圆导学案(答案版)
《圆》整理和复习(导学案)
5.培养学生的团队协作能力,通过小组讨论、合作探究,加深对圆的知识点的理解和应用。
三、教学难点与重点
1.教学重点
-圆的基本概念:圆心、半径、直径、周长、面积的定义及其相互关系;
-圆的性质:半径相等、直径垂直、弧相等、圆心角相等的特点及其应用;
《圆》整理和复习(导学案)
一、教学内容
《圆》整理和复习(导学案)
1.圆的基本概念:圆心、半径、直径、周长、面积;
2.圆的性质:半径相等、直径垂直、弧相等、圆心角相等;
3.圆的方程:圆的相交、相离;
5.圆与圆的关系:相切、相交、相离;
6.圆的切线、割线;
7.圆的扇形、圆心角、圆周角;
举例解释:
-通过实际测量和计算,让学生掌握圆的周长和面积的计算方法,并理解其在生活中的应用,如计算车轮的行驶距离;
-通过几何作图,让学生直观感受圆的性质,如半径相等、圆心角相等,并应用于解决实际问题,如设计等分圆的图形。
2.教学难点
-圆的方程推导:理解圆的标准方程和一般方程的推导过程,尤其是从标准方程到一般方程的转换;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆的基本概念。圆是由一组等距离于圆心的点组成的几何图形。它是平面几何中最重要的图形之一,具有许多独特的性质和应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了圆在实际中的应用,以及它如何帮助我们解决问题,如计算车轮的周长和面积。
-在计算扇形、圆心角、圆周角时,通过实际案例和公式推导,使学生能够熟练掌握计算方法,并应用于实际测量和设计问题。
四、教学流程
(一)导入新课(用时5分钟)
《圆》复习与整理导学案
《圆》复习与整理导学案复习目标:通过本节课的复习,我能熟练记住本章的所有有概念与公式,并会灵活运用所学知识解决生活中的问题。
复习重、难点:通过解决一些实际问题,提高分析问题、解决问题的能力。
复习过程:一、合作交流师:同学们,这节课我们来复习《圆》这一单元的知识。
请同学们把自己整理的知识先在小组内交流。
出示要求:1.认真倾听小组内其他成员的汇报。
2.及时补充小组内的汇报内容。
师:刚才大家已把这半角的知识在小组内进行交流,谁能简要说一说,本单元主要学习了哪几方面的知识?生回答师板书:二、小组展示:师:下面我们来分组展示,第1、2组汇报圆的认识,第3、4组汇报圆的周长,第5、6组汇报圆的面积,第7、8组汇报扇形,第9组汇报“我的提醒”。
1.小组PK2.小组汇报(学生汇报师板书)三、课堂测评师:为了检测大家复习的效果,你们敢不敢向老师挑战?(一)判断并说明理由:1.半径是直径的1/2,直径是半径的2倍2.一个圆的周长与它的直径的比叫圆周率。
( )3..将圆转化成长方形后,长方形的周长就是圆的周长。
( )4.半圆的周长就是圆周长的一半。
( )5.半圆有无数条对称轴。
( )圆6.周长相等的圆、正方形、长方形,长方形的面积最大。
()(二)1.测量出圆的有关数据并提出问题进行解答。
(只列式不计算)2.也可以对图形进行加工,利用测量的数据来解决提出的问题。
四、全课总结师:通过这节课的复习,你有什么向大家说得吗?教学反思:所谓整理和复习,我觉得重点应该在整理上,整理和复习不但要起到一个回顾知识点的作用,更重要的是将这一章节的内容进行梳理,从而找出知识之间的内在联系,形成更加完善的知识网络体系。
从这个角度上来说,整理和复习课应该让学生成为课堂的主人,通过学生之间的交流碰撞,引发知识的重新构建,并形成一个完善的体系。
课前我先让学生自己就本单元的知识进行一个罗列与整理,课堂上先进行全班的交流,最终形成一个知识的网络。
在这个节课上,为了让学生更好地灵活运用所学知识,我想了一种新的方法,就是给学生先提供一个具体的载体,利用这个载体去研究圆,通过这个圆来调动学生已有的知识经验,在这节课中我发给学生一个半径是2厘米的圆,以这个圆为载体,让学生利用手中的学具通过测量的数据,提出一些有关本节课所能解决的问题,课后练习围绕这个圆来研究。
人教版九年级上册数学第二十四章《圆》导学案(有答案)
第二十四章圆24.1 圆的有关性质24.1.1 圆学习目标1.理解圆的两种定义形式.2.理解与圆有关的一些概念.重点:圆的有关概念.难点:定义圆应该具备的两个条件.学习过程一、创设问题情境活动1:观察图形,从中找到共同特点.二、揭示问题规律(一)圆活动2:1.画圆2.圆的定义:归纳:圆心是确定圆在平面内的___________的,半径是确定圆的___________的,所以,圆是由___________和___________两个要素确定的.圆有___________个圆心, ___________条半径,同一个圆中所有的___________都相等.活动3:结合定义,师生共同讨论以下几个问题:(1)篮球是圆吗?为什么?(2)以3厘米为半径的圆,能画出几个?为什么?(3)以点O为圆心画圆,能画几个?为什么?(4)在圆的定义中,为什么要强调“另一个端点A随之旋转所形成的图形叫做圆”?不是端点行吗?(5)反过来,平面内所有到点O的距离等于线段OA的长的点都在圆上吗?3.从画圆的过程可以看出:(1)圆上各点到___________的距离都等于___________.(2)到定点的距离等于定长的点都___________.因此,圆心为O,半径为r的圆可以看成是______________________的点的集合.活动4:讨论圆中相关元素的定义:(二)与圆有关的概念:(画图,结合图形说明)1.弦: ______________________.直径: ______________________.思考:直径是不是弦?弦是不是直径?答: ______________________.2.弧: ______________________.半圆: ______________________.由此可知:弧可分为三类,大于半圆的弧叫___________,小于半圆的弧叫___________,还有半圆.3.等圆:能够重合的圆.等圆的半径.4.同心圆:圆心相同,半径不同的圆.请你画出来:5.等弧: ______________________.思考:长度相等的两条弧是否是等弧?为什么?答: ______________________;等弧只能出现在___________或___________中.三、解决问题活动5:1.在现实生活中,许多物体给我们以圆的形象,同学们想一想,为什么车轮要做成圆形的,如果是椭圆的或其他形状可以吗?2.判断(1)直径是弦,弦也是直径.( )(2)半圆是弧,弧也是半圆.( )(3)同圆的直径是半径的2倍.( )(4)长度相等的弧是等弧.( )(5)等弧的长度相等.( )(6)过圆心的直线是直径.( )(7)直径是圆中最长的弦.( )四、变式训练活动6:1.如何在操场上画一个半径是5 m的圆?说出你的理由.2.你见过树木的年轮吗?从树木的年轮,可以很清楚地看出树生长的年龄.如果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树的半径平均每年增加多少?五、反思小结六、达标测试一、选择题1.下列说法中,(1)长度相等的两条弧一定是等弧;(2)半径相等的两个半圆是等弧;(3)同一条弦所对的两条弧一定是等弧;(4)直径是圆中最大的弦,也就是过圆心的直线.其中正确说法的个数是()A.1个B.2个C.3个D.4个2.如图,以坐标原点O为圆心的圆与y轴交于点A、B,且OA=1,则点B的坐标是()A.(0,1) B.(0,-1)C.( 1,0) D.(-1,0)2题图 3题图 4题图 6题图3.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿()A.图(1)需要的材料多B.图(2)需要的材料多C.图(1)、图(2)需要的材料一样多D.无法确定4.如图,四边形PAOB是扇形OMN的内接矩形,顶点P在弧MN上,且不与M,N重合,当P 点在弧MN上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值()A.逐渐变大 B.逐渐变小C.不变 D.不能确定二、填空题5.在直角坐标系中,横坐标和纵坐标都是整数的点称为格点.已知一个圆的圆心在原点,半径等于5,那么这个圆上的格点有______个.6.将一个含有60°角的三角板,按图所示的方式摆放在半圆形纸片上,O为圆心,则∠ACO=_____度.7.如图,正方形ABCD的边长为2,E、F、G、H分别为各边中点,EG、FH相交于点O,以O 为圆心,OE为半径画圆,则图中阴影部分的面积为________.三、解答题8.若Rt△ABC的三个顶点A、B、C在⊙O上,求证:Rt△ABC斜边AB的中点是⊙O的圆心.9.如图,已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且CD=R,试求AC的长.24.1 圆的有关性质24.1.2 垂直于弦的直径学习目标1.掌握垂径定理及相关结论.2.运用这些结论解决一些有关证明、计算和作图问题.重点:理解圆的轴对称性,掌握垂径定理及其推论,学会运用垂径定理等结论解决一些有关证明、计算和作图问题.难点:垂径定理及其推论.学习过程一、创设问题情境问题:你知道赵州桥吗?它是1 300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,你能求出赵州桥主桥拱的半径吗?二、揭示问题规律活动1:用你手中的一个圆形纸片,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?活动2:如图1,AB是☉O的一条弦,作直径CD,使CD⊥AB,垂足为M.图1(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有哪些相等的线段和弧吗?为什么?相等的线段:相等的弧:由此可得垂径定理: .请结合图形,写出它的推理形式.∵____________________;∴____________________.若将问题中的直径CD⊥AB改为CD平分AB,你又能得到结论:(图中弦AB是否可为直径?)请结合图形,写出它的推理形式. ∵____________________;∴____________________.三、解决问题活动3:1.在下列图形中,你能否利用垂径定理找到相等的线段或相等的圆弧.2.填空(1)如图(1),半径为4 cm的☉O中,弦AB=4 cm,那么圆心O到弦AB的距离是______________.(2)如图(2),☉O的直径为10 cm,圆心O到弦AB的距离为3 cm,则弦AB的长是____________.(3)如图(3),半径为2 cm的圆中,过半径中点且垂直于这条半径的弦长是_______________.3.解决求赵州桥拱半径的问题.四、变式训练活动4:1.某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问修理人员应准备内径多大的管道?五、反思小结2.通过本节课的学习,你能编一道用垂径定理来解决的数学问题吗?六、达标测试一、选择题1.如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BE B.弧BC=弧BD C.△BOC是等边三角形 D.四边形ODBC是菱形1题图 2题图 3题图2.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.203.坐标网格中一段圆弧经过点A、B、C,其中点B的坐标为(4,3),点C坐标为(6,1),则该圆弧所在圆的圆心坐标为()A.(0,0)B.(2,-1)C.(0,1) D.(2,1)二、填空题4.如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.BC=8,ED=2,则⊙O的半径为________.4题图 5题图5.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则△OCE的面积为_______.6.已知⊙O的半径为5,P为圆内的一点,OP=4,则过点P弦长的最小值是______.三、解答题7.如图,AB是圆O的直径,作半径OA的垂直平分线,交圆O于C、D两点,垂足为H,连接BC、BD.(1)求证:BC=BD;(2)已知CD=6,求圆O的半径长.8.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.24.1 圆的有关性质24.1.3 弧、弦、圆心角学习目标理解弧、弦、圆心角之间的关系,并运用这些关系解决有关的证明、计算问题.重点:圆心角、弦、弧、弦心距的关系定理:难点:正确识别圆心角,圆心角所对的弧,圆心角所对的弦,圆心角所对的弦的弦心距,探索定理和推论及其应用.学习过程一、创设问题情境1.圆是轴对称图形,其对称轴是______________________.圆还是____________对称图形,其对称中心是____________.2.圆绕____________旋转____________度可以与自身重合,由此可得:圆具有旋转不变性.