固体物理倒格矢

合集下载

固体物理学:倒格子

固体物理学:倒格子

相同。
这种周期函数可以V展(开r)为傅立叶V级 e数iGr G
G
V (r R)
V
eiG(r
R
)
V (r )
G
G
则要求 G R 2m (m为整数)
G R G.(n1a1 n2a2 n3a3) 2m

G a1 h1 2
h1 h2 h3 都是整数
G
a2
h2 2
G 称为倒格子平移矢量,简称倒格矢。
由a1 ,a2 ,a3 形成的格子称正格子。 称R 为正格子平移矢量,简称正格矢。
每个格子有两套格子即,正格子和倒格子。
b1
b2
b3
2
V
2
V
2
V
(a2
(a3 (a1
a3 )
a1 )
a2 )
V a1 (a2 a3 )
是原胞的体积
的法线方向
(4)倒格子矢量与面间距的关系
[1]倒格子基矢与正格子基矢的关系------两个基矢正交

Gh1h2h3
h1b1 h2b2
所以,Gh1h2h3 • Rl1l2l3 (h1b1
h3b3 h2b2
h3b3 )

(n1a1
n2a2
n3a3
)
由此推论:
பைடு நூலகம்i

aj
2m 2 ij
[2]倒格子与正格子的原胞体积的关系
一系列规则排列的点,这些点排列的规律性只决定于函数
F(r)的周期性而与函数的具体形式无关。我们把在傅里叶
空间中规则排列着的点的列阵称为倒格子点阵(或倒易点
阵)。
倒格子点阵是晶体结构周期性在傅里叶空间中的数学

固体物理03-倒格子空间

固体物理03-倒格子空间

4
dr
nj
(r )r 2
sin Gr Gr
实验发现固体中的原子形状因子与自由原子的差别不大
其它实验手段
1. 电子衍射 (动量空间)
与X射线相比,电子波长更短,所以更加精确;更容易被物体吸收适 合于研究微薄膜、小晶体。
2. 中子散射 (动量空间)
可以测量晶体磁结构
3. 扫描隧道显微镜(实空间,表面)
S v1v2v3 f {1 exp i v2 v3 exp i v1 v3 exp i v1 v2 }
S 4 f 所有指数均为奇数,或均为偶数 S 0 其它情况
面心立方 的x-ray 散射图像
原子形状因子 f j dV n j (ρ)eiGρ
对自由原子:
f j 2 dr r 2 d cos n j exp(iGr cos )
j
ρ r rj
定义原子的形状因子 f j dV n j (ρ)eiGρ
结构因子
化简后可以得到晶体的结构因子
SG
f eiGr j j
j
对于第 j 个原子
G rj v1b1 v2b2 v2b2 x ja1 y ja2 z ja3 2 v1x j v2 y j v3z j
散射幅度
SG
dV n(r)eiGr
cell
结构因子
结构因子
假设晶胞中有 s 个原子,可以把原胞中的电荷密度分配到每一 个原子上(分配方法不唯一),即:
s
n(r) n j (r rj )
j 1
SG
cell dV n j (r r j )eiGr
j
eiGrj cell dV n j (ρ)eiGρ
晶体点阵的Fourier变换,晶体点阵则是倒易点阵的Fourier逆 变换。正格子的量纲是长度 L, 称作坐标空间,倒格子的量钢是 长度的倒数 L-1,称作波矢空间(或称动量空间)。

简述倒格子点阵的物理意义

简述倒格子点阵的物理意义

简述倒格子点阵的物理意义
倒格子点阵是固体物理学中的一个重要概念,用于描述晶体中离子、原子或分子的排列方式。

它表示了晶体中离子在晶格中的周期性排列。

倒格子点阵在物理意义上具有以下重要特征:
1.倒格子与晶体结构的相互关系:倒格子是晶体格矢的补格。

晶体格矢是描述晶体结构的向量,而倒格子则是晶格矢的傅里叶变换。

倒格子点阵的形状和大小与晶体结构紧密相关。

2.表征晶体的动量空间:倒格子点阵的形成使得晶体在动量空间中的结构得以描述。

晶体具有动量离散化的性质,电子、声子等载流子在动量空间中的行为可以通过倒格子点阵的形态和性质来理解和
分析。

3.描述布里渊区和能带结构:倒格子点阵的布里渊区(Brillouin Zone)是动量空间中与晶格有关的基本单元。

布里渊区的形状和大小直接决定了电子能带结构、光学性质和输运特性等重要物理现象。

4.反映物质衍射性质:倒格子点阵的概念是描述晶体衍射的基础。

实验中利用晶体的衍射现象可以确定物质的结构和性质,倒格子点阵提供了理论上的基础框架。

倒格子点阵在固体物理学中具有重要的物理意义,它是描述晶体结构和性质的关键概念,并与动量空间、能带结构、衍射性质等密切相关。

通过倒格子点阵的分析,可以深入理解晶体的属性和行为,为研究材料科学和固体物理学提供了有力的工具和理论基础。

固体物理§1.5倒格子

固体物理§1.5倒格子

r r r Kh ⊥ CA Kh ⊥ CB ⇒ Kh ⊥ 晶面 ABC。 ,
9
r 3.倒格矢 Kh和面间距的关系 倒格矢 晶面ABC为晶面族中最靠近原点的晶面。 为晶面族中最靠近原点的晶面。 晶面 为晶面族中最靠近原点的晶面
dh1h2h3 r a1 = ⋅ h1
r r r r r Kh a1 ⋅ h1b1 + h2b2 + h2b3 r = r Kh h1 Kh
( Ω Ω=2π )

