初中-数学-中考-2019年深圳市初中毕业升学考试数学
广东省深圳市2020年中考数学暨初中学业水平测试模拟试卷(含解析)
深圳市2020年中考数学暨初中学业水平测试模拟试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2020的相反数的倒数是( )2020.A 2020.-B20201.C 20201.-D 2.(2019·绵阳)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.000 2米.将数0.000 2用科学记数法表示为( )A .0.2×10-3B .0.2×10-4C .2×10-3D .2×10-43.如图,直线a ∥b ,直角三角形如图放置,∠DCB =90°,若∠1+∠B =65°,则∠2的度数为( )A .20°B .25°C .30°D .35°4.(2019·深圳)下列哪个图形是正方体的展开图( )5.若分式xx -2在实数范围内有意义,则x 的取值范围是( )A .x≠0B .x≠2C .x =0D .x≠2且x≠0 6.(2019·张家界)下列说法正确的是( )A .打开电视机,正在播放“张家界新闻”是必然事件B .天气预报说“明天的降水概率为65%”,意味着明天一定下雨C .两组数据平均数相同,则方差大的更稳定D .数据5,6,7,7,8的中位数与众数均为77.如图,在直角梯形ABCD 中,AD∥BC,AB⊥BC,AD =2,BC =3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE ,CE ,则△ADE 的面积是( )A .1B .2C .3D .不能确定8.(2019·广州)若点A (-1,y 1),B (2,y 2),C (3,y 3)在反比例函数y =6x的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3<y 2<y 1B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 1<y 2<y 39.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为( )A.12x (x -1)=380 B .x (x -1)=380C.12x (x +1)=380 D .x (x +1)=380 10.(2019潍坊 中考)如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin∠CAB =,DF =5,则BC 的长为( )A .8B .10C .12D .1611.(2019潍坊 中考)抛物线y =x 2+bx +3的对称轴为直线x =1.若关于x 的一元二次方程x 2+bx +3﹣t =0(t 为实数)在﹣1<x <4的范围内有实数根,则t 的取值范围是( ) A .2≤t <11 B .t ≥2C .6<t <11D .2≤t <612.如图,四边形OABC 是矩形,等腰△ODE 中,OE =DE ,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点B 、E 在反比例函数y =的图象上,OA =5,OC =1,则△ODE的面积为( )A .2.5B .5C .7.5D .10第Ⅱ卷(共90分)二、填空题(每题3分,满分12分,将答案填在答题纸上) 13.分解因式:a 3-2a 2b +ab 2= .14.对于实数a ,b ,定义运算“*”,a *b =⎩⎪⎨⎪⎧a 2-ab (a >b ),ab -b 2(a≤b),例如4*2,因为4>2,所以4*2=42-4×2=8,若x 1,x 2是一元二次方程x 2-9x +20=0的两个根,则x 1*x 2= .15.(2019·黄冈)如图,AC ,BD 在AB 的同侧,AC =2,BD =8,AB =8.点M 为AB 的中点.若∠CMD =120°,则CD 的最大值为 .16.(2019聊城 中考)数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n .(n ≥3,n 是整数)处,那么线段A n A 的长度为 (n ≥3,n 是整数).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(2019山西 中考)(本题共2个小题,每小题5分,共10分) (1)计算:02)2020(60tan 3)21(27-+︒--+-π(2)解方程组:⎩⎨⎧=+-=-②02①823y x y x18. 先化简,再求值:2221111x x x x x ++⎛⎫-+ ⎪--⎝⎭,其中2x =.19.为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5甲、乙两校参与测试的老师成绩的平均数、中位数、众数如下表:学校平均数中位数众数甲校96.35 m99乙校95.85 97.5 99根据以上信息,回答下列问题:(1)m=________;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则他们在各自学校参与测试的老师中成绩的名次相比较更靠前的是________(选填“王”或“李”)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.20.如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC 于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.21.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3 780元,则该水果每千克售价至少为多少元?22. 如图在O中,2,BC AB AC==,点D为AC上的动点,且10 cos B=.(1)求AB的长度;(2)求AD AE⋅的值;(3)过A点作AH BD⊥,求证:BH CD DH=+.点C (0,-3),与抛物线L 2:y =-12x 2-32x +2的一个交点为A ,且点A 的横坐标为2,点P ,Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A ,C ,P ,Q 为顶点的四边形恰为平行四边形,求出点P 的坐标; (3)设点R 是抛物线L 1上另一个动点,且CA 平分∠PCR ,若OQ ∥PR ,求出点Q 的坐标.参考答案深圳市2020年中考数学暨初中学业水平测试模拟试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2020的相反数的倒数是( )2020.A 2020.-B 20201.C 20201.-D【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,再结合倒数的定义进而得出答案.【解答】解:-2020的相反数是2020,2020的倒数是1.故选:C.2.(2019·绵阳)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.000 2米.将数0.000 2用科学记数法表示为( D )A.0.2×10-3B.0.2×10-4C.2×10-3D.2×10-43.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为( B )A.20°B.25°C.30°D.35°4.(2019·深圳)下列哪个图形是正方体的展开图( B )5.若分式xx-2在实数范围内有意义,则x的取值范围是( B )A.x≠0 B.x≠2 C.x=0 D.x≠2且x≠06.(2019·张家界)下列说法正确的是( D )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为77.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE,CE,则△ADE的面积是( A )A .1B .2C .3D .不能确定8.(2019·广州)若点A (-1,y 1),B (2,y 2),C (3,y 3)在反比例函数y =6x的图象上,则y 1,y 2,y 3的大小关系是( C )A .y 3<y 2<y 1B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 1<y 2<y 39.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为( B )A.12x (x -1)=380 B .x (x -1)=380C.12x (x +1)=380 D .x (x +1)=380 10.(2019潍坊 中考)如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin∠CAB =,DF =5,则BC 的长为( C )A .8B .10C .12D .1611.(2019潍坊 中考)抛物线y =x 2+bx +3的对称轴为直线x =1.若关于x 的一元二次方程x 2+bx +3﹣t =0(t 为实数)在﹣1<x <4的范围内有实数根,则t 的取值范围是( D )A .2≤t <11B .t ≥2C .6<t <11D .2≤t <612.如图,四边形OABC 是矩形,等腰△ODE 中,OE =DE ,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点B 、E 在反比例函数y =的图象上,OA =5,OC =1,则△ODE的面积为()A.2.5 B.5 C.7.5 D.10【分析】过E作EF⊥OC于F,由等腰三角形的性质得到OF=DF,于是得到S△ODE=2S△OEF,由于点B、E在反比例函数y=的图象上,于是得到S矩形ABCO=k,S△OEF=k,即可得到结论.【解答】解:过E作EF⊥OC于F,∵OE=DE,∴OF=DF,∴S△ODE=2S△OEF,∵点B、E在反比例函数y=的图象上,∴S矩形ABCO=k,S△OEF=k,∴S△ODE=S矩形ABCO=5×1=5,故选:B.【点评】本题考查反比例函数系数k的几何意义,等腰三角形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.第Ⅱ卷(共90分)二、填空题(每题3分,满分12分,将答案填在答题纸上)13.分解因式:a3-2a2b+ab2= a(a-b)2 .14.对于实数a ,b ,定义运算“*”,a*b =⎩⎪⎨⎪⎧a 2-ab (a >b ),ab -b 2(a≤b),例如4*2,因为4>2,所以4*2=42-4×2=8,若x 1,x 2是一元二次方程x 2-9x +20=0的两个根,则x 1*x 2= ±5 . 15.(2019·黄冈)如图,AC ,BD 在AB 的同侧,AC =2,BD =8,AB =8.点M 为AB 的中点.若∠CMD=120°,则CD 的最大值为 14 .16.(2019聊城 中考)数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n .(n ≥3,n 是整数)处,那么线段A n A 的长度为 4﹣(n ≥3,n 是整数).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(2019山西 中考)(本题共2个小题,每小题5分,共10分) (1)计算:02)2020(60tan 3)21(27-+︒--+-π【解析】原式=5133433=+-+ (3)解方程组:⎩⎨⎧=+-=-②02①823y x y x【解析】(2)①+②得:84-=x ,解得2-=x ,将2-=x 代入②得:022=+-y ,解得1=y ∴原方程组的解为⎩⎨⎧=-=12y x18. 先化简,再求值:2221111x x x x x ++⎛⎫-+ ⎪--⎝⎭,其中2x =.解:原式21(1)(1)11(1)1x x x x x x x -++-=⋅=-++把2x =代入得:原式13= 19.为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5甲、乙两校参与测试的老师成绩的平均数、中位数、众数如下表:学校 平均数 中位数 众数 甲校 96.35 m 99 乙校95.8597.599根据以上信息,回答下列问题: (1)m =________;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则他们在各自学校参与测试的老师中成绩的名次相比较更靠前的是________(选填“王”或“李”)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.解:(1)96.5;(2)王;(3)甲校96分以上的人数为20×6=120(人),∴乙校的96分以上的人数为2×120-100=140(人).21.如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC 于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.解:(1)∵四边形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等边三角形,∵MN∥B′C′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等边三角形,∴C′M=C′N,∴MB′=ND′,∵∠AB′M=∠AD′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠CAD=∠BAD=30°,∠DAD′=15°,∴α=15°.(2)∵∠C′B′D′=60°,∴∠EB′G=120°,∵∠EAG=60°,∴∠EAG+∠EB′G=180°,∴四边形EAGB′四点共圆,∴∠AEB′=∠AGD′,∵∠EAB′=∠GAD′,AB′=AD′,∴△AEB′≌△AGD′(AAS),∴EB′=GD′,AE=AG,∵AH=AH,∠HAE=∠HAG,∴△AHE≌△AHG(SAS),∴EH=GH,∵△EHB′的周长为2,∴EH+EB′+HB′=B′H+HG+GD′=B′D′=2,∴AB′=AB=2,∴菱形ABCD的周长为8.21.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3 780元,则该水果每千克售价至少为多少元?解:(1)设水果店第一次购进水果x 元,第二次购进水果y 元, 由题意得⎩⎪⎨⎪⎧x +y =2 000,y 4-1=2×x 4,解得⎩⎪⎨⎪⎧x =800y =1 200. ∴水果店第一次购进水果800元,第二次购进水果1 200元. (2)设该水果每千克售价为m 元,第一次购进800÷4=200(千克), 第二次购进1 200÷3=400(千克),由题意[200×(1-3%)+400×(1-4%)]m -2 000≥3 780. 解得m≥10.∴该水果每千克售价为10元.22. 如图在O 中,2,BC AB AC ==,点D 为AC 上的动点,且10cos B =. (1)求AB 的长度; (2)求AD AE ⋅的值;(3)过A 点作AH BD ⊥,求证:BH CD DH =+.22.