二、揭示问题规律1.圆心角:顶点在____________的角,叫圆心角.2.探究:(1)如图,☉O中∠AOB=∠A'OB',则A________A'B', _______.(2)如图,☉O中=,则∠AOB_______∠A'OB',AB_______A'B'.(3)如图,☉O中AB=A'B',则∠AOB_______∠A'OB', ________.文字语言叙述:在同圆或等圆中,相等的圆心角所对的弧____________,所对的弦也____________.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角____________,所对的弦____________.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角____________,所对的弧____________.符号语言:如上图(1)∵∠AOB=∠A'OB',∴____________,____________.(2)∵=,∴____________,____________;(3)∵AB=A'B',∴____________,____________.3.反例:在图中,∠AOB=∠A'OB',但弦AB和A'B'相等吗?和相等吗?三、解决问题【例1】如图:在☉O中,弧=,∠ACB=60°.求证:∠AOB=∠BOC=∠AOC.【例2】如图,AB是☉O的直径,==,∠COD=35°,求∠AOE的度数.【例3】如图,在☉O中,AD=BC,比较与的大小.,并证明你的结论.四、变式训练为建设我们美丽的校园,学校准备把圆形花坛的外沿分成相等的三部分,每部分用不同颜色的花砖砌成,请你用所学知识帮助设计一种施工方案.五、反思小结六、达标训练一、选择题1.如图所示,在⊙O中,弧AB=弧AC,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°1题图 2题图2.如图:AB是弧AB所对的弦,AB的中垂线CD分别交弧AB于C,交AB于D,AD的中垂线EF分别交弧AB于E,交AB于F,DB的中垂线GH分别交弧AB于G,交AB于H,下列结论中不正确的是()A.弧AC=弧CB B.弧EC=弧CGC.弧AE=弧EC D.EF=GH3.如图所示,在⊙O中,弧AB=2弧CD,那么()A.AB>2CD B.AB<2CDC.AB=2CD D.无法比较3题图 4题图 5题图 6题图4.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.4.3.5.4cm二、填空题5.如图,在⊙O中,点C是弧AB的中点,∠A=50°,则∠BOC等于______度.6.如图,AB是⊙O的直径,点C在⊙O上,∠AOC=40°,D是BC弧的中点,则∠ACD=_______.三、解答题7.如图,在⊙O中,弧AB=弧AC,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.8.已知:如图,⊙O的两条半径OA⊥OB,C,D是弧AB的三等分点,OC,OD分别与AB相交于点E,F.求证:CD=AE=BF.9.如图所示,已知点A是半圆上的三等分点,B是弧AN的中点,P是直径MN上一动点,⊙O 的半径为1.请问:P在MN上什么位置时,AP+BP的值最小?并给出AP+BP的最小值.24.1 圆的有关性质24.1.4 圆周角学习目标1.理解圆周角的定义,掌握圆周角定理.2.初步运用圆周角定理解决相关问题.3.掌握圆内接四边形的概念及其性质,并能灵活运用.重点:圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征;圆内接四边形的概念及其性质.难点:运用数学分类思想证明圆周角的定理.一、创设问题情境什么叫圆心角?在图1中画出所对的圆心角,能画几个?二、揭示问题规律(一)圆周角定义:1.定义:________________________________________叫圆周角.辨析:图中的角是圆周角的是_____________.2.在图1中画出弧所对的圆周角.能画几个?(二)探究1:1.根据圆周角与圆心的位置关系可将圆周角分为几类?在下图中画出所对的圆周角.2.量出所对的圆周角和∠AOB的度数你会发现: .3.尝试证明你的发现.归纳:圆周角定理: .在图中,由圆周角定理可知:∠ADB ∠ACB= .思考:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?(三)探究2:在图中画出直径AB所对的圆周角,你有什么发现?归纳:圆周角定理的推论:(四)如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做 ,这个圆叫做这个 .问题1:如图,四边形ABCD叫做☉O的内接四边形,而☉O叫做四边形ABCD的外接圆,猜想:∠A与∠C,∠B与∠D之间的关系为 . 由此得出圆内接四边形的性质: .三、解决问题1.如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?2.四边形ABCD是☉O的内接四边形,∠A与∠C是一对对角,且∠A=110°,∠B=80°,则∠C=,∠D=.3.☉O的内接四边形ABCD中,∠A,∠C是一对对角,∠A∶∠B∶∠C=1∶2∶3,则∠D=.五、反思小结六、达标训练一、选择题1.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°1题图2题图3题图2.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.33.如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,则∠ACB的度数为()A.35°B.40°C.50°D.80°二、填空题4.如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是________度.4题图 5题图5.如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD=________度.三、解答题6.已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.7.如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于E.(1)请你写出四个不同类型的正确结论;(2)若BE=4,AC=6,求DE.8.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系学习目标1.理解点和圆的三种位置关系及判定方法,能熟练地运用判定方法判定点与圆的位置关系.2.掌握不在同一直线上的三点确定一个圆,能画出三角形的外接圆.重点:点和圆的三种位置关系;难点:点和圆的三种位置关系及数量间的关系.学习过程一、创设问题情境问题:我国射击运动员在奥运会上获金牌,为我国赢得了荣誉.右图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?二、揭示问题规律1.点P与☉O有哪几种位置关系?画图说明.2.点P到圆心O的距离为d,根据每种位置关系比较☉O的半径r与d的数量关系.当点P在圆______________时,d______________r;当点P在圆______________时,d______________r;当点P在圆______________时,d______________r.3.结合画图说明:设点P到圆心O的距离为d,☉O的半径为r,若d>r,则点P在圆______________;若d=r,则点P在圆______________;若d<r,则点P 在圆______________;归纳:①点P在______________⇔d______________r;②点P在______________⇔d______________r;③点P在______________⇔d______________r.练习:1.已知圆的半径等于5厘米,点到圆心的距离是:A.8厘米B.4厘米C.5厘米,请你分别说出点与圆的位置关系.2.如图,已知矩形ABCD的边AB=3厘米,AD=4厘米.(1)以点A为圆心,3厘米为半径作圆A,则点B,C,D与圆A的位置关系如何?(2)以点A为圆心,4厘米为半径作圆A,则点B,C,D与圆A的位置关系如何?(3)以点A为圆心,5厘米为半径作圆A,则点B,C,D与圆A的位置关系如何?4.画图探究:图1 图2(1)如图1,经过已知点A作圆,这样的圆你能作出多少个?(2)如图2,经过已知点A,B作圆,这样的圆你能作出多少个?它们的圆心分布有什么特点?(3)经过三点作圆①当点A,B,C在同一条直线上时,过这三点能否作圆?②当点A,B,C不在同一条直线上时,过这三点能否作圆?如果能,指出圆心位置.这样的圆能作出多少个?小结:(1)经过一点可以作___________个圆;经过两点可以作___________个圆,它们的圆心在______________________上.(2) ___________个点确定一个圆.(3)经过三角形的三个顶点的圆叫做三角形的___________,这个三角形叫做圆的___________,圆心叫做三角形的___________.练习:画出以下几个三角形的外接圆归纳:锐角三角形外心在三角形___________部;钝角三角形外心在三角形___________部;直角三角形外心在___________.三、运用规律,解决问题(一)判断题:1.过三点一定可以作圆( );2.三角形有且只有一个外接圆( )3.任意一个圆有一个内接三角形,并且只有一个内接三角形( )4.三角形的外心就是这个三角形任意两边垂直平分线的交点( )5.三角形的外心到三边的距离相等( )(二)思考:如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心.(三)如何解决“破镜重圆”的问题四、变式训练1.思考:任意四个点是不是可以作一个圆?请举例说明.2.为美化校园,学校要把一块三角形空地扩建成一个圆形喷水池,在三角形三个顶点处各有一棵名贵花树(A,B,C),若不动花树,还要建一个最大的圆形喷水池,请设计你的实施方案.五、反思小结六、达标训练一、选择题1.在Rt△ABC中,AB=6,BC=8,则这个三角形的外接圆直径是()A.5 B.10 C.5或4 D.10或82.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45° B.每一个锐角都小于45°C.有一个锐角大于45° D.每一个锐角都大于45°3.如图,动点M、N分别在直线AB与CD上,且AB∥CD,∠BMN与∠MND的角平分线相交于点P,若以MN为直径作⊙O,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.以上都有可能3题图 4题图 5题图4.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,-2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)二、填空题5.在△ABC中,∠C=90°,AC=3cm,BC=4cm,CM是中线,以C为圆心,以3cm长为半径画圆,则对A、B、C、M四点,在圆外的有______,在圆上的有_______,在圆内的有________.6.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是_______.三、解答题7.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm,CD=8cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.8.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.24.2.2直线和圆的位置关系(第1课时)学习目标1.理解直线与圆的相交、相切、相离三种位置关系.2.掌握它们的判定方法.重点:直线和圆的三种位置关系的性质和判定难点:通过数量关系判断直线与圆的位置关系学习过程一、创设问题情境活动1:1.点与圆有几种位置关系?2.怎样判定点和圆的位置关系?活动2:你能根据直线和圆的公共点个数想象一下,直线和圆有几种位置关系吗?二、揭示问题规律活动3:(1)直线和圆的公共点个数的变化情况如何?公共点个数最少时有几个?最多时有几个?(2)通过刚才的研究,你认为直线和圆的位置关系可分为几种类型?1.判断下列直线和圆的位置关系.2.判断下列说法正确与否(1)直线与圆最多有两个公共点.( )(2)若C为☉O上的一点,则过点C的直线与☉O相切.( )(3)若A,B是☉O外两点,则直线AB与☉O相离.( )(4)若C为☉O内一点,则过点C的直线与☉O相交.( )活动4:议一议对比点和圆的位置关系的判定方法,是否还有其他的方法来判断直线与圆的位置关系?