食品化学:水分

合集下载

食品化学_水分

食品化学_水分
食品化学
第一章 水分
水和冰的结构 水和溶质的相互作用 食品中水的存在状态 水分活度与食品稳定性 等温吸湿曲线及其应用
主要内容
食品中水的存在
水和冰的结构与性质 水和溶质的相互作用 食品中水的存在状态 水分活度与食品稳定性 等温吸湿曲线及其应用 冻结与食品稳定性
1.1 食品中的水
肉类含水量在
70%左右。
水分含量与食品特性 4
面包和馒头含
水量在40%左 右。
水分含量与食品特性 5
米和面含水量
在12%左右。
水分含量与食品特性 6
饼干、糖果、
奶粉等食品的 含水量在8% 以下。
1.2 水的特性
水的物理性质和其他小分子有显著差异。

高熔点 高沸点 高热容量 高相变热 高表面张力 高介电常数 结冰时体积增大
毛细水
流动水
自由水
自由水
水分活度和水分含量
图:不同食品的等温吸湿曲线

等温吸湿曲线因食品 不同而性状各异。但 只有低水分食品才看 得出曲线的形状。
图:不同温度的等温吸湿曲线
因为水分活度随着
温度而变化,等温 吸湿曲线也随温度 变化。
等温吸湿曲线中的滞后效应
等温吸湿曲线可以用两种方法绘制:
水首先冷却成为过冷状态,然后围绕晶核结
冰,冰晶不断长大。快速冻结可以形成较多 晶核和较小冰晶,有利保持食品品质。
3 水和溶质的相互作用
纯水以氢键结合成连续结构,而如果在水中
加入其他物质,水的原有结构将受到打扰, 发生水-溶质相互作用。
其中包括几种情况:

离子与水的相互作用 亲水极性化合物与水的相互作用 疏水物质与水的相互作用

食品化学试题-水分

食品化学试题-水分

食品化学食品化学--水分水分A 卷一、 名词解释。

(本题共20分,每小题5分)(1) 过冷温度(2)吸湿等温线(MSI )(3)水分活度(4)疏水水合二、 选择题。

(本题共60分,每小题4分)(1)水分子中O -H 核间的距离、氧和氢的范德瓦尔斯半径分别为( )A. 0.276nm ;0.16nm ;0.14nmB. 0.276nm ;0.14nm ;0.12nmC. 0.096nm ;0.16nm ;0.14nmD. 0.096nm ;0.14nm ;0.12nm(2)能与水形成笼形水合物的基团是( )A. 具有氢键键合能力的中性基团B. 非极性物质C. 离子或离子基团D. 疏水性物质(3)下列说法错误的是( )A. 食品的回吸过程一般比解吸过程时的含水量更高。

B. 吸湿等温线的三个区间之间没有明显的分界线。

C. 食品中水分的相转移主要形式为水分蒸发和蒸气凝结。

D. 影响食品水分蒸发的主要因素是食品的温度和环境水蒸压。

(4)食品化学反应的最大反应速度一般发生在含水量( )的食品中A. 0.2~0.3B. 0.25~0.66C. 0.5~0.65D. 0.7~0.9(5)下列说法正确的是( )A. 等温线每一个区间之间的水都不能发生交换。

B. 往等温线区间Ⅲ中加水,对区间Ⅱ水的性质影响并不大。

C. 等温线区间Ⅰ和Ⅱ中水都不具有溶剂能力。

D. 等温线区间Ⅱ的水主要靠化学吸附结合。

(6)水分蒸发会对以下食品产生较大不良影响的是( )A. 牛肉干B. 面粉C. 麦片D. 苹果(7)食品冻结时组织结构会被破坏,这主要是因为( )A. 冰的刚性结构破坏了食品的组织结构B. 温度过低,使原本维持食品组织结构的成分失去了作用C. 水的密度较低,水结冰时表现出异常的膨胀特性D. 水分子的缔和作用随温度的下降而减弱,使本来靠水分子维系的组织结构变得松散(8)下列哪种物质对纯水的正常结构有明显的破坏作用?()A.乙醇B. 丙酮C. 尿素D. 氯化氨(9)下列食品的吸湿等温线呈S形的是()A. 天然大米淀粉B. 荔枝C. 咖啡D. 糖果(10)吸湿等温线区间Ⅰ和Ⅱ上的水分特性在以下哪方面有共同点()A. 溶剂能力B. 冻结能力C. 水分状态D. 微生物利用(11)降低水分活度可以提高食品稳定性的原因,请选出下列不正确的答案()A. 降低水分活度可使食品中自由水的比例减小B. 降低水分活度可抑制食品中的离子反应C. 降低水分活度可直接杀死食品中的微生物D. 降低水分活度可以抑制食品中酶的活力(12)以下相同含水量的哪种食品最容易腐败()A. 鸡肉B. 鳕鱼肉C. 香蕉D. 苹果(13)下列对水分活度对非酶褐变的影响描述不正确的是( )A. 一般情况下,浓缩的液态食品和低湿食品位于非酶褐变的最适合水分含量范围内B. 水分活度在一定范围内时,非酶褐变随着a W的增大而增大C. 水分活度大于褐变高峰的a W值时,由于溶质的浓度下降而导致褐变速度减慢D. 水分活度在0.6~0.2时非酶褐变会受到抑制而减弱(14)以下关于水分活度对脂肪氧化酸败的影响不正确的是()A. 在干燥的样品中加入水会明显的促进氧化B. 微量金属可以催化氧化作用的初期反应C. 当a W值已较大时,进一步加水可降低氧化速度D. 水分活度对脂肪氧化酸败呈阶段性的影响(15)由以下的图,不能得到的结论是()A. 水分活度的对数在不太宽的温度范围内随温度升高而正比例升高B. 水分含量少时,温度变化所引起的a w的变化小C. 水分含量少时,温度变化所引起的a w的变化大D. 横坐标表示温度的值越来越小三、是非题。

