高频电子线路(第二版)课件 第二章

合集下载

高频电子线路二版第二章.高频电路基础

高频电子线路二版第二章.高频电路基础

次级回路自阻抗
M2
Zf1 Z22
初级回路自阻抗
M2
Zf2
Z11
Z22 次级回路自阻抗
Z11 初级回路自阻抗
广义失谐量: 0L ( 0 ) 2Q
r 0
0
耦合因子: A Q
临界耦合 A 1
欠耦合 A<1
过耦合 A>1
理相
1
0.7
实际
0.1
0
ω0
ω
② 选择性: 表征了对无用信号的抑制能力,
Q值越高,曲线越陡峭,选择性越好,但通频
带越窄。
③ 理想回路:幅频特性在通频带内应完全
平坦。是一个矩型.
矩型系数: 表征实际幅频特性与理想幅
频特性接近的程度.谐振曲线下降为谐振值( f0 处 )的0.1时对应的频带宽度B0.1与通频带B0.707 之比:
+
IS
RS
C
N1 N2 RL
+
R'L
IS
RS
C
L
分析:
由 N1:N2=1:n ,得 n = N2 / N1(接入系数)。利用ⅰ 的方法,也可求得负载RL等效到初级回路的等效电阻是:
பைடு நூலகம்RL
1 n2
RL
或 gL n2gL
ⅲ. 电容分压式阻抗变换电路
Ú
+
IS RS
L
C1 ÚT
C2
IS RS C L
C1 R'L
⑷ 分析几种常用的抽头并联谐振回路
ⅰ.自耦变压器阻抗变换电路
Ú1
+
IS
RS
C
N1 Ú2 L
N2
RL

高频电子线路 第2章-高频电路基础

高频电子线路 第2章-高频电路基础

1 1 L= 2 = ω0 C (2π ) 2 f 02C
以兆赫兹(MHz)为单位 C以皮法 为单位, 以皮法(pF)为单位 L以 为单位, 将f0以兆赫兹 为单位 为单位 以 微亨( )为单位, 上式可变为一实用计算公式: 微亨(µH)为单位, 上式可变为一实用计算公式:
1 2 1 25330 6 L = ( ) 2 × 10 = 2 2π f 0 C f0 C
(3) 求满足 求满足0.5 MHz带宽的并联电阻。 设回路上并联 带宽的并联电阻。 带宽的并联电阻 电阻为R 并联后的总电阻为R 电阻为 1, 并联后的总电阻为 1∥R0, 总的回路有载品 f0 质因数为Q 由带宽公式, 质因数为 L。 由带宽公式 有 Q =
L
B
此时要求的带宽B=0.5 MHz, 故 QL = 20 此时要求的带宽 回路总电阻为
主要包括电台、工业、空间电磁、天电等 主要包括电台、工业、空间电磁、
内部产生的一般称为噪声
人为:接地 回路耦合等 人为 接地,回路耦合等 接地 系统内:电阻 电子器件等的热噪声等 系统内 电阻,电子器件等的热噪声等 电阻
电子噪声:电子线路中普遍存在。 电子噪声:电子线路中普遍存在。指电子线路中的随 机起伏的电信号,与电子扰动有关。 机起伏的电信号,与电子扰动有关。 当噪声,干扰与信号可比拟时 称信号被噪声淹没 当噪声 干扰与信号可比拟时,称信号被噪声淹没 干扰与信号可比拟时 称信号被噪声淹没.
ωM M = 对于互感耦合: 对于互感耦合 k = 2 L1L2 ω L1L2
通常情况: 通常情况
M L1 = L2 = L 则 k = L
CC k= 对于电容耦合: 对于电容耦合 (C1 + CC )(C2 + CC )