解:(1)作AM BC⊥,,2AB AC AM BC BC =⊥=112BM CM BC ===10cos BM B AB ==,在Rt AMB ∆中,1BM = 10cos 110AB BM B ∴=÷=÷=. (2)连接DC AB AC =ACB ABC ∴∠=∠∵四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=,180ACE ACB ∠+∠=,ADC ACE ∴∠=∠CAE ∠公共EAC CAD ∴∆∆∽AC AEAD AC∴=()221010AD AE AC ∴⋅===.(3)在BD 上取一点N ,使得BN CD =在ABN ∆和ACD ∆中31AB AC BN CD =⎧⎪∠=∠⎨⎪=⎩()ABN ACD SAS ∴∆≅∆AN AD∴=,AN AD AH BD =⊥NH HD ∴=,BN CD NH HD ==BN NH CD HD BH ∴+=+=.23.(2019·连云港)如图,在平面直角坐标系xOy 中,抛物线L 1=y =x 2+bx +c 过点C(0,-3),与抛物线L 2:y =-12x 2-32x +2的一个交点为A ,且点A 的横坐标为2,点P ,Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A ,C ,P ,Q 为顶点的四边形恰为平行四边形,求出点P 的坐标; (3)设点R 是抛物线L 1上另一个动点,且CA 平分∠PCR,若OQ∥PR,求出点Q 的坐标. 解:(1)将x =2代入y =-12x 2-32x +2,得y =-3,故点A 的坐标为(2,-3),将A(2,-3),C(0,-3)代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧-3=22+2b +c ,-3=0+0+c.解得⎩⎪⎨⎪⎧b =-2,c =-3.所以抛物线L 1对应的函数表达式为y =x 2-2x -3;(2)设点P 的坐标为(x ,x 2-2x -3).第一种情况:AC 为平行四边形的一条边.①当点Q 在点P 右侧时,则点Q 的坐标为(x +2,x 2-2x -3).将Q(x +2,x 2-2x -3)代入y =-12x 2-32x +2,得x 2-2x -3=-12(x +2)2-32(x +2)+2,整理得x 2+x =0,解得x 1=0,x 2=-1.因为x =0时,点P 与点C 重合,不符合题意,所以舍去,此时点P 的坐标为(-1,0);②当点Q 在点P 左侧时,则点Q 的坐标为(x -2,x 2-2x -3).将Q(x -2,x 2-2x -3)代入y =-12x 2-32x +2,得x 2-2x -3=-12(x -2)2-32(x -2)+2,整理得3x 2-5x -12=0,解得x 1=3,x 2=-43.此时点P 的坐标为(3,0)或⎝ ⎛⎭⎪⎫-43,139.第二种情况:当AC为平行四边形的一条对角线时.由AC 的中点坐标为(1,-3),得PQ 的中点坐标为(1,-3),故点Q 的坐标为(2-x ,-x 2+2x -3).将Q(2-x ,-x 2+2x -3)代入y =-12x 2-32x +2,得-x 2+2x -3=-12(2-x)2-32(2-x)+2,整理得x 2+3x =0,解得x 1=0,x 2=-3.因为x =0时,点P 与点C 重合,不符合题意,所以舍去,此时点P 的坐标为(-3,12).综上所述,点P 的坐标为(-1,0)或(3,0)或⎝ ⎛⎭⎪⎫-43,139或(-3,12);(3)点Q 坐标为(-7+652,-7+65)或(-7-652,-7-65)。
2019年中考初中数学应用题经典练习题
2019年4月13日初中数学试卷(初三-应用题)一、综合题(共8题;共85分)1. (10分) (2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22 a剩余部分a+1。
1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?2。
( 10分)春平中学要为学校科技活动小组提供实验器材,计划购买A型,B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元?(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?3。
(10分) 某商场计划购进、两种型号的手机,已知每部型号手机的进价比每部型号手机的多500元,每部型号手机的售价是2500元,每部型号手机的售价是2100元。
(1)若商场用50000元共购进型号手机10部,型号手机20部。
求、两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7。
5万元采购、两种型号的手机共40部,且型号手机的数量不少于型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?4。
( 10分)某童装店在服装销售中发现:进货价每件元,销售价每件元的某童装每天可售出件.为了迎接“六一儿童节”,童装店决定采取适当的促销措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价元,那么每天就可多售出件.(1)如果童装店想每天销售这种童装盈利元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?(2)每件童装降价多少元时,童装店每天可获得最大利润?最大利润是多少元?5。
(10分)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.6。
2019年江苏省扬州市中考数学试题(,含答案)
2019江苏省徐州市中考数学满分:140分时间:120分钟一.选择题(本题共8个小题,每小题3分,共24分)1.-2的倒数是()A.21 B.21 C.2 D.-22.下列计算正确的是()A.422aaaB.222)(bab a C.933)(aa D.623aaa3.下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,104.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.12005.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40.该组数据的众数、中位数分别为()A.40,37B.40,39C.39,40D.40,386.下图均由正六边形与两条对角线组成,其中不是轴对称图形的是()7.若),(11y x A 、),(22y x B 都在函数xy2019的图象上,且21x x ,则()A.21y yB.21y yC.21y yD.21y y 8.如图,数轴上有O 、A 、B 三点,O 为原点,OA 、OB 分别表示仙女座星系,M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是()A.5×106B.107C.5×107D.108二.填空题(本大题共有10小题,每小题3分,共30分)9.8的立方根是.10.要使1x 有意义的x 的取值范围是.11.方程042x的解为.12.若2b a ,则代数式222b ab a的值为.13.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若MN=4,则AC 的长为.14.如图,A 、B 、C 、D 为一个外角为40°的正多边形的顶点.若O 为正多边形的中心,则∠OAD=°15.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆半径r=2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为cm.16.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45°,测得该建筑底部C 处的俯角为17°,若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.已知二次函数的图像经过点P (2,2),顶点为O (0,0),将该图像向右平移,当它再次经过点P 时,所得抛物线的函数表达式为18.函数y=x+1的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上。
2019-2020年中考数学专题训练二次函数与反比例函数1
2019-2020年中考数学专题训练二次函数与反比例函数1一、选择题1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)2.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.43.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧4.二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣25.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣16.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<07.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(﹣3,0)D.(0,﹣4)8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数 C.反比例函数D.二次函数9.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小10.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)211.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<012.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.13.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()A .B .C .D .14.数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x 2+1与y=的交点的横坐标x 0的取值范围是( )A .0<x 0<1B .1<x 0<2C .2<x 0<3D .﹣1<x 0<015.已知二次函数y=a (x ﹣1)2﹣c 的图象如图所示,则一次函数y=ax+c 的大致图象可能是( )A .B .C .D .16.下列三个函数:①y=x+1;②;③y=x 2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数有( )A .0B .1C .2D .3 17.在同一直角坐标系中,函数y=mx+m 和y=﹣mx 2+2x+2(m 是常数,且m ≠0)的图象可能是( )A .B .C .D .18.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0二、填空题19.抛物线y=x2+2x+3的顶点坐标是.20.已知二次函数y=(x﹣2)2+3,当x 时,y随x的增大而减小.21.二次函数y=x2+2x的顶点坐标为,对称轴是直线.22.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.23.函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而(填写“增大”或“减小”).24.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.25.下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx (x<0)中,y的值随x的值增大而增大的函数有个.26.二次函数y=x2﹣2x+3图象的顶点坐标为.27.二次函数y=x2﹣4x﹣3的顶点坐标是(,).三、解答题28.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.29.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.30.已知点A(﹣2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P(x ﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.2019-2020年中考数学专题训练二次函数与反比例函数21.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.2.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?3.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.4.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B 点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.5.如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.6.如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.7.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连接AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.8.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P 的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.9.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.10.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.11.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.12.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.13.如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E (0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?15.如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y 轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB 于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.16.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.17.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.18.如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.19.如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P 为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.20.如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C 为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线AC的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E 点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求出P点的坐标,若不存在,请说明理由.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.22.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?。