食品化学 第二章 水分

食品化学 第二章 水分

18种同位素变体 量极少
水分子的缔合作用
一个水分子可以和周围四个水分子缔合, 形成三维空间网络结构。
2015年10月25日
第二章 水分
水分子缔合的原因:
H-O键间电荷的非对称分布使H-O键具
有极性,这种极性使分子之间产生引力. 由于每个水分子具有数目相等的氢键 供体和受体,因此可以在三维空间形成 多重氢键. 静电效应.
R(水合的)+R(水合的)→R2(水合 偶极-疏水性物质 疏水相互作用ΔG<0 的)+水
2015年10月25日
疏水水合ΔG>0
第二章 水分
1、水与离子和离子基团的相互作用
类 型 实 例 作用强度 (与水-水氢键比)
偶极-离子
水-游离离子 较大 水-有机分子上的带电基团 (离子水合作用)
水-蛋白质NH 水-蛋白质CO 水-侧链OH 水+R→R(水合的) R(水合的)+R(水合的)→R2 (水合的)+水

水分含量不是一个腐败性的可靠指标
水分活度Aw 水与非水成分缔合强度上的差别 比水分含量更可靠,也并非完全可靠

与微生物生长和许多降解反应具有相关性
第二章 水分
2015年10月25日
第四节
f Aw f0 f p f 0 po
差别1%
2015年10月25日
水分活度
f ——溶剂(水)的逸度 f0——纯溶剂(水)的逸度 逸度:溶剂从溶液逃脱的趋势
p Aw po
严格
p Aw po
第二章 水分
仅适合理想溶液
RVP,相对蒸汽
第四节
水分活度
一、定义: 指食品中水的蒸汽压和该温度下纯水 的饱和蒸汽压的比值
Aw=P/P0

食品化学习题与答案解析

食品化学习题与答案解析

习题集及答案卢金珍生物工程学院第二章水分一、名词解释1.结合水2.自由水3.毛细管水4.水分活度5.滞后现象6.吸湿等温线7.单分子层水8.疏水相互作用二、填空题1. 食品中的水是以自由水、单分子层水、多分子层水、化合水等状态存在的。

2. 水在食品中的存在形式主要有自由水和结合水两种形式。

3. 水分子之间是通过氢键相互缔合的。

4. 食品中的结合水不能为微生物利用。

5. 食品中水的蒸汽压p与纯水蒸汽压p0的比值称之为水分活度,即食品中水分的有效浓度。

6. 个水分子通过氢键结合,空间有相等数目的氢键给体和受体。

7. 由化学键联系着的水一般称为结合水,以联系着的水一般称为自由水。

8.在一定温度下,使食品吸湿或干燥,得到的食品水分活度与食品水分含量的关系曲线称为水分等温吸湿线。

9. 温度在冰点以上,食品的组分和温度影响其Aw;温度在冰点以下,温度影响食品的Aw。

10. 回吸和解吸等温线不重合,把这种现象称为滞后现象。

11、在一定A W12。

13、单个水分子的键角为__104°5′_______,接近正四面体的角度_109°28′_____,O-H 核间距_0.96_____,氢和氧的德华半径分别为1.2A0和1.4A0。

14、单分子层水是指__与非水物质或强极性基团结合的第一分子层水___,其意义在于可准确预测干制品最大稳定性时最大水分含量___。

15、结合水主要性质为:①零下40°不冻结②不能为微生物利用③不能作为溶剂④与纯水相比分子运动为零。

三、选择题1、属于结合水特点的是( BCD。

A具有流动性 B在-40℃下不结冰C不能作为外来溶质的溶剂 D具有滞后现象2、结合水的作用力有( ABCA配位键 B氢键 C部分离子键 D毛细管力3、属于自由水的有( BCD。

A单分子层水 B毛细管水 C自由流动水 D滞化水4、可与水形成氢键的中性基团有( ABCDA羟基 B氨基 C羰基 D羧基5、高于冰点时,影响水分活度A w的因素有( CD)。

