受合外力的冲量
三、(一)质点的动量定理
F dt mv mv F t mv mv 尽管总动量可能并不守恒 。
是物体运动量大小的量度
z 2 z 1z 4)动量守恒定律比牛顿定律更普遍、更基本,它也适用于高速,微观领域。
z 若研究对象不止一个质点,情况如何?
2z
1z
上t1式说明:哪一个方向的冲量只改变哪一个方
上式说明:哪一个方向的冲量只改变哪一个方向的动量。
1 2 求(1)物体在t=10s
牛顿•米
质点系的动量定理:质点系所受外力的总冲量等于质点系的总动量的增量。
t2
I Fdt
称之为质点系的总动量,则有: 又设 时间内质点总动量由
t1
3)动量守恒定律适用于惯性系。
单位:牛顿.秒 若研究对象不止一个质点,情况如何?
《动量》 讲义
《动量》讲义在物理学的广袤天地中,动量是一个极为重要的概念。
它不仅在理论研究中占据关键地位,还在实际生活和众多领域有着广泛而深刻的应用。
让我们先来理解一下什么是动量。
动量可以简单地理解为物体运动的“冲量”。
具体来说,动量等于物体的质量乘以其速度。
用公式表示就是:p = mv ,其中 p 代表动量,m 是物体的质量,v 是物体的速度。
为什么动量这个概念如此重要呢?想象一下,一辆重型卡车和一辆小型汽车都以相同的速度行驶,如果要让它们停下来,显然让重型卡车停下来要困难得多。
这是因为重型卡车的质量大,其动量也就大。
动量具有一些独特的性质。
首先,动量是矢量。
这意味着它不仅有大小,还有方向。
速度的方向决定了动量的方向。
其次,在一个孤立系统中(也就是不受外力作用的系统),总动量是守恒的。
这是一个非常强大且有用的规律。
举个例子,假设在一个光滑的水平面上,有两个质量不同的小球,它们相向运动并发生碰撞。
在碰撞前后,整个系统没有受到外力的作用,那么两个小球组成的系统的总动量是保持不变的。
也就是说,碰撞前两个小球的动量之和等于碰撞后它们的动量之和。
在日常生活中,动量的概念也无处不在。
比如,运动员在跳远时,往往会先助跑一段距离。
助跑的目的就是增加自身的动量,从而在起跳时能够跳得更远。
再比如,当一艘船在水中航行时,如果要迅速停下来,就需要反向施加很大的力,这也是因为船具有较大的动量。
在体育运动中,动量的原理也有很多应用。
比如,在拳击比赛中,拳击手出拳的力量不仅仅取决于肌肉的力量,还与出拳的速度和自身的质量有关。
快速而有力的出拳可以产生更大的动量,给对手造成更大的冲击。
在工业生产中,动量的知识也发挥着重要作用。
例如,在机械制造中,了解动量的原理可以帮助设计更高效、更安全的设备。
在碰撞测试中,通过分析车辆在碰撞过程中的动量变化,可以评估车辆的安全性。
进一步深入研究动量,我们会发现它与能量之间存在着密切的关系。
动能是与物体的运动速度相关的能量,而动量则与速度和质量都有关。
高中物理竞赛专题第7讲动量动量定理
1. 学习动量冲量的概念,动量定理的推导与应用2. 学习连续体与瞬时过程中使用动量定理的方法动量这一章无论在高考,竞赛,自主招生中都是典型的出压轴题的章节,学习难度大,高考主要考一维的动量定理与守恒,而自主招生与竞赛主要考察二维的动量定理与守恒,相对而言更强调熟练运用矢量分解原理的数学能力。
知识点睛一.概念引入1.动量⑴定义:运动物体的质量和速度的乘积叫做动量,p mv =.⑵动量表征物体的运动状态,是矢量,其方向与速度的方向相同,两个物体的动量相同必须是大小相等、方向相同.2.动量的变化量①0t p p p ∆=-.②动量的变化量是矢量,其方向与速度变化的方向相同,与合外力冲量的方向相同,跟动量的方向无关.③求动量变化量的方法:021t p p p mv mv ∆=-=-,p Ft ∆=3.冲量⑴定义:力和力的作用时间的乘积,叫做该力的冲量,I Ft =.⑵冲量表示力在一段时间内的累积作用效果,是矢量,其方向由力的方向决定,如果在作用时间内力的方向不变,冲量的方向就和力的方向相同.⑶求冲量的方法:I Ft =(适用于求恒力的冲量);I p =∆(适用于恒力和变力).二.动量定理内容:物体所受合外力的冲量,等于这个物体动量的变化量.三.知识理解1.动量变化p ∆:不指动量大小的变化,仍然必须用矢量计算,这个量是衡量动量大小方向总变化的一个物理量,大部分时候我们会把复杂的动量变化分解到几个独立的方向上进行计算。