3
3 r r r (2π ) (a a ) [(a a ) (a a )] r r r r r r ∗ Ω = b1 ⋅ (b2 × b3 ) = 2× 3 ⋅ 3× 1 × 1× 2 3 Ω r r r r r r r r r 利用: A 利用: × (B × C) = ( A⋅ C)B − ( A⋅ B)C r r r r r r r r r r r r r (a3 × a1 ) × (a1 × a2 ) = [(a3 × a1 ) ⋅ a2 ]a1 − [(a3 × a1 ) ⋅ a1 ]a2 = Ωa1
1
2.倒格子基矢和正格子基矢之间的关系 倒格子基矢和正格子基矢之间的关系
r r r r r r 正格子基矢: a 正格子基矢: 1、a2、a3;倒格子基矢: 1、b2、b3; 倒格子基矢: b
晶面族: a d 晶面族: 1a2、a2a3、a3a1的面间距分别为 3、d1、d2;
r b3
r a3
r b2
3.倒格矢和正格矢的关系 倒格矢和正格矢的关系
r r r r r r r r Kh ⋅ Rl = (l1a1 + l2a2 + l3a3 ) ⋅ (h b1 + h2b2 + h3b3 ) 1 = 2πµ (µ为整数)

固体物理03-倒格子空间

固体物理03-倒格子空间

实空间点阵
简立方
a1 a i, a2 a j, a3 a k
倒空间点阵
简立方
2
2
2
b1 a i, b2 a j, b3 a k
2 a 2
a
2 a
四方晶格
简单点阵的倒易点阵也是简单点阵。 正格子的基矢越长,倒格子的基矢越短,反之亦然。
六角点阵
正格子空间六方结构,在倒格子空间亦为六方结构。 不过其基矢尺寸关系发生变化,基矢方向也转了30度。
k 2 2k G G 2 k 2
2k G G 2 (G 和 –G 都是倒格矢)
G
衍射方程(也是布里渊区的边界方程)
k
k ·(G/2)=(G/2)2
Ewald 图解法
1. 选择原点以入射 k 矢长度 为半径作圆,保证另一端 点在倒格矢上。
2. 连接从原点到与圆相交的 所有倒格矢的波矢k’都能 发生衍射。
4
dr
nj
(r )r 2
sin Gr Gr
实验发现固体中的原子形状因子与自由原子的差别不大
其它实验手段
1. 电子衍射 (动量空间)
与X射线相比,电子波长更短,所以更加精确;更容易被物体吸收适 合于研究微薄膜、小晶体。
2. 中子散射 (动量空间)
可以测量晶体磁结构
3. 扫描隧道显微镜(实空间,表面)
4. 原子力显微镜(实空间,表面)
中国散裂中子源
扫描隧道显微镜(STM)
Si (100) 表面
原子力显微镜(AFM)
Si (111) 表面
作业 2
1. 证明正格子与倒格子互易 2. 证明面心立方格子的倒格子是体心立方,体心立方的倒格子是
面心立方!
3. 证明只有 k G' 时,衍射幅度F才不为0。

固体物理 1 (2)

固体物理 1 (2)

CD+OD, CD = - RlS0 OD=RlS
当光程差是波长的整数时产生衍射极大为 整数。 CD+OD=Rl( S - S0) = 为整数 (11)
这个方程称为劳厄(Laue)方程。
The Nobel Prize in Physics 1914 "for his discovery of the diffraction of X-rays by crystals"
反射球的作法 设入射线沿CO方向,取线段 C=2/, 是所用单色X射线的 波长。再以C为心,以OC=2/为半径所作的球就是反射球。 若P是球面上的一个倒格点,则CP就是以OP为倒格矢的一族晶 面(h1h2h3)的反射方向,如图所示,图中虚线示晶面族(h1h2h3)之 迹。同样,设想球面上另有一倒格点 Q (图中未曾画出),则CQ 代表以OQ为倒格矢的另一族晶面的反射方向。 作反射球时要注意,晶体 并不在球心C,而是在倒格点 O处,C不一定是倒格点。
原子散射因子的计算方法
设 r 为原子中某一点P 的位矢,So,S分别是入射方向和衍射 方向的单位矢量,则由P点的散射波相由0 r (k k 0 ) r 2
sr

设(r)d是电子在P点附近体积元 d 内的几率,原子散射因子为
这里所考虑的是一级反射,则自O点和球面上一倒格 点间的联线OP间不含倒格点。如果反射是二级的,则当 中还含有一个倒格点。
波长一定时,反射球大小一定。倒易格子参数越小 (晶 胞越大),倒易格子点越密集,所产生衍射的数目也越多。
(4) 实验方法 当晶体相对入射线有一种取向,即倒易格子分布一定 时即有一定数量的倒易格子点落到球面上,产生相应数目 的衍射。 当改变晶体取向,即倒易格子与反射球做相对运动的 过程,将有另一些倒易格子点落到反射球面上。 因此晶体 (倒易格子) 和反射球之间不同形式的相对运 动对应于晶体的X射线衍射的各种实验。

倒格子讲解

倒格子讲解

中文名称:倒格子英文名称:Reciprocal lattice术语来源:固体物理学倒格子,亦称倒易格子(点阵),它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。