三、解决问题活动5:如图,∠AOB=30°,P为OB上一点,且OP=5 cm,以P为圆心,以R为半径的圆与直线OA有怎样的位置关系?为什么?①R=2 cm;②R=2.5 cm;③R=4 cm.2.填表四、变式训练1.在Rt△ABC中,∠C=90°,AC=5 cm,BC=12 cm,以点C为圆心,r为半径作圆.(1)当r满足时,直线AB与☉C相离;(2)②当r满足时,直线AB与☉C 相切;(3)当r满足时,直线AB与☉C相交;(4)当r满足时,线段AB与☉C 有且只有一个公共点.2.试着编一道直线与圆位置关系的题目,使得直线与圆满足相离、相切、相交三种位置关系.五、反思小结六、达标训练一、选择题1.在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径2.同学们玩过滚铁环吗?当铁环的半径是30cm,手柄长40cm.当手柄的一端勾在环上,另一端到铁环的圆心的距离为50cm时,铁环所在的圆与手柄所在的直线的位置关系为()A.相离B.相交C.相切D.不能确定3.已知在等腰三角形ABC中,AB=AC=5,底边BC=6,若以顶点A为圆心,以4为半径作⊙A,则BC与⊙A()A.相交B.相切C.相离D.不能确定4.如图,△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相交B.相切C.相离D.无法确定4题图7题图二、填空题5.在Rt△ABC中,∠C=90°,AC=12cm,BC=5cm,以点C为圆心,6cm长为半径的圆与直线AB的位置关系是____________.6.已知⊙O的半径为1,点P到圆心O的距离为d,若关于x的方程x2-2x+d=0没有实根,则点P与⊙O的位置关系是____________.7.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x与⊙O的位置关系是_________.三、解答题8.△ABC中,∠C=90°,AC=4,BC=3,以点C为圆心,以R长为半径画圆,若⊙C与AB相交,求R的范围.9.如图,已知正方形ABCD的边长为a,AC与BD交于点E,过点E作FG∥AB,且分别交AD、BC于点F、G.问:以B为半径的圆与直线AC、FG、DC的位置关系如何?10.如图,点A是一个半径为300米的圆形公园的中心,在公园附近有B,C两村庄,AC的距离为700米,现要在B,C两村庄之间修一笔直公路将两村连通,现测得∠C=30°,问此公路是否会穿过该公园?请通过计算进行说明.24.2.2 直线和圆的位置关系(第2课时)学习目标1.掌握切线的判定定理的内容,并会运用它进行切线的证明.2.能灵活选用切线的三种判定方法判定一条直线是圆的切线.重点:理解并掌握切线的判定定理和性质定理.难点:运用切线的判定定理和性质定理解决一些具体的题目.学习过程一、创设问题情境1.圆的直径是15 cm,如果直线与圆心的距离分别是(1)5.5 cm,(2)7.5 cm,(3)15 cm,那么直线和圆的位置关系分别是(1) ,(2) ,(3) ;直线和圆的公共点的个数依次是___________,___________,___________.2.你有哪几种方法判断一条直线是圆的切线?二、揭示问题规律1.切线的判定定理的得出:作图:在☉O中,经过半径OA的外端点A作直线l⊥OA,已知OA=r.那么,(1)圆心O到直线l的距离是___________;(2)直线l和☉O的位置关系是___________.归纳:切线的判定定理:经过___________并且___________的直线是圆的切线.请依据上图,用符号语言表达切线的判定定理:判断:(1)过半径的外端的直线是圆的切线.( )(2)与半径垂直的直线是圆的切线.( )(3)过半径的端点与半径垂直的直线是圆的切线.( )2.总结:到此为止学习的切线的判定方法共有:(1);(2);(3) .3. 如图,如果直线AB是☉O的切线,切点为点C,那么半径OC与直线AB是不是一定垂直呢?(用反证法说明)归纳:圆的切线的性质: 符号表示:三、解决问题1.已知一个圆和圆上的一点,如何过这个点画出圆的切线?2.如图,直线AB经过☉O上的点C,并且OA=OB,CA=CB.求证:直线AB是☉O的切线.3.如图,以O为圆心的两个同心圆,大圆的弦AB是小圆的切线,点P为切点,求证:AP=BP.四、变式训练1.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AC于点E,以O为圆心,OE为半径作☉O.求证:AB是☉O的切线.2.如图,AB为☉O的直径,C为☉O上一点,AD和过C点的切线互相垂直,垂足为点D,求证:AC平分∠DAB.五、反思小结若证直线是圆的切线,1.当该直线过圆上一点时,则连接,再证;2.当没有指明该直线过圆上一点时,则过作,再证.六、达标训练一、选择题1.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是()A.AG=BGB.AB∥EFC.AD∥BCD.∠ABC=∠ADC1题图 2题图2.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°3.直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是()A.25°或155°B.50°或155°C.25°或130°D.50°或130°二、填空题4.如图,两个同心圆,若大圆的弦AB与小圆相切,大圆半径为10,AB=16,则小圆的半径为_______.4题图 5题图 6题图5.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为______________(度).6.如图,在Rt△AOB中,,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为_________.三、解答题7.如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?为什么?(2)若AC=2,,求OD的长度.8.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC=4,AC=5,求⊙O的直径的AE.24.2.2 直线和圆的位置关系(第2课时)学习目标1.理解切线长定义.2.掌握切线长定理并能运用切线长定理解决问题.3.掌握画三角形内切圆的方法、三角形内心的概念.重点:切线长定理及其应用.难点:与切线长定理有关的证明和计算问题学习过程设计一、设计问题,创设情境1.已知△ABC,作三个内角的角平分线,说说它们具有什么性质?2.直线和圆有什么位置关系?切线的判定定理和性质定理的内容是什么?3.过圆上一点可以作圆的几条切线?过圆外一点呢?圆内一点呢?二、揭示问题规律1.如图,经过平面内一点,画出☉O的切线.切线长定义: .2.如图,点P为☉O外一点,PA,PB为☉O的切线,A,B为切点.连接OP,则线段PA与PB,∠APO与∠BPO分别有什么关系?由此我们得到切线长定理: .推理形式:3.如图是一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使截下的圆与三角形的三边都相切?归纳:与三角形各边叫做三角形的内切圆,内切圆的圆心是三角形的交点,叫做三角形的.三、运用规律,解决问题【例1】如图,已知☉O是△ABC的内切圆,切点为D、E、F,如果AE=2,CD=1,BF=3,且△ABC 的面积为6.求内切圆的半径r.【例2】如图,△ABC的内切圆☉O与BC,CA,AB分别相切于点D,E,F,且AB=9,BC=14,CA=13,求AF,BD,CE的长.四、变式训练探究:PA,PB是☉O的两条切线,A,B为切点,直线OP交☉O于点D,E,交AB于点C.(1)写出图中所有的垂直关系;(2)写出图中与∠OAC相等的角;。
初三数学圆导学案圆
圆的导学案3.1圆(1)一、导入新知:1、说出几个与圆有关的成语和生活中与圆有关的物体。
思考:车轮为什么做成圆形?2、爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。
他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。
如下图中A 、B 、C 三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好? 二、学习内容:1、圆的定义:_______________ (运动的观点)2、画圆并体会确定一个圆的两个要素是 和3、点和圆的位置关系点P 到圆心O 的距离为d ,那么:点P 在圆 d r 点P 在圆 d r 点P 在圆 d r 4、圆的集合定义(集合的观点)(1)思考:平面上的一个圆把平面上的点分成哪几部分?(2)圆是到定点距离 定长的点的集合.圆的内部是到 的点的集合;圆的外部是 的点的集合 。
三、典型例题1·如图,Rt △ABC 的两条直角边BC=3,AC=4,斜边AB 上的高为CD ,若以C 为圆心,分别以r 1=2cm ,r 2=2.4cm ,r 3=3cm 为半径作圆,试判断D 点与这三个圆的位置关系.2·如何在操场上画出一个很大的圆?说一说你的方法.⇔⇔⇔rrrP PP3·已知:如图,OA、OB、OC是⊙O的三条半径,∠AOC=∠BOC,M、N分别为OA、OB的中点.求证:MC=NC.4·设⊙O的半径为2,点P到圆心的距离OP=m,且m使关于x的方程2x2-22x+m-1=0有实数根,试确定点P的位置.5·由于过渡采伐森林和破坏植被,使我国某些地区多次受到沙尘暴的侵袭.近来A市气象局测得沙尘暴中心在A市正东方向400km的B处,正在向西北方向移动(如图3-1-5),距沙尘暴中心300km的范围内将受到影响,问A市是否会受到这次沙尘暴的影响?四、课堂达标1、正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A ;点C在⊙A ;点D在⊙A 。
人教版数学六年级上册圆的认识导学案(精选3篇)
人教版数学六年级上册圆的认识导学案(精选3篇)〖人教版数学六年级上册圆的认识导学案第【1】篇〗一、教学目标(一)知识与技能根据生活实际,通过观察、操作、自学教材等活动认识圆,掌握圆的特征,了解圆的各部分名称并能用字母表示对应的名称。
(二)过程与方法了解可以应用不同的工具画圆,掌握用圆规画圆的方法,会用圆规正确地画圆。
运用画、折、量等多种手段,理解同圆或等圆中半径和直径的特征和关系。
(三)情感态度和价值观通过对圆的了解,进一步体会数学和日常生活的密切联系,提高数学学习的兴趣。
二、教学重难点教学重点:圆的各部分名称和特征,用圆规正确地画圆。
教学难点:归纳并理解半径和直径的关系。
三、教学准备多媒体课件、学具(圆规、尺子、剪刀、绳、钉子、各种物体表面有圆形的实物等)。
四、教学过程(一)情境创设,揭示课题1.谈话引入。
教师:我们学过的平面图形有哪些?(1)学生回忆交流:有长方形、正方形、三角形、平行四边形、圆……(2)今天我们要更深入地来认识“圆”。
(板书课题:圆的认识。
)2.列举生活实例。
教师:在生活中,圆形的物体随处可见。
(1)展示教材:从奇妙的自然界到文明的人类社会,从手工艺品到各种建筑……到处都可以看到大大小小的圆。
(2)教师:你能说说自己所见过的圆吗?(学生列举回答。
)【设计意图】通过简短的“平面图形有哪些”的谈话直接引出课题,简洁明了,同时无形中也巩固了“圆是平面图形”这一知识点;学生对圆已有一定的认识,因此通过主题图欣赏生活中的圆,让学生找找自己生活中见过的圆,使学生对圆有了初步的了解,激发了进一步学习圆的兴趣。
(二)利用素材,尝试画圆1.尝试运用不同的工具画圆。
教师:如果请你在纸上画出一个圆,你会怎样画?预设:(1)利用圆形的实物模型的外框画圆;(2)用线绕钉子旋转画圆;(3)用三角尺;(4)用圆规……2.运用圆规画圆。
(1)认识圆规。
课件出示圆规,帮助学生认识圆规。
圆规的组成:一只“带有针尖的脚”,一只“装有铅笔的脚”。
最新人教版九年级数学上册《圆》全单元导学案
最新人教版九年级数学上册《圆》全单元导学案最新人教版九年级数学上册《圆》导学案研究目标:1.理解圆的概念;2.掌握解答基本的圆题型。
研究重点:1.圆的概念。
研究难点:1.解答基本的圆题型。
教学流程:导课】前段时间我们研究了图形的旋转,图形的旋转创造了生活中的许多美好的事物!我们知道:一条线段至少旋转360°能和自身重合;一个等边三角形至少旋转120°能和自身重合;一个正方形至少旋转90°能和自身重合;思考:圆绕其圆心旋转任何度数都能和自身重合吗?圆是生活中常见的图形,许多物体都给我们以圆的形象,比如:摩天轮、硬币、呼啦圈、方向盘、车轮、月亮、太阳等等。
那么,圆的基本要素是圆心和半径,其中圆心确定了圆的位置,半径确定了圆的大小。
当点A绕点B旋转一周时,点A的运动轨迹其实就是一个圆,其中点B是圆心。
阅读质疑自主探究】自学要求:阅读课本P78-P79圆的定义:1.在同一平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。