高频电子线路第二章精品PPT课件

高频电子线路第二章精品PPT课件
2.2.3 其他形式的滤波器
2.2.3.1、石英晶体滤波器
一、石英晶体的物理特性
1、石英晶体的结构
图2.2.3.1(a)表示自然结晶
体,图(b)表示晶体的横断。
为了便于研究,人们根据石英晶
体的物理特性,在石英晶体内画
出三种几何对称轴,连接两个角
锥顶点的一根轴Z,称为光轴; 在图(b)中沿对角线的三条X 轴,称为电轴;与电轴相垂直的
当 JT 作滤波器使用时,f f p fq 决定了滤波器的通 带宽度。
2.2.3.1
晶体谐振器与一般振荡回路比较,有以下几个明显 的特点:
• ① 晶体的谐振频率 f p和 fq非常稳定。这是因为
Lq、Cq、rq 由晶体尺寸决定,由于晶体的物理特性
它们受外界因素(如温度、震动等)的影响小。
•② 有非常高的品质因数。而普通LC振荡回路的 Q 值只能到几百。
当 fs 偏离f0 ,强度减小 (原因是各 A0振幅不变,但相位变化)。
表面声波滤波器的幅频特性为具有 sin x x 的函数形式, 式中x n f f0 ,(f f f0 )。
2.2.3.3
目前表面声波滤波器的中心频率可在10MHz~ 1GHz之间,相对带宽0.5为00 50 00 ,插入损耗最低仅几个dB,
沿弹性体表面传递的声波,有n节换能器,(n+1) 个电极或 N n个2 周期段。指间距b、指宽a决定声波波 长。
换能器频率 f0 d , 传播速度。
周期段长(波长):0 M 2(a b)
当外加信号频率 fs 时f0 , 各节所发出的表面波同相迭加,振幅最大, 总振幅 As nA0
(A0 为每节所激发声波强度振幅)。
矩形系数可达1.2。 图2.2.3.8所示为一接有声表面波滤波器的预中放电

高频电子线路第二章 高频小信号放大器

高频电子线路第二章 高频小信号放大器

(2) 为了增大Au0, 要求负载电导小, 如果负载是下一级放 大器, 则要求其gie小。 (3) 回路谐振电导ge0越小, Au0越大。 (4) Au0与接入系数n1、n2有关, 但不是单调递增或单调 递减关系。由于n1和n2还会影响回路有载 Q值Qe, 而Qe又 将影响通频带,所以n1与n2的选择应全面考虑, 选取最佳值。
结论:

以上这些质量指标,相互之间即有联系又有矛盾。 增益和稳定性是一对矛盾,通频带和选择性是一 对矛盾。

应根据需要决定主次,进行分析和讨论。
4、 晶体管的高频小信号等效电路

形式等效电路(网络参数等效电路) 包括:Y参数、h参数、z参数、s参数等效电路 混合π型等效电路(物理模拟等效电路)

2.2.1 单管单调谐放大器※
1.电路组成及特点
●右图是一个典型的单管单调谐放大器。
C b 与 C c 分别是和信号源(或前级放大器)、 负载(或后级放大器)的耦合电容, Ce是旁路
UCC R2 L Cc
电容。 ●电容C与电感L组成的并联谐振回路作为晶 体管的集电极负载 , 其谐振频率应调谐在输入 有用信号的中心频率上。 ● 回路与晶体管的耦合采用自耦变压器耦合方 式 , 这样可减弱晶体管输出导纳对回路的影响。 ● 负载(或下级放大器)与回路的耦合采用自 耦变压器耦合和电容耦合方式, 这样, 既可减弱 负载(或下级放大器)导纳对回路的影响 , 又 可使前、 后级的直流供电电路分开。 ● 另外 , 采用上述耦合方式也比较容易实现前、 后级之间的阻抗匹配。
指在电源电压变化或器件参数变化时以上三参数的稳定程 度。 为使放大器稳定工作,必须采取稳定措施,即限制每级 增益,选择内反馈小的晶体管,应用中和或失配方法等。