1定义假定晶格点阵基矢a1、a2、a3(1、2、3表示 a 的下标,粗体字表示a1 是矢量,以下类同)定义一个空间点阵,我们称之为正点阵或正格子,若定义b1 = 2 π ( a2× a3) /νb2 = 2 π ( a3× a1) /νb3 = 2 π ( a1× a2) /ν其中 v = a1· ( a2× a3 ) 为正点阵原胞的体积,新的点阵的基矢b1、b2、b3是不共面的,因而由b1、b2、b3也可以构成一个新的点阵,我们称之为倒格子,而b1、b2、b3 称为倒格子基矢。

2性质1. 倒格子的一个矢量是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向,而它的大小则为该晶面族面间距倒数的2π倍。

2. 由倒格子的定义,不难得到下面的关系a i ·b j = 2 πδij3. 设倒格子与正点阵(格子)中的位置矢量分别为G = αb1+ βb2 + γb3R = ηa1 + θa2 + λa3 (α,η,β,θ,γ,λ皆为整数)不难证明G·R = 2π ( αη + βθ +γλ ) = 2π n,其中n为整数。

4. 设倒格子原胞体积为ψ,正格子原胞体积为 v ,根据倒格子基矢的定义,并利用矢量乘法运算知识,则可得到ψ v = ( 2 π )^3.5. 正格子晶面族(αβγ)与倒格子矢量G = αb1+ βb2 + γb3 正交(具体的内容及证明过程,请参考文献[1])3倒格子引入的意义这里简单的说一点,如上面的性质1,倒格子中的一个基矢对应于正格子中的一族晶面,也就是说,晶格中的一族晶面可以转化为倒格子中的一个点,这在处理晶格的问题上有很大的意义。

06 固体物理 1.4.1 倒格子

06 固体物理 1.4.1 倒格子
1 3
CB OB OC



a2
h2

a3
h3
0
a1/h1
B a2 a2/h2 A
a1
a a Gh1h2 h3 CA (h1b1 h2b 2 h3b 3 ) ( 1 3 ) 2 2 0 h1 h3 同理: Gh1h2h3 CB 0,
i j i j
2 c a1 (a 2 a3 )
由此,可以直接定义倒格子基矢为:
相应的倒格子基矢为:
a2 a3 2 (a2 a3 ) b1 2 a1 (a2 a3 )
a3 a1 2 (a3 a1 ) b2 2 a1 (a2 a3 )
所以有
( r ) 在傅氏 F (K h ) 是物理量 Rl 是正格矢, 空间的表示形式 K h应是 Rl 的倒格矢
e
iK h Rl
1
即:物理量在正格子中表示和在倒格子中表示满足傅氏变换关系; 正空间周期性物理量的傅氏空间就是其倒空间; 正格子和倒格子互为傅氏变换。
ai b j 2ij 确定,则以上条件成立。
K h Rl (h1b1 h2b2 h3b3 ) (l1a1 l2a2 l3a3 ) 2 (h1l1 h2l2 h3l3 ) 2
li , hi 都是整数, 也应是整数, eiKh Rl ei 2 1
2可以证明,Fra bibliotek* (2 )3 /, 即,* (2 )3
* (2 )3 /, 即,* (2 )3
2、倒格子的倒格子是原布拉菲格子
c2, c3 ,可以证明 ci ai , i 1,2,3 按倒格子基矢定义构造基矢 c1, 2 (b 2 b3 ) 2 即令:c1 * b 2 b3 b1 b 2 b3 (2 ) 2 b 2 b3 (a3 a1 ) (a1 a 2 ) 利用 A B C B( A C) C( A B) 2 ( A B) C ( B C) A (C A) B (2 ) 2 (2 ) 2 a1 a1 2 Rl,Kh所代表点的集合 2 2 (2 ) 2 (b 2 b3 ) 都是布拉菲格子,且 a1 c1 * b1 b 2 b3 互为正倒格子。事实 上在

复旦固体物理讲义-11倒格子(优选.)

复旦固体物理讲义-11倒格子(优选.)