2.动量定理可以认为是牛顿第二定律的过程式。
3.相互作用力的冲量等大反向。
4.对一个整体,内力总冲量为零。
例题精讲【例1】 一个质量为m 的小球,从高度为H 的地方自由落下,与水平地面碰撞后向上弹起,设碰撞时间为定值t ,则在碰撞过程中,下列关于小球对地面的平均冲击力与球弹起的高度h 的关系中正确的是(设冲击力远大于重力)( ).A .h 越大,平均冲击力越大B .h 越小,平均冲击力越大本讲导学 第7讲动量 动量定理C .平均冲击力大小与h 无关D .若h 一定,平均冲击力与小球质量成正比【例2】 如图,铁块压着一纸条放在水平桌面上,当以速度v 抽出纸条后,铁块掉在地上的P 点. 若以速度2v 抽出纸条,则铁块落地点为( )A. 仍在P 点B. P 点左边C. P 点右边不远处D. P 点右边原水平位移的两倍处【例3】 一个质量为2kg m =的物体,在18N F =的水平推力作用下,从静止开始沿水平面运动了15s t =,然后推力减小为25N F =,方向不变,物体又运动了24s t =后撤去外力,物体再经过36s t =停下来.试求物体在水平面上所受的摩擦力.【例4】 有一宇宙飞船以10km/s v =的速度在太空中飞行,突然进入一密度为7310kg/m ρ-=的微陨石尘区,假设微陨石尘与飞船碰撞后即附着在飞船上.欲使飞船保持原速度不变,试求飞船的助推器的助推力应增大多少?(已知飞船的正横截面积22m S =)【例5】 某种气体分子束由质量265.410kg m -=⨯速度460m/s v =的分子组成,各分子都向同一方向运动,垂直地打在某平面上后又以原速率反向弹回,如分子束中每立方米的体积内有200 1.510n =⨯个分子,求被分子束撞击的平面所受到的压强.复杂过程动量变化:【例6】 如图,A 、B 两小物体被平行于斜面的轻细线相连,均静止于斜面上.以平行于斜面向上的恒力拉A ,使A 、B 同时由静止起以加速度a 沿斜面向上运动.经时间1t ,细线突然被拉断.再经时间2t ,B上滑到最高点.已知A 、B 的质量分别为1m 、2m ,细线断后拉A 的恒力不变,求B 到达最高点时A 的速度.【例7】 如图所示,A 、B 两个物体位于水平地面上,它们与地面间的动摩擦因数均为μ=0.10。
物理竞赛辅导资料:动量和动量守恒
物理竞赛辅导资料:动量和动量守恒高考对本章的考查每年约有题,有选择、填空、计算等题型,重点考查动量定理和动量守恒定律,是高考的“重中之重”,是高考的热点和难点。
特别在近年高考压轴题中,涉及本章知识的题目所占比例最高。
易与本章知识发生联系的知识有:能量守恒、带电粒子在电场和磁场中的运动、核反应等。
第一节 动量问题专题动量问题是指与动量有关的问题和用动量观点解决的问题。
其中,与动量有关的问题,本专题主要指动量定理和动量守恒定律。
用动量观点解决问题,即是指用动量定理和动量守恒定律解决的问题。
1.动量定理⑴动量定理内容:物体所受合外力的冲量等于它的动量变化。
⑵动量定理公式:12mv mv Ft -=∑,它为一矢量式,在一维情况时可变为代数式运算。
⑶动量定理的研究对象是质点。
它说明的是外力对时间的累积效应。
应用动量定理分析或解题时,只考虑物体的始、末状态的动量,而不必考虑中间的运动过程。
⑷应用动量定理的思路:a. 确定研究对象,进行受力分析;b. 确定初末状态的动量mv 1和mv 2(要先规定正方向,以便确定动量的正负,还要把v 1和v 2换成相对于同一惯性参照系的速度);c. 利用12mv mv Ft -=∑列方程求解。