2019年广东省中考数学真题试题(含答案)
2019年广东省初中学业水平考试数学(含答案)说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A .b 6÷b 3=b 2B .b 3·b 3=b 9C .a 2+a 2=2a 2D .(a 3)3=a 65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .ba <08.化简24的结果是A .﹣4B .4C .±4D .29.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1·x 2=210.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 12.如图,已知a ∥b ,∠l=75°,则∠2 =________.13.一个多边形的内角和是1080°,这个多边形的边数是_________.14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=315米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD =2,求ECAE 的值.四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C的圆心角的度数为_______度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832 与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?解析卷1.﹣2的绝对值是A .2B .﹣2C .D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×106【答案】B【解析】a ×10n 形式,其中0≤|a|<10.【考点】科学记数法213.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2 B.b3·b3=b9 C.a2+a2=2a2 D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .<0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简的结果是A .﹣4B .4C .±4D .2【答案】B【解析】公式.【考点】二次根式9.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0 C .x 1+x 2=2 D .x 1·x 2=2【答案】Db a24a a 2【解析】因式分解x (x-2)=0,解得两个根分别为0和2,代入选项排除法.【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF ,∠AHN=∠GFN ,△ANH ≌△GNF (AAS ),①正确;由①得AN=GN=1,∵NG ⊥FG ,NA 不垂直于AF ,∴FN 不是∠AFG 的角平分线,∴∠AFN ≠∠HFG ,②错误;由△AKH ∽△MKF ,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN ,∴K 为NH 的中点,即FN=2NK ,③正确;S △AFN =AN ·FG=1,S △ADM =DM ·AD=4,∴S △AFN :S △ADM =1:4,④正确. 【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+()﹣1=____________. 【答案】4212131【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a ∥b ,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n 边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.【答案】21【解析】由已知条件得x-2y=3,原式=4(x-2y )+9=12+9=21.【考点】代数式的整体思想15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).315【答案】15+15【解析】AC=CD ·tan30°+CD ·tan45°=15+15.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).【答案】a+8b【解析】每个接触部分的相扣长度为(a-b ),则下方空余部分的长度为a-2(a-b )=2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a )=a+2b ;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a )=a+4b ;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a )=a+6b ;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a )=a+8b.【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)3317.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值: ,其中x=.【答案】解:原式==×=当x=,原式===1+.【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.4-x x-x 2-x 1-2-x x22÷⎪⎭⎫⎝⎛22-x 1-x 4-x x-x 22÷2-x 1-x ()()()1-x x 2-x 2x +x 2x +2222+2222+2DB ADEC AE【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC∴= ∵=2 ∴=2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将EC AE DB AD DB AD EC AE测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种404∴P (甲乙)== 答:同时抽到甲、乙两名学生的概率为. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的623131三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB==,AC==,BC==(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=BC= (或用等面积法AB ·AC=BC ·AD 求出AD 长度)∵S 阴影=S △ABC -S 扇形EAFS △ABC =××=202262+1022262+1022284+54215221102102S 扇形EAF ==5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=图象过点A (﹣1,4) ()25241π xk 2xk2xk 2∴4=,解得k 2=﹣4∴反比例函数表达式为∵反比例函数图象过点B (4,n )∴n==﹣1,∴B (4,﹣1)∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1) ∴,解得 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP :S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC1-k 2x 4-y =x 4-y =44-⎩⎨⎧+=+=b k 41-b -k 411⎩⎨⎧==3b1-k1∴ ∵MN=a+1,BN=4-a∴,解得a= ∴-a+3= ∴点P 坐标为(,) (或用两点之间的距离公式AP=,BP=,由解得a 1=,a 2=-6舍去) 【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.BNMN BP AP =21a -41a =+32373237()()224-3a -1a +++()()223-a 1-a -4++21BP AP =32【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D∴ED=EC(2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA∴ ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识 25.如题25-1图,在平面直角坐标系中,抛物线y=与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;BCAB AB BE =837 -x 433x 832+(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y==得点D 坐标为(﹣3,) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:837 -x 433x 832+()32-3x 83+32过点D 作DG⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC∽△FOC∴ 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF,OA=1,DG=3,CG=m+∵CO⊥FA ∴FO=OA=1∴,解得m= (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=x+,再求出点C 的坐标)∴点C 坐标为(0,) ∴CD=CE==6∵tan∠CFO== ∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC∥BA∵BF=BO-FO=6∴CE=BFCOCG FO DG =32m32m 13+=3333()223233++FOCO 3∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=(A )当P 在点A 右侧时,m >1 (a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在 (b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴,解得m 1=(舍去),m 2=1(舍去),这种不存在 (B )当P 在线段AB 之间时,﹣7<m <1(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴,解得m 1=,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时 ∴﹣,解得m 1=﹣11,m 2=1(舍去) 837-m 433m 832+3211DD AD AM PM =3241-m 837-m 433m 832=+35-11DD AD AM PM =3241-m 837-m 433m 832=+35-11AD DD AM PM =3241-m 837-m 433m 832=+432(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴﹣,解得m 1=,m 2=1(舍去) 综上所述,点P 的横坐标为,﹣11,,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想11DD AD AM PM =3241-m 837-m 433m 832=+337-35-337-。
2019年最新初中数学练习100题试卷 中考模拟试题570694
2019年初中数学中考练习100题试卷**科目模拟测试考试范围:xxx;满分:***分;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如果点M(3a,-5)在第三象限,那么点N(5-3a,-5)在()A.第一象限B.第二象限C.第三象限D.第四象限2.下面语句中,命题的个数是()(1)同角的补角相等.(2)两条直线相交,有几个交点?(3)相等的两个角是对顶角.(4)若a>0,b>0,则ab>0.A.1个 B 2个 C.3个D.4个3.如图,小明从A 处出发沿北偏东60°向行走至B处,又沿北偏西20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左传80°C.右转100°D.左传100°4.如图所示,已知直角三角形ABC中,∠ABC=90°,BD平分∠ABC,CE平分∠ACB,CE、BD相交于点F,∠EFB=65°,则∠A=()A.30°B.40°C.45°D.50°5.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN 等于()A .65B .95 C . 125 D . 165 6.长方体的顶点数,棱数,面数分别是( )A .8,10,6B .6,12,8C .6,8,10D .8,12,67.甲、乙两个学生在一年里学科平均分相等,但他们的方差不相等,正确评价他们的学习情况是( ) A .因为他们的平均分相等,所以学习水平一样B .成绩虽然一样,方差较大的,说明潜力大,学习态度踏实C .表面上看这两个学生平均成绩一样,但方差小的学习成绩稳定D .平均分相等,方差不等,说明学习水平不一样,方差较小的同学,学习成绩不稳定,忽高忽低8.在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数是( )A .30元B .35元C .50元D .100元 9.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为 D ,E ,AD ,CE 交于点H ,已知 EH=EB= 6,AE=8,则CH 的长是( )A .5B .4C .3D .210.已知点(0,0),(0,一2),(-4,0),(一1,2),(2,-2),(-2,4).其中在x 轴上的点的个数有( )A .0个B .1个C .2个D .3个11.计算234()(2)x x ⋅-的结果是( )A .916xB . 1016xC .1216xD .2416x 12.已知点P (1,2)与点Q (x ,y )在同一条平行于x 轴的直线上,且Q 点到y 轴的距离等于2,那么点Q 的坐标是( )A .(2,2)B .(-2,2)C .(-2,2)和(2,2)D .(-2,-2)和(2,-2) 1.确定平面上一个点的位置,一般需要的数据个数为( )A .无法确定B .l 个C .2个D .3个 A M N CB。