2.到定点O的距离等于定长的所有的点组成的图形。
(含义也是判断点在圆上的方法)表示方法:“⊙O”读作“圆O”。
构成元素:1.圆心、半径(直径)。
2.弦:连接圆上任意两点的线段叫做弦。
直径是经过圆心的弦,是圆中最长的弦。
3.优弧:大于半圆的弧;半圆弧:直径分成的两条弧;劣弧:小于半圆的弧。
如图:优弧ABC记作,半圆弧AB记作,劣弧AC记作。
4.同心圆:圆心相同,半径不同的两圆。
5.等圆:能够重合的两个圆。
6.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
多元互动合作探究】1.如图,在圆O中,AC、BD为直径,求证:XXX。
2.如图,OA、OB为圆O的半径,C、D为OA、OB上两点,且AC=BD。
求证:AD=BC。
训练检测目标探究】1.下列说法正确的是:①直径是弦;②弦是直径;③半径是弦;④半圆是弧,但弧不一定是半圆;⑤半径相等的两个半圆是等弧;⑥长度相等的两条弧是等弧;⑦等弧的长度相等。
【人教A版】高中数学必修二:第4章《圆与方程》导学案设计(含答案) 第四章 4.2.1
4.2.1 直线与圆的位置关系[学习目标] 1.理解直线和圆的三种位置关系.2.会用代数与几何两种方法判断直线和圆的位置关系.知识点一 直线与圆的位置关系及判断思考 用代数法与几何法判断直线与圆的位置关系时,二者在侧重点上有什么不同? 答 代数法与几何法都能判断直线与圆的位置关系,只是角度不同,代数法侧重于“数”的计算,几何法侧重于“形”的直观. 知识点二 圆的切线问题 1.求圆的切线的方法(1)求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心的连线的斜率k ,则由垂直关系,知切线斜率为-1k ,由点斜式方程可求得切线方程.如果k =0或k 不存在,则由图形可直接得切线方程为y =y 0或x =x 0. (2)求过圆外一点(x 0,y 0)的圆的切线方程:几何法:设切线方程为y -y 0=k (x -x 0),即kx -y -kx 0+y 0=0.由圆心到直线的距离等于半径,可求得k ,切线方程即可求出.并注意检验当k 不存在时,直线x =x 0是否为圆的切线. 代数法:设切线方程y -y 0=k (x -x 0),即y =kx -kx 0+y 0,代入圆的方程,得到一个关于x 的一元二次方程,由Δ=0求得k ,切线方程即可求出.并注意检验当k 不存在时,直线x =x 0是否为圆的切线. 2.切线段的长度公式(1)从圆外一点P (x 0,y 0)引圆(x -a )2+(y -b )2=r 2的切线,则P 到切点的切线段长为 d =(x 0-a )2+(y 0-b )2-r 2.(2)从圆外一点P (x 0,y 0)引圆x 2+y 2+Dx +Ey +F =0的切线,则P 到切点的切线段长为d =x 20+y 20+Dx 0+Ey 0+F .题型一 直线与圆的位置关系的判断例1 已知直线方程mx -y -m -1=0,圆的方程x 2+y 2-4x -2y +1=0.当m 为何值时,圆与直线(1)有两个公共点; (2)只有一个公共点; (3)没有公共点.解 方法一 将直线mx -y -m -1=0代入圆的方程化简整理得, (1+m 2)x 2-2(m 2+2m +2)x +m 2+4m +4=0. ∵Δ=4m (3m +4),∴当Δ>0,即m >0或m <-43时,直线与圆相交,即直线与圆有两个公共点;当Δ=0,即m =0或m =-43时,直线与圆相切,即直线与圆只有一个公共点;当Δ<0,即-43<m <0时,直线与圆相离,即直线与圆没有公共点.方法二 已知圆的方程可化为(x -2)2+(y -1)2=4, 即圆心为C (2,1),半径r =2.圆心C (2,1)到直线mx -y -m -1=0的距离 d =|2m -1-m -1|1+m 2=|m -2|1+m 2.当d <2,即m >0或m <-43时,直线与圆相交,即直线与圆有两个公共点;当d =2,即m =0或m =-43时,直线与圆相切,即直线与圆只有一个公共点;当d >2,即-43<m <0时,直线与圆相离,即直线与圆没有公共点.反思与感悟 直线与圆位置关系判断的三种方法:(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系,但有一定的局限性,必须是过定点的直线系.跟踪训练1 若直线4x -3y +a =0与圆x 2+y 2=100有如下关系:①相交;②相切;③相离.试分别求实数a 的取值范围. 解 方法一 (代数法)由方程组⎩⎪⎨⎪⎧4x -3y +a =0,x 2+y 2=100,消去y ,得25x 2+8ax +a 2-900=0. Δ=(8a )2-4×25(a 2-900)=-36a 2+90 000. ①当直线和圆相交时,Δ>0, 即-36a 2+90 000>0,-50<a <50; ②当直线和圆相切时,Δ=0, 即a =50或a =-50; ③当直线和圆相离时,Δ<0, 即a <-50或a >50. 方法二 (几何法)圆x 2+y 2=100的圆心为(0,0),半径r =10, 则圆心到直线的距离d =|a |32+42=|a |5, ①当直线和圆相交时,d <r , 即|a |5<10,-50<a <50; ②当直线和圆相切时,d =r , 即|a |5=10,a =50或a =-50; ③当直线和圆相离时,d >r , 即|a |5>10,a <-50或a >50. 题型二 圆的切线问题例2 过点A (4,-3)作圆(x -3)2+(y -1)2=1的切线,求此切线的方程. 解 因为(4-3)2+(-3-1)2=17>1,所以点A 在圆外.(1)若所求直线的斜率存在,设切线斜率为k , 则切线方程为y +3=k (x -4).即kx -y -3-4k =0, 因为圆心C (3,1)到切线的距离等于半径1, 所以|3k -1-3-4k |k 2+1=1,即|k +4|=k 2+1, 所以k 2+8k +16=k 2+1.解得k =-158.所以切线方程为y +3=-158(x -4),即15x +8y -36=0. (2)若直线斜率不存在,圆心C (3,1)到直线x =4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x =4. 综上,所求切线方程为15x +8y -36=0或x =4.反思与感悟 1.过一点P (x 0,y 0)求圆的切线方程问题,首先要判断该点与圆的位置关系,若点在圆外,切线有两条,一般设点斜式y -y 0=k (x -x 0)用待定系数法求解,但要注意斜率不存在的情况,若点在圆上,则切线有一条,用切线垂直于过切点的半径求切线的斜率,再由点斜式可直接得切线方程.2.一般地,有关圆的切线问题,若已知切点则用k 1·k 2=-1(k 1,k 2分别为切线和圆心与切点连线的斜率)列式,若未知切点则用d =r (d 为圆心到切线的距离,r 为半径)列式.跟踪训练2 圆C 与直线2x +y -5=0相切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程.解 设圆C 的方程为(x -a )2+(y -b )2=r 2. 因为两切线2x +y -5=0与2x +y +15=0平行, 所以2r =|15-(-5)|22+12=4 5.所以r =2 5.所以|2a +b +15|22+1=r =25,即|2a +b +15|=10;①|2a +b -5|22+1=r =25,即|2a +b -5|=10.② 又因为过圆心和切点的直线与切线垂直, 所以b -1a -2=12.③联立①②③,解得⎩⎪⎨⎪⎧a =-2,b =-1.故所求圆C 的方程为(x +2)2+(y +1)2=20. 题型三 圆的弦长问题例3 求直线x -3y +23=0被圆x 2+y 2=4截得的弦长.解 方法一 直线x -3yy +23=0和圆x 2+y 2=4的公共点坐标就是方程组⎩⎨⎧x -3y +23=0,x 2+y 2=4的解. 解这个方程组,得⎩⎨⎧x 1=-3,y 1=1,⎩⎪⎨⎪⎧x 2=0,y 2=2. 所以公共点的坐标为(-3,1),(0,2),所以直线x -3y +23=0被圆x 2+y 2=4截得的弦长为(-3-0)2+(1-2)2=2. 方法二 如图,设直线x -3y +23=0与圆x 2+y 2=4交于A ,B 两点,弦AB 的中点为M ,则OM ⊥AB (O 为坐标原点), 所以|OM |=|0-0+23|12+(-3)2= 3.所以|AB |=2|AM |=2OA 2-OM 2 =222-(3)2=2. 反思与感悟求直线与圆相交时弦长的两种方法:(1)几何法:如图1,直线l 与圆C 交于A ,B 两点,设弦心距为d ,圆的半径为r ,弦长为|AB |,则有⎝⎛⎭⎫|AB |22+d 2=r 2. 即|AB |=2r 2-d 2.(2)代数法:如图2所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A (x 1,y 1),B (x 2,y 2), 则|AB |=(x 1-x 2)2+(y 1-y 2)2 =1+k 2|x 1-x 2| =1+1k2|y 1-y 2|, 其中k 为直线l 的斜率.跟踪训练3 直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A.1 B.2 C.4 D.46 答案 C解析圆的方程可化为C:(x-1)2+(y-2)2=5,其圆心为C(1,2),半径r=5.如图所示,取弦AB的中点P,连接CP,则CP⊥AB,圆心C到直线AB的距离d=|CP|=|1+4-5+5|12+22=1.在Rt△ACP中,|AP|=r2-d2=2,故直线被圆截得的弦长|AB|=4.数形结合思想例4直线y=x+b与曲线x=1-y2有且只有一个交点,则b的取值范围是()A.|b|= 2B.-1<b≤1或b=-2C.-1≤b<1D.非以上答案分析曲线x=1-y2变形为x2+y2=1(x≥0),表示y轴右侧(含与y轴的交点)的半圆,直线y=x+b表示一系列斜率为1的直线,利用数形结合思想在同一平面直角坐标系内作出两种图形求解.解析曲线x=1-y2含有限制条件,即x≥0,故曲线并非表示整个单位圆,仅仅是单位圆在y轴右侧(含与y轴的交点)的部分.在同一平面直角坐标系中,画出y=x+b与曲线x=1-y2(就是x2+y2=1,x≥0)的图象,如图所示.相切时,b=-2,其他位置符合条件时需-1<b≤1.故选B.答案B解后反思求解直线与曲线公共点的问题,首先要借助图形进行思考;其次要注意作图的完整准确,使得图形能够反映问题的全部;最后在求解中还要细心缜密,保证计算无误.1.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心答案C解析方法一圆心(0,0)到直线kx-y+1=0的距离d=11+k2≤1<2=r,∴直线与圆相交,且圆心(0,0)不在该直线上.方法二 直线kx -y +1=0恒过定点(0,1),而该点在圆内,故直线与圆相交,且圆心不在该直线上.2.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切 B.相交 C.相离 D.不确定 答案 B解析 ∵点M (a ,b )在圆x 2+y 2=1外,∴a 2+b 2>1. ∴圆心(0,0)到直线ax +by =1的距离d =1a 2+b2<1=r ,则直线与圆的位置关系是相交. 3.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x -y +5=0或2x -y -5=0 B.2x +y +5=0或2x +y -5=0 C.2x -y +5=0或2x -y -5=0 D.2x +y +5=0或2x +y -5=0 答案 D解析 依题意可设所求切线方程为2x +y +c =0,则圆心(0,0)到直线2x +y +c =0的距离为|c |22+12=5,解得c =±5.故所求切线的直线方程为2x +y +5=0或2x +y -5=0. 4.设A 、B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |等于( ) A.1 B. 2 C. 3 D.2 答案 D解析 直线y =x 过圆x 2+y 2=1的圆心C (0,0), 则|AB |=2.5.过原点的直线与圆x 2+y 2-2x -4y +4=0相交所得弦的长为2,则该直线的方程为________. 答案 2x -y =0解析 设所求直线方程为y =kx ,即kx -y =0.由于直线kx -y =0被圆截得的弦长等于2,圆的半径是1,因此圆心到直线的距离等于12-⎝⎛⎭⎫222=0,即圆心(1,2)位于直线kx -y =0上.于是有k -2=0,即k =2,因此所求直线方程是2x -y =0.1.判断直线和圆的位置关系的两种方法中,几何法要结合圆的几何性质进行判断,一般计算较简单.而代数法则是通过解方程组进行消元,计算量大,不如几何法简捷.2.一般地,在解决圆和直线相交时,应首先考虑圆心到直线的距离,弦长的一半,圆的半径构成的直角三角形.