h t t p ://10.107.0.68/~j g c h e /倒格子1上讲回顾•用轨道物理学理解晶体中原子近程结构*原子轨道之间相互作用由原子轨道角分布决定*为适应周围化学环境,与邻近原子成键,原子轨道可以杂化(重组) 以适应环境 杂化最大方向由价电子数、配位、键上电子转移等共同决定*键合分类:离子、共价、金属、分子和氢键h t t p ://10.107.0.68/~j g c h e /倒格子2本讲内容•在k 空间看晶体结构*倒格子(r e c i p r o c a l l a t t i c e )倒格子基矢*正格子(d i r e c t l a t t i c e )和倒格子之间的关系h t t p ://10.107.0.68/~j g c h e /倒格子3第11讲、倒格子1.为什么倒空间?2.晶格的F o u r i e r 变换3.倒格子4.二维倒格子5.正、倒格子对应关系6.重要的例子7.B r i l l i o u n 区8.X 射线晶体衍射实验h t t p ://10.107.0.68/~j g c h e /倒格子41、为什么倒空间(r e c i p r o c a l s p a c e )?•一个物理问题,既可以在正(实,坐标)空间描写,也可以在倒(动量)空间描写*坐标表象r ,动量表象k•为什么选择不同的表象?*适当地选取一个表象,可使问题简化容易处理*比如电子在均匀空间运动,虽然坐标一直变化,但k 守衡,这时在坐标表象当然不如在动量表象简单•正空间的格矢(R l )描写周期性;在动量空间?•这两个空间完全是等价的*只是一个变换h t t p ://10.107.0.68/~j g c h e /倒格子8看格点的F o u r i e r 变换?•数学上如何用一个函数来描写格点?•δ函数!()∑-=ll R R r r δρ)(•对这个函数进行F o u r i e r 变换()()∑∑⎰⎰∙-∙-∙-=-==llli i l i ed ed eR R k R r k rk r R r r r k δρρ)(•格点满足平移周期性,则有K h 满足ml h π2=∙R K •那么乘上不变因子()∑∑∙--∙-==llh lli i eeR R K k R R k k ρh t t p ://10.107.0.68/~j g c h e /倒格子9•这告诉了我们什么信息,K h 对应什么?•坐标空间里,δ(r -R l )函数表示在R l 的格点,当满足上述条件时,其F o u r i e r 变换也是δ(k -K h )函数,表示的是倒空间里的一个点!•后面会知道,这些点就是倒格点,K h 即倒格矢*或者说前面K h 与R l 的关系定义了倒格矢,满足上述条件矢量就是倒格矢←→格矢*K h 的量纲为R l 的倒数•利用P o i s s o n 求和公式,即可得()()∑∑-==∙--hl lh h i e K R R K k k K k δρ•即当矢量K h 与R l 乘积是2π的整数倍时,在坐标空间R l 处的δ函数的F o u r i e r 变换为在动量空间以K h 为中心的δ函数!h t t p ://10.107.0.68/~j g c h e /倒格子103、倒格子(r e c i p r o c a l l a t t i c e )1=∙lh i e R K 为整数m m l h ,2π=∙R K •因此,B r a v a i s 格子也称为正格子(d i r e c t l a t t i c e )•等价关系:知道K h ,就知道R l ;反过来也一样•它们满足F o u r i e r 变换关系,因此,倒空间也称F o u r i e r 空间•定义:对B r a v a i s 格子中所有的格矢R l ,有一系列动量空间矢量K h ,满足的全部端点K h 的集合,构成该B r a v a i s 格子的倒格子,这些点称为倒格点,K h 称为倒格矢h t t p ://10.107.0.68/~j g c h e /倒格子11倒格子基矢•对正格子332211a a a R l l l l ++=•如果选择一组b ,使332211b b b K h h h h ++=•那么矢量K 就可由b 组成i jj i πδ2=⋅a b ml l l h h h l h π2332211=⋅+⋅+⋅=⋅a K a K a K R K •有•它满足上述关系,因此K h 具有平移对称性→可用基矢和整数表示的平移周期性→K h 定义倒空间的B r a v a i s 格子,b i 就是倒格子基矢•K h 为倒格矢——K h 所有的端点即为倒格点h t t p ://10.107.0.68/~j g c h e /倒格子21等价的周期性•如果K h 是倒格矢,那么物理量的F o u r i e r 级数在晶体任何平移变换下具有所期待的不变性∑+∙=+hi l l h h eF F )()(R r K K R r )(r rK K F e F hi h h ==∑∙是哪个晶面?互质?它属于哪族晶面?*是红色的这个晶面。

证明正格矢和倒格矢的关系

证明正格矢和倒格矢的关系

证明正格矢和倒格矢的关系正格矢和倒格矢是固体物理中用于描述晶体结构的两个重要的概念。

正格矢表示晶体中原子位置的空间周期性排列,而倒格矢则表示正格矢所描述的周期性结构在动量空间中的周期性。

晶体是由周期性重复单元组成的,这些单元以一定的间隔沿着晶体的各个方向排列。

这个规则的周期性排列可以用正格矢来描述。

正格矢是指晶体中原子位置的空间周期性排列,通常用一个小数定义。

在一个立方晶体中,可以将正格矢表示为n1a1 + n2a2 + n3a3,其中n1、n2、n3是整数,a1、a2、a3是三条无关联的基矢。

倒格矢是对正格矢所描述的周期性结构在动量空间中的周期性的表示。

在倒空间中,倒格矢的数目与晶体的维数相同。

通常用G来表示倒格矢。

在一个立方晶体中,倒格矢可以表示为n'1b1 + n'2b2 + n'3b3,其中n'1、n'2、n'3是整数,b1、b2、b3是三条无关联的倒空间基矢。

在晶体中,存在一个映射关系将正格矢和倒格矢联系起来。

这个关系可以通过傅里叶变换来描述。

傅里叶变换是一种数学变换,它将一个函数从时间域转换到频域或者将一个函数从空间域转换到动量域。

晶体结构中的周期性排列可以通过傅里叶变换将其转化为动量空间中的周期性。

具体来说,在周期性结构中,可以将位置空间中的函数f(r)表示为傅里叶级数的形式:f(r) = ∑g(G) * e^(iGr)其中G为倒格矢,g(G)称为结构因子,表示晶体中每个位置的复振幅。