2019年中考数学试题分类汇编:统计(含答案解析,精美排版)
统计一.选择题1.(2019安徽)某校九年级(1)班全体学生2019年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误..的是 A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分2.(2019广东)3. 一组数据2,6,5,2,4,则这组数据的中位数是 A.2 B.4 C.5 D.6 【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。
3.(孝感)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为 20 18 17 10 15 10,,,,,.对于这组数据,下列说法错误..的是 A .平均数是15 B .众数是10C .中位数是17D .方差是3444.(湖南常德)某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为2141.7S 甲=,2433.3S 乙=,则产量稳定,适合推广的品种为:A 、甲、乙均可B 、甲C 、乙D 、无法确定 【解答与分析】这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定: 答案为B5.(衡阳)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( C ). A .50元,30元 B .50元,40元 C .50元,50元 D .55元,50元6. )(2019•益阳)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动平均数为:=3.8星手机的销售情况四个同学得出的以下四个结论,其中正确的为A . 4月份三星手机销售额为65万元B . 4月份三星手机销售额比3月份有所上升C . 4月份三星手机销售额比3月份有所下降D . 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额8.(野西南州)已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是A .1B .34C .0D .2 9.二.填空题1.(2019•厦门)已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s = nk(用只含有k 的代数式表示).2.(2019•梅州)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图(1)这次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.考点:条形统计图;用样本估计总体;中位数;众数.. 分析:(1)众数就是出现次数最多的数,据此即可判断; (2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解. 解答:解:(1)众数是:30元,故答案是:30元; (2)中位数是:50元,故答案是:50元; (3)调查的总人数是:6+12+10+8+4=40(人), 则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3.(汕尾)在“全民读书月活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图。
2019年广东省中考数学试题及参考答案
2019年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分) 1、-2的绝对值是( ) A 、2 B 、-2 C 、12 D 、1-2答案:A解析:-2的绝对值是2,故选A 。
2、如图1所示,a 和b 的大小关系是( ) 图1 A 、a <b B 、a >b C 、a=b D 、b =2a 答案:A3、下列所述图形中,是中心对称图形的是( )A 、直角三角形B 、平行四边形C 、正五边形D 、正三角形 答案:B4、据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为( )A 、70.27710⨯ B 、80.27710⨯ C 、72.7710⨯ D 、82.7710⨯ 答案:C考点:本题考查科学记数法。
解析:科学记数的表示形式为10na ⨯形式,其中1||10a ≤<,n 为整数,27700000=72.7710⨯。
故选C 。
5、如图,正方形ABCD 的面积为1,则以相邻两边 中点连接EF 为边的正方形EFGH 的周长为( )A 2B 、22C 21D 、221 答案:B6、某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数为( )A 、4000元B 、5000元C 、7000元D 、10000元 答案:B7、在平面直角坐标系中,点P (-2,-3)所在的象限是( )baABD C HFEA、第一象限B、第二象限C、第三象限D、第四象限答案:C8、如图,在平面直角坐标系中,点A坐标为(4,3),那么cosα的值是()A、34B、43C、35D、45答案:D由勾股定理,得OA=5,所以,4cos5OBOAα==,选D。
9、已知方程238x y-+=,则整式2x y-的值为()A、5B、10C、12D、15答案:A10、如图4,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系的图象大致是()答案:C当点P在AB上时,y=211()22a a a x-⨯⨯-=12ax,是一次函数,且a>0,所以,排除A、B、D,选C。
13. 中考数学专题分式与二次根式数学母题题源系列(解析版)
【母题来源一】【2019•在实数范围内有意义,则x 的取值范围是 A .x ≥1且x ≠2B .x ≤1C .x >1且x ≠2D .x <1【答案】A【解析】依题意,得x -1≥0且x -200,解得x ≥1且x ≠2.故选A . 【母题来源二】【2019•北京】如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为 A .-3B .-1C .1D .3【答案】D【解析】原式=2()m n m n m m n ++--·(m +n )(m -n )=3()mm m n -·(m +n )(m -n )=3(m +n ),当m +n =1时,原式=3.故选D .【母题来源三】【2019•河北】如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在A .段①B .段②C .段③D .段④【答案】B【解析】∵2222(2)1(2)111441(2)111x x xx x x x x x x ++-=-=-=+++++++,又∵x 为正整数,∴12≤x <1,故表示22(2)1441x x x x +-+++的值的点落在②,故选B . 【母题来源四】【2019·天津】计算2211a a a +++的结果是专题03 分式与二次根式A .2B .22a +C .1D .41aa + 【答案】A 【解析】原式=222(1)211a a a a ++==++,故选A . 【母题来源五】【2019·南充】计算:2111x x x+=--__________.【答案】x +1【解析】2111x x x +--=2111x x x ---211x x -=-()()111x x x +-=-1x =+,故答案为:x +1. 【母题来源六】【2019·扬州】化简:2111a a a +--. 【解析】2111a a a +-- =2111a a a --- =211a a -- =(1)(1)1a a a +--=a +1.【母题来源七】【2019·重庆A 卷】计算: 2949()22a a a a a --+÷--. 【解析】原式=222949()222a a a a a a a ---+÷--- 2269229a a a a a -+-=⨯-- 2(3)22(3)(3)a a a a a --=⨯-+-33a a -=+.【母题来源八】【2019•益阳】化简:2244(4)2x x x x+--÷. 【解析】原式=2(2)2(2)(2)x xx x x -⋅+- =242x x -+. 【母题来源九】【2019•河南】先化简,再求值:2212(1)244x x xx x x +--÷--+,其中x【解析】原式=212(2)()22(2)x x x x x x x +---÷--- =322x x x -⋅- =3x, 当x. 【母题来源十】【2019•安顺】先化简2221(1)369x x x x -+÷--+,再从不等式组24324x x x -<⎧⎨<+⎩的整数解中选一个合适的x 的值代入求值.【解析】原式232(3)3(1)(1)x x x x x -+-=⨯-+-=31x x -+,解不等式组24324x x x -<⎧⎨<+⎩①②得-2<x <4,∴其整数解为-1,0,1,2,3, ∵要使原分式有意义,∴x 可取0,2. ∴当x =0时,原式=-3, (或当x =2时,原式=13-).【命题意图】这类试题主要考查分式的有关知识,包括分式有意义的条件、分式的加减乘除运算、分式的化简求值等.【方法总结】1.分式的定义(1)一般地,整式A除以整式B,可以表示成AB的形式,如果除式B中含有字母,那么称AB为分式.(2)分式AB中,A叫做分子,B叫做分母.【注意】①若B≠0,则AB有意义;②若B=0,则AB无意义;③若A=0且B≠0,则AB=0.2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为(0)A A CCB B C⋅=≠⋅或(0)A A CCB B C÷=≠÷,其中A,B,C均为整式.3.分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:()(nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.【母题来源十一】【2019·重庆A 卷】估计 A .4和5之间 B .5和6之间 C .6和7之间D .7和8之间【答案】C【解析】,又因为,所以,故选C . 【母题来源十二】【2019•山西】下列二次根式是最简二次根式的是A BCD【答案】D【解析】A 2=,故A 不符合题意;B 7=,故B 不符合题意;C =C 不符合题意;D D 符合题意.故选D . 【母题来源十三】【2019·济宁】下列计算正确的是A 3=-B =C 6±D .0.6=-【答案】D【解析】A3=,故此选项错误;B=,故此选项错误; C6=,故此选项错误;D.0.6=-,正确.故选D . 【母题来源十四】【2019的结果是__________. 【答案】3,故答案为:3.【母题来源十五】【2019•=__________.【答案】【解析】原式==.故答案为:【母题来源十六】【2019·天津】计算1)的结果等于__________. 【答案】2【解析】原式=3-1=2.故答案为:2.【命题意图】这类试题主要考查二次根式有意义的条件、二次根式值为0的条件、最简二次根式、二次根式的运算和化简等. 【方法总结】 1.二次根式的性质 (1)a ≥ 0(a ≥0); (2))0()(2≥=a a a ;(3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)a b =≥≥;(50,0)a b ≥>.2.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2)二次根式的乘除0,0)a b =≥≥;0,0)a b ≥>. (3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的. 在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.1.【北京市房山区2018年中考二模数学试题】若代数式22x x -有意义,则实数x 的取值范围是A .x =0B .x =2C .x ≠0D .x ≠2【答案】D【解析】∵代数式22x x -有意义,∴x -2≠0,即x ≠2, 故选D .【名师点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.2.【四川省成都市都江堰市2019x 的取值范围是 A .10x ≥B .10x ≤C .10x >D .10x ≠【答案】A 【解析】x -10≥0, 解得:x ≥10, 故选A .【名师点睛】本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.3.【北京市通州区2019届九年级中考数学3月份模拟】化简22a bb a+-的结果是 A .1a b- B .1b a- C .a -bD .b -a【答案】B 【解析】原式=()()a b b a b a ++-=1b a-,故选B .【名师点睛】本题考查的知识点是约分,解题的关键是熟练的掌握约分.4.【天津市滨海新区2019届中考一模数学试题】计算2231366x x x x x+-⋅-+的结果为 A .6x x+ B .6x x - C .6x x +D .6x +【答案】A【解析】2231366x x x x x+-⋅-+ =221(6)(6)6(1)x x x x x x ++-⋅-+ =6x x+, 故选A .【名师点睛】本题考查分式的乘法,熟练掌握分式乘法的运算法则是解题关键. 5.【河北省唐山市路北区2019届九年级下学期第三次模拟数学试题】在化简分式23311x x x-+--的过程中,开始出现错误的步骤是 A .33(1)(1)(1)(1)(1)x x x x x x -+-+-+-B .331(1)(1)x x x x --++-C .22(1)(1)x x x --+-D .21x -- 【答案】B【解析】∵正确的解题步骤是:23311x x x-+-- 33(1)(1)(1)(1)(1)x x x x x x -+=-+-+-333(1)(1)x x x x ---=+-,∴开始出现错误的步骤是331(1)(1)x x x x --++-.去括号是漏乘了.故选B .【名师点睛】本题主要考查分式的加减法,比较简单.6.【2019年浙江省杭州市拱墅区中考数学二模试卷】下列变形正确的是 A .a b =22a b ++ B .0.220.1a b a bb b++=C .a b -1=1a b-D .a b =22(1)(1)a mb m ++ 【答案】D【解析】A .a b ≠22a b ++,故A 错误; B .0.20.1a b b +=210a b b +,故B 错误;C .a b -1=a b b-,故C 错误;故选D .