还可以联立方程组,消去y ,组成一个一元二次方程,利用方程根与系数的关系表达出弦长l =k 2+1·(x 1+x 2)2-4x 1x 2=k 2+1|x 1-x 2|.3.研究圆的切线问题时要注意切线的斜率是否存在.过一点求圆的切线方程时,要考虑该点是否在圆上.当点在圆上时,切线只有一条;当点在圆外时,切线有两条.一、选择题1.直线l :y -1=k (x -1)和圆x 2+y 2-2y =0的位置关系是( ) A.相离 B.相切或相交 C.相交 D.相切 答案 C解析 l 过定点A (1,1),∵12+12-2×1=0,∴点A 在圆上,∵直线x =1过点A 且为圆的切线,又l 斜率存在, ∴l 与圆一定相交,故选C.2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0 D.x -y +3=0答案 D解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.3.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2答案 B解析 由条件,知x -y =0与x -y -4=0都与圆相切,且平行,所以圆C 的圆心C 在直线x -y -2=0上.由⎩⎪⎨⎪⎧x -y -2=0,x +y =0,得圆心C (1,-1).又因为两平行线间距离d =42=22,所以所求圆的半径长r =2,故圆C 的方程为(x -1)2+(y +1)2=2.4.过点P (-3,-1)的直线l 与圆x 2+y 2=1相切,则直线l 的倾斜角是( ) A.0° B.45° C.0°或45° D.0°或60° 答案 D解析 设过点P 的直线方程为y =k (x +3)-1,则由直线与圆相切知|3k -1|1+k 2=1,解得k =0或k =3,故直线l 的倾斜角为0°或60°.5.圆x 2+y 2-4x +6y -12=0过点(-1,0)的最大弦长为m ,最小弦长为n ,则m -n 等于( )A.10-27B.5-7C.10-3 3D.5-322答案 A解析 圆的方程x 2+y 2-4x +6y -12=0化为标准方程为(x -2)2+(y +3)2=25. 所以圆心为(2,-3),半径长为5. 因为(-1-2)2+(0+3)2=18<25, 所以点(-1,0)在已知圆的内部, 则最大弦长即为圆的直径,即m =10. 当(-1,0)为弦的中点时,此时弦长最小. 弦心距d =(2+1)2+(-3-0)2=32, 所以最小弦长为2r 2-d 2=225-18=27, 所以m -n =10-27.6.在圆x 2+y 2+2x +4y -3=0上且到直线x +y +1=0的距离为2的点共有( ) A.1个 B.2个 C.3个 D.4个 答案 C解析 圆心为(-1,-2),半径r =22,而圆心到直线的距离d =|-1-2+1|2=2,故圆上有3个点满足题意.7.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( ) A.⎣⎡⎦⎤-34,0 B.⎝⎛⎦⎤-∞,-34∪[0,+∞) C.⎣⎡⎦⎤-33,33 D.⎣⎡⎦⎤-23,0 答案 A解析 设圆心为C ,弦MN 的中点为A ,当|MN |=23时,|AC |=|MC |2-|MA |2=4-3=1.∴当|MN |≥23时,圆心C 到直线y =kx +3的距离d ≤1. ∴|3k -2+3|k 2+(-1)2≤1,∴(3k +1)2≤k 2+1. 由二次函数的图象可得 -34≤k ≤0. 二、填空题8.设直线ax -y +3=0与圆(x -1)2+(y -2)2=4相交于A ,B 两点,且弦AB 的长为23,则a =________. 答案 0解析 圆心到直线的距离d =|a -2+3|a 2+1=22-(3)2=1,解得a =0. 9.圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________. 答案 (x -2)2+(y -1)2=4解析 设圆C 的圆心为(a ,b )(b >0),由题意得a =2b >0,且a 2=(3)2+b 2,解得a =2,b =1.所以所求圆的标准方程为(x -2)2+(y -1)2=4.10.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 答案2555解析 圆心为(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355,所以弦长为2r 2-d 2=222-(355)2=2555.11.若直线l :y =x +b 与曲线C :y =1-x 2有两个公共点,则b 的取值范围是_______. 答案 [1,2)解析 如图所示,y =1-x 2是一个以原点为圆心,长度1为半径的半圆,y =x +b 是一个斜率为1的直线,要使直线与半圆有两个交点,连接A (-1,0)和B (0,1),直线l 必在AB 以上的半圆内平移,直到直线与半圆相切,则可求出两个临界位置直线l 的b 值,当直线l 与AB 重合时,b =1;当直线l 与半圆相切时,b = 2.所以b 的取值范围是[1,2). 三、解答题12.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)求证不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时的l 的方程.(1)证明 因为l 的方程为(x +y -4)+m (2x +y -7)=0(m ∈R ),所以⎩⎪⎨⎪⎧2x +y -7=0,x +y -4=0,解得⎩⎪⎨⎪⎧x =3,y =1, 即l 恒过定点A (3,1).第11页 共11页 因为圆心为C (1,2),|AC |=5<5(半径),所以点A 在圆C 内,从而直线l 与圆C 恒交于两点.(2)解 由题意可知弦长最小时,l ⊥AC .因为k AC =-12,所以l 的斜率为2. 又l 过点A (3,1),所以l 的方程为2x -y -5=0.13.已知直线l 过点P (1,1)并与直线l 1:x -y +3=0和l 2:2x +y -6=0分别交于点A ,B ,若线段AB 被点P 平分,求:(1)直线l 的方程;(2)以原点O 为圆心且被l 截得的弦长为855的圆的方程. 解 (1)依题意可设A (m ,n ),B (2-m,2-n ), 则⎩⎪⎨⎪⎧ m -n +3=0,2(2-m )+(2-n )-6=0,即⎩⎪⎨⎪⎧m -n =-3,2m +n =0, 解得A (-1,2).又l 过点P (1,1),易得直线AB 的方程为x +2y -3=0, 即直线l 的方程为x +2y -3=0.(2)设圆的半径长为r ,则r 2=d 2+⎝⎛⎭⎫4552,其中d 为弦心距,d =35,可得r 2=5,故所求圆的方程为x 2+y 2=5.。
第二十四章《圆》导学案(全章)
AQP24.1.1圆(第1课时)【自主学习】 (一) 新知导学1.圆的运动定义:把线段OP 的一个端点O ,使线段OP 绕着点O 在 旋转 ,另一端点P 运动所形成的图形叫做圆,其中点O 叫做 ,线段OP 叫做 .以O 为圆心的圆记作 .2.圆的集合定义:圆是到 的点的集合. 3.点与圆的位置关系:如果⊙O 的半径为r ,点P 到圆心的距离为d ,那么 点P 在圆内⇔ ;点P 在圆上⇔ ; 点P 在圆外⇔ .【合作探究】1.如图,已知:点P 、Q ,且PQ=4cm.(1)画出下列图形: ①到点P 的距离等于2cm 的点的集合; ②到点Q 的距离等于3cm 的点的集合;(2)在所画图中,到点P 的距离等于2cm ;且到点Q 的距离等于3cm 的点有几个?请在图中将它们画出来.(3)在所画图中,到点P 的距离小于或等于2cm ;且到点Q 的距离大于或等于3cm 的点的集合是怎样的图形?把它画出来. 【自我检测】为圆心, 为半径的圆.为圆心,以 为半径的圆上. 3.矩形ABCD 边AB=6cm,AD=8cm ,(1)若以A 为圆心,6cm 长为半径作⊙A ,则点B 在⊙A______,点C 在⊙A_______,点D 在⊙A________,AC 与BD 的交点O 在⊙A_________;(2)若作⊙A ,使B 、C 、D 三点至少有一个点在⊙A 内,至少有一点在⊙A 外,则⊙A 的半径r 的取值范围是_______.4.一个点与定圆最近点的距离为4cm, 与最远点的距离是9cm ,则圆的半径是5.如图,已知在⊿ABC 中,∠ACB=900,AC=12,AB=13,CD ⊥AB,以C 为圆心,5为半径作⊙C ,试判断A,D,B 三点与⊙C 的位置关系左下图,一根长4米的绳子,一端拴在树上,另一端拴着 .7.已知:如右上图,△ABC ,试用直尺和圆规画出过A ,B ,C 三点的⊙O .8.△ABC 中,∠A=90°,AD⊥BC 于D ,AC=5cm ,AB=12cm ,以D 为圆心,AD 为半径作圆,则三个顶点与圆的位置关系是什么?画图说明理由.9.如右图,(1)若点O 为⊙O 的圆心,则线段__________是圆O 的半径; 线段________是圆O 的弦,其中最长的弦是______; ______是劣弧;______是半圆.(2)若∠A =40°,则∠ABO =______,∠C =______,∠ABC =______.10.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°,求∠C 及∠AOC 的度数.树S小狗4m24.1.1圆(第2课时)【自主学习】 (一)复习巩固: 1.圆的集合定义.2.点与圆的三种位置关系.⊙O 的半径为5cm ,点P 是⊙O 外一点,则OP 的长可能是( )(二)新知导学 1.与圆有关的概念①弦:连结圆上任意两点的 叫做弦. ②直径:经过 的弦叫做直径.③弧: ,弧分为:半圆( 所对的弧叫做半圆)、劣弧(小于 的弧)和优弧(大于 的弧).④同心圆: 相同, 不相等的两个圆叫做同心圆. ⑤等圆:能够互相 的两个圆叫做等圆.⑥等弧:在 或 中,能够互相 的弧叫做等弧. 2.同圆或等圆的性质:在同圆或等圆中,它们的 相等. 【合作探究】1.圆心都为O 的甲、乙两圆,半径分别为r 1和r 2,且r 1<OA <r 2,那么点A 在( ) A. 甲圆内 B.乙圆外 C. 甲圆外、乙圆内 D. 甲圆内、乙圆外2.下列判断:①直径是弦;②两个半圆是等弧;③优弧比劣弧长,其中正确的是( ) A. ① B.②③ C. ①②③ D.①③ 【自我检测】1.已知⊙O 中最长的弦为16cm ,则⊙O 的半径为________cm . 2.过圆内一点可以作出圆的最长弦_____条. 3.下列语句中,不正确的个数是( )①直径是弦; ②弧是半圆; ③长度相等的弧是等弧; •④经过圆内任一定点可以作无数条直径. A .1个 B .2个 C .3个 D .4个 4.下列语句中,不正确的是( )A .圆既是中心对称图形,又是旋转对称图形B .圆既是轴对称图形,又是中心对称图形C .当圆绕它的圆心旋转89°57′时,不会与原来的圆重合D .圆的对称轴有无数条,对称中心只有一个第6题ABA CD31圆周的弧叫做( ) A .劣弧 B .半圆 C .优弧 D .圆6.如图,⊙O 中,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,图中弦的条数有(• ) A .2条 B .3条 C .4条 D .5条7.以已知点O 为圆心,已知线段a 为半径作圆,可以作( ) A .1个 B .2个 C .3个 D .无数个8.如图,CD 是⊙O 的直径,∠EOD=84°,AE 交⊙O 于点B ,且AB=OC ,求∠A 的度数.9.如图,在△ABC 中,∠ACB=90°,∠A=40°;以C 为圆心、CB 为半径的圆交AB•于点D ,求∠ACD 的度数.10.如图,CD 是⊙O 的弦,CE=DF ,半径OA 、OB 分别过E 、F 点. 求证:△OEF 是等腰三角形.BACEDOO BAC FE11.如图,在⊙O中,半径OC与直径AB垂直,OE=OF,则BE与CF的大小关系如何?并说明理由。
【人教A版】高中数学必修二:第4章《圆与方程》导学案设计(含答案)