食品化学试题-水分

食品化学试题-水分

食品化学食品化学--水分水分A 卷一、 名词解释。

(本题共20分,每小题5分)(1) 过冷温度(2)吸湿等温线(MSI )(3)水分活度(4)疏水水合二、 选择题。

(本题共60分,每小题4分)(1)水分子中O -H 核间的距离、氧和氢的范德瓦尔斯半径分别为( )A. 0.276nm ;0.16nm ;0.14nmB. 0.276nm ;0.14nm ;0.12nmC. 0.096nm ;0.16nm ;0.14nmD. 0.096nm ;0.14nm ;0.12nm(2)能与水形成笼形水合物的基团是( )A. 具有氢键键合能力的中性基团B. 非极性物质C. 离子或离子基团D. 疏水性物质(3)下列说法错误的是( )A. 食品的回吸过程一般比解吸过程时的含水量更高。

B. 吸湿等温线的三个区间之间没有明显的分界线。

C. 食品中水分的相转移主要形式为水分蒸发和蒸气凝结。

D. 影响食品水分蒸发的主要因素是食品的温度和环境水蒸压。

(4)食品化学反应的最大反应速度一般发生在含水量( )的食品中A. 0.2~0.3B. 0.25~0.66C. 0.5~0.65D. 0.7~0.9(5)下列说法正确的是( )A. 等温线每一个区间之间的水都不能发生交换。

B. 往等温线区间Ⅲ中加水,对区间Ⅱ水的性质影响并不大。

C. 等温线区间Ⅰ和Ⅱ中水都不具有溶剂能力。

D. 等温线区间Ⅱ的水主要靠化学吸附结合。

(6)水分蒸发会对以下食品产生较大不良影响的是( )A. 牛肉干B. 面粉C. 麦片D. 苹果(7)食品冻结时组织结构会被破坏,这主要是因为( )A. 冰的刚性结构破坏了食品的组织结构B. 温度过低,使原本维持食品组织结构的成分失去了作用C. 水的密度较低,水结冰时表现出异常的膨胀特性D. 水分子的缔和作用随温度的下降而减弱,使本来靠水分子维系的组织结构变得松散(8)下列哪种物质对纯水的正常结构有明显的破坏作用?()A.乙醇B. 丙酮C. 尿素D. 氯化氨(9)下列食品的吸湿等温线呈S形的是()A. 天然大米淀粉B. 荔枝C. 咖啡D. 糖果(10)吸湿等温线区间Ⅰ和Ⅱ上的水分特性在以下哪方面有共同点()A. 溶剂能力B. 冻结能力C. 水分状态D. 微生物利用(11)降低水分活度可以提高食品稳定性的原因,请选出下列不正确的答案()A. 降低水分活度可使食品中自由水的比例减小B. 降低水分活度可抑制食品中的离子反应C. 降低水分活度可直接杀死食品中的微生物D. 降低水分活度可以抑制食品中酶的活力(12)以下相同含水量的哪种食品最容易腐败()A. 鸡肉B. 鳕鱼肉C. 香蕉D. 苹果(13)下列对水分活度对非酶褐变的影响描述不正确的是( )A. 一般情况下,浓缩的液态食品和低湿食品位于非酶褐变的最适合水分含量范围内B. 水分活度在一定范围内时,非酶褐变随着a W的增大而增大C. 水分活度大于褐变高峰的a W值时,由于溶质的浓度下降而导致褐变速度减慢D. 水分活度在0.6~0.2时非酶褐变会受到抑制而减弱(14)以下关于水分活度对脂肪氧化酸败的影响不正确的是()A. 在干燥的样品中加入水会明显的促进氧化B. 微量金属可以催化氧化作用的初期反应C. 当a W值已较大时,进一步加水可降低氧化速度D. 水分活度对脂肪氧化酸败呈阶段性的影响(15)由以下的图,不能得到的结论是()A. 水分活度的对数在不太宽的温度范围内随温度升高而正比例升高B. 水分含量少时,温度变化所引起的a w的变化小C. 水分含量少时,温度变化所引起的a w的变化大D. 横坐标表示温度的值越来越小三、是非题。