【名师点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 7.【2019年山东省潍坊市中考数学一模试卷】化简341()(1)32a a a a -+---的结果等于 A .-a -2 B .23a a -- C .a +2D .32a a -- 【答案】A【解析】原式=233412()()3322a a a a a a a a ---+-----24332a a a a --+=⋅-- (2)(2)(3)32a a a a a -+--=⋅--=-(a +2) =-a -2. 故选A .【名师点睛】本题考查了分式的化简,熟练掌握分式混合运算法则是解题的关键.8.【江苏省淮安市清江浦区2019届九年级质量调研一数学试题】运算正确的是A=1B=C=D【答案】D【解析】A、C被开方数不同,不能进行减法、加法运算;B、原式B选项不正确;D、原式=2,所以D选项正确.故选D.【名师点睛】本题考查二次根式的化简和计算:先把各二次根式化为最简二次根式,再进行二次根式的加减乘除运算,然后合并同类二次根式.9.【2019年山东省潍坊市中考数学一模试卷】实数a在数轴上的位置如图所示,化简后为A.7 B.-7 C.2a-15 D.无法确定【答案】C【解析】根据数轴上点的位置得:5<a<10,∴a-4>0,a-11<0,则原式=|a-4|-|a-11|=a-4+a-11=2a-15,故选C.【名师点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.10.【广东省汕头市潮南区2019有意义,则x的取值范围为__________.【答案】x≥-1且x≠2【解析】由题意得:x+1≥0,且x-2≠0,解得:x≥-1且x≠2,故答案为:x≥-1且x≠2.【名师点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.11.【海南省海口市2019届中考数学5月份模拟试卷】化简22669a a a -=-+__________. 【答案】23a - 【解析】原式=()()2233a a --=23a -, 故答案为:23a -. 【名师点睛】本题考查了约分的定义与方法.约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.12.【江苏常州市2019届九年级教学情况调研测试第二次模拟测试数学试题】已知分式3x x y+的值为2,且1y ≠-,则分式21x y ++的值为__________. 【答案】2 【解析】∵3x x y +=2, ∴x =2y ,把x =2y 代入21x y ++得,222(1)211y y y y ++==++. 故答案为:2. 【名师点睛】本题考查了分式的运算,把3x x y+=2化为x =2y 是解题关键.13.【天津市五区2019届中考一模数学试题】计算__________.【答案】4-【解析】原式=4故答案为:4.【名师点睛】本题主要考查二次根式的除法运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.14.【2019的结果是__________.【答案】【解析】原式-12×.故答案为:. 【名师点睛】本题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.15.【2019年山西省百校联考中考数学模拟试卷二】计算(-2)(-2)的结果是__________.【答案】-16【解析】原式=-()(2)=-(20-4)=-16.故答案为:-16.【名师点睛】本题考查了二次根式的混合运算和平方差公式,在二次根式的混合运算中,如能结合题目特点,选择恰当的解题途径,往往能事半功倍.16.【2019年广西河池市中考数学三模试卷】计算:6. 【答案】6 【解析】原式=6.故答案为:6. 【名师点睛】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.17.【2019年黑龙江省大庆市初中毕业升学考试数学模拟测试卷二】已知2310x x -+=,求221x x +的值. 【解析】由2310x x -+=得130x x -+=,即13x x +=, ∴221x x +=21()2x x+-=9-2=7. 【名师点睛】本题考查了完全平方公式的应用,解题的关键是对等式和代数式进行变形,寻找联系.18.【2019年广东省湛江市霞山区中考数学一模试卷】先化简,再求值:21(1)211a a a a ÷-+++,其中1a =. 【解析】21(1)211a a a a ÷-+++ =211(1)1a a a a +-÷++ =21(1)a a a a+⋅+ =1+1a ,当a 时,原式=2. 【名师点睛】此题考查分式的化简求值,关键在于约分.19.【甘肃省定西市2019届九年级下学期第一次诊断考试数学试题】先化简,再求值:221)21x x x x x x+2÷(--+-1,从13x -≤<的范围内选取一个你喜欢的整数作为x 的值.【解析】原式=2(1)2(1)(1)(1)x x x x x x x +--÷-- =2(1)(1)x x x +-·(1)1x x x -+ =21x x -. ∵x ≠0,x ≠±1,∴x =2,当x =2时,原式=2221-=4. 【名师点睛】本题考查了分式的运算及分式有意义的条件,要使分式有意义,分母不为0,熟练掌握运算法则是解题关键.20.【2019年河南省许昌市中考二模数学试题】先化简,再求值:2443(1)11m m m m m -+÷----,其中1m =.【解析】2443(1)11m m m m m -+÷---- =()()()2231111m m m m m --+-÷--=()()()221122m m m m m --⋅-+- =22m m-+,当m -1时,原式()315===. 【名师点睛】本题考查分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.注意分母有理化的运算.21.【2019年上海市杨浦区中考数学三模试卷】先化简,再计算:2221222x x x x x x x--+⋅--+,其中x 1+. 【解析】原式=(1)(2)12(1)2(1)x x x x x x x +-+⋅--+ 12x x x+=- 1x x-=,当x +1时,原式2=. 【名师点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.。
专题01 实数(第一篇)-2019年中考数学母题题源系列(原卷版)
【母题来源一】【2019•河北】规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作A.+3 B.-3 C.-13D.+13【答案】B【解析】“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作-3.故选B.【名师点睛】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.【母题来源二】【2019•吉林】如图,数轴上蝴蝶所在点表示的数可能为A.3 B.2 C.1 D.-1【答案】D【解析】数轴上蝴蝶所在点表示的数可能为-1,故选D.【名师点睛】本题考查了数轴、根据数轴-1是解题关键.【母题来源三】【2019•安顺】2019的相反数是A.-2019 B.2019 C.-D.【答案】A【解析】2019的相反数是-2019,故选A.【名师点睛】主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【母题来源四】【2019•河南】-12的绝对值是专题01 实数A.-12B.12C.2 D.-2【答案】B【解析】|-12|=12,故选B.【名师点睛】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.【母题来源五】【2019•桂林】23的倒数是A.32B.-32C.-23D.23【答案】A【解析】23的倒数是:32.故选A.【名师点睛】此题主要考查了倒数,正确把握定义是解题关键.【母题来源六】【2019•安徽】在-2,-1,0,1这四个数中,最小的数是A.-2 B.-1 C.0 D.1【答案】A【解析】根据有理数比较大小的方法,可得-2<-1<0<1,∴在-2,-1,0,1这四个数中,最小的数是-2.故选A.【名师点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【命题意图】这类试题主要考查有理数的有关知识,包括正数和负数、数轴、相反数、绝对值、倒数、有理数的比较大小等.【方法总结】1.正数和负数的表示方法一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如5、7、50、+14200等;负的量用小学学过的数前面放上“–”(读作负)号来表示,如–3、–8、–47、–4745等.2.相反数(1)注意:①相反数是成对出现的;②相反数只有符号不同,若一个为正,则另一个为负;③0的相反数是它本身;相反数为本身的数是0.(2)多重符号的化简方法:①在一个数前面添加一个“+”,所得的数与原数相等;②在一个数前面添加一个“–”,所得的数是原数的相反数;③对于有三个或三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”,都可以把“+”去掉,其次要看“–”的个数,当“–”的个数为偶数时,结果取“+”,当“–”的个数为奇数时,结果取“–”. 3.绝对值 即:(0)(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩或 (0)(0)aa a a a ≥⎧=⎨-<⎩.【母题来源七】【2019•天津】计算(-3)×9的结果等于 A .-27B .-6C .27D .6【答案】A【解析】(-3)×9=-27,故选A . 【名师点睛】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.【母题来源八】【2019•贵港】计算(-1)3的结果是A .-1B .1C .-3D .3【答案】A【解析】(-1)3表示3个(-1)的乘积,所以(-1)3=-1.故选A .【名师点睛】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是1.【母题来源九】【2019•北京】4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为 A .0.439×106B .4.39×106C .4.39×105D .439×103【答案】C【解析】将439000用科学记数法表示为4.39×105.故选C.【名师点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【母题来源十】【2019•安徽】2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为A.1.61×109B.1.61×1010C.1.61×1011D.1.61×1012【答案】B【解析】根据题意161亿用科学记数法表示为1.61×1010.故选B.【名师点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【母题来源十一】【2019•河南】成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为A.46×10-7B.4.6×10-7C.4.6×10-6D.0.46×10-5【答案】C【解析】0.0000046=4.6×10-6.故选C.【名师点睛】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.【母题来源十二】【2019•聊城】计算:115()324--÷=__________.【答案】2 3 -【解析】原式=542()653-⨯=-,故答案为:23-.【名师点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序.【命题意图】这类试题主要考查有理数的运算,包括有理数的加减法、乘除法、乘方、混合运算、科学记数法等.【方法总结】1.有理数的加法有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得0.2.有理数的减法对于有理数的减法运算,应先转化为加法,再根据有理数加法法则计算,即加法与减法是互逆运算.3.有理数的乘法两个数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,都得0.4.有理数的除法(1)有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a b÷=1ab⨯(b≠0);(2)在进行除法运算时,若能整除,则根据“两数相除,同号得正,异号得负,并把绝对值相除”进行计算;若不能整除,则根据“除以一个不等于0的数,等于乘以这个数的倒数”进行计算;5.有理数的混合运算有理数的乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果.6.有理数的乘方(1)负数的奇次幂是负数,负数的偶次幂是正数;(2)正数的任何次幂都是正数,0的任何正整数次幂都是0.7.科学记数法科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值大于10时,写成a×10n 的形式,其中1≤|a|<10,n等于原数的整数位数减1;当原数绝对值小于1时,写成a×10−n的形式,其中1≤|a|<10,n等于原数左边第一个非零的数字前的所有零的个数(包括小数点前面的零).【母题来源十三】【2019•攀枝花】用四舍五入法将130542精确到千位,正确的是A.131000 B.0.131×106C.1.31×105D.13.1×104【答案】C【解析】130542精确到千位是1.31×105.故选C.【名师点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.【母题来源十四】【2019•广东】的结果是A.-4 B.4 C.±4 D.2【答案】B2416.故选B.【名师点睛】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.【母题来源十五】【2019•烟台】-8的立方根是A.2 B.-2 C.±2 D.-22【答案】B【解析】∵-2的立方等于-8,∴-8的立方根等于-2.故选B.【名师点睛】本题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.【母题来源十六】【2019•邵阳】下列各数中,属于无理数的是A.13B.1.414 C2D4【答案】C4=22是无理数,故选C.【名师点睛】本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键.【母题来源十七】【2019•聊城】2的相反数是A.-22B.22C.2D2【答案】D【解析】,故选D.【名师点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.【母题来源十八】【2019•广东】实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A.a>b B.