1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2,其中圆心是C(a,b),半径长是r.特别地,圆心在原点的圆的标准方程为x2+y2=r2.圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).(2)由于圆的方程均含有三个参变量(a,b,r或D,E,F),而确定这三个参数必须有三个独立的条件,因此,三个独立的条件可以确定一个圆.(3)求圆的方程常用待定系数法,此时要善于根据已知条件的特征来选择圆的方程.如果已知圆心或半径长,或圆心到直线的距离,通常可用圆的标准方程;如果已知圆经过某些点,通常可用圆的一般方程.2.点与圆的位置关系(1)点在圆上①如果一个点的坐标满足圆的方程,那么该点在圆上.②如果点到圆心的距离等于半径,那么点在圆上.(2)点不在圆上①若点的坐标满足F(x,y)>0,则该点在圆外;若满足F(x,y)<0,则该点在圆内.②点到圆心的距离大于半径则点在圆外;点到圆心的距离小于半径则点在圆内.注意:若P点是圆C外一定点,则该点与圆上的点的最大距离:d max=|PC|+r;最小距离:d min=|PC|-r.3.直线与圆的位置关系直线与圆的位置关系有三种:相交、相离、相切,其判断方法有两种:代数法(通过解直线方程与圆的方程组成的方程组,根据解的个数来判断)、几何法(由圆心到直线的距离d与半径长r的大小关系来判断).(1)当直线与圆相离时,圆上的点到直线的最大距离为d+r,最小距离为d-r,其中d为圆心到直线的距离.(2)当直线与圆相交时,圆的半径长、弦心距、弦长的一半构成直角三角形.(3)当直线与圆相切时,经常涉及圆的切线.①若切线所过点(x0,y0)在圆x2+y2=r2上,则切线方程为x0x+y0y=r2;若点(x0,y0)在圆(x -a)2+(y-b)2=r2上,则切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.②若切线所过点(x0,y0)在圆外,则切线有两条.此时解题时若用到直线的斜率,则要注意斜率不存在的情况也可能符合题意.(4)过直线l:Ax+By+C=0(A,B不同时为0)与圆C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)的交点的圆系方程是x2+y2+Dx+Ey+F+λ(Ax+By+C)=0,λ是待定的系数.4.圆与圆的位置关系两个不相等的圆的位置关系有五种:外离、外切、相交、内切、内含,其判断方法有两种:代数法(通过解两圆的方程组成的方程组,根据解的个数来判断)、几何法(由两圆的圆心距d 与半径长r,R的大小关系来判断).(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一 求圆的方程求圆的方程主要是联想圆系方程、圆的标准方程和一般方程,利用待定系数法解题.采用待定系数法求圆的方程的一般步骤为:(1)选择圆的方程的某一形式;(2)由题意得a ,b ,r (或D ,E ,F )的方程(组);(3)解出a ,b ,r (或D ,E ,F );(4)代入圆的方程.例1 有一圆与直线l :4x -3y +6=0相切于点A (3,6),且经过点B (5,2),求此圆的方程. 解 方法一 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心为C (a ,b ),由|CA |=|CB |,CA ⊥l , 得⎩⎪⎨⎪⎧(a -3)2+(b -6)2=(a -5)2+(b -2)2=r 2,b -6a -3×43=-1.解得a =5,b =92,r 2=254.∴圆的方程为(x -5)2+⎝⎛⎭⎫y -922=254. 方法二 设圆的方程为x 2+y 2+Dx +Ey +F =0,圆心为C ,由CA ⊥l ,A (3,6)、B (5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E 2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.∴所求圆的方程为:x 2+y 2-10x -9y +39=0.方法三 设圆心为C ,则CA ⊥l ,又设AC 与圆的另一交点为P ,则CA 方程为y -6=-34(x-3),即3x +4y -33=0. 又k AB =6-23-5=-2,∴k BP =12,∴直线BP 的方程为x -2y -1=0.解方程组⎩⎪⎨⎪⎧ 3x +4y -33=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =7,y =3.∴P (7,3).∴圆心为AP 中点⎝⎛⎭⎫5,92,半径为|AC |=52.∴所求圆的方程为(x -5)2+⎝⎛⎭⎫y -922=254. 跟踪训练1 若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是______. 答案 ()x -22+⎝⎛⎭⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心,且圆经过点(0,0)和(4,0),所以设圆心为(2,m ).又因为圆与直线y =1相切,所以(4-2)2+(0-m )2=|1-m |,所以m 2+4=m 2-2m +1,解得m =-32,所以圆的方程为(x -2)2+⎝⎛⎭⎫y +322=254. 题型二 直线与圆、圆与圆的位置关系(1)直线与圆的位置关系是高考考查的重点,切线问题更是重中之重,判断直线与圆的位置关系以几何法为主,解题时应充分利用圆的几何性质以简化解题过程.(2)解决圆与圆的位置关系的关键是抓住它的几何特征,利用两圆圆心距与两圆半径的和、差的绝对值的大小来确定两圆的位置关系,以及充分利用它的几何图形的形象直观性来分析问题.例2 如图所示,在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程; (2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.解 (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为直线l 被圆C 1截得的弦长为23,所以d =22-(3)2=1.由点到直线的距离公式得d =|-3k -1-4k |1+k 2,从而k (24k +7)=0.即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k (x -a ).因为圆C 1和圆C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k (-3-a )-b |1+k 2=⎪⎪⎪⎪5+1k (4-a )-b 1+1k2,整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b = -5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5, 因为k 的取值范围有无穷多个,所以⎩⎪⎨⎪⎧ a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎨⎧a =52,b =-12或⎩⎨⎧a =-32,b =132.这样点P 只可能是点P 1⎝⎛⎭⎫52,-12或点P 2⎝⎛⎭⎫-32,132. 经检验点P 1和P 2满足题目条件.跟踪训练2 已知圆M :(x -1)2+(y -1)2=4,直线l 过点P (2,3)且与圆M 交于A ,B 两点,且|AB |=23,求直线l 的方程.解 (1)当直线l 存在斜率时,设直线l 的方程为y -3=k (x -2),即kx -y +3-2k =0.作示意图如图,作MC ⊥AB 于C . 在Rt △MBC 中, |BC |=3,|MB |=2, 故|MC |=|MB |2-|BC |2=1,由点到直线的距离公式得|k -1+3-2k |k 2+1=1, 解得k =34.所以直线l 的方程为3x -4y +6=0.(2)当直线l 的斜率不存在时,其方程为x =2, 且|AB |=23,所以适合题意.综上所述,直线l 的方程为3x -4y +6=0或x =2. 题型三 与圆有关的最值问题在解决有关直线与圆的最值和范围问题时,最常用的方法是函数法,把要求的最值或范围表示为某个变量的关系式,用函数或方程的知识,尤其是配方的方法求出最值或范围;除此之外,数形结合的思想方法也是一种重要方法,直接根据图形和题设条件,应用图形的直观位置关系得出要求的范围.例3 在△ABO 中,|OB |=3,|OA |=4,|AB |=5,P 是△ABO 的内切圆上一点,求以|P A |,|PB |,|PO |为直径的三个圆面积之和的最大值与最小值. 解 如图所示,建立平面直角坐标系,使A ,B ,O 三点的坐标分别为A (4,0),B (0,3),O (0,0). 设内切圆的半径为r ,点P 的坐标为(x ,y ), 则2r +|AB |=|OA |+|OB |,∴r =1.故内切圆的方程为(x -1)2+(y -1)2=1, 整理得x 2+y 2-2x -2y =-1.①由已知得|P A |2+|PB |2+|PO |2=(x -4)2+y 2+x 2+(y -3)2+x 2+y 2 =3x 2+3y 2-8x -6y +25.② 由①可知x 2+y 2-2y =2x -1,③将③代入②得|P A |2+|PB |2+|PO |2=3(2x -1)-8x +25=-2x +22. ∵0≤x ≤2,∴|P A |2+|PB |2+|PO |2的最大值为22,最小值为18.又三个圆的面积之和为π⎝⎛⎭⎫|P A |22+π⎝⎛⎭⎫|PB |22+π⎝⎛⎭⎫|PO |22=π4(|P A |2+|PB |2+|PO |2), ∴以|P A |,|PB |,|PO |为直径的三个圆面积之和的最大值为112π,最小值为92π.跟踪训练3 已知实数x ,y 满足方程(x -3)2+(y -3)2=6,求x +y 的最大值和最小值. 解 设x +y =t ,由题意,知直线x +y =t 与圆(x -3)2+(y -3)2=6有公共点, 所以d ≤r ,即|3+3-t |2≤ 6.所以6-23≤t ≤6+2 3.所以x +y 的最小值为6-23,最大值为6+2 3.题型四 分类讨论思想分类讨论思想是中学数学的基本思想之一,是历年高考的重点,其实质就是将整体问题化为部分问题来解决,化成部分问题后,从而增加了题设的条件.在用二元二次方程表示圆时要分类讨论,在求直线的斜率问题时,用斜率表示直线方程时都要分类讨论.例4 已知直线l 经过点P (-4,-3),且被圆(x +1)2+(y +2)2=25截得的弦长为8,求直线l 的方程.解 圆(x +1)2+(y +2)2=25的圆心为(-1,-2),半径r =5.①当直线l 的斜率不存在时,则l 的方程为x =-4,由题意可知直线x =-4符合题意. ②当直线l 的斜率存在时,设其方程为y +3=k (x +4), 即kx -y +4k -3=0. 由题意可知⎝⎛⎭⎪⎫|-k +2+4k -3|1+k 22+⎝⎛⎭⎫822=52,解得k =-43,即所求直线方程为4x +3y +25=0.综上所述,满足题设的l 方程为x =-4或4x +3y +25=0.跟踪训练4 如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P . (1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解 (1)设圆A 的半径为r .由于圆A 与直线l 1:x +2y +7=0相切, ∴r =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意;②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0.连接AQ ,则AQ ⊥MN . ∵|MN |=219, ∴|AQ |=20-19=1, 则由|AQ |=|k -2|k 2+1=1,得k =34.直线方程为3x -4y +6=0.综上,直线l 的方程为x =-2或3x -4y +6=0. 题型五 数形结合思想数形结合思想:在解析几何中,数形结合思想是必不可少的,而在本章中,数形结合思想最主要体现在几何条件的转化上,尤其是针对“方法梳理”中提到的第二类问题,往往题目会给出动点满足的几何条件,这就不能仅仅依靠代数来“翻译”了,必须结合图形,仔细观察分析,有时可能需要比较“绕”的转化才能将一个看似奇怪(或者不好利用)的几何条件列出一个相对简洁的式子,但这样可以在很大程度上减少计算量,大大降低出错的机率. 例5 已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程. 解 画图如下:由直线方程易知l 2平行于x 轴,l 1与l 3互相垂直, ∴三个交点A ,B ,C 构成直角三角形, ∴经过A ,B ,C 三点的圆就是以AB 为直径的圆.由⎩⎪⎨⎪⎧ x -2y =0,y +1=0,解得⎩⎪⎨⎪⎧x =-2,y =-1.∴点A 的坐标为(-2,-1).由⎩⎪⎨⎪⎧ 2x +y -1=0,y +1=0,解得⎩⎪⎨⎪⎧x =1,y =-1.∴点B 的坐标为(1,-1).∴线段AB 的中点坐标为(-12,-1).又∵|AB |=|1-(-2)|=3.∴圆的方程是(x +12)2+(y +1)2=94.跟踪训练5 已知点A (-1,0),B (2,0),动点M (x ,y )满足|MA ||MB |=12,设动点M 的轨迹为C .(1)求动点M 的轨迹方程,并说明轨迹C 是什么图形; (2)求动点M 与定点B 连线的斜率的最小值;(3)设直线l :y =x +m 交轨迹C 于P ,Q 两点,是否存在以线段PQ 为直径的圆经过点A ?若存在,求出实数m 的值;若不存在,请说明理由. 解 (1)由题意,得|MA |=(x +1)2+y 2, |MB |=(x -2)2+y 2.