魏俊平 高频电子线路 第2章 高频小信号选频放大器

魏俊平 高频电子线路 第2章 高频小信号选频放大器

R. S
Us
L rC
解:1. 计算不考虑 RS、 RL时的回路固
RL
有特性:f0、Q、RP、BW0.7
f0

2
1 LC
(
2
1
)Hz 465kHz
586 106 200 1012
586 106
Q
LC r

200 1012 12
143
RP

L Cr

(
586 106 200 1012
Is'U
' o

IsU12
I's

I sU 12 U 'o

U 12 U 13
Is

1 n1
Is

1mA 5
0.2 mA




Uo

U13 n2

U
' o
n2

I
' s
Re

0.2 30.6 V
n2
10
0.612 V
思考讨论题
1. LC并联谐振回路有何基本特性?说明Q对 回路特性的影响。
2.1 LC谐振回路
2.1.3抽头谐振回路 2.电容分压式
【例2-3、2-4】
第2章 高频电路基础
例 2-3 如图, 抽头回路由电流源激励,忽略回路本 身的固有损耗,试求回路两端电压 u1(t) 的表示式及 回路带宽。
29
例2.4 下图中,线圈匝数 N12 = 10 匝, N13 = 50 匝,N45 = 5 匝,L13= 8.4 mH, C = 51 pF, Q =100, Is = 1 mA , Rs =10 kW, RL= 2.5 kW, 求有载品质因数Qe、通频带BW0.7、谐振输出电压Uo。

高频电子线路教案 第二章 小信号选频放大器

高频电子线路教案  第二章 小信号选频放大器

1、Cj L j R C j L j R Zp ωωωω11)(+++= )1(C L j R CLωω-+≈ R = )C1L (X ωω-= (1) 谐振条件:当回路总电抗X=0时,回路呈谐振状态(2)并联谐振阻抗CRLZ po ==p R jXR C L Z P +=(呈纯电阻,且取最大值)0X =ω1L -设初级线圈数为N1,,次级线圈数为N2。

在变压器紧耦合时,负载电阻载R‘L的关系为R‘L=(N1/ N2)2 R L2. 自耦变压器的耦合联接3. 变压器自耦变压器的耦合联接1. 组成2. 元件作用3. 工作原理高频信号电压互感耦合基极电压管子be结回路谐振电压互感耦合负载电流i L在负载上产生较大的高频信号电压二、电路分析1.直流通路2. 交流通路3. 高频Y参数等效电路晶体管接入回路的接入系数n 1=负载接入回路的接入系数n 2=I‘S=n1 2 I S=n1 Y fe Ug‘oe=n1 2 g oe,C‘oeg‘L=n2 2 g L,C‘=G ∑=g‘oe+g‘C ∑=C‘oe+C‘导纳Y ∑=G ∑+jw C输出电压U‘o=-I‘s / Y ∑=-n三、性能指标分析3. 电抗曲线一个是串联谐振频率f s,另一个是并联谐振频率4. 四端陶瓷滤波器及电路符号5. 陶瓷滤波器的优缺点二、声表面波滤波器1. 声表面波滤波器基本结构、符号和等效电路2. 声表面波滤波器工作原理3. 均匀叉指换能器的频率特性-均匀叉指换能器是指长、指宽以及指距均为一定值的结构4.非均匀叉指换能器5. 声表面波滤波器的优点6. 声表面波滤波器与放大器的连接。

高频电子线路 第二版 曾兴雯主编 高等教育出版社

高频电子线路 第二版 曾兴雯主编  高等教育出版社

耦合谐振回路
1.利用他的选频特性构成各种谐振发大器 用途:
2.在自激振荡器中充当谐振回路
3.在调制、变频、解调充当选频网络
本章讨论各种谐振回路在正弦稳态情况下的谐 振特性和 频率特性。
简单振荡回路
并联 LC 谐振回路
C iS L r
串联 LC 谐振回路
C RS uS r L
RS
iS RS C Rp
is RS uS
C
L
+
ui -
+ uC -
+ uL + uR r
u L is jo L j
uc is 1 joC
o L
r
ui = jQui
电容端电压:
ui j jQu i oCr
6)通频带
I 1 1 I0 2 1 2
由定义可得: Q
2
所对应的频率范围。
LC C 0 (a) 频率 f (b)
阻抗
RC
容性
感性
Rc为极间绝缘电阻,LC为分布电感或极间电感,小容量电容的引线电感。 电容器的高频等效电路 (a) 电容器的等效电路; (b) 电容器的阻抗特性
在分析一般米波以下频段的谐振回路时,常常只考 虑电容和损耗。 电容器的等效电路也有两种形式,如图所 示。
Zs r Zs r
ZS
Zs r
呈感性
呈阻性
呈感性 呈容性
ω0
0
0
S arctan
ω
s
ZS
容性 ω0 感性
L
r
1 C
o
r ω