2.动量守恒定律⑴内容及表达式:a. 动量守恒定律内容:系统不受外力或所受外力的合力为零时,系统的总动量保持不变。
b. 动量守恒定律的公式:'2'121mv mv mv mv +=+⑵说明及注意事项:a.定律适用条件:① 系统不受外力或所受外力的合力为零时;② 系统内力远大于外力时(如碰撞、爆炸等);③ 系统在某一方向上不受外力或所受外力的合力为零时(只在这一方向上动量守恒)b .注意表达式的矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算简化为代数运算。
c .注意速度的相对性。
所有速度必须是相对同一惯性参照系。
d.注意同时性:表达式中v 1和v 2必须是相互作用前同一时刻的瞬时速度,v 1’和v 2’必须是相互作用后同一时刻的瞬时速度。
高二物理竞赛课件:动量守恒定律
3. 动量定理是由牛顿第二定律推得,但物理意义不同 • 牛二定律:在力的作用下,质点动量的瞬时变化规律 • 动量定理:在力的持续作用下,质点动量的持续变化情况
4. 冲量与功;动量定理与动能定理
• 动量定理
t
I F dt t0
时间过程量
mv mv0
状态量
• 动能定理
A
Q P
F
d
r
mv1
mv
v v2 - v1
v
v2
) θv1 Nhomakorabeav v22 v12 2v1v2 cos(180 ) 3v
F
mv
t
F mv 3mv 8.1103 N t t
30
例3 水平台高 y0 , 质量 m 的小球以v0 抛出,有人以v0/2行
走,球落地后重新跳起,到最大高度y0/2 时, 水平速度相对此人静止,求小球与地 碰撞过程地面对小球的垂直冲量,水 平冲量,总冲量。
二、对冲量的几点说明:
1. 冲量描述力的时间积累效应——改变质点的运动状态
2. 冲量是由作用力和时间共同决定,若要使质点运动状态发生 一定变化,若作用力小(大),则作用时间必定长(短)
3. 冲量是矢量。冲量的方向与力的性质有关但不由某个瞬间力 的方向决定,而应根据动量的增量来确定。
4. 合力在一段时间的冲量等于各分力在同一段时间的冲量
件的平均冲击力与重力的比值.
解: 碰撞前后重锤速度 v0 2gh; v 0 z
t
t0 (F mg)dt mv mv0 m 2gh
(F mg)t m 2gh
h
F 1 2h 1 1 0.55
mg
g t
t
F
t
10-1
青岛五十八中物理竞赛讲义第五讲动量(教师版)
(3)
说明:
1. 对我们来说,该定理仅用于惯性系,计算动量时,必须选择同一参考系。
2. 定理既可用于恒力也可用于变力,当外力是变力时,外力冲量的大小等于质点动量变化量的
大小。
3. 当物体同时受到几个力的作用时,I⃗ 应该理解为各个分力冲量的矢量和,∆p⃗ = p⃗2 − p⃗1 则表 示物体末、初两状态的动量之差。至于物体在外力冲量的作用过程中,每一时刻动量变化的情节,
完全弹性正碰:两个小球碰撞前后速度方向均在他们中心连线上(正碰),且没有机械能损失的
碰撞。
特点:碰撞过程中双守恒(即动量和机械能均守恒),亦即:
m1v10 + m2v20 = m1v1 + m2v2
(7)
1 2
m1v102
+
1 2
m2v20
2
=
1 2
m1
v12
+
1 2
m2v2
2
(8)
结合动量守恒 (7) 解得
研究对象往往是一组物体的运动,在物理学中,称这样的一组物体为“系统”。系统内物体间的相互
作用力称为内力;来自于系统外的作用力成为外力。在对系统研究的过程中,理论和实践都可证明:
1. 对系统而言,系统内一切内力的矢量和为零。
2. 根据动量定理,系统所受外力的冲量等于系统动量的增量
由此:当系统不受外力或所受合外力等于零,即
F⃗
=
0
时,有
∑ ∆( mi⃗vi)
=
0.