∵|MA ||MB |=12,∴(x +1)2+y 2(x -2)2+y 2=12, 化简,得(x +2)2+y 2=4.∴轨迹C 是以(-2,0)为圆心,2为半径的圆. (2)设过点B 的直线为y =k (x -2). 由题意,得圆心到直线的距离d =|-4k |k 2+1≤2.解得-33≤k ≤33.即k min =-33. (3)假设存在,设P (x 1,y 1),Q (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =x +m ,(x +2)2+y 2=4,得2x 2+2(m +2)x +m 2=0. ∴x 1+x 2=-m -2,x 1x 2=m 22. ①y 1+y 2=m -2,y 1y 2=m 2-4m2. ②设以PQ 为直径经过点A 的圆的圆心为O ,则O 的坐标为O (x 1+x 22,y 1+y 22),|OA |=|OP |, (x 1+x 22+1)2+(y 1+y 22)2 =(x 1+x 22-x 1)2+(y 2-y 12)2. 整理得(x 1+x 2+2)2+(y 1+y 2)2=(x 1+x 2)2+(y 1+y 2)2-4x 1x 2-4y 1y 2,③ 将①②代入③得m 2-3m -1=0, 解得m =3±132.故当m =3±132时,存在线段PQ 为直径的圆经过点A .初中我们从平面几何的角度研究过圆的问题,本章则主要是利用圆的方程从代数角度研究了圆的性质,如果我们能够将两者有机地结合起来解决圆的问题,将在处理圆的有关问题时收到意想不到的效果.圆是非常特殊的几何图形,它既是中心对称图形又是轴对称图形,它的许多几何性质在解决圆的问题时往往起到事半功倍的作用,所以在实际解题中常用几何法,充分结合圆的平面几何性质.那么,我们来看经常使用圆的哪些几何性质:(1)圆的切线的性质:圆心到切线的距离等于半径;切点与圆心的连线垂直于切线;切线在切点处的垂线一定经过圆心;圆心、圆外一点及该点所引切线的切点构成直角三角形的三个顶点等等.(2)直线与圆相交的弦的有关性质:相交弦的中点与圆心的连线垂直于弦所在直线;弦的垂直平分线(中垂线)一定经过圆心;弦心距、半径、弦长的一半构成直角三角形的三边,满足勾股定理.(3)与直径有关的几何性质:直径是圆的最长的弦;圆的对称轴一定经过圆心;直径所对的圆周角是直角.。
圆导学案1
第二十四章圆测试1 圆一、基础知识填空1.在一个______内,线段OA绕它固定的一个端点O______,另一个端点A所形成的______叫做圆.这个固定的端点O叫做______,线段OA叫做______.以O点为圆心的圆记作______,读作______.2.战国时期的《墨经》中对圆的定义是________________.3.由圆的定义可知:(1)圆上的各点到圆心的距离都等于________;在一个平面内,到圆心的距离等于半径长的点都在________.因此,圆是在一个平面内,所有到一个________的距离等于________的________组成的图形.(2)要确定一个圆,需要两个基本条件,一个是________,另一个是________,其中,________确定圆的位置,______确定圆的大小.4.连结______________的__________叫做弦.经过________的________叫做直径.并且直径是同一圆中__________的弦.5.圆上__________的部分叫做圆弧,简称________,以A,B为端点的弧记作________,读作________或________.6.圆的________的两个端点把圆分成两条弧,每________都叫做半圆.7.在一个圆中_____________叫做优弧;_____________叫做劣弧.8.半径相等的两个圆叫做____________.二、填空题9.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.综合、运用、诊断10.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.11.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°,求∠C及∠AOC的度数.拓广、探究、思考12.已知:如图,△ABC,试用直尺和圆规画出过A,B,C三点的⊙O.测试2 垂直于弦的直径课堂学习检测一、基础知识填空1.圆是______对称图形,它的对称轴是______________________;圆又是______对称图形,它的对称中心是____________________.2.垂直于弦的直径的性质定理是____________________________________________.3.平分________的直径________于弦,并且平分________________________________.二、填空题4.圆的半径为5cm,圆心到弦AB的距离为4cm,则AB=______cm.5.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.6.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=______cm,∠AOB=______.7.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.8.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,且AB=CD,则圆心O到CD的距离是______.9.如图,P为⊙O的弦AB上的点,P A=6,PB=2,⊙O的半径为5,则OP=______.10.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.综合、运用、诊断11.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,求CD的长.12.已知:如图,试用尺规将它四等分.图1 图2 图3 图4 图5 图613.今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.(选自《九章算术》卷第九“句股”中的第九题,1尺=10寸).14.已知:⊙O的半径OA=1,弦AB、AC的长分别为2,3,求∠BAC的度数.15.已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离.拓广、探究、思考16.已知:如图,A,B是半圆O上的两点,CD是⊙O的直径,∠AOD=80°,B是的中点.(1)在CD上求作一点P,使得AP+PB最短;(2)若CD=4cm,求AP+PB的最小值.17.如图,有一圆弧形的拱桥,桥下水面宽度为7.2m,拱顶高出水面2.4m,现有一竹排运送一货箱从桥下经过,已知货箱长10m,宽3m,高2m(竹排与水面持平).问:该货箱能否顺利通过该桥?测试3 弧、弦、圆心角课堂学习检测一、基础知识填空1.______________的______________叫做圆心角. 2.如图,若长为⊙O 周长的nm,则∠AOB =____________. 3.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么______________________.4.在圆中,圆心与弦的距离(即自圆心作弦的垂线段的长)叫做弦心距,不难证明,在同圆或等圆中,如果两条弦相等,那么它们的弦心距也______.反之,如果两条弦的弦心距相等,那么_____________________. 二、解答题5.已知:如图,A 、B 、C 、D 在⊙O 上,AB =CD . 求证:∠AOC =∠DOB .综合、运用、诊断6.已知:如图,P 是∠AOB 的角平分线OC 上的一点,⊙P 与OA 相交于E ,F 点,与OB 相交于G ,H 点,试确定线段EF 与GH 之间的大小关系,并证明你的结论.7.已知:如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,且C 为的中点,若∠BAD =20°,求∠ACO的度数.拓广、探究、思考 8.⊙O 中,M 为的中点,则下列结论正确的是( ).A .AB >2AM B .AB =2AMC .AB <2AMD .AB 与2AM 的大小不能确定9.如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想与之间的关系,并证明你的猜想.10.如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.测试4 圆周角课堂学习检测一、基础知识填空1._________在圆上,并且角的两边都_________的角叫做圆周角.2.在同一圆中,一条弧所对的圆周角等于_________圆心角的_________.3.在同圆或等圆中,____________所对的圆周角____________.4._________所对的圆周角是直角.90°的圆周角______是直径.5.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.5题图6题图7题图6.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠F AE=______,∠DAB=______,∠EF A=______.7.如图,ΔABC是⊙O的内接正三角形,若P是上一点,则∠BPC=______;若M是上一点,则∠BMC=______.二、选择题8.在⊙O中,若圆心角∠AOB=100°,C是上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°9.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°C.38.5°D.101°10.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于( ).A.64°B.48°C.32°D.76°10题图11题图12题图13题图11.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于( ).A.37°B.74°C.54°D.64°12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于( ).A.69°B.42°C.48°D.38°13.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O的直径,BD交AC于点E,连结DC,则∠AEB等于( ).A.70°B.90°C.110°D.120°综合、运用、诊断14.已知:如图,△ABC内接于⊙O,BC=12cm,∠A=60°.求⊙O的直径.15.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.16.已知:如图,△ABC内接于圆,AD⊥BC于D,弦BH⊥AC于E,交AD于F.求证:FE=EH.17.已知:如图,⊙O的直径AE=10cm,∠B=∠EAC.求AC的长.拓广、探究、思考18.已知:如图,△ABC内接于⊙O,AM平分∠BAC交⊙O于点M,AD⊥BC于D.求证:∠MAO=∠MAD.19.已知:如图,AB是⊙O的直径,CD为弦,且AB⊥CD于E,F为DC延长线上一点,连结AF交⊙O 于M.求证:∠AMD=∠FMC.。
2.5.2 圆与圆的位置关系 导学案答案