VL
VL
VR
VL

《高频电子线路》PPT课件

《高频电子线路》PPT课件

uo(t)
uΩ(t)
Δuc
uo(t)=uΩ(t)+UDC
包含了直流及低频调制分量。
峰值包络检波器的应用型输出电路
+ (a) ui
-
VD
Cd
+
+UDC -
+
C uo R
RL uΩ
-
-
(b)
+ ui
-
VD

+
C uo R Cφ
-
t
UDC t
+ UDC -
图(a):电容Cd的隔直作用,直流分量UDC被隔离,输出信号为解调恢复后 的原调制信号uΩ,一般常作为接收机的检波电路。 图(b):电容Cφ的旁路作用,交流分量uΩ(t)被电容Cφ旁路,输出信号为直 流分量UDC,一般可作为自动增益控制信号(AGC信号)的检测电路。
rd C R
②对高频载波信号uc来说,电容C的容抗
1 R ,电容C相当于短
cC
路,起到对高频电流的旁路作用,即滤除高频信号。
理想情况下,RC低通滤波网络所呈现的阻抗为分析
+ uD -
当输入信号ui(t)为调幅波时,那么载波正半 +
周时二极管正向导通,输入高频电压通过二 ui
☺调幅解调的分类
振幅调制
AM调 制DSB调制
SSB调制
包络检波 解调
同步检波
峰值包络检波 平均包络检波 叠加型同步检波 乘积型同步检波
☺调幅解调的方法
1. 包络检波
调幅波
t 调幅波频谱
非线形电路
ωc-Ω ωc ωc+Ω ω
低通滤波器
包络检波输出
t 输出信号频谱

高频电子线路第二版第2章高频基础电路PPT课件

高频电子线路第二版第2章高频基础电路PPT课件
Yr01jLjCG 0()jB ()
B()Cr02L2L2
G0()
r02
r0
2L2
哈尔滨工程大1学6
高频电子线路
首页 上页 下页 退出
并联谐振回路谐振频率 B() 0
P
1 r02 LCL
0
1Q 102
其中, 0 1 LC 为回路无阻尼振荡频率
Q0 0L r0 为回路的空载品质因数
当 Q0 1时, P 0 ; Q 0 较低时,P 0 。
两种表示方式的结论是一致的。
哈尔滨工程大2学6
高频电子线路
3.双电容分压耦合连接的变比关系
首页 上页 下页 退出
首先将RL与C2组成的并联支路等效为串联支路, 在QC2 1条件下,X不变,即C2不变,电阻RLS为
R L SQ 1 c 22 R L(0C 1 2R L )2R L0 2C 1 2 2R L
高频电子线路
串联谐振的相对幅频特性与相频特性
首页 上页 下页 退出
相对幅频特性
QL1QL2
相对相频特性
QL1QL2
阻抗特性
0 等效纯电阻 0 等效感抗 0 等效容抗
哈尔滨工程大1学5
高频电子线路
2.2.3 并联谐振回路 1.无负载电阻的并联谐振回路
首页 上页 下页 退出
并联回路的导纳
高频电子线路
首页 上页 下页 退出
电阻器是电子线路中最常用的无源元件之一。在 电子电路中,一个或多个电阻可构成降压或分压电路 用于有源器件的直流偏置,也可作为直流或电子电路 的负载电阻完成某些特定功能。
电阻的主要类型:
高密度碳介质合成的碳膜电阻;
鎳或其它材料的线绕电阻;
温度穏定材料的金属膜电阻; 铝或铍基材料薄膜片的表面贴装(SMD)电阻。