名词解释 食品化学

名词解释 食品化学
这个过程称为变性。 5. 蛋白质的复性:当引起变性的因素解除以后,蛋白质恢复到原状,这个过程称为复性。 6. 蛋白质的功能性质:除营养价值外的那些对食品需宜特性有利的蛋白质的物理化学性质。 7. 水合:蛋白质的水合是通过蛋白质分子表面上的各种极性基团与水分子的相互作用而产生的。 8. 蛋白质的持水力:指蛋白质将水截留在其组织中的能力,被截留的水包括有吸附水、物理截留水和流
制的等温线不相互重叠,这种不重叠性称为滞后现象。 7. 无定形态:指物质的所处的一种非平衡、非结晶状态,当饱和条件占优势并且通知保持非结晶时,
此时形成的固体就是无定形态。 玻璃态:指既像固体一样具有一定的形状和体积,又像液体一样分子间排列只是近似有序,因此它是非
晶态或无定形态。 橡胶态:指大分子聚合物转变成柔软而具有弹性的固体时的状态,分子具有相当的形变。 黏流态:指大分子聚合物链能自由运动,出现类似一般液体的黏性流动的状态。 8. 玻璃化转变温度:指非晶态的食品体系从玻璃态到橡胶态的转变时的温度。是特殊的,指食品体系在 冰形成时具有最大冷冻浓缩效应的玻璃化转变温度。 9. 饱和湿度差:空气的饱和湿度与同一温度下空气中的绝对湿度之差。 10. 蒸汽凝结:空气中的水蒸气在食品表面凝结成液体水的现象。 11. 分子移动性(Mm):也称分子流动性,是分子的旋转移动和平动移动的总度量。
15. 辐解:辐照导致油脂降解的反应称为辐解。 16. 过氧化值(POV):指 1kg 油脂中所含氢过氧化物的毫摩尔数(AV):指中和 1g 油脂中游离脂肪酸所需的氢氧化钾的毫克数。
皂化价(SV):1g 油脂完全皂化时所需要的氢氧化钾毫克数。 二烯值(DV):100g 油脂中所需顺丁烯二酸酐换算成碘的克数。 18. 油脂的精炼中 脱胶:应用物理、化学或物理化学方法将粗油中的胶溶性杂志脱除的工艺过程。 脱酸:游离脂肪酸影响油脂的稳定性和风味,可采用加碱中和的方法除去游离脂肪酸,又称为碱炼。 脱色:用吸附剂除去粗油中影响油脂稳定性的色素的过程。 脱臭:采用减压蒸馏的方法除去油脂中的一些非需宜的异味物质的过程。 19. 油脂的分提:在一定温度下,利用油脂中各种三酰基甘油的熔点差异及在不同溶剂中溶解度的差异通过 分步结晶,使不同的三酰基甘油因分相而分离的加工方法。 干法分提:指在无有机溶剂存在的情况下,将熔化的油脂缓慢冷却,直至较高熔点的三酰基甘油选择性

食品化学水分PPT课件

食品化学水分PPT课件
食品加工过程中,水分的含量 和状态会发生变化,进而影响 食品的品质和安全性。未来研 究将重点关注水分在食品加工 过程中的变化规律及其对产品 品质的影响。
探索降低食品中水分活度 的方法
降低食品中水分的活度可以提 高食品的稳定性和保质期。未 来研究将致力于探索新的降低 食品中水分活度的方法和技术 。
THANKS
食品化学水分ppt课 件
目录
• 食品中水分概述 • 食品中水分测定方法 • 不同类型食品中水分特点 • 食品加工过程中水分变化及控制
目录
• 食品贮藏过程中水分变化及控制 • 总结与展望
01
食品中水分概述
水分在食品中存在形式
01
02
03
游离水
以游离状态存在,是食品 的主要水分形式,影响食 品的口感和保水性。
可以更好地控制食品的质量和安全性,保障消费者的健康。
02 03
指导食品加工和贮藏
食品加工和贮藏过程中,水分的含量和状态对食品的口感、色泽、营养 价值和保质期等均有重要影响。因此,对食品中水分的研究可以为食品 加工和贮藏提供理论指导。
推动食品工业发展
随着食品工业的不断发展,对食品品质和安全性的要求也越来越高。深 入研究食品中的水分,可以为食品工业的技术创新和产品升级提供支持。
结合水
与食品成分紧密结合,不 易蒸发,影响食品的质地 和风味。
结晶水
以结晶状态存在,对食品 的口感和稳定性有重要影 响。
水分对食品性质影响
物理性质
影响食品的硬度、弹性、 黏性等物理性质。
化学性质
参与食品的化学反应,如 水解、氧化等,影响食品 的色泽、风味和营养价值。
微生物生长
适宜的水分活度有助于微 生物生长,过高或过低的 水分活度会抑制微生物生 长。

食品化学关于水分章节的练习题

食品化学关于水分章节的练习题

食品化学关于水分章节的练习题中国海洋大学食品化学考研复习题之水分一、填空题1从水分子结构来看,水分子中氧的_______个价电子参与杂化,形成_______个_______杂化轨道,有_______的结构。

2冰在转变成水时,净密度_______,当继续升温至_______时密度可达到_______,继续升温密度逐渐_______.3液体纯水的结构并不是单纯的由_______构成的_______形状,通过_______的作用,形成短暂存在的_______结构。

4离子效应对水的影响主要表现在_______、_______、_______等几个方面。

5在生物大分子的两个部位或两个大分子之间,由于存在可产生_______作用的基团,生物大分子之间可形成由几个水分子所构成的_______.6当蛋白质的非极性基团暴露在水中时,会促使疏水基团_______或发生_______,引起_______;若降低温度,会使疏水相互作用_______,而氢键_______.7食品体系中的双亲分子主要有_______、_______、_______、_______、_______等,其特征是_______.当水与双亲分子亲水部位_______、_______、_______、_______、_______等基团缔合后,会导致双亲分子的表观_______.8一般来说,食品中的水分可分为_______和_______两大类。

其中,前者可根据被结合的牢固程度细分为_______、_______、_______,后者可根据其食品中的物理作用方式细分为_______、_______.9食品中通常所说的水分含量,一般是指_______.10水在食品中的存在状态主要取决于_______、_______、_______.水与不同类型溶质之间的相互作用主要表现在_______、_______、_______等方面。