2.5.2 圆与圆的位置关系【课前预习】知识点1.外切 相交 内切2.(3)Δ=0 Δ>0 d>r 1+r 2 |r 1-r 2|<d<r 1+r 2d=|r 1-r 2|诊断分析(1)√ (2)× (3)× (4)× [解析] (1)由两圆相交的概念知结论正确.(2)若两个圆没有公共点,则这两个圆可能外离也可能内含,故结论不正确.(3)若两圆外切,则两圆有且只有一个公共点,但反之不成立,若两圆有且只有一个公共点,则两圆可能外切也可能内切,故结论不正确.(4)当两圆的方程组成的方程组无解时,两圆外离或内含,故结论不正确.【课中探究】探究点一例1 (1)D (2)C [解析] (1)由题意得圆C 1:(x-1)2+(y+2)2=1,圆C 2:(x-2)2+(y+1)2=14,则两圆的圆心分别为C 1(1,-2),C 2(2,-1),所以圆心距d=|C 1C 2|=√(2-1)2+(-1+2)2=√2.因为1-12<√2<1+12,所以两圆相交,则这两个圆的公切线有2条.(2)由题意得|O 1O 2|=√(3+1)2+(-2-1)2=5.∵圆O 1和圆O 2相内切,∴|O 1O 2|=|r-1|,即|r-1|=5,解得r=6或r=-4(舍去).故选C .变式 (1)D (2)(√5,3√5) [解析] (1)圆C 2的方程可化为(x-m )2+y 2=m ,所以m>0,即两圆的圆心分别为C 1(0,0),C 2(m ,0).设圆C 1,C 2的半径分别为r 1,r 2,则r 1=2,r 2=√m ,所以|C 1C 2|=m=r 1+r 2=2+√m ,可得m=4.故选D .(2)易知圆C 1的圆心为C 1(0,0),半径为m ,由x 2+y 2-2x-4y-15=0,得(x-1)2+(y-2)2=20,所以圆C 2的圆心为C 2(1,2),半径为2√5.因为圆C 1与圆C 2恰有两条公切线,所以圆C 1与圆C 2相交,所以|2√5-m|<|C 1C 2|<2√5+m ,又|C 1C 2|=√(1-0)2+(2-0)2=√5,所以可得√5<m<3√5,即m 的取值范围是(√5,3√5).探究点二例2 (1)B (2)D [解析] (1)由x 2+(y-2)2=5和(x+2)2+y 2=5两式相减得弦AB 所在直线的方程为x+y=0,点(0,2)到直线x+y=0的距离d=√2=√2,所以|AB|=2×√5-2=2√3.故选B .(2)由x 2+y 2=1与x 2+y 2-2x+2y+F=0(F<1)两式相减得公共弦所在直线的方程为2x-2y-1-F=0.圆O 2的方程可化为(x-1)2+(y+1)2=2-F ,可得圆O 2的圆心为O 2(1,-1),半径r=√2-F ,则圆心O 2到直线2x-2y-1-F=0的距离d=√4+4=2√2,则(2√2)2+(√22)2=r 2=2-F ,可得F=-3,故r=√5.故选D .变式 解:(1)设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标是方程组{x 2+y 2+6x -4=0,x 2+y 2+6y -28=0的解, 将两方程相减,得x-y+4=0.因为A ,B 两点的坐标都满足此方程,所以x-y+4=0即为两圆公共弦所在直线的方程.(2)方法一:解(1)中的方程组,得{x =-1,y =3或{x =-6,y =-2.设所求圆的圆心坐标为(a ,b ),因为圆心在直线x-y-4=0上,所以b=a-4,则√(a +1)2+(a -4-3)2=√(a +6)2+(a -4+2)2,解得a=12,故所求圆的圆心坐标为(12,-72),半径为√892. 故所求圆的方程为(x -12)2+(y +72)2=892, 即x 2+y 2-x+7y-32=0.方法二:设所求圆的方程为x 2+y 2+6x-4+λ(x 2+y 2+6y-28)=0(λ≠-1),则其圆心坐标为(-31+λ,-3λ1+λ),代入x-y-4=0,解得λ=-7,故所求圆的方程为x 2+y 2-x+7y-32=0.探究点三例3 (1)ABC [解析] 设M (x ,y ),∵|MA|2+|MB|2=12,∴(x-2)2+y 2+x 2+(y-2)2=12,∴(x-1)2+(y-1)2=4.∵圆C :(x-a )2+y 2=1上存在点M ,使得|MA|2+|MB|2=12,∴圆C 与圆(x-1)2+(y-1)2=4相交或相切,∴1≤√(a -1)2+1≤3,∴1-2√2≤a ≤1+2√2,故选ABC .(2)解:由题意,圆C 1:x 2+(y+4)2=1,圆C 2:x 2+(y-2)2=1,可得两圆的半径都为1,两圆的圆心分别为C 1(0,-4),C 2(0,2). 由题意得|CC 1|=|CC 2|,可知圆心C 的轨迹是线段C 1C 2的垂直平分线,又因为线段C 1C 2的中点坐标为(0,-1),直线C 1C 2的斜率不存在,所以圆C 的圆心的轨迹方程为y=-1.变式 解:(1)设点P 的坐标为(x ,y ),点A 的坐标为(x 0,y 0),因为点B 的坐标是(6,5),且点P 是线段AB 的中点,所以{x =x 0+62,y =y 0+52,于是有{x 0=2x -6,y 0=2y -5①.因为点A 在圆C 1:(x-4)2+(y-3)2=4上运动,所以(x 0-4)2+(y 0-3)2=4②.把①代入②,得(2x-6-4)2+(2y-5-3)2=4,整理得(x-5)2+(y-4)2=1,所以点P 的轨迹C 2的方程为(x-5)2+(y-4)2=1.(2)将圆C1:(x-4)2+(y-3)2=4与圆C2:(x-5)2+(y-4)2=1的方程相减得 2x+2y-19=0.圆C2:(x-5)2+(y-4)2=1的圆心为(5,4),半径r=1,且圆心(5,4)到直线2x+2y-19=0的距离d=√22+22=√24,所以|MN|=2√r2-d2=2×√1-18=√142.。
九年级数学上册 24.1.1 圆导学案(含解析)(新版)新人教
圆一、新课导入1、圆是我们生活中常见的图形,你能列举出日常生活中有什么物体是圆形吗?2、对于圆,你了解它哪些方面的知识?你能画一个圆吗?二、学习目标1、掌握圆、弦、直径、弧、优弧、劣弧、半圆的概念。
2、能用符号表示圆、优弧、劣弧。
三、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
研读一、认真阅读课本要求:知道圆的定义,掌握圆心、半径,会用符号表示圆。
一边阅读一边完成检测一。
检测练习一、1、如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
2、线段OA叫圆的半径,点O叫做圆心。
3、圆的符号用⊙表示,圆心是O的圆表示为⊙O,读作圆O.完成尝试应用(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.圆是所有到定点O的距离等于定长r的点组成的图形.5、如图,四边形ABCD是正方形,对角线AC、BD交于点O.求证:点A、B、C、D在以O为圆心的圆上.证明:∵四边形ABCD是正方形,∴OA=OB=OC=OD,∵到定点的距离等于定长的点在以定点为圆心的圆上,∴点A、B、C、D在以点O为圆心的圆上.研读二、认真阅读课本要求:理解弦、直径的关系,掌握弧、半圆、优弧、劣弧的定义;会用符号表示弧。
一边阅读一边完成检测二。
检测练习二、6、连接圆上任意两点的线段叫做弦;直径是最长的弦。
7、如下图所示,圆上两点之间的部分叫做圆弧,简称弧;弧的符号是“⌒”。
8、直径把圆分成两个半圆,小于半圆的弧叫劣弧,用表示弧的两个端点的字母表示,例如:AC,读作弧AC;9、大于半圆的弧叫优弧,用表示弧的两个端点的字母和和表示弧上的一个点的字母表求,例如:ABC,读作弧ABC。
结论:直径是最长的弦;半圆也是弧,直径把一个圆分成了两个半圆.研读三、什么样的圆是等圆?什么样的弧是等弧?能够重合的两个圆是等圆;半径相等的圆是等圆;如果两个圆是等圆,那么这两个圆的半径相等。
(新)冀教版数学六上《圆(1)》导学案(附答案)
1圆(1)项目内容1.下面的图形是轴对称图形吗?2.用一个瓶盖或圆柱体在纸上描出一个圆并剪下来。
将圆形纸片对折,打开;换个方向再对折,打开;反复几次。
你发现了什么?分析与解答:把圆对折,折痕都过圆心,折痕两侧完全相同。
(1)圆形纸片对折后重合,得到的折痕是( )。
(2)半圆对折,这些折痕相较于一点,这点是( )。
折痕是( ),在同一个圆中所有的半径都( ),直径是半径的( )倍。
(3)圆是( )图形,直径所在的直线是圆的( )。
3.通过预习,我知道了圆是轴对称图形,( )所在的直线就是圆的对称轴。
一个圆有无数条( ),所以圆也有无数条对称轴。
4.预习后我还知道:在( )圆中,所有的直径都相等,半径都相等的,直径是半径的2倍。
5.圆的半径是( )cm, 圆的半径是( )cm,圆的直径是( )cm。
圆的直径是( )cm。
温馨提示学具准备:圆形纸片、三角板、直尺。
知识准备:对称的知识。
参考答案:1.是2.(1)直径(2)圆心半径相等2(3)轴对称对称轴3.直径直径4.等(或同)5.3648问题解决项目内容1.有6只灰兔,2只白兔,灰兔是白兔的几倍?2.客车外面有8名学生,车里面坐的学生人数是外面的4倍。
车里坐了多少名学生?分析与解答:客车外面有8名学生,车里面坐的学生人数是外面的4倍,就是车里面坐的学生人数有( )个8人。
列式为8×4。
计算时想口诀“四八( )”,所以结果是32。
3.小山羊拔了2棵白菜,老山羊拔的白菜棵数是小山羊的8倍。
老山羊拔了多少棵白菜?分析与解答:老山羊拔的白菜棵数是小山羊的8倍,求老山羊拔了多少棵白菜,就是求8个2是多少,用( )法计算,列式为8×2=16(棵)。
4.已知一个数,求这个数的几倍是多少,就是求几个这样的数是多少,列( )法算式解答。
5.解答完要注意些单位和答语。
6.花坛里有6盆月季花,牡丹花的盆数是月季花的4倍。
花坛里有牡丹花多少盆?7.二(1)班做生物标本。
《圆(2)》导学案(有答案)
BA CB 3.1 圆(2)我预学1. 如图,已知线段AB .(1) 请作出线段AB 的垂直平分线;若点P 为这条垂直平分线上的任意一点,则线段P A 、PB 有怎样的数量关系?(2) 满足到A 、B 两点的距离相等的点在怎样的一条直线上?(3)如果要你画一个符合要求的圆,你觉得应该告诉你什么条件(或要求)?2. (1)已知点A ,请过A 点任意作一个圆,这样的圆你能作 个;(2) 已知B 、C 两点,请过点B 、点C 任意作一个圆,这样的圆你能作 个.3. 阅读教材中的本节内容后回答:本节内容中有一个圆的重要性质“不在同一直线上的三个点确定一个圆”.(1)为什么这三个点必须不在同一直线上?(2)为什么过不在同一直线上的三个点的圆是唯一确定的?我求助预习后,你或许有些疑问,请写在下面的空白处:我梳理的三个点确定一个圆. 经过三角形各个顶点的圆叫做 , 叫做三角形的外心,这个三角形叫做圆的 三角形. 三角形的外心是三角形 的交点.我反思通过本节课的学习,你一定有很多感想和收获,请写在下面的空白处:我达标1.下列条件:①已知圆心和半径;②已知圆心和圆的任意一点;③已知三个点;④已知直径. 其中可以确定一个圆的条件是( )A. ①②③B. ①②④C. ①③④D. ①②③④2.等边三角形的外心在它的( )A. 外部B. 内部C. 边上D. 顶点处3.锐角△ABC 的∠A 逐渐增大时,它的外心逐渐向 边移动,当 ∠A 增大到90°时,外心在 处.4.如图,EF 所在的直线垂直平分线段AB ,利用这样的工具,最少使用 次,就可找到圆形工件的圆心.5.某地出土一个古代残破圆形瓷盘,为了复制该瓷盘,需要确定其圆心和半径. 请在图中用直尺和圆规找出瓷盘的圆心. (不要求写作法,但要保留作图痕迹)6.已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:点E是过A,B,D三点的圆的圆心.小贴士:根据圆的定义,待证的结论可转化为EA,EB,ED怎样的数量关系?。
《圆(1)》导学案(有答案)
3.1 圆(1)我预学1.用圆规画一个半径为2cm的圆.2.(1)你能向没有看到过圆的人(比如天生的盲人)描述什么样的图形叫圆吗?(2)请对比弦和弧的区别.3.阅读教材中的本节内容后回答:(1)圆心属于圆吗?半径属于圆吗?(2)点与圆的位置关系有哪几种情况?你觉得这样分类合理吗?为什么前面我们学习三角形、四边形时不探究学习点与三角形、四边形的位置关系?如果要探究你觉得可以吗?我求助预习后,你或许有些疑问,请写在下面的空白处:我梳理在内,线段绕它一个端点旋转一周,另一个端点所经过的曲线叫圆.内的两个圆叫等圆.错误!未找到引用源。
;错误!未找到引用源。
点在圆上;A B CD我反思通过本节课的学习,你一定有很多感想和收获,请写在下面的空白处:我达标1.如图,甲顺着大半圆从A 地到B 地,乙顺着两个小半圆从A 地到B 地,设甲、乙走过的路程分别为错误!未找到引用源。
、错误!未找到引用源。
,则( )A. 错误!未找到引用源。
<错误!未找到引用源。
B. 错误!未找到引用源。
=错误!未找到引用源。
C. 错误!未找到引用源。
>错误!未找到引用源。
D.不能确定2.下列命题:①直径是弦;②弦是直径;③弧是半圆;④半圆是弧;⑤一个圆中可以有无数条弦,但只有一条直径;⑥圆上两点之间的部分叫弦,其中真命题有3.⊙O 中,直径AB =a ,弦CD =b ,则a 与b 大小为 .4.一个点到圆的最大距离为11cm ,最小距离为5cm ,则圆的半径为 .5.画边长为3cm 的正方形ABCD ,连接AC ,BD 相交于点O ,以点A 为圆心,2cm 长为半径画圆,试判断点B ,C ,D ,O 四点与这个圆的位置关系.知识链接: 弦是连接圆上两点间的 ;弧是圆上两点间的 ;直径是经过 的弦;圆的任意一条直径的两个端点分圆成两条弧都叫做 .小贴士:注意点与圆位置关系的讨论.6.如图,城市A的正北方向50千米的B处,有一固定波段的无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的高速公路,现有一辆从A城开往C城的客车,其平均速度约为80千米/小时. (1)当客车从A城出发开往C城时,某人立即打开无线电收音机收听该波段内容,当班车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米?(离发射塔越近,信号越强)(2)客车从A城到C城共需行驶1.5小时,请你判断客车到C城后,该人还能接收到这个波段的无线电信号吗?请说明理由.小贴士:把客车看作一个点,无线电信号范围看作一个圆,则实际问题就可以转化为点与圆的位置关系了!。