高频电子线路课件

高频电子线路课件
笫2章 滤波器
2.1 滤波器的特性和分类 2.2 LC 滤波器 2.2.1 LC 串、并联谐振回路 2.2.2 一般 LC 滤波器 2.3 声表面波滤波器(*) 2.4 有源 RC 滤波器 2.5 抽样数据滤波器
2.1.1 滤波器的特性
V i (s) vi (t)
输入 阻抗
滤波器
h(t) ,H(s)
2019/1/15 通信电子线路 15
2.2.1 LC 串、并联谐振回路
串联谐振回路 5 串联谐振时电流与电压关系矢量图:
串联谐振时回路中的电流电压关系可绘成右图所示的 VL 0 I 0 为最大值。 矢量图。图中Vs与 I 0 同相,
, VC 0 滞后 I 0 90 , VL 0 超前 I 0 90 VL 0 与 VC 0 VC 0m 都比 VSm 大 相位相反,且 VL 0m 、 Q倍。实际上,损耗R是包含在线圈中的, 所以 :
在某一特定角频率 0时,若回路阻抗满足下列条件: 1 X 0 L 0 0C Vs I I 则电流 为最大值,回路发生谐振。 0 R 由此可以导出回路发生串联谐振的角频率0 和频率 f 0 1 1 分别为 0 ; f0 LC 2 LC
由此可以导出谐振电路的特性阻抗 1 1 L 0 L L 0C C LC
O
VS
I0
VL 0 m I 0 m
VSm 2 2 2 R L R 0 L VSm 1 Q 2 R
2 2 2 0
VC 0
2019/1/15
通信电子线路
16
2.2.1 LC 串、并联谐振回路
串联谐振回路 6 能量关系:
下面我们从能量的观点,进一步分析谐振时串联振荡 回路的性质。 设谐振时瞬时电流i为 则电容器C上的电压为

高频电子线路第二讲PPT课件

高频电子线路第二讲PPT课件
高频晶体管有两种类型:
①用于对小信号进行放大功能的高频小功率管,对这一 类晶体管的要求是大增益、小噪声。目前,双极型小信号 放大晶体管的工作频率可以达到几千兆赫兹,噪声系数仅 为几个分贝。
②用于高频功率放大功能的高频功率放大管,对这一类 晶体管的要求是大增益、大功率输出。
小信号放大用的场效应管,工作频率也能达到同样高的 频率,噪声系数可以更小。
第二章 高频电子线路基础
第一节 引言
各种无线电设备主要由一些处理高频信号的功能电路, 如高频小信号放大器、高频功率放大器、振荡器、调制器 及相应的解调器组成。这些内容将在各个章节里分别讨论。 但是各个功能电路之间也有一些共性,这就是所使用的无 源元件、有源器件及其组件等绝大多数是相同的。这些元 器件是构成高频电路的基础。因此,本章首先予以讨论。 考虑到电子噪声存在于各种电子线路之中,它对通信中系 统中所传输的有用信号会形成干扰。所以,了解电子噪声 的产生根源,对从源头上抑制它或消弱它的影响,提高系 统性能非常有帮助。
1.串联谐振回路 凡是由电感L、电容C及电阻r与信号源串联组成的 电路,称为串联谐振回路。串联谐振回路的示意图如 图2-4所示。
L
ui
C
i r
图2-4 串联谐振回路
图中,电阻r通常包括电感线圈和电容器的损耗电 阻以及可能接入回路的外加电阻。如果在该电路电感 线圈或电容器中已经储有能量,则在回路电阻r很小的 前提下,电路中即使没有外加电动势,也可以产生振 荡。所以又称串联谐振回路为串联振荡电路。
数Q,即
Q 0 L 1 r 0rC
(2-10)
并联谐振时阻抗最大,回路呈现纯电阻性质,谐
振电阻R0为
R0
L rC
Q0 L
1 Q
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CR LR R
图 2-1 电阻的高频等效电路
3
2、电容
由介质隔开的两导体即构成电容。 一个电容器的等 效电路却如图2-2(a)所示。 理想电容器的阻抗1/(jωC), 如图2-2(b)虚线所示, 其中, f为工作频率, ω=2πf。 高频电路中常常使用片状电容和表面贴装电容,因
为其高频特性较好。