e^(iGr)为平面波的形式,G·r为内积。

通过上述的傅里叶变换关系,可以看出正格矢和倒格矢之间存在一个简单的关系,即正格矢和倒格矢的内积为2π。

因此,可以得到如下关系:G·R = 2π(N-M)其中R为正格矢,G为倒格矢,N和M为整数。

这个关系说明了正格矢和倒格矢之间的联系。

总结起来,正格矢和倒格矢是固体物理中用于描述晶体结构的两个重要概念。

王淑华固体物理1.4倒格

王淑华固体物理1.4倒格
所以 Kh = h b1 +h b2 +h b3 与晶面族 1h2h3)正交。 与晶面族(h 正交。 正交 1 2 3
2π (2)证明 Kh = h b1 +h b2 +h b3 的长度等于 证明 。 1 2 3 dh1h2h3
由平面方程: 由平面方程: X ⋅ n = µd 得:
dh h h
1 2
0 (i ≠ j )
a 2 ⋅ b1 = 0 a 2 ⋅ b2 = 2π
2π b1 = i a 2π b2 = j a
2π a
2π a
K h = h1 b1 + h2 b 2
2π 的正方形格子。 倒格是边长为 的正方形格子。 a
例2:证明体心立方的倒格是面心立方。 证明体心立方的倒格是面心立方。 体心立方的原胞基矢: 解: 体心立方的原胞基矢:
第四节
本节主要内容: 本节主要内容: 1.4.1 倒格定义
倒格
1.4.2 倒格与正格的关系 1.4.3 倒格与傅里叶变换
• 假设:基矢是未知的,只有一些周期性分布的 点子同晶面族一一对应,可以求出基矢. • In X-ray photo, Points correspond with the crystal planes. • 倒格子:类似上面所设想的那些点子所组成的 格子.
1.4.3 倒格与傅里叶变换 在任意两个原胞的相对应点上,晶体的物理性质相同。 在任意两个原胞的相对应点上,晶体的物理性质相同。
Γ r + Rl = Γ r
(
) ()
是正格矢。 R l 是正格矢。
上式两边分别按傅里叶级数展开: 上式两边分别按傅里叶级数展开:
Γ r = ∑Γ( K h ) ei K h ⋅r

1.3倒格子,固体物理

1.3倒格子,固体物理

2π ( i j )
0 (i j )
a 2 b1 0 a1 b1 2
a 2 a2 j
a 1 a1 i
b2
2π a2
2π b1 i a1
a1 b 2 0 a 2 b 2 2π
2π b2 j a2
正格子
b1 2π
a1
倒格子
K h h1 b1 h2 b 2 3b1 2b 2 2π 2 π 倒格子是边长分别为 , 的长方形格子。 a1 a2
倒格矢:
2π b1 jk a 2π b2 ik a







FCC基矢:
a a1 i j 2 a a2 jk 2 a a3 ki 2
2π b2 ik a b3

2π i j a
2π b3 i j a





倒格子基矢定义为:
2π b1 a2 a3 Ω 2π b2 a 3 a1 Ω 2π b3 a1 a 2 Ω


其中 a 1 , a 2 , a 3 是正格子基矢,
Ω a1 a 2 a 3


是正格子原胞的体积
与 K n h b1 h b 2 h b 3 ( h1 所联系的各点 , h , h 为整数 ) 2 3 1 2 3 的列阵即为倒格子。
第三节 倒格子
本节主要内容: 一、倒格子定义
二、倒格子与正格子的关系
三、倒格子与傅里叶变换
前面讨论原子(基元)在坐标(实,位置)空间中的排列-----正格子,正空间 从坐标的倒易空间,即波矢K空间看晶体结构-----倒空间

固体物理之之倒格子

固体物理之之倒格子

倒格子题目:试论倒格子、倒格子空间的基本概念、与正格子的关系以及在固体物理研究中的意义和作用。

1.倒格子的基本概念:假定晶格点阵基矢1a 、2a 、3a(1、2、3表示 a 的下标)定义一个空间点阵,我们称之为正点阵或正格子,若定义: v a a b )(2321 ⨯=π v a a b )(2232 ⨯=π v a a b )(2213 ⨯=π其中)(321a a a v ⨯⋅= 为正点阵原胞的体积,新的点阵的基矢1b 、2b 、3b 是不共面的,因而由 1b 、2b 、3b 也可以构成一个新的点阵,我们称之为倒格子 ,而1b 、2b 、3b 称为倒格子基矢。

2.倒格子与正格子之间的关系:①基矢间关系:3,2,1,)(0)(2=⎩⎨⎧≠==*j i j i j i b a j i π ②位矢之间关系:正格子位矢:332211a l a l a l R l ++=倒格子位矢:332211b n b n b n G n ++=二者关系:m R G l n π2=⋅ (m 为整数)表明:若两矢量点积为π2的整数倍,则其中一个矢量为正格子位矢, 另一个必为倒格子位矢。

③原胞体积的关系:倒格子原胞的体积v *与正格子原胞体积v 的关系 为:)()2()2()(32133321*a a a vb b b v ⨯⋅==⨯⋅=ππ ④倒格矢332211b h b h b h G ++=与正格子中密勒指数为)(321h h h 的晶面族正交。

即332211b h b h b h G ++=沿晶面族)(321h h h 的法线方向。

3.固体物理研究中的意义和作用:①:倒格子中的一个基矢对应于正格子中的一族晶面,也就是说,晶格中的一族晶面可以转化为倒格子中的一个点,这在处理晶格的问题上有很大的意义。