即系统的总动
量不随时间变化,任一时刻系统的动量的矢量和保持不变。亦即
∑
mi⃗vi = 恒量
(4)
这一结论即是动量守恒定律。
说明:
高中物理竞赛讲义动量和能量专题
高中物理竞赛讲义动量和能量专题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中物理竞赛讲义动量和能量专题一、冲量1.冲量的定义:力F和力的作用时间t的乘积Ft叫做力的冲量,通常用符号I表示冲量。
2.定义式:I=Ft 3.单位:冲量的国际单位是牛·秒(N·s)4.冲量是矢量,它的方向是由力的方向决定的。
如果力的方向在作用时间内不变,冲量的方向就跟力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
5、冲量的计算:冲量是表示物体在力的作用下经历一段时间的累积的物理量。
因此,力对物体有冲量作用必须具备力F和该力作用下的时间t两个条件。
换句话说:只要有力并有作用一段时间,那么该力对物体就有冲量作用,可见,冲量是个过程量。
例:以初速度竖直向上抛出一物体,空气阻力不可忽略。
关于物体受到的冲量,以下说法正确的是:()A、物体上升阶段和下落阶段受到的重力的冲量方向相反;B、物体上升阶段和下落阶段受到空气阻力冲量的方向相反;C、物体在下落阶段受到重力的冲量大于上升阶段受到重力的冲量;D、物体从抛出到返回抛出点,所受各力冲量的总和方向向下。
二、动量1.定义:质量m和速度v的乘积mv.2.公式:p=mv3.单位:千克•米/秒(kg•m/s),1N•m=1kg•m/s2•m=1kg•m/s4.动量也是矢量:动量的方向与速度方向相同。
三、动量的变化1.动量变化就是在某过程中的末动量与初动量的矢量差。
即△P=P’-P。
例1:一个质量是0.2kg的钢球,以2m/s的速度水平向右运动,碰到一块竖硬的大理石后被弹回,沿着同一直线以2m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化变化了多少例2:一个质量是0.2kg的钢球,以2m/s的速度斜射到坚硬的大理石板上,入射的角度是45º,碰撞后被斜着弹出,弹出的角度也是45º,速度大小仍为2m/s,用作图法求出钢球动量变化大小和方向?2.动量是矢量,求其变化量可以用平行四边形定则四、动量定理1.物理意义:物体所受合外力的冲量等于物体的动量变化2.公式:Ft=p’一p=mv'-mv3.动量定理的适用范围:恒力或变力 (变力时,F为平均力)例:质量2kg的木块与水平面间的动摩擦因数μ=0.2,木块在F=5N的水平恒力作用下由静止开始运动。
高三物理竞赛辅导讲义
高三物理竞赛辅导讲义(一)一、知识讲解1.动量运动物体的质量和速度的乘积叫动量,即p=mv。
动量是矢量,其方向与速度的方向相同.两个动量相等必须是大小相等,方向相同.动量和动能的区别和联系:(1)动量是矢量,动能是标量,因此物体的动量发生变化时,动能不一定变化;而物体的动能发生变化时,其动量一定变化.(2)动量和动能都与物体的质量有关,两者从不同角度描述了运动物体的特征,两者都是状态量,且二者大小间存在关系式p2=2mE k.2.动量的变化物体末动量与初动量的差叫做动量的变化,公式为△p=p’一p.动量是矢量,因此动量的变化也是矢量.3.系统内力和外力(1)系统:碰撞问题的研究对象不是一个物体,而是两个或两个以上的物体.我们说这两个或这两个以上的物体组成了一个力学系统.(2)内力:碰撞时两个物体之间的相互作用力.(3)外力:除碰撞时两个物体之间的相互作用力之外的其他力叫做外力.4.动量守恒定律(1)内容:相互作用的物体,如果不受外力作用,或者它们所受的合外力为零,它们的总动量保持不变.(2)常用的三种表达式①p’=p,其中p’、p分别表示系统的末动量和初动量.②m1v1+m2v2=m1v1’+m2v2’.③△p1=△p2其中△p1、△p2分别表示系统初、末动量的变化量.5.判定动量守恒条件(1)在运用定律时,系统的选取有时十分重要,选择某系统,动量可能守恒,对另一系统就可能不守恒.(2)动量守恒定律成立的条件①系统不受外力或系统所受的外力的合力为零;②系统所受的外力的合力虽不为零,但系统的内力远大于外力:③系统所受的合外力不为零,但在某方向上的合力为零,则在该方向上系统的总动量的分量保持不变.6.