L Qr C
(2-5)
4)谐振电阻:回路在谐振时的阻抗最大, 为一纯电阻R0:
L Q R0 Q0 L Cr 0C
(2-6)
由前面分析可知,若电感的耗损电阻越小,回路的Q值越 高,其谐振电阻R0越大。
14
5)阻抗特性
高Q时,由式(2-1)可得: Z p
并联回路通常用于窄带系统, 此时ω与ω0 相差不大, 式 (2-13)可进一步简化为
9
2.2 高频电路中的基本电路
本节将介绍高频电路中常用的基本(无源)电路,
也称无源组件或无源网络,这些无源组件或无源网络主要 包括:高频振荡(谐振)回路、高频变压器、谐振器与滤 波器等, 它们完成信号的传输、 频率选择及阻抗变换等功 能。
10
一、高频振荡回路 高频振荡回路是高频电路中应用最广的无源网络, 也是 构成高频放大器、 振荡器以及各种滤波器的主要部件, 在电 路中完成阻抗变换、 信号选择等任务, 并可直接作为负载使 用。
SRF
感性区
相角
容性区
阻抗与相角
阻抗
0
频率 f
图 2-3 高频电感器的自身谐振频率SRF
6
二、高频电路中的有源器件
用于低频或其它电子线路的器件没有什么根本不同。 1、二极管 二极管的作用:半导体二极管在高频中主要用于检波、 调制、 解调及混频等非线性变换电路中, 工作在低电平。
常用高频二极管的类型:
L 5.07u
(2) 回路谐振电阻和带宽。由式(2-12)
R0 Q0 L 100 2 107 5.07 106 3.18 104 31.8k
21
回路带宽为
f0 B 100kHz Q
(3) 求满足0.5 MHz带宽的并联电阻。 设回路上并 联电阻为R1, 并联后的总电阻为R1∥R0, 总的回路有载品 质因数为QL。 由带宽公式, 有
U r

在任意频率下的回路电流 I 与谐振电流之比为
25
串联谐振回路总结: (1) 在串联谐振回路的阻抗特性、幅频特性、相频特性与 并联谐振回路成对偶关系。如图2-6所示。
(2)
谐振频率、品质因素、通频带、矩形系数等与并联谐
振回路相同(高Q时)。
29
2、 抽头并联振荡回路 在实际应用中,常用到激励源或负载与回路电感或电容 部分连接联结的并联振荡回路,称为抽头并联振荡回路。 如图2-7所示。 接入系数p:定义为与外电路相连的那部分电抗与本 回路参与分压的同性质总电抗之比。也可定义为电压之比。
频带越狭窄,但矩形系数不变。因此,对于简单(单级)
并联谐振回路,通频带与选择性是不能兼顾的。 (2) 前面的结论均是在“高Q”情况下,如果Q值较低, 并联谐振回路的谐振频率将低于高Q时的谐振频率,并使 谐振曲线和相位特性随着Q值而偏离。 (3) 以上所知品质因素均是指回路没有外加负载时的值, 称为空载Q值或Q0 。当回路有外加负载时,品质因素要用 有载Q值或QL表示。其中的r为考虑负载后总的耗损电阻。
20
1 1 L 2 0 C (2 ) 2 f 02C
将f0以兆赫兹(MHz)为单位, C以皮法(pF)为单位, L以微 亨(μH)为单位, 上式可变为一实用计算公式: 1 1 25330 L ( )2 2 106 2 2 f 0 C f0 C 将f0=fs=10 MHz代入, 得
0
15
Z arctan( Q 2

0
) arctan
(2-12)
I L IC QI
. IC
(2-14)
. I 0 . U
. IL
图2-5 表示了并联振荡回路中谐振时的电流、 电压关系。
16
6)通频带(半功率点频带)
当保持外加信号的幅值不变而改变其频率时, 将回路电 1 流值下降为谐振值的 2 时对应的频率范围称为回路的通频 R0 带, 也称回路带宽, 通常用B来表示。 令式(2-15)等于 2 , 则可推得ξ=±1, 从而可得带宽为:
12
(2-1)
2)谐振频率:定义使感抗与容抗相等的频率为并联谐振
频率ω0。令Zp的虚部为零, 求解方程的根就是ω0, 可得
0
1 1 1 2 Q LC
(2-2)
式中, Q为回路的品质因数, 有:
Q
Q 1
0 L
r