例如,晶体的衍射是由于某种波和晶格互相作用,与一族晶面发生干涉的结果,并在照片上得出一点,所以,利用倒格子来描述晶格衍射的问题是极为直观和简便的。

固体物理_倒格子与布里渊区_2013

固体物理_倒格子与布里渊区_2013

a3 (a1 a2 )
所以:
a3 b3 2
a3 b1/ 2 0
采用同样的方法,我们可以得出:
a2 b2 2 a2 b1/3 0
2 ( a 3 a1 ) b2 2 ( a 2 a3 ) b1
二、特性:
1、第一布里渊区: 在倒格子点阵中,做某一倒格点到其最近邻 倒格点连线的垂直平分面,由这些垂直平分面所 围成的多面体就是第一布里渊区。 除第一布里渊区之外,还有第二布里渊区、第 三布里渊区以及更高阶的布里渊区。
晶面:(111) 面间距:
n
(111)
(111)
法线方向: n
3 a 3
2 2 2 kh i j k 倒格矢: a a a
b3
b2 b1
2 3 k a 面间距: h k 3 h h 法线方向: k i jk kh
三、正格子和倒格子的相互关系
右手定律
2、验证:倒格矢能代表一族晶面吗?
晶面族(h1h2h3) 中最 靠近坐标原点的晶面 ABC在基矢 a1 , a2 , a3
a1 a2 a3 上的截距为 , , h1 h2 h3
kh (1)倒格矢Kh垂直与晶面族 n kh
2 (2)倒格矢的模量等于面间距的倒数成正比。 k h d
3
正格子元胞与倒格 子元胞体积成反比
课堂练习:
试证体心立方格子和面心立方格子互为正、倒格子。
面心立方晶格的初基原胞基矢为:P10 体心立方晶格的初基原胞基矢为:P10 a a a1 ( j k ) a1 (i j k ) 2 2 a a a2 (i j k ) a2 (k i ) 2 2 a a a3 (i j k ) a3 (i j ) 2 2 面心立方晶格的倒格子基矢如下:

倒格矢与正格矢的表达式

倒格矢与正格矢的表达式

倒格矢与正格矢的表达式倒格矢与正格矢是固体物理学中常用的概念,用于描述晶体中的电子结构。

倒格矢是晶体中的布拉格平面的法向量,而正格矢则是晶体的晶格向量。

在本文中,将详细介绍倒格矢与正格矢的表达式及其在固体物理学中的应用。

我们来看倒格矢的表达式。

在布拉格衍射理论中,倒格矢用来描述晶体中的衍射现象。

倒格矢的表达式为:G = h*a* + k*b* + l*c*其中,G为倒格矢,h、k、l为整数,a*、b*、c*为正格矢的倒数,即与晶格向量相互垂直的向量。

倒格矢G的方向与晶格平面的法向量相同。

接下来,我们来看正格矢的表达式。

正格矢用来描述晶体的晶格结构,表达式为:R = h*a + k*b + l*c其中,R为正格矢,h、k、l为整数,a、b、c为晶格向量。

正格矢R的方向与晶格平面平行。

倒格矢与正格矢之间存在一种重要的关系,即布拉格定理。

布拉格定理表明,倒格矢和正格矢之间的内积等于一个常数,即:G·R = 2πn其中,n为整数。

这个定理揭示了倒格矢和正格矢之间的对偶性。

在固体物理学中,倒格矢和正格矢的概念广泛应用于描述晶体中的电子结构。

根据布洛赫定理,晶体中的电子波函数可以表示为平面波和周期函数的乘积形式。

在这个表达式中,平面波的波矢k可以用倒格矢G来表示,即:k = G + k'其中,k'为倒格矢的一个平移矢量。

这个表达式说明了倒格矢G和电子波矢k之间的关系。

利用倒格矢和正格矢的概念,可以方便地描述晶体中的电子结构和晶格结构。

例如,在固体能带理论中,可以通过计算倒格矢和正格矢之间的内积来得到电子能带结构。

倒格矢和正格矢的选择对于能带结构的计算结果具有重要影响。

倒格矢和正格矢还广泛应用于X射线衍射和中子衍射等实验技术中。

通过测量衍射角度和晶格常数,可以确定倒格矢和正格矢之间的关系,从而得到晶体结构的信息。

在总结一下,倒格矢和正格矢是固体物理学中重要的概念,用于描述晶体中的电子结构和晶格结构。

证明正格矢和倒格矢的关系

证明正格矢和倒格矢的关系

证明正格矢和倒格矢的关系正格矢和倒格矢是固体物理学中两个非常重要的概念,它们之间有着紧密的关系。

本文将从生动、全面、有指导意义的角度来证明这一关系。

首先,我们需要先了解正格矢和倒格矢的定义。

正格矢是描述晶体中原子位置的矢量,它是最小的平移对称操作的矢量。

在一个晶体中,如果两个位置的矢量之差等于正格矢,那么这两个位置上的原子是等同的。

倒格矢则是描述晶体中平移对称的倒数的矢量,它是波矢的实空间表象。

正格矢和倒格矢的关系可以通过傅里叶变换来得到证明。

傅里叶变换是一种将函数从时间或空间域转换到频率或波数域的数学工具。

在固体物理学中,我们经常使用傅里叶变换来描述周期性结构。

正是因为晶体的周期性,我们才能够将实空间中的波函数用倒空间的波函数来表示。

傅里叶变换的公式为:\[F(q) = \int f(x) e^{-2\pi i x \cdot q} dx\]其中,\(F(q)\)是倒空间中的波函数,\(f(x)\)是实空间中的波函数,\(q\)是波矢。

在晶体中,我们假设晶格的原胞大小为\(a\),则正格矢可以表示为:\[R = n_1 \mathbf{a_1} + n_2 \mathbf{a_2} + n_3\mathbf{a_3}\]其中,\(\mathbf{a_1}\),\(\mathbf{a_2}\)和\(\mathbf{a_3}\)是晶格的基矢,而\(n_1\),\(n_2\)和\(n_3\)是整数。