|a|<|b| C.a+b>0 D.ab<0【答案】D【解析】由图可得:-2<a<-1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;ab<0,故D正确,故选D.【名师点睛】本题主要考查了实数与数轴,解题的关键是利用数轴确定a,b的取值范围.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.【母题来源十九】【2019•扬州】下列各数中,小于-2的数是A.5B.3C.2D.-1【答案】A【解析】比-2小的数是应该是负数,且绝对值大于2的数,分析选项可得,5-2<3<2-1,只有A符合.故选A.【名师点睛】本题考查的是有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【母题来源二十】【2019•天津】33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】D【解析】∵25<33<3625333633.故选D.【名师点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.【母题来源二十一】【2019•无锡】49的平方根为__________.【答案】2 3±【解析】49的平方根为23=±.故答案为:23±.【名师点睛】本题考查了平方根的知识,注意一个正数有两个平方根,它们互为相反数.【母题来源二十二】【2019•河南】12-=__________. 【答案】32142-=2-12=32.故答案为:32. 【名师点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.【母题来源二十三】【2019•北京】计算:|3-(4-π)0+2sin60°+(14)-1. 【解析】原式31+2×323-3+4=3+23 【名师点睛】此题主要考查了实数运算,正确化简各数是解题关键.【命题意图】这类试题主要考查实数的有关知识,包括平方根、立方根、无理数、实数的比较大小、无理数的估算、实数的运算等. 【方法总结】 1.精确度与近似数近似数与准确数的接近程度通常用精确度来表示,近似数一般由四舍五入取得,四舍五入到哪一位,就说这个近似数精确到哪一位. 2.平方根22()(0)(0)()000a a a a a a a a a ⎧⎪⎪⎪=≥⎨≥⎧==⎨-<⎩只有非负数才有平方根,的平方根和算术平方根都义是意 3.立方根3意义a a==⎪⎩4.实数大小的比较实数大小的比较可以利用数轴上的点,右边的数总比左边的数大;以及绝对值比较法等比较实数大小的方法.除此之外,常用的方法有“差值比较法”适用于比较任何两数的大小;“商值比较法”只适用于比较两个正数的大小;“平方法”、“倒数法”常用于比较二次根式的大小;“底数比较法”、“指数比较法”常用于比较幂的大小. 5.实数的运算法则(1)实数的混合运算中,在同一个式子里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.(2)熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.注意运算顺序,分清先算什么,再算什么.1.【河北省张家口市桥西区2019届九年级中考6月模拟】中国人最早使用负数,下列各数中是负数的是 A .|1|--B .(1)--C .0()-πD .2(1)-2.【2019年浙江省宁波市北仑区中考数学模拟】2的相反数是 A .12B .-12 C .±12D .-23.【河南省新乡市2019届九年级第二次全真模拟】-2的绝对值是 A .-2B .12-C .12D .24.【福建省福州市2019年初中毕业班适应性数学试卷】已知A 、B 、C 三点在数轴上从左向右排列,且AC =3AB =6,若B 为原点,则点C 所表示的数是 A .-6B .2C .4D .65.【2019年湖北省孝感市孝南区中考数学二模】给出-2,-1,0,13这四个数,其中最小的是 A .13B .0C .-2D .-1【名师点睛】本题考查了有理数大小的比较法则,其关键是负数的绝对值越大,其本身越小. 6.【2019年福建省南平市六校联考中考数学模拟】计算-6+4的结果为 A .10B .-10C .2D .-27.【广东省东莞市2019届九年级中考数学二模】13-的倒数 A .13B .3C .-3D .30.⋅-8.【2019年河南省第二届名校联盟中考数学5月份模拟】2018年8月31日,中国最新一代芯片--麒麟980来了,它的诞生打破了欧美对芯片行业的垄断,该芯片堪称世界最强“心”,在比指甲盖稍大一点的芯片里安装了69亿颗晶体管,数据”69亿“用科学记数法表示为 A .6.9×109B .6.9×108C .69×108D .6.9×10109.【2019年广西贵港市中考数学三模】6.8×105这个数的原数是 A .68000B .680000C .0.000086D .-68000010.【河北省石家庄市新华区2019届九年级毕业生教学质量检测】近似数1.23×103精确到A .百分位B .十分位C .个位D .十位11.【浙江省杭州市下城区2019届九年级二模】16的平方根为A .±4B .±2C .+4D .212.【2019年广东省广州市南沙区中考数学一模】8的立方根等于A .-2B .2C .-4D .413.【2019年重庆市江北新区联盟中考数学一模】下列四个数中是无理数的是A .3B .3πC .3.14159D 914.【2019年河南省第二届名校联盟中考数学5月份模拟】下面四个实数中最大的是A 5B .0C .-2D .115.【天津市河西区201957的值在A .5和6之间B .6和7之间C .7和8之间D .8和9之间16.【湖北省武汉市部分学校20199__________. 17.【福建省厦门市双十中学2019届九年级3月月考】计算:|-3|+11()2=__________. 18.【2019年广东省深圳市罗湖区中考数学二模】计算:(12)-2-4cos30°+(-2)012.。
2019-2021年3年中考真题数学分项汇编-专题20 应用题综合(函数、不等式、方程)-(解析版)
专题20 应用题综合(函数、不等式、方程)一.解答题(共45道)1.(2021·浙江台州市·中考真题)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1, R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k ,b 为常数,0≤m ≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R 0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U 0 ,该读数可以换算为人的质量m ,温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式I =U R; ②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k ,b 的值;(2)求R 1关于U 0的函数解析式;(3)用含U 0的代数式表示m ;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.【答案】(1)2402b k =⎧⎨=-⎩;(2)1024030R U =-;I (3)0120135m U =-;(4)该电子体重秤可称的最大质量为115千克.【分析】(1)根据待定系数法,即可求解;(2)根据“串联电路中电流处处相等,各电阻两端的电压之和等于总电压”,列出等式,进而即可求解;(3)由R 1=12-m +240,1024030R U =-,即可得到答案; (4)把06U =时,代入0480540m U =-,进而即可得到答案. 【详解】解:(1)把(0,240),(120,0)代入R 1=km +b ,得2400120b k b =⎧⎨=+⎩,解得:2402b k =⎧⎨=-⎩;(2)∵001830U U R -=,∴1024030R U =-; (3)由(1)可知:2402b k =⎧⎨=-⎩,∴R 1=2-m +240, 又∵1024030R U =-,∴024030U -=2-m +240,即:0120135m U =-; (4)∵电压表量程为0~6伏,∴当06U =时,1201351156m =-= 答:该电子体重秤可称的最大质量为115千克.【点睛】本题主要考查一次函数与反比例函数的实际应用,熟练掌握待定系数法,是解题的关键. 2.(2021·江苏扬州市·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:说明:①汽车数量为整数..; ②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a 元()0a >给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a 的取值范围.【答案】(1)48000,37;(2)33150元;(3)50150a <<【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x 辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,同(1)可得y 甲和y 乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y 关于x 的表达式,根据二次函数的性质,结合x的范围求出最值,再比较即可;(3)根据题意得到利润差为()25018001850y x a x =-+-+,得到对称轴,再根据两公司租出的汽车均为17辆,结合x 为整数可得关于a 的不等式180016.517.5100a -<<,即可求出a 的范围. 【详解】解:(1)()50105030001020010-⨯+⨯-⨯⎡⎤⎣⎦=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x 辆,由题意可得:()5050300020035001850x x x x -⨯+-=-⎡⎤⎣⎦,解得:x =37或x =-1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,则y 甲=()50503000200x x x -⨯+-⎡⎤⎣⎦,y 乙=35001850x -,当甲公司的利润大于乙公司时,0<x <37,y =y 甲-y 乙=()()5050300020035001850x x x x -⨯+---⎡⎤⎣⎦=25018001850x x -++,当x =1800502--⨯=18时,利润差最大,且为18050元; 当乙公司的利润大于甲公司时,37<x ≤50,y =y 乙-y 甲=()3500185050503000200x x x x ---⨯++⎡⎤⎣⎦=25018001850x x --,∵对称轴为直线x =1800502--⨯=18, 当x =50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为25018001850y x x ax =-++-=()25018001850x a x -+-+,对称轴为直线x =1800100a -, ∵x 只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大, ∴180016.517.5100a -<<,解得:50150a <<. 【点睛】本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤其(3)中要根据x 为整数得到a 的不等式.3.(2021·吉林长春市·中考真题)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水查流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间,某学校STEAM 小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究: (实验观察)实验小组通过观察,每2小时记录次箭尺读数,得到下表:(探索发现)(1)建立平面直角坐标系,如图②,横轴表示供水时间x .纵轴表示箭尺读数y ,描出以表格中数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.(结论应用)应用上述发现的规律估算:(3)供水时间达到12小时时,箭尺的读数为多少厘米?(4)如果本次实验记录的开始时间是上午8:00,那么当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)【答案】(1)见解析;(2)在同一直线上,解析式为66y x =+;(3)78()cm ;(4)当天晚上的22:00.【分析】(1)将各点在坐标系中直接描出即可;(2)观察发现,供水时间每增加2小时,箭尺读数增加12cm ,由此可判断它们在同以直线上,设直线解析式为y kx b =+,再代入两个点坐标即可求解;(3)当12x =时代入(2)中解析式即可求出箭尺的读数;(4)当90y =时代入(2)中解析式即可求出供水时间,再结合实验开始时间为8:00即可求解.【详解】解:(1)将表格中各点在直角坐标系中描出来如下图所示:(2)分析表格中数据发现,供水时间每增加2小时,箭尺读数增加12cm ,观察(1)中直角坐标系点的特点,发现它们位于同一直线上,设直线解析式为y kx b =+,代入点(0,6)和点(2,18),得到60182b k b =+⎧⎨=+⎩,解得66k b =⎧⎨=⎩,∴直线的表达式为:66y x =+;(3)当供水时间达到12小时时,即12x =时,代入66y x =+中,解得612678y cm ,∴此时箭尺的读数为78cm ;(4)当箭尺读数为90厘米时,即90y =时,代入66y x =+中,解得(906)614x (小时),∴经过14小时后箭尺读数为90厘米,∵实验记录的开始时间是上午8:00,∴箭尺读数为90厘米时对应的时间为8+14=22,即对应当天晚上的22:00.【点睛】本题考查待定系数法求一次函数的解析式、一次函数的实际应用问题,读懂题目,掌握一次函数的图形及性质是解决本题的关键.4.(2021·黑龙江鹤岗市·中考真题)已知A 、B 两地相距240km ,一辆货车从A 地前往B 地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B 地前往A 地,到达A 地后(在A 地停留时间不计)立即原路原速返回.如图是两车距B 地的距离()km y 与货车行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)图中m 的值是__________;轿车的速度是________km/h ;(2)求货车从A 地前往B 地的过程中,货车距B 地的距离()km y 与行驶时间()h x 之间的函数关系式; (3)直接写出轿车从B 地到A 地行驶过程中,轿车出发多长时间与货车相距12km ?【答案】(1)5;120;(2)66240(0 2.5)75(2.5 3.5)50250(3.55)x x y x x x -+≤<⎧⎪=≤<⎨⎪-+≤≤⎩;(3)1h 或27h 31. 【分析】(1)由图象可知轿车从B 到A 所用时间为2h ,即可得出从A 到B 的时间,进而可得m 的值,根据速度=距离÷时间即可得轿车速度;(2)由图象可知货车在2.5h~3.5h 时装载货物停留1h ,分1≤x <2.5;2.5≤x <3.5;3.5≤x <5三个时间段,分别利用待定系数法求出y 与x 的关系式即可得答案;(3)分两车相遇前和相遇后相距12km 两种情况,分别列方程求出x 的值即可得答案.