11一般来说,大多数食品的等温线呈_______形,而水果等食品的等温线为_______形。

食品化学--水分课件

食品化学--水分课件
2、邻近水——处于非水组分亲水性最强的基团周围的 第一层位置,与离子或离子基团缔合的水,主要结 合力是水-离子、水-偶极缔合作用、水-溶质氢键
• 单分子层水 3、多层水——处于第一层的剩余位置的水和在邻近水
的外层形成的几个水层,主要结合力是水-水、水溶质氢键
24
自由水
1、滞化水——被组织中的显微和亚显微结构与膜所 阻留住的水
12
三、食品中水的存在状态
• 水与溶质的相互作用: 1、水与离子和离子基团 2、水与具有氢键键合能力的中性基团 3、水与非极性物质
13
1、水与离子和离子基团
邻近NaCl的水分子的可能排列方式
离子水合作用
O O
Na+
O O
O O
ClO
O
14
离子对水结构的影响
• 极化力——电荷除以半径 • 1、极化力小的离子增加水的流动性,
• 为什么3.98 ℃时水的密度最大?
9
冰晶的基本结构
• 低密度的刚性 结构,基本结 构为晶胞(右 图)
• O—O核间最近的距 离为0.276nm
• O—O—O键约为
109°
10
冰晶的六方形结构
四面体亚结构
0.452nm
11
冰晶的形成
• 纯水在0 ℃时一定会结冰吗? • 晶核的形成,过冷温度 • 冷冻食品时为什么要速冻?
22
three
食品中水的存在状态
1、 结合水——指存在于溶质或其他非水组 分附近的、与溶质分子之间通过化学键的 力结合的那部分水,分为化合水、邻近水 和多层水
2、自由水——指没有被非水物质化学结合 的水,又分为滞化水、毛细管水和自由流 动水
23
结合水

食品化学 第二章___水

食品化学 第二章___水

#食品中水分与溶质间的相互关系
1. 水与离子和离子基团的相互作用
作用力: 极性基团、偶极—离子相互作用 特点: 阻碍水分子流动的能力大于其它溶质 水—离子键>水—水氢键 破坏水的正常结构,阻碍冰的形成
产生水合离子作用的离子分类
结构破坏离子:
能阻碍水形成网状结构,这类盐的溶液比纯水的流动性大 特点:离子半径大,电场强度较弱。如K+、Cl-、Rb+、NH4+、Br-、 I-等 结构促进离子: 有助于水形成网状结构,这类盐的溶液比纯水的流动性小 特点:离子半径小,电场强度较强。如Li+、Na+、H3O+、Ca2+、Mg2+、 Al3+等
Aw与温度的关系


P、P。和ERH与T有关 故 Aw = P/P。= ERH/100也与T有关
aw与温度的关系符合克劳休斯公式:
dlnaw/d(1/T) = -ΔH/R


当含水量相等时,温度越高,aw越大
温度变化对水活性产生的效应影响密封袋装或罐 装食品的稳定性 aw还与食品组成有关
较大温度范围,lnaw对1/T并非为直线
Aw > 0.8
Aw↑ V ↓ (稀释浓度)
Aw与非酶反应的关系
3. Aw与水溶性色素分解、维生素分解 Aw ↑ V分解 ↑
* *
结冰对食品稳定性影响
结冰时食品发生变化
1.非冻结相中,溶质变浓、产生浓缩效应 未冻结的pH、粘度、离子强度、氧化还原电位、胶体性质等发生
变化,加速一些化学反应。例如:
能与蛋白质分子产生疏水相互作用
水分活度与食品稳定性
* * 水分活度的意义 问题: 含水18%的果脯与含水18%的小麦比较,哪种耐储藏? 定义: 食品中水的蒸汽分压与同温度下纯水饱和蒸汽压之比表示

食品化学——水

食品化学——水

(二)绘制
等温吸湿曲线的绘制
高水分食品等温吸湿曲线
低水分食品等温吸湿曲线
(三)形状
等温吸湿曲线的形状
大多数食品的MSI 是S形。 水果、糖果和咖 啡提取物含有大量 糖和其他可溶性小 分子,而聚合物的 含量不高,呈J形。
(四)分区
Ⅰ区:Aw=0-0.25
含水量:0-0.07gH2O/g干物 质,0-7%。

H2 O



H2O
…+
H2O
-… +
H2O

静电相互作用 氢键
液态水的缔合结构
三维氢键: 氢键给体= 氢键受体
氢键数目最多
水的性质异常
液态水的缔合结构
液态水的结构模型 混合式模型 连续式模型 填隙式模型
(三) 固态水-冰
固态水的缔合结构
冰为晶体结构, 冰的基本结构单元是晶胞。
晶胞含4个水分子
(三) 测定方法 1 2 3 4
水分活度的测定方法
水分活度仪 扩散方法(恒定相对湿度平衡室法) 相对湿度传感器测定法 n2(溶质的摩尔数) 冰点降低法 =G×△Tt/1000Kt
G:溶剂的克数 △Tt:冰点降低 Kt:水的摩尔冰 点降低常数1.86
(四)Aw与非水组分及温度的关系 克劳休斯-克拉贝龙方程:
㏑Aw=-K△H/RT 样品一定和温度变化范围较 K=T-T′/ T′ 窄的情况下,K可看为常数 T:样品的绝对温度 T′:纯水蒸汽压=样品蒸汽压时的温度 R:气体常数 H:纯水的摩尔蒸发热
Aw 与 非 水 组 分 及 温 度 的 关 系
T不变
含水量 非水组分
Aw
含水量不变
T↑
Aw↑
冰点以上,Aw决定因 素是温度和非水组分。 并主要受非水组分 (食品组成)影响。