这样,我们可以将正格矢用指数形式表示为:\[e^{2\pi i R \cdot q} = e^{2\pi i (n_1 \mathbf{a_1} +n_2 \mathbf{a_2} + n_3 \mathbf{a_3}) \cdot q} = e^{2\pi i(n_1 \mathbf{a_1} \cdot q + n_2 \mathbf{a_2} \cdot q + n_3\mathbf{a_3} \cdot q)}\]根据晶体的周期性,正格矢的指数函数是周期性的,即:\[e^{2\pi i R \cdot q} = e^{2\pi i (n_1 \mathbf{a_1}\cdot q + n_2 \mathbf{a_2} \cdot q + n_3 \mathbf{a_3} \cdot q)} = 1\]也就是说,正格矢的指数函数在倒格矢上是平凡的。

固体物理倒格矢

固体物理倒格矢

—— 第一布里渊区 原点和12个近邻格点连线的垂直平分面围成的正十二面体
b b b 倒格矢 Kn n1 1 n2 2 n3 3
2
a
[(n2
n3 )i
(n1
n3 )
j
(n1
n2
)k ]
体心立方的倒格子是面心立方;离原点最近的有十
二个倒格点,在直角坐标系中它们的坐标为:
2
a
(n2
n3, n1
射后光程差为: A0 OB -Rl S0 RlS Rl (S-S0)
当X光为单色光;衍射加强的条件为: Rl•SS0=u •λ
令 k 2 S
k0
2
S0
,代入上式,
衍射加强条件变为: Rl• k -k0 = 2π u 根据正点阵与倒易点阵的关系,(k-k0)必是倒易空间 中的位置矢量,令:
1 9 倒格子倒易点阵reciprocal
1 9 1 倒格子倒易点阵的定义:
1 正格矢与倒矢
S S0 P
原子可向空间任何方向散射 X光线;只有一些固定方向可 形成衍射
B AO
点P: Rl=l1a1+l2a2+l3a3;Rl是布喇菲点阵中由原胞基矢 a1,a2,a3构成的矢量,
S0和S是入射线和衍射线的单位矢量,经过O点和P点衍
布里渊区示意图32
Γ:2 0,0,0
a
X:2 1,0,0
a
K:2 3 , 3 ,0
a 4 4
L: 2
a
1 2
,
1 2
,
1 2
简约布里渊区:十四面体
V
4
2
a
3
V倒易原胞
返回
面心立方晶格的第一布里渊区
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

—— 第一布里渊区
原点和12个近邻格点连线的垂直平分面围成的正十二面体
倒格矢 K n n1 b n2 b n3 b 3 1 2 2 [( n2 n3 )i (n1 n3 ) j (n1 n2 )k ] a



体心立方的倒格子是面心立方,离原点最近的有 十二个倒格点,在直角坐标系中它们的坐标为:
二维长方晶格的布里渊区
二维六方晶格的十个布里渊区
(3) 三维晶格
a. 简立方晶格
b1 a1 ai a 2 aj b2 a 3 ak b 3
倒易空间示意图
2 a 2 a 2 a i j 倒易点阵仍为简立方晶 格 k
( Rl和Gh 不一定平行)
可见, Rl和 Gh的量纲是互为倒逆的, Rl是格点P的位 置矢量,称为正矢量, kh称为倒易矢量。 若令Gh= h1b1+h2b2+h3b3, 则称由b1,b2,b3为基矢构成的点阵为倒易点阵. (b1,b2,b3)如何确定?
1.9.2 倒格子空间(倒易点阵)*
(1).倒矢与正格矢的关系:
离原点最近的倒 格点有4个: b1,-b1,b2,-b2.
-b1
b2
b1 -b2
离原点次近的倒 格点有4个: -b1+b2 b1+b2 ,b1-b2 ,b2, -b2.
b1 +b2
-b1-b2
b1-b2
离原点再远的倒格点有4个: 2b1,-2b1,2b2,-2b2.
2b2
-2b1
2b1
-2b2
二维正方晶格的布里渊区
(2) 两个点阵格矢之间的关系: 正点阵: 正格矢 Rl l1a1 l2a2 l3a3 l1、l2、l3 Z 倒易点阵: 倒格矢Gh h1b1 h2b2 h3b3 h1、h2、h3 Z 则有: Rl Gh = 2 Z 结论: 若两矢量点积为2的整数倍, 且其中一个矢量 为正点阵位矢, 则另一个矢量必为倒易点阵的位矢。
a1 ai a 2 aj
a2 a3 b1 2 a1 a 2 a 3 a 3 a1 b2 2 a1 a 2 a 3
2 a 2 a
i j
b1
b3
b2
b1
b. 体心立方晶格 倒易空间示意图
2π a a1 2 ( i j k ) b1 a (j k ) a 2π (i k ) a2 (i j k ) b2 2 a 2π a a (i j k ) b3 (i j ) 3 2 a 4π a
—— 第一布里渊区 —— 八个面是正六边形 —— 六个面是正四边形
布里渊区示意图3-2
2 Γ: 0,0,0 a 2 X: 1,0,0 a 2 3 3 K: , ,0 a 4 4 2 1 1 1 L: , , a 2 2 2
简约布里渊区:十四面 体 2 V 4 V倒易原胞 a
n1 n2 n3 n1 n2 n3
Ce
n
iG n r