应用动量守恒定律解题时要注意“四性”①矢量性:动量守恒方程是一个矢量方程.对于作用前后物体的运动方向都在同一直线上的问题,应选取统一的正方向,凡是与选取正方向相同的动量为正,相反为负.若方向未知,可设为与正方向相同列动量守恒方程,通过解得结果的正负,判定未知量的方向.②同时性:动量是一个瞬时量,动量守恒指的是系统任一瞬时的动量恒定,列方程m1v1+m2v2=m1v1’+m2v2’时,等号左侧是作用前(或某一时刻)各物体的动量和,等号右侧是作用后(或另一时刻)各物体的动量和,不同时刻的动量不能相加.③相对性:由于动量大小与参考系的选取有关,因此应用动量守恒定律时,应注意各物体的速度必须是相对于同一惯性系的速度.一般以地面为参考系.④普适性:它不仅适用于两个物体所组成的系统;也适用于多个物体组成的系统,不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。
高中物理竞赛(动量)1
动 量一.冲量、动量定理1.冲量:I =Ft ,相当于F -t 图象的面积。
2.动量定理:Ft =mv 2-mv 1(是矢量关系)。
3.动量定理的推广:∑∑=v m t F ∆∆。
1. 如图所示,水平面上有二个物体A 和B ,质量分别为m A =2Kg,m B =1Kg,A 与B相距一定的距离,A 以v 0=10m/s 的初速度向静止的B 运动,与B 发生正碰后分开,分开后A 仍向原方向运动,已知A 从开始运动到停下来共运动6s 时间.求碰后B 能滑行的时间.(略去A 、B 的碰撞时间,A 和B 与地面之间的动摩擦因数都为0.1,重力加速度g =10m/s 2) (答案:8s ) 解:对系统,有动量定理:-μm A gt A -μm B gt B =0-m A v 0,t B =8s.2. 以速度大小为v 1竖直向上抛出一小球,小球落回地面时的速度大小为v 2,设小球在运动过程中受空气阻力大小与速度大小成正比,求小球在空中运动的时间.[答案:(v 1+v 2)/g ]解:因小球在运动过程中受到的阻力大小是变化的,所以无法直接用牛顿定律解,把物体运动过程分成无数段,则∑=s t v ∆。
上升过程,有动量定理:-mg ∆t -kv ∆t =m ∆v ,求和得:mgt 上+ks =mv 1. 同理下落过程:mgt 下-ks =mv 2.两式相加得:t =t 上+t 下=(v 1+v 2)/g .3. 质量为m 的均匀铁链,悬挂在天花板上,其下端恰好与水平桌面接触,当上端的悬挂点突然脱开后,求当有一半的铁链在水平桌面上时,铁链对桌面的压力. (答案:3mg /2)解:设铁链长为L ,则单位长度的质量为m /L ,当有一半的铁链在水平桌面上时,铁链对桌面的压力为:桌面上的铁链的重力F 1=mg /2和落到桌面上的铁链对桌面的冲力F 2之和.取刚落到桌面上的一小段铁链作为研究对象,它的初速度v 0=gLgL =22,末速度v =0,质量∆m =v 0∆tm /L .有动量定理:.),(0)(11mg Lg tm mg Lg tm F Lg m tmg F =≈+=--=-∆∆∆∆∆∆∆∆得所以铁链对桌面的压力F =F 1+F 2=3mg /2.(F 2不能用动能定理,为什么?) 4. 一根均匀柔软绳长为L ,质量为m ,对折后两端固定在一个钉子上.其中一端突然从钉子上脱落,如图所示.求下落端的端点离钉子的距离为x时,钉子对绳子另一端的作用力.[答案:21mg (1+3x /L )]解:当左边绳端离钉子的距离为x 时,左边绳长为x =21(L -x ),速度gxv 2=.右边绳长为21(L +x ),又经一段很短时间∆t 后,左边的绳子又有长度为21v ∆t 的一小段转移到右边去了,我们就分析这一小段绳子,这一小段绳子受两个力作用:上面绳子对它的拉力T 和它本身的重力21v ∆t λg (λ=m /L ,为绳子的线密度),根据动量定理(不能用动能定理,因在绳子受T 的作用过程有动能损失), 设向上方向为正:(T -21v ∆t λg )∆t =0-(-21v ∆t λv ),由于∆t 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略。