1 0Cr
(2-3)
0
1 LC
(2-4)
13
3)特征阻抗:定义为
UT
C
L
U1 R1
C1 UT L C2
U1 R1
(d)
(e)
图2-7 几种常见抽头振荡回路
31
下面以图2-7(a)、(b)为例分析抽头并联振荡回路的特性。 (2) 阻抗变换特性 对于图(2-7)(a),考虑是窄带高Q的实际情况,当谐振时, 输入端呈现的电阻设为R,从功率相等的关系,有:
2 UT U2 2 R0 2R
B0.707谐振曲线下降3dB的频带宽度
矩形系数是大于1的(理想时为1),矩形系数越小,回路的 选择性越好。 对于单级简单并联谐振回路,可以计算出其矩形系数为:
K r 0.1 102 1 9.96
18
需要说明的几点:通过前面分析可知 (1) 回路的品质因素越高,谐振曲线越尖锐,回路的通
IT pI
Байду номын сангаас
(2-22)
值得注意得是:对于抽头并联振荡回路,对阻抗变换 的变比为p2,而对信号源(电流、电压)的变比为p。
33
L I Ri C RL
1、电阻
一个实际的电阻器, 在低频时主要表现为电阻特性,但在 高频使用时不仅表现有电阻特性的一面, 而且还表现有电抗特
2
性的一面。 电阻器的电抗特性反映的就是其高频特性。 一个电阻R的高频等效电路如图2-1所示, 其中, CR为分
布电容, LR为引线电感, R为电阻。
通常,表面贴装电阻的高频特性好于金膜电阻,金膜 电阻好于炭膜电阻,线绕电阻的高频特性最差。
需要在回路上并联7.97 kΩ的电阻。
(2) 串联谐振回路
串联谐振回路适用于电源内阻为低内阻(如恒压源) 的情况或低阻抗的电路(如微波电路)。
图2-4(a)是最简单的串联振荡回路。
23
X 容性 L 0 r C (b) 感性
0

(a) |ZS|

/2 r 0 0 -/2 (d)
0

0
(c)
(1) 点触式二极管:其最高工作频率约200~300MHz (2) 表 面 势 垒 二 极 管 : 其 最 高 工 作 频 率 约 200 ~ 300MHz (3) 变容二极管:其电容随偏置电压变化而变化。
7
2、晶体管与场效应管(FET)
在高频中应用的晶体管仍然是双极晶体管和各种场效应 管,通常这些管子比用于低频的管子性能更好, 在外形结构 方面也有所不同。 高频晶体管有两大类型:
(1) 一类是作小信号放大的高频小功率管, 对它们的主
要要求是高增益和低噪声; (2) 另一类为高频功率放大管, 除了增益外, 要求其在高 频有较大的输出功率。
8
3、集成电路 用于高频的集成电路的类型和品种要比用于低频的
集成电路少得多, 主要分为通用型和专用型两种。
目前通用型的宽带集成放大器,其增益可达50~ 60dB甚至更高,其工作频率可达100~200MHz甚至更高。
f0 B 2f Q
(2-10)
此外,对于并联谐振回路,还有以下参数:
17
7)矩形系数:定义为阻抗的幅频特性下降为谐振值的0.1时 的频带宽度与阻抗的幅频特性下降为谐振值的0.707时的频带 宽度之比。即
B0.1 K r 0.1 B0.707
(2-11)
其中:B0.1谐振曲线下降为谐振值的0.1时的频带宽度
LC C 0 (a)
阻抗
RC
自身 谐振 频率 容性区
频率 f (b)
感性区
图2-2 电容器的高频等效电路
(a) 电容器的等效电路; (b) 电容器的阻抗特性
4
3、电感 电感的作用:谐振元件、滤波元件、阻隔元件。 电感的耗损:电感一般都是由导线绕制的,一般都有一 定直流电阻,同时由于存在涡流、磁滞和电磁辐射等损失, 所以电感就存在耗损。
Z
/2 Q1 0 -/2 感性 Q2 容性 Q1>Q2
感性区
0
B (c)
容性区

(a)
(b)
(d)
图2-4 并联谐振回路及其等效电路、 阻抗特性和辐角特性 (a) 并联谐振回路; (b)等效电路; (c)阻抗特性; (d)辐角特性
并联谐振回路的并联阻抗为:
1 ( r j L ) jC Zp 1 r j L jC
(1)
p
U UT
(2-16)
对于图(2-7)(a),若忽略两部分之间的互感,则抽头系数 可直接用电感之比,也可近似用匝数之比。
对于图(2-7)(b),可得
p
30
C1 U UT C1 C2
UT IL I U (a) L R0 U C2 (b) C1 C
UT
UT C2
L
R0 U
L C1 (c) R1
R0 Zp 2 1 j (2-9) 1 jQ 0 f 2Q 2Q 称为广义失谐。 式中, Δω=ω-ω0。 0 f0 R
相关文档
最新文档