n n
C e
n
iG n r
Γ (r ) =
n1 n2 n3 n1 n2 n3
(2). 倒格子点阵与正格子点阵的关系
(1) 两个点阵基矢之间的关系: i j 2, ai b j 2ij 0,i j
a 2 a3 b1 2 V a3 a1 b2 2 V b 2 a1 a 2 3 V
2 相应的倒格矢长度 K ( n1 ,n2 ,n3 ) a 2 这十二个倒格矢的中垂面围成菱形十二面体:
其体积正好等于倒格子原胞的体积大小.
布里渊区示意图2-2
0,0,0 :坐标原点 2 1,0,0 : 100 H: a 2 1 1 : 110 N: , ,0 a 2 2
Ce
n
iG n r

n n
C e
n
iG n r
Gn为倒格矢,Gn n1b1 n2b2 n3b3, n1、n2、n3 Z 1 iG r n Cn Γ (r )e dr (Gn ) (Gn )是Γ (r )的 傅 里 叶 变 换 V n iG r Γ (r ) = (Gn )e n Γ ( r )是 (Gn )的傅里叶逆变换
(4) 倒格矢和正点阵晶面族之间的关系: 正点阵中一族晶面,晶面指数为:(h1h2 h3) 倒易点阵中倒格矢: Gh h1b1 h2 b2 h3b3 Gh // ( h1h2 h3 ) 法线方向 2 则有: 证明如下: Gh = d h1h2h3
1.9 倒格子(倒易点阵reciprocal)*
1.9 1 倒格子(倒易点阵)*的定义:
1 正格矢与倒矢
S S0 P B A O
原子可向空间任何方向散射 X光线,只有一些固定方向 可形成衍射。
点P: Rl=l1a1+l2a2+l3a3,Rl是布喇菲点阵中由原胞基矢 a1,a2,a3构成的矢量, S0和S是入射线和衍射线的单位矢量,经过O点和P点衍 射后光程差为: A0 OB -R S R S R ( S-S )
l 0 l l 0
当X光为单色光,衍射加强的条件为: Rl•(S-S0)=u •λ 令 ,代入上式,
衍射加强条件变为: Rl• (k -k0) = 2π u 根据正点阵与倒易点阵的关系,(k-k0)必是倒易空间 中的位置矢量,令:
Gh k -k 0
有 Rl• Gh = 2π u
2

(S S0 )
点阵:原胞基矢 a1、 a 2、 a3
a 2 a3 b1 2 V a3 a1 , V a1 (a 2 a3 ) 原 胞 体 积 b2 2 V b 2 a1 a 2 3 V
b1、 b2、 b3: 原胞基矢 倒易点阵 a1、 a 2、 a 3: 原胞基矢 正点阵
3
返回
面心立方晶格的第一布里渊区
—— 第一布里渊区为十 四面体
b
体心立方晶格的倒易晶格是面心立方,其晶胞 常数为 4a 。
c. 面心立方晶格
2 a a1 2 ( j k ) b1 a ( i j k ) 4 a 2 (i j k ) b a2 (i k ) b2 2 a a 2 a a3 (i j ) b3 (i j k ) 2 a
倒易空间 傅里叶空间 K空间
1.9.3 常见晶格的布里渊区 (1) 一维晶格
a1 a i 2 b1 i a
(2) 二维晶格
a1、a 2 b1 2 b2 2
构造a 3,令a 3 =k a2 a3 a1 a 2 a 3 a 3 a1 a1 a 2 a 3
a1 d h1h2 h3= h1
Gh a1 (h1b1 h2b2 h3b3 ) 2 Gh h1 Gh Gh
返回
3.倒易点阵与傅里叶变换
Γ (r ) r x1a1 x2 a2 x3 a3 x1、x2、x3 R 若有r =r Rl, Rl l1a1 l2 a2 l3 a3 l1、l2、l3 Z 则有Γ (r ) Γ (r ) (示意图) Γ (r )为周期函数 将Γ (r )作傅里叶级数展开,有: Γ (r ) =
(5)倒易点阵与正点阵互为倒易点阵 (6)倒易点阵与正点阵有相同的宏观对称性
倒格矢和正点阵晶面族示意图
a1 a3 CA =OA OC h1 h3 a 2 a3 CB =OB OC h2 h3 CA Gh 0 Gh CA CB Gh 0 Gh CB
为什么在倒易关系中存在2π 因子,这是因为如此定 义的互为倒易的两个矢量G与T之间满足下面简洁的 恒等式:
e
iGT
1
(3) 两个点阵原胞体积之间的关系: ( 2 ) 3 V* b1 (b2 b3 ) 可见 V* 与V互为倒数 V 上式利用了 A B C ( A C ) B ( A B )C
n
傅 里 叶 变 换 : F ( )


-
f (t )e it dt

1 傅里叶逆变换: f (t ) 2

-
F ( )e
itபைடு நூலகம்
d
2 T
总结:
晶体点阵 实际晶体结构 显微图像 倒易点阵 虚构 衍射图像
微观粒子
线度量纲:L
一族晶面
线度量纲:L-1
位置空间 坐标空间
2 ( n2 n3 , n1 n3 , n1 n2 ) a
2 2 2 2 (1,1,0), (1,1,0), (1,1,0), (1,1,0), a a a a 2 2 2 2 (1,0,1), (1,0,1), (1,0,1), (1,0,1), a a a a 2 2 2 2 (0,1,1), (0,1,1), (0,1,1), (0,1,1). a a a a
a2 a3 b1 2 V a3 a1 b2 2 V b3 2 a1 a 2 V V a1 ( a 2 a3 ) 原胞体积
相关文档
最新文档