高中物理竞赛辅导动量角动量和能量
高中物理竞赛辅导动量角动量和能量§4.1 动量与冲量 动量定理 4.1. 1.动量在牛顿定律建立往常,人们为了量度物体作机械运动的〝运动量〞,引入了动量的概念。
当时在研究碰撞和打击咨询题时认识到:物体的质量和速度越大,其〝运动量〞就越大。
物体的质量和速度的乘积mv 遵从一定的规律,例如,在两物体碰撞过程中,它们的改变必定是数值相等、方向相反。
在这些事实基础上,人们就引用mv 来量度物体的〝运动量〞,称之为动量。
4.1.2.冲量要使原先静止的物体获得某一速度,能够用较大的力作用较短的时刻或用较小的力作用较长的时刻,只要力F 和力作用的时刻t ∆的乘积相同,所产生的改变那个物体的速度成效就一样,在物理学中把F t ∆叫做冲量。
4.1.3.质点动量定理由牛顿定律,容易得出它们的联系:对单个物体:01mv mv v m t ma t F -=∆=∆=∆ p t F ∆=∆即冲量等于动量的增量,这确实是质点动量定理。
在应用动量定理时要注意它是矢量式,速度的变化前后的方向能够在一条直线上,也能够不在一条直线上,当不在一直线上时,可将矢量投影到某方向上,重量式为:x tx x mv mv t F 0-=∆ y ty ymvmv t F 0-=∆ z tz z mv mv t F 0-=∆ 关于多个物体组成的物体系,按照力的作用者划分成内力和外力。
对各个质点用动量定理:第1个 1I 外+1I 内=10111v m v m t - 第2个 2I 外+2I 内=20222v m v m t -第n 个 n I 外+n I 内=0n n nt n v m v m - 由牛顿第三定律: 1I 内+2I 内+……+n I 内=0 因此得到:1I 外+2I 外+ ……+n I 外=〔t v m 11+t v m 22+……+nt n v m 〕-〔101v m +202v m +……0n n v m 〕即:质点系所有外力的冲量和等于物体系总动量的增量。
高中物理竞赛讲义动量和能量专题
高中物理竞赛讲义动量和能量专题(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高中物理竞赛讲义动量和能量专题一、冲量1.冲量的定义:力F和力的作用时间t的乘积Ft叫做力的冲量,通常用符号I表示冲量。
2.定义式:I=Ft 3.单位:冲量的国际单位是牛·秒(N·s)4.冲量是矢量,它的方向是由力的方向决定的。
如果力的方向在作用时间内不变,冲量的方向就跟力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
5、冲量的计算:冲量是表示物体在力的作用下经历一段时间的累积的物理量。
因此,力对物体有冲量作用必须具备力F和该力作用下的时间t两个条件。
换句话说:只要有力并有作用一段时间,那么该力对物体就有冲量作用,可见,冲量是个过程量。
例:以初速度竖直向上抛出一物体,空气阻力不可忽略。
关于物体受到的冲量,以下说法正确的是:()A、物体上升阶段和下落阶段受到的重力的冲量方向相反;B、物体上升阶段和下落阶段受到空气阻力冲量的方向相反;C、物体在下落阶段受到重力的冲量大于上升阶段受到重力的冲量;D、物体从抛出到返回抛出点,所受各力冲量的总和方向向下。
二、动量1.定义:质量m和速度v的乘积mv.2.公式:p=mv3.单位:千克•米/秒(kg•m/s),1N•m=1kg•m/s2•m=1kg•m/s4.动量也是矢量:动量的方向与速度方向相同。
三、动量的变化1.动量变化就是在某过程中的末动量与初动量的矢量差。
即△P=P’-P。
例1:一个质量是的钢球,以2m/s的速度水平向右运动,碰到一块竖硬的大理石后被弹回,沿着同一直线以2m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化变化了多少例2:一个质量是的钢球,以2m/s的速度斜射到坚硬的大理石板上,入射的角度是45º,碰撞后被斜着弹出,弹出的角度也是45º,速度大小仍为2m/s,用作图法求出钢球动量变化大小和方向?2.动量是矢量,求其变化量可以用平行四边形定则四、动量定理1.物理意义:物体所受合外力的冲量等于物体的动量变化2.公式:Ft=p’一p=mv'-mv3.动量定理的适用范围:恒力或变力 (变力时,F为平均力)例:质量2kg的木块与水平面间的动摩擦因数μ=,木块在F=5N的水平恒力作用下由静止开始运动。