食品化学试题加答案

食品化学试题加答案

第一章水分一、填空题1、从水分子结构来瞧,水分子中氧的6个价电子参与杂化,形成4个sp3杂化轨道,有近似四面体的结构。

2、冰在转变成水时,静密度增大,当继续升温至3、98℃时密度可达到最大值,继续升温密度逐渐下降。

3、一般来说,食品中的水分可分为结合水与自由水两大类。

其中,前者可根据被结合的牢固程度细分为化合水、邻近水、多层水,后者可根据其在食品中的物理作用方式细分为滞化水、毛细管水、自由流动水。

4、水在食品中的存在状态主要取决于天然食品组织、加工食品中的化学成分、化学成分的物理状态;水与不同类型溶质之间的相互作用主要表现在与离子与离子基团的相互作用、与非极性物质的相互作用、与双亲(中性)分子的相互作用等方面。

5、一般来说,大多数食品的等温线呈S形,而水果等食品的等温线为J形。

6、吸着等温线的制作方法主要有解吸等温线与回吸等温线两种。

对于同一样品而言,等温线的形状与位置主要与试样的组成、物理结构、预处理、温度、制作方法等因素有关。

7、食品中水分对脂质氧化存在促进与抑制作用。

当食品中a w值在0、35 左右时,水分对脂质起抑制氧化作用;当食品中a w值>0、35时,水分对脂质起促进氧化作用。

8、冷冻就是食品储藏的最理想方式,其作用主要在于低温。

冷冻对反应速率的影响主要表现在降低温度使反应变得非常缓慢与冷冻产生的浓缩效应加速反应速率两个相反的方面。

二、选择题1、水分子通过的作用可与另4个水分子配位结合形成四面体结构。

(A)范德华力(B)氢键(C)盐键(D)二硫键2、关于冰的结构及性质,描述有误的就是。

(A)冰就是由水分子有序排列形成的结晶(B)冰结晶并非完整的警惕,通常就是有方向性或离子型缺陷的(C)食品中的冰就是由纯水形成的,其冰结晶形式为六方形(D)食品中的冰晶因溶质的数量与种类等不同,可呈现不同形式的结晶3、食品中的水分分类很多,下面哪个选项不属于同一类?(A)多层水(B)化合水(C)结合水(D)毛细管水4、下列食品中,哪类食品的吸着等温线呈S形?(A)糖制品(B)肉类(C)咖啡提取物(D)水果5、关于BET(单分子层水),描述有误的就是一。

食品化学-水分试题及答案

食品化学-水分试题及答案

食品化学-水分习题及答案一.单选题(共12题,36.0分)1、关于冰的结构及性质描述有误的是()。

A、冰是由水分子有序排列形成的结晶B、纯水在过冷状态才开始结冰,且水结冰时体积会增加C、食品中的冰是由纯水形成的,其冰结晶形式为六方形D、食品中的冰晶因溶质的数量和种类等不同,可呈现不同形式的结晶正确答案:C2、水分子通过()的作用可与另外4个水分子配位结合形成正四面体结构。

A、范德华力B、氢键C、盐键D、二硫键正确答案:B3、食品中有机成分上极性基团不同,与水形成氢键的键合作用也有所区别。

在下面这些有机分子的基团中,_______与水形成的氢键比较牢固。

A、蛋白质中的酰胺基B、淀粉中的羟基C、果胶中的羟基D、果胶中未酯化的羧基正确答案:D4、食品中的水分分类很多,下面哪个选项不属于同一类()。

A、多层水B、化合水C、结合水D、毛细管水正确答案:D5、下列食品中,哪类食品的吸着等温线呈S型()A、糖制品B、肉类C、咖啡提取物D、水果正确答案:B6、关于水分活度的描述错误的是()。

A、水分活度能反应水与各种非水成分缔合的强度B、水分活度比水分含量更能可靠的预示食品的稳定性、安全性等性质C、食品的水分活度值总在0~1之间D、食品中结合水的含量越高,食品的水分活度就越高正确答案:D7、当食品中的水分活度值为0.40时,下面哪种情形一般不会发生()。

A、脂质氧化速率会增大B、多数食品会发生美拉德反应C、微生物能有效繁殖D、酶促反应速率高于水分活度值为0.25下的反应速率正确答案:C8、关于吸湿等温线区间Ⅱ的水的描述错误的是()。