【详解】(1)由图象可知轿车从B 到A 所用时间为3-1=2h ,∴轿车从A 到B 的时间为2h ,∴m =3+2=5,∵A 、B 两地相距240km ,∴轿车速度=240÷2=120km/h ,故答案为:5;120(2)由图象可知货车在2.5h~3.5h 时装载货物停留1h ,①设()1110(0 2.5)MN y k x b k x =+≠≤<∵图象过点(0,240)M 和点(2.5,75)N ∴1112402.575b k b =⎧⎨+=⎩解得:1124066b k =⎧⎨=-⎩, ∴66240(0 2.5)MN y x x =-+≤<②∵货车在2.5h~3.5h 时装载货物停留1h ,∴75(2.5 3.5)NG y x =≤<,③设()2220(3.55)GH y k x b k x =+≠≤≤,∵图象过点(3.5,75)G 和点(5,0)H ∴2222503.575k b k b +=⎧⎨+=⎩解得:2225050b k =⎧⎨=-⎩, ∴50250(3.55)GH y x x =-+≤≤,∴66240(0 2.5)75(2.5 3.5)50250(3.55)x x y x x x -+≤<⎧⎪=≤<⎨⎪-+≤≤⎩. (3)设轿车出发xh 与货车相距12km ,则货车出发(x +1)h ,①当两车相遇前相距12km 时:66(1)24012012x x -++-=,解得:2731x =, ②当两车相遇后相距12km 时:[]12066(1)240x x --++=12,解得:x =1,答:轿车出发1h 或27h 31与货车相距12km . 【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.5.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,则四月份的游客为()41x +人,五月份的游客为()241x +人,再列方程,解方程可得答案;(2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,再列出W 与m 的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x += ()21 1.44,x ∴+= 解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:0.6+0.4=1(万人),购买甲种门票的人数为:20.6 1.4-=(万人),购买乙种门票的人数为:30.4 2.6-=(万人),所以:门票收入问;()()100 1.480 2.61601021⨯+⨯+-⨯+798=(万元)答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-<,∴当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元.【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.6.(2021·河北中考真题)下图是某同学正在设计的一动画示意图,x 轴上依次有A ,O ,N 三个点,且2AO =,在ON 上方有五个台阶15~T T (各拐角均为90︒),每个台阶的高、宽分别是1和1.5,台阶1T 到x 轴距离10OK =.从点A 处向右上方沿抛物线L :2412y x x =-++发出一个带光的点P .(1)求点A 的横坐标,且在图中补画出y 轴,并直接..指出点P 会落在哪个台阶上; (2)当点P 落到台阶上后立即弹起,又形成了另一条与L 形状相同的抛物线C ,且最大高度为11,求C 的解析式,并说明其对称轴是否与台阶5T 有交点;(3)在x 轴上从左到右有两点D ,E ,且1DE =,从点E 向上作EB x ⊥轴,且2BE =.在BDE 沿x 轴左右平移时,必须保证(2)中沿抛物线C 下落的点P 能落在边BD (包括端点)上,则点B 横坐标的最大值比最小值大多少?(注:(2)中不必写x 的取值范围)【答案】(1)(2,0)A -,见解析,点P 会落在4T 的台阶上;(2)2(7)11y x =--+,其对称轴与台阶5T 有交点;(32-.【分析】(1)二次函数与坐标轴的交点坐标可以直接算出,根据点A 的坐标可以确定y 轴,利用函数的性质可以判断落在那个台阶上;(2)利用二次函数图象的平移来求解抛物线C ,再根据函数的对称轴的值来判断是否与台阶5T 有交点; (3)抓住二次函数图象不变,是BDE 在左右平移,要求点B 横坐标的最大值比最小值大多少,利用临界点法,可以确定什么时候横坐标最大,什么时候横坐标最小,从而得解.【详解】解:(1)当0y =,24120x x -++=,解得:2,6x x =-=,A 在左侧,(2,0)A ∴-, 2412y x x =-++关于22b x a=-=对称,y ∴轴与OK 重合,如下图:由题意在坐标轴上标出相关信息,当7y =时,24127x x -++=,解得:1,5x x =-=,4.556<<,∴点P 会落在4T 的台阶上,坐标为(5,7)P ,(2)设将抛物线L ,向下平移5个单位,向右平移a 的单位后与抛物线C 重合,则抛物线C 的解析式为:2(2)11y x a =---+,由(1)知,抛物线C 过(5,7)P ,将(5,7)P 代入2(2)11y x a =---+,27(3)11a =--+,解得:5,1a a ==(舍去,因为是对称轴左边的部分过(5,7)P ), 抛物线C :2(7)11y x =--+,2(7)11y x =--+关于72b x a=-=,且677.5<<,∴其对称轴与台阶5T 有交点.(3)由题意知,当BDE 沿x 轴左右平移,恰使抛物线C 下落的点P 过点D 时,此时点B 的横坐标值最大;当0y =,2(7)110x --+=,解得:1277x x ==(取舍),故点B 的横坐标最大值为:8当BDE 沿x 轴左右平移,恰使抛物线C 下落的点P 过点B 时,此时点B 的横坐标值最小;当2y =,2(7)112x --+=,解得:1210,4x x ==(舍去),故点B 的横坐标最小值为:10,则点B 横坐标的最大值比最小值大:81022-.【点睛】本题综合性考查了二次函数的解析式的求法及图象的性质,图象平移,抛物线的对称轴,解题的关键是:熟练掌握二次函数解析式的求法及图象的性质,通过已知的函数求解平移后函数的解析式. 7.(2021·广西来宾市·中考真题)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.【答案】(1)213482y x x =-++;(2)12米;(3)3524b ≥. 【分析】(1)根据题意可知:点A (0,4)点B (4,8),利用待定系数法代入抛物线221:8C y x bx c =-++即可求解;(2)高度差为1米可得21=1C C -可得方程,由此即可求解; (3)由抛物线2117C :1126y x x =-++可知坡顶坐标为 61(7,)12,此时即当7x =时,运动员运动到坡顶正上方,若与坡顶距离超过3米,即2161773812y b c =-⨯++≥+,由此即可求出b 的取值范围. 【详解】解:(1)根据题意可知:点A (0,4),点B (4,8)代入抛物线221:8C y x bx c =-++得, 2=4144=88c b c ⎧⎪⎨-⨯++⎪⎩,解得:=43=2c b ⎧⎪⎨⎪⎩, ∴抛物线2C 的函数解析式213482y x x =-++; (2)∵运动员与小山坡的竖直距离为1米, ∴221317(4)(1)182126x x x x -++--++=, 解得:14x =-(不合题意,舍去), 212x =,故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为1米;(3)∵点A (0,4),∴抛物线221:48C y x bx =-++, ∵抛物线22117161C :1=(7)1261212y x x x =-++--+,∴坡顶坐标为 61(7,)12, ∵当运动员运动到坡顶正上方,且与坡顶距离超过3米时, ∴21617743812y b =-⨯++≥+,解得:3524b ≥. 【点睛】本题属二次函数应用中的难题.解决函数应用问题的一般步骤为:(1)审题:弄清题意,分清条件和结论,理清数量关系;(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型;(3)求模:求解数学模型,得到数学结论;(4) 还原:将用数学方法得到的结论还原为实际问题.8.(2021·贵州安顺市·中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【答案】(1)y =14-x 2+2x (0≤x ≤8);(2)他的头顶不会触碰到桥拱,理由见详解;(3)5≤m ≤8 【分析】(1)设二次函数的解析式为:y =a (x -8)x ,根据待定系数法,即可求解; (2)把:x =1,代入y =14-x 2+2x ,得到对应的y 值,进而即可得到结论; (3)根据题意得到新函数解析式,并画出函数图像,进而即可得到m 的范围.【详解】(1)根据题意得:A (8,0),B (4,4),设二次函数的解析式为:y =a (x -8)x ,把(4,4)代入上式,得:4=a ×(4-8)×4,解得:14a =-, ∴二次函数的解析式为:y =14-(x -8)x =14-x 2+2x (0≤x ≤8); (2)由题意得:x =0.4+1.2÷2=1,代入y =14-x 2+2x ,得y =14-×12+2×1=74>1.68, 答:他的头顶不会触碰到桥拱;(3)由题意得:当0≤x ≤8时,新函数表达式为:y =14x 2-2x , 当x <0或x >8时,新函数表达式为:y =-14x 2+2x , ∴新函数表达式为:2212(08)412(08)4x x x y x x x x ⎧-≤≤⎪⎪=⎨⎪-+⎪⎩或,∵将新函数图象向右平移()0m m >个单位长度,∴O '(m ,0),A '(m +8,0),B '(m +4,-4),如图所示,根据图像可知:当m +4≥9且m ≤8时,即:5≤m ≤8时,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小.【点睛】本题主要考查二次函数的实际应用,掌握二次函数的待定系数法,二次函数的图像和性质,二次函数图像平移和轴对称变换规律,是解题的关键.9.(2021·湖北中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售.为此当地政府决定给予其销售的这种消毒液按a 元/件进行补贴,设某月销售价为x 元/件,a 与x 之间满足关系式:()20%10a x =-,下表是某4个月的销售记录.每月销售量y (万件)与该月销售价x (元/件)之间成一次函数关系(69)x ≤<.(1)求y 与x 的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x 定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)【答案】(1)1090y x =-+;(2)4万元;(3)当销售价x 定为7元/件时,该月纯收入最大.【分析】(1)利用待定系数法即可得;(2)将8x =代入()20%10a x =-求出a 的值,代入y 与x 的函数关系式求出该月的销售量,再利用a 乘以该月的销售量即可得;(3)设该月纯收入为w 万元,先根据纯收入的计算公式求出w 与x 之间的函数关系式,再利用二次函数的性质求解即可得.【详解】解:(1)设y 与x 的函数关系式为y kx b =+,将点(6,30),(7,20)代入得:630720k b k b +=⎧⎨+=⎩,解得1090k b =-⎧⎨=⎩,则y 与x 的函数关系式为1090y x =-+;(2)当8x =时,()20%1080.4a =⨯-=,1089010y =-⨯+=,则0.4104⨯=(万元), 答:政府该月应付给厂家补贴4万元;(3)设该月纯收入为w 万元,由题意得:(1090)6(1090)(20%1(1090)0)w x x x x x -=-+--++-+,整理得:28(5)(9)8(7)32w x x x =---=--+,由二次函数的性质可知,在69x ≤<内,当7x =时,w 取得最大值,最大值为32,答:当销售价x 定为7元/件时,该月纯收入最大.【点睛】本题考查了一次函数和二次函数的实际应用,正确建立函数关系式是解题关键.10.(2021·辽宁大连市·中考真题)某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【分析】(1)由图象易得()50,100和()80,40,然后设y 关于x 的函数解析式为y kx b =+,进而代入求解即可;(2)设该电商每天所获利润为w 元,由(1)及题意易得222808000w x x =-+-,然后根据二次函数的性质可进行求解.【详解】解:(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∵5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=;答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.11.(2021·内蒙古鄂尔多斯市·中考真题)鄂尔多斯市某宾馆共有50个房间供游客居住,每间房价不低于200元且不超过320元、如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.已知每个房间定价x (元)和游客居住房间数y (间)符合一次函数关系,如图是y 关于x 的函数图象.(1)求y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)当房价定为多少元时,宾馆利润最大?最大利润是多少元?【答案】(1)y 与x 之间的函数解析式为y=-0.1x+68,200x 320≤≤;(2)当房价定为320元时,宾馆利润最大,最大利润是10800元【分析】(1)设y 与x 之间的函数解析式为y=kx+b ,根据待定系数法即可得出答案;(2)设宾馆每天的利润为W 元,利用房间数乘每一间房间的利润即可得到W 关于x 的函数解析式,配方法再结合增减性即可求得最大值.【详解】(1)根据题意,设y 与x 之间的函数解析式为y=kx+b ,图象过(280,40),(290,39),∴2804029039k b k b +=⎧⎨+=⎩,解得:-0.168k b =⎧⎨=⎩ ∴y 与x 之间的函数解析式为y=-0.1x+68,∵每间房价不低于200元且不超过320元 ∴200x 320≤≤(2)设宾馆每天的利润为W 元,()()()2w=x-20y=x-20-0.1x+68=-0.1x +70x-1360, ∴()22w=-0.1x +70x-1360=-0.1x-350+10890 当x <350时,w 随x 的增大而增大,∵200x 320≤≤,∴当x=320时,W 最大=10800∴当房价定为320元时,宾馆利润最大,最大利润是10800元【点睛】本题考查的是二次函数在实际生活中的应用及待定系数法求一次函数的解析式,注意利用配方法和函数的增减性求函数的最值,难度不大.12.(2021·贵州铜仁市·中考真题)某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元).