《动量定理》 讲义
《动量定理》讲义一、引入在我们日常生活和物理学的研究中,动量定理是一个非常重要的概念。
它帮助我们理解物体运动状态的变化与所受外力之间的关系。
想象一下,你正在打台球,当球杆击打台球时,台球会以一定的速度和方向滚动。
为什么球会这样运动?球的运动状态改变的原因是什么?这就涉及到动量定理。
二、动量的概念首先,我们来了解一下什么是动量。
动量(momentum)用字母 p 表示,它等于物体的质量 m 乘以物体的速度 v ,即 p = mv 。
动量是一个矢量,它的方向与速度的方向相同。
这意味着,如果一个物体的速度方向改变了,那么它的动量方向也会改变。
例如,一辆以 10m/s 的速度向东行驶的汽车,质量为 1000kg ,那么它的动量就是 1000×10 = 10000 kg·m/s ,方向向东。
三、冲量的概念有了动量的概念,接下来我们引入冲量(impulse)。
冲量等于作用力 F 与作用时间 t 的乘积,用字母 I 表示,即 I = Ft 。
冲量也是一个矢量,它的方向与作用力的方向相同。
比如说,一个力在 5 秒内持续作用在一个物体上,力的大小为 20N ,那么冲量就是 20×5 = 100 N·s 。
四、动量定理的内容动量定理指出:合外力的冲量等于物体动量的增量。
用数学表达式可以写成:I =Δp ,其中Δp 表示动量的变化量。
这意味着,如果一个物体所受的合外力在一段时间内有作用,那么这个力的冲量就会导致物体动量的改变。
举个简单的例子,一个质量为 2kg 的球,原来静止不动,现在受到一个 10N 的力,作用了 2 秒。
首先计算冲量 I = 10×2 = 20 N·s 。
因为球原来的动量为 0 ,所以动量的增量Δp 就等于冲量 I ,即 20 kg·m/s 。
根据动量的定义 p = mv ,可以算出球的速度 v = p / m = 20 / 2 = 10 m/s 。
高中物理竞赛辅导讲义-第4篇-动量
C
1 mC
m z
i 1
i i
。
1 质心速度、加速度、动量: vC mC
m v
i i
1 , aC mC
m a
i i
n , PC mC vC Pi 。 i 1
八、质心运动定理 质点系的质心运动和一个位于质心的质点的运动相同,该质点的质量等于质点系的总质量, 而该质点上的作用力则等于作用于质点系上的所有外力平行地移到这一点上。 n 1.质点系牛顿第二定律: (外力矢量和) F Fi mC aC
3.理解: (1)守恒条件:系统不受外力或所受外力的合力为零。要区分内力和外力。 (2)守恒含义:任一时刻系统总动量相同,不只是初末状态相同。 (3)系统性:指系统的总动量守恒,不是系统内每个物体的动量守恒。每个物体的动量 可以发生很大的变化。 (4)相对性:各物体的动量,都是同一惯性参考系(一般以地面为参考系) 。 (5)同时性:系统总动量是同一时刻各个物体的动量总和。
-2-
两小球碰撞之前的运动速度与两球心连线不在同一条直线上,碰撞之后两球的速度都 会偏离原来两球心的连线。这种碰撞称为非对心碰撞。 六、反冲 根据动量守恒定律,如果一个静止的物体在内力的作用下分裂为两个部分,一部分向 某个方向运动,另一部分必然向相反的方向运动。这个现象叫做反冲。 喷气式飞机和火箭的飞行应用了反冲原理,它们都是靠喷出气流的反冲作用而获得巨 大速度的。 七、质心 设 n 个质点组成的系统,质量分别为 m1,m2,…,mn,位矢分别为 r1 , r2 ,…, rn ,定义
质点对任参考点的角动量的增量等于外力的冲量矩角动量的时间变化率等于外力对该点的力矩。 M L 。 t
高中物理竞赛讲义:动量
高中物理竞赛讲义:动量【扩展知识】1.动量定理的分量表达式I 合x =mv 2x -mv 1x ,I 合y =mv 2y -mv 1y ,I 合z =mv 2z -mv 1z .2.质心与质心运动2.1质点系的质量中心称为质心。