A、水分活度在0.25-0.85之间B、不能冻结C、不能被化学反应利用D、可被微生物部分利用正确答案:C9、当向水中加入哪种物质,不会出现疏水水合作用()A、烃类B、脂肪酸C、无机盐类D、氨基酸类正确答案:C10、对笼形化合物的微结晶描述有误的是()A、与冰晶结构相似B、当形成较大的晶体时,原来的多面体结构会逐渐变成四面体结构C、在0℃以上和适当压力下仍能保持稳定的晶体结构D、天然存在的该结构晶体,对蛋白质等生物大分子的构象、稳定有重要作用正确答案:B11、邻近水是指()A、属自由水的一种B、结合最牢固的、构成非水物质的水分C、亲水基团周围结合的第一层水D、没有被非水物质化学结合的水正确答案:C12、关于食品冰点以下温度的αW描述正确的是()A、样品中的成分组成是影响αW的主要因素B、αW与样品的成分和温度无关C、αW与样品的成分无关,只取决于温度D、该温度下的αW可用来预测冰点温度以上的同一种食品的αW正确答案:C二.填空题(共8题,24.0分)1、冰在转变成水时,净密度______,当继续升温至3.98℃时密度可达到_______。

食品化学答案整理

食品化学答案整理

食品化学第二章水分1、名词解释:(1)水分活度:指食品的水分蒸汽压与相同温度下纯水的饱和蒸汽压的比值。

(2)水分的吸湿等温线:在恒定温度下,以食品中水分含量为纵坐标,以水分活度为横坐标绘制而成的曲线称为吸附等温线(MSI)。

(3)等温线的滞后现象:一种食物一般有两条吸附等温线。

一条是水分回吸等温线,是食品在吸湿时的吸附等温线;一条是水分解吸等温线,是食品在干燥时的吸附等温线;往往这两条曲线并不完全重叠,在中低水分含量部分张开了一细长的眼孔,把这种现象称为“滞后”现象。

2、问答题(1)水分活度与食品稳定性的关系。

①食品aw与微生物生长的关系:从微生物活动与食物水分活度的关系来看,各类微生物生长都需要一定的水分活度,一般说来:细菌为Aw>0.9;酵母为Aw>0.87;霉菌为Aw>0.8。

②食品aw与酶促反应的关系:一方面影响酶促反应的底物的可移动性,另一方面影响酶的构象。

食品体系中大多数的酶类物质在Aw<0.85 时,活性大幅度降低,如淀粉酶、酚氧化酶和多酚氧化酶等。

但也有一些酶例外,如酯酶在Aw为0.3甚至0.1时也能引起甘油三酯或甘油二酯的水解。

③食品aw与非酶化学反应的关系:降低食品的Aw ,可以延缓酶促反应和非酶反应的进行,减少食品营养成分的破坏,防止水溶性色素的分解。

但Aw过低,则会加速脂肪的氧化酸败,还能引起非酶褐变。

④食品aw与质地的关系:当水分活度从0.2~0.3增加到0.65时,大多数半干或干燥食品的硬度及黏着性增加。

水分活度为0.4~0.5时,肉干的硬度及耐嚼性最大。

(2)水分的吸附等温线的定义,以及3个区段的水分特性。

①在恒定温度下,以食品中水分含量为纵坐标,以水分活度为横坐标绘制而成的曲线称为吸附等温线。

②I区:为化合水和临近水区。

这部分水是食品中与非水物质结合最为紧密的水,为化合水和构成水,吸湿时最先吸入,干燥时最后排除;这部分水不能使干物质膨润,不能作为溶剂,在- 40℃不结冰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



第二节 水和冰的性质和结构
一、水和冰的物理性质
部分氢化物的物理性质 氢化物 CH4 NH3 H2S H2O HF 熔点(℃) -184 -78 -86 0 -92 沸点(℃) -161 -33 -61 100 19 蒸发热( J/mol) 9210960 23027400 18673128 40821300 30144960
92
90 87 87
香蕉
鸡 肉 面包
75
70 65 35
奶油
稻米、面 粉 奶粉 酥油
16
12 4 0
表1 食 奶油 乳酪 鲜奶油 乳粉 液体乳制品 冰淇淋和冰糕 鳄梨 豆(青刀豆) 浆果 柑橘 黄瓜 干水果 新鲜水果(可食部分) 豆类(干) 马铃薯 红薯 芹菜、萝卜 品 水分含量 (%) 15 40~75 60~70 4 87~91 65 65 67 81~90 86~89 96 ≤ 25 90 10~12 78 69 79




在大多数新鲜食品中,水是最重要的成分,若希望 长期贮藏这类食品,只要采取有效的贮藏方法控制 水分就能够延长保藏期。 无论采用普通方法脱水或是低温冷冻干燥脱水,食 品和生物材料的固有特性都会发生很大的变化, 都无法使脱水食品恢复到它原来状态(复水或解 冻)。 因此研究水和食品的关系是食品科学的重要内容之 一,对食品的储藏有重要的意义。