若质点系内有n 个质点,它们的质量分别为m 1,m 2,……m n ,相对于坐标原点的位置矢量分别为r 1,r 2,……r n ,则质点系的质心位置矢量为r c=nn n m m m r m r m r m ++++++ 211211=M r m ni i i ∑=1 若将其投影到直角坐标系中,可得质心位置坐标为 x c =M x m n i ii ∑=1, y c =M y m n i ii ∑=1, z c =M z m n i ii ∑=1.2.2质心速度与质心动量相对于选定的参考系,质点位置矢量对时间的变化率称为质心的速度。
v c=t r c ∆∆=M p 总=M v m n i i i ∑=1, p c =Mv c =∑=n i i i v m 1. 作用于质点系的合外力的冲量等于质心动量的增量I 合=∑=n i i I 1=p c -p c0=mv c -mv c0 .2.3质心运动定律作用于质点系的合外力等于质点总质量与质心加速度的乘积。
F合=Ma c.。
对于由n 个质点组成的系统,若第i 个质点的加速度为a i ,则质点系的质心加速度可表示为 a c =M a m n i ii ∑=1.【典型例题】1.将不可伸长的细绳的一端固定于天花板上的C点,另一端系一质量为m的小球以以角速度ω绕竖直轴做匀速圆周运动,细绳与竖直轴之间的夹角为θ,如图所示。
已知A、B为某一直径上的两点,问小球从A点运动到B点的过程中细绳对小球的拉力T的冲量为多少?2.一根均匀柔软绳长为l=3m,质量m=3kg,悬挂在天花板的钉子上,且下端刚好接触地板,现将软绳的最下端拾起与上端对齐,使之对折起来,然后让它无初速地自由下落,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题六 动量
【扩展知识】
1.动量定理的分量表达式
I 合x =mv 2x -mv 1x ,
I 合y =mv 2y -mv 1y ,
I 合z =mv 2z -mv 1z .
2.质心与质心运动
2.1质点系的质量中心称为质心。
若质点系内有n 个质点,它们的质量分别为m 1,m 2,……m n ,相对于坐标原点的位置矢量分别为r 1,r 2,……r n ,则质点系的质心位置矢量为
r c=n n n m m m r m r m r m ++++++ 211211=M
r m n
i i i ∑=1 若将其投影到直角坐标系中,可得质心位置坐标为 x c =M x m n i i
i ∑=1, y c =M y m n i i
i ∑=1, z c =M z m n i i
i ∑=1.
2.2质心速度与质心动量
相对于选定的参考系,质点位置矢量对时间的变化率称为质心的速度。
v c=t r c ∆∆=M p 总=M v m n i i i ∑=1, p c =Mv c =∑=n i i i v m 1
. 作用于质点系的合外力的冲量等于质心动量的增量
I 合=
∑=n i i I 1=p c -p c0=mv c -mv c0 .
2.3质心运动定律
作用于质点系的合外力等于质点总质量与质心加速度的乘积。
F合=Ma c.。
对于由n 个质点组成的系统,若第i 个质点的加速度为a i ,则质点系的质心加速度可表示为 a c =M a m n i i
i ∑=1
.
【典型例题】
1.将不可伸长的细绳的一端固定于天花板上的C点,另一端系一质量为m的小球以以角速度ω绕竖直轴做匀速圆周运动,细绳与竖直轴之间的夹角为θ,如图所示。
已知A、B为某一直径上的两点,问小球从A点运动到B点的过程中细绳对小球的拉力T的冲量为多少?
2.一根均匀柔软绳长为l=3m,质量m=3kg,悬挂在天花板的钉子上,且下端刚好接触地板,现将软绳的最下端拾起与上端对齐,使之对折起来,然后让它无初速地自由下落,如图所示。
求下落的绳离钉子的距离为x时,钉子对绳另一端的作用力是多少?
3.一长直光滑薄板AB放在平台上,OB伸出台面,在板左侧的D点放一质量为m1的小铁块,铁块以速度v向右运动。
假设薄板相对于桌面不发生滑动,经过时间T0后薄板将翻倒。
现让薄板恢复原状,并在薄板上O点放另一个质量为m2的小物体,如图所示。
同样让m1从D点开始以速度v向右运动,并与m2发生正碰。
那么从m1开始经过多少时间后薄板将翻倒?。