三、水的缔合作用

水分子中的氧原子电负性大, O—H键的 电子对强烈的偏向氧原子一边,使氢原子 带有部分正电荷。 氢原子无内层电子,几乎是一个裸露的质 子,极易与另一个水分子中的氧原子的孤 对电子通过静电引力形成氢键。
温 0℃ 0.99984 1.793×10-3 75.64×10-3 0.6113 4.2176 0.5610 1.3×10-7 87.90
度 0℃ ( 冰 ) 0.9168 — —
-20℃(冰) 0.9193 — —
0.6113 0.103 2.1009 1.9544 2.240 2.433 11.7×10-7 11.8×10-7 ~90 ~98
部分食品的水分含量 食 蛋黄酱 纯油和脂肪 沙拉酱 早餐谷物 面粉、粗燕麦粉、粗面粉 全粒谷物 面包 饼干和椒盐卷饼 馅饼 面包卷 成熟生坚果 新鲜栗子 新鲜蛋 家禽肉 果冻、果酱和柑皮果冻 白糖(蔗糖或甜菜糖) 、硬糖、 纯巧克力 品 水分含量 (%) 15 0 40 <4 10~13 10~12 35~45 5~8 43~59 28 3~5 53 50~85 74 20~40 ≤ 35 ≤1

氧原子外层电子构型为2s22p4, 当它与 氢形成水时,氧原子的外层电子首先进行 杂化, 形成4个等同的sp3杂化轨道。
sp 杂化
3
2p 2s
sp
3
氧原子本身 的孤对电子
杂化轨道与 氢原子轨道 形成σ共价键

其中两个轨道上各有一个电子,另外两个 轨道上则被2个已成对的电子占据。

2个未成对电子分别与两个氢原子的1s电子 形成两个共价σ键,形成水分子。 其中O—H核间的距离是0.096nm,氧与氢 的范德瓦尔斯半径为0.14nm与0.12nm。
水和冰的物理性质 性质 相对分子质量 相转变性质 熔点(0.1MPa) 沸点(0.1MPa) 临界温度 临界压力 三相点 熔化焓(0℃) 蒸发焓(100℃) 升华焓(0℃) 18.0153 0.000℃ 100.000℃ 373.99℃ 22.064 MPa(218.6atm) 0.01℃和 611.73Pa(4.589mmHg) 6.012kJ(1.436kcal)/mol 40.657(9.711kcal)/mol 50.91kJ(12.16kcal)/mol 数值

食品中水的含量、分布、状态不仅对食品的结构、 外观、质的影响,而且对生物组织 的生命过程起着至关重要的作用。

水在食品贮藏加工过程中是化学和生物化学反应的 介质,也是水解过程的反应物。
水是微生物生长繁殖的重要因素,影响食品的货架 期。 水与蛋白质、多糖和脂类通过物理相互作用影响食 品的质构。 水发挥膨润、浸湿的作用,影响食品的加工性。
一、水和冰的物理性质

1、水和其他具有相似分子质量和原子组成 的分子比较,可以看出: 水的熔点(0℃)、沸点(100℃)、热容、相变 热、表面张力和界电常数等明显偏高。 这是因为由于水分子间存在三维氢键缔合 的缘故。



2、冰的导热系数在0℃时近似为同温度下 水的导热系数的4倍,冰的热扩散系数约为 水的9倍。 说明在同一环境中,冰比水能更快的改变 自身的温度。 水和冰的导热系数和热扩散系数上较大的 差异,导致了在相同温差下组织材料冻结 的速度比解冻的速度快很多。
其他性质 密度/(g/cm3) 粘度/(Pa•s) 表面张力 (空气—水界面)/(N/m) 蒸汽压/kPa 比热容/[J/(g•K)] 热导率(液体)/[W/(m•K)] 热扩散/(m2/s) 介电常数
20℃ 0.99821 1.002×10-3 72.75×10-3 2.3388 4.1818 0.5984 1.4×10-7 80.20
二、食品中水的含量

水是食品中非常重要的一种成分,也是构 成大多数食品的主要组分,各种食品都有 能显示其品质特性的含水量(表1)。
某些代表性食品的典型水分含量
食品名称 番茄 莴苣 含量 95 95 食品名称 牛奶 马铃薯 含量 87 78 食品名称 果酱 蜂蜜 含量 28 20
卷心菜
啤酒 柑橘 苹果汁


一、水和冰的物理性质

3、水的密度较低,水结冰时体积增加(冻 结后冰的体积比相同质量的水的体积增大 9%),表现出异常的膨胀特性,这会导致 食品冻结时组织结构的破坏。

这就是一般的食物在冻结后解冻往往有大 量的汁液流出的原因 。
二、水分子的结构

水的物理性质的特殊性是由水的分子结 构所决定的。
第二章 水分
主要内容

概述
水和冰的性质和结构
食品中水与非水组分之间的相互作用


水分活度
水与食品的稳定性

分子移动性与食品的稳定性
第一节
一、水的作用
概述
水不仅是构成机体的主要成分,而且是 维持生命活动、调节代谢过程不可缺少的重 要物质。其主要作用有: 1、调节体温; 2、促进代谢; 3、润滑作用; 4、生物代谢的底物。
相关文档
最新文档