当每辆售价为22(万元)时,每月可销售4辆汽车.根据市场行情,现在决定进行降价销售.通过市场调查得到了每辆降价的费用1y (万元)与月销售量x (辆)(4x ≥)满足某种函数关系的五组对应数据如下表:(1)请你根据所给材料和初中所学的函数知识写出1y 与x 的关系式1y =________;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y =(每辆原售价-1y -进价)x ,请你根据上述条件,求出月销售量()4x x ≥为多少时,销售利润最大?最大利润是多少?【答案】(1)1122y x =-;(2)月销售量为8辆时,销售利润最大,最大利润是32万元 【分析】(1)观察表格中数据可知,1y 与x 的关系式为一次函数的关系,设解析式为1y kx b =+,再代入数据求解即可;(2)根据已知条件“每月销售利润y =(每辆原售价-1y -进价)x ”,求出y 的表达式,然后再借助二次函数求出其最大利润即可.【详解】解:(1)由表中数据可知,1y 与x 的关系式为一次函数的关系,设解析式为1y kx b =+,代入点(4,0)和点(5,0.5),得到040.55k b k b =+⎧⎨=+⎩,解得122k b ⎧=⎪⎨⎪=-⎩,故1y 与x 的关系式为1122y x =-; (2)由题意可知:降价后每月销售利润y =(每辆原售价-1y -进价)x , 即:211(22216)822y x x x x ,其中4x ≥, ∴y 是x 的二次函数,且开口向下,其对称轴为82b x a=-=, ∴当8x =时,y 有最大值为21888322万元, 答:月销售量为8辆时,销售利润最大,最大利润是32万元.【点睛】本题考查待定系数法求一次函数解析式以及二次函数的应用,读懂题意,根据题中已知条件列出表达式是解决本题的关键.13.(2021·湖北鄂州市·中考真题)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y (元)与种植面积x (亩)之间满足一次函数关系,且当160x =时,840y =;当190x =时,960y =.(1)求y 与x 之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)【答案】(1)4200y x =+;(2)种植面积为240亩时总利润最大,最大利润268800元.【分析】(1)利用待定系数法求出一次函数解析式即可;(2)根据明年销售该作物每亩的销售额能达到2160元,预计明年每亩种粮成本y (元)与种粮面积x (亩)之间的函数关系为4200y x =+,进而得出W 与x 的函数关系式,再利用二次函数的最值公式求出即可.【详解】解:(1)设y 与x 之间的函数关系式()0y kx b k =+≠,依题意得:160840190960k b k b +=⎧⎨+=⎩,解得:4200k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为4200y x =+. (2)设老张明年种植该作物的总利润为W 元,依题意得:()21604200120W x x ⎡=-+⎤⎣⎦+⋅242080x x =-+()24260270400x =--+. ∵40-<,∴当260x <时,y 随x 的增大而增大.由题意知:240x ≤,∴当240x =时,W 最大,最大值为268800元.即种植面积为240亩时总利润最大,最大利润268800元.【点睛】此题主要考查了一次函数和二次函数的应用,掌握待定系数法求函数解析式并根据已知得出W 与x 的函数关系式是求最值问题的关键.14.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360 解得:x 1=2,x 2=18∵要尽可能减少库存,∴x 2=18不合题意,故舍去 ∴T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x --+∴当x =10时,M 最大值=4000元 ∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.15.(2021·湖北随州市·中考真题)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.。
2019-2020学年深圳市七年级上册期末数学试卷与答案
2019-2020学年深圳市七年级上册期末数学试卷一、选择题(共12小题,每小题3分)1.(3分)﹣的相反数是()A.3B.﹣3C .D .﹣2.(3分)PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣6D.2.5×10﹣53.(3分)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为()①正方体;②圆柱;③圆锥;④正三棱柱.A.①②③④B.①③④C.①④D.①②4.(3分)下列方程:①y=x﹣7;②2x2﹣x=6;③m﹣5=m;④=1;⑤=1,其中是一元一次方程的有()A.2个B.3个C.4个D.以上答案都不对5.(3分)如果从甲船看乙船,乙船在甲船的南偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.北偏东30°B.北偏西30°C.北偏东60°D.北偏西60°6.(3分)下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点;⑤连接两点的线段叫做这两点之间的距离.其中正确的个数为()A.1个B.2个C.3个D.4个7.(3分)如果单项式﹣xy b+1与是同类项,那么关于x的方程ax+b=0的解为()A.x=1B.x=﹣1C.x=2D.x=﹣28.(3分)在同一平面上,若∠BOA=62.7°,∠BOC=21°30′,则∠AOC的度数是()A.84.2°B.41.2°C.84.2°或41.2°D.74.2°或39.8°9.(3分)如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD等于()A.15°B.25°C.35°D.45°10.(3分)两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm11.(3分)阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x =;(2)当a =0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程•a =﹣(x﹣6)无解,则a的值是()A.1B.﹣1C.±1D.a≠112.(3分)如图,正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2020次追上甲时的位置在()A.AB上B.BC上C.CD上D.AD上二、填空题(共4小题,每小题3分)13.(3分)一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示,这个几何体是由个小立方块搭成的.14.(3分)为了了解我市2018年10000名考生的数学中考成绩,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体;②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本;④样本容量是200.其中说法正确的有(填序号).15.(3分)如图①,在长方形ABCD中,E点在AD上,并且∠ABE=30°,分别以BE、CE为折痕进行折叠并压平,如图②,若图②中∠AED=n°,则∠DEC的度数为度.16.(3分)一个长方体水箱从里面量得长、宽、高分别是50cm、40cm和30cm,此时箱中水面高8cm,放进一个棱长为20cm的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是cm3.三、解答题(共7小题,共52分)17.计算18.解方程:(1)4x﹣3(20﹣x)=3(2)﹣1=19.先化简,再求值4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1,其中|x+1|+(y﹣2)2=0.20.为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如下(未完成),解答下列问题:(1)样本容量为,频数分布直方图中a=;(2)扇形统计图中D小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;(3)若成绩在80分以上(不含80分)为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?21.制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用1m3木材可制作15个桌面或300个桌腿,公司现有18m3的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)家具公司欲将制作餐桌全部出售,为尽快回收资金,决定以标价的八折出售,一张餐桌仍可获利28%,这样全部出售后总获利31500元.求每张餐桌的标价是多少?22.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE(1)若∠COF=20°,则∠BOE=°(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.23.已知,数轴上点A、C对应的数分别为a、c,且满足|a+7|+(c﹣1)2020=0,点B对应点的数为﹣3.(1)a=,c=;(2)若动点P、Q分别从A、B同时出发向右运动,点P的速度为3个单位长度/秒;点Q的速度为1个单位长度/秒,求经过多长时间P、Q两点的距离为;(3)在(2)的条件下,若点Q运动到点C立刻原速返回,到达点B后停止运动,点P运动至点C处又以原速返回,到达点A后又折返向C运动,当点Q停止运动点P随之停止运动.求在整个运动过程中,两点P,Q同时到达的点在数轴上表示的数.2019-2020学年深圳市七年级上册期末数学试卷一、选择题(共12小题,每小题3分)1.解:﹣的相反数是,故选:C.2.解:0.0000025=2.5×10﹣6,故选:C.3.解:①立方体截去一个角,截面为三角形,符合题意;②圆柱体只能截出矩形或圆,不合题意;③圆锥沿着中轴线截开,截面就是三角形,符合题意;④正三棱柱从平行于底面的方向截取,截面即为三角形,符合题意;故选:B.4.解:①不符合一元一次方程的定义,①不是一元一次方程,②属于一元二次方程,不符合一元一次方程的定义,②不是一元一次方程,③符合一元一次方程的定义,③是一元一次方程,④属于分式方程,不符合一元一次方程的定义,④不是一元一次方程,⑤符合一元一次方程的定义,⑤是一元一次方程,即是一元一次方程的是③⑤,共2个,故选:A.5.解:∵从甲船看乙船,乙船在甲船的南偏东30°方向,∴从乙船看甲船,甲船在乙船的北偏西30°方向.故选:B.6.解:①经过一点有无数条直线,这个说法正确;②两点之间线段最短,这个说法正确;③经过两点,有且只有一条直线,这个说法正确;④若线段AM等于线段BM,则点M不一定是线段AB的中点,因为A、M、B三点不一定在一条直线上,所以这个说法错误;⑤连接两点的线段的长度叫做这两点之间的距离,所以这个说法错误.所以正确的说法有三个.故选:C.7.解:根据题意得:a+2=1,解得:a=﹣1,b+1=3,解得:b=2,把a=﹣1,b=2代入方程ax+b=0得:﹣x+2=0,解得:x=2,故选:C.8.解:∠AOC=∠BOA+∠BOC=62.7°+21°30′=84.2°,∠AOC=∠BOA﹣∠BOC=62.7°﹣21°30′=41.2°.∴∠AOC的度数是84.2°或41.2°.故选:C.9.解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD等于25°.故选:B.10.解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.11.解:去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6移项,合并得,x =,因为无解;所以a﹣1=0,即a=1.故选:A.12.解:设乙走x秒第一次追上甲.根据题意,得5x﹣x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y﹣y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505,∴乙在第2020次追上甲时的位置是AD上.故选:D.二、填空题(共4小题,每小题3分)13.解:由俯视图易得最底层小立方块的个数为4,由其他视图可知第二层有一个小立方块,那么共有4+1=5个小立方块.故答案为:5.14.解:①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.15.解:折叠后的图形如下:∵∠ABE=30°,∴∠BEA'=∠BAE=60°,又∵∠CED'=∠CED,∴∠DEC =∠DED',∴∠DEC =(180°﹣∠A'EA+∠AED)=(180°﹣120°+n°)=(30+n)°故答案为:(30+n).16.解:设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10.则水箱中露在水面外的铁块的高度为:20﹣10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案是:4000.三、解答题(共7小题,共52分)17.解:原式=﹣1+16×﹣0.28+0.01=﹣1+2﹣0.28+0.01=﹣1﹣0.28+2+0.01=﹣1.28+2.01=0.7318.解:(1)4x﹣60+3x=37x=63x=9;(2)去分母,得3(3x﹣1)﹣1×12=2(5x﹣7)去括号,得9x﹣3﹣12=10x﹣14移项,得9x﹣10x=3+12﹣14合并同类项,得﹣x=1系数化为1,得x=﹣1.19.解:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1=4x2y﹣6xy+12xy﹣6+x2y+1=5x2y+6xy﹣5∵|x+1|+(y﹣2)2=0,∴x+1=0,y﹣2=0,解得x=﹣1,y=2,∴原式=5×(﹣1)2×2+6×(﹣1)×2﹣5=﹣7.20.解:(1)学生总数是40÷20%=200(人),则a=200×8%=16;故答案为:200;16;(2)n=360×=126°.C组的人数是:200×25%=50.如图所示:;(3)样本D、E两组的百分数的和为1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.21.解:(1)设用x立方米做桌面,则用(18﹣x)立方米做桌腿.根据题意得:4×15x=300(18﹣x),解得:x=15,则18﹣x=18﹣15=3.答:用15立方米做桌面,用3立方米做桌腿才能使制作的桌面和桌腿配套.(2)15×15=225(张),设每张餐桌的标价是y元,根据题意得:225[0.8y﹣0.8y÷(1+28%)]=31500,解得:y=800.故每张餐桌的标价是800元.22.解:(1)∵∠COE=60°,∠COF=20°,∴∠EOF=60°﹣20°=40°,∵OF平分∠AOE,∴∠AOF=∠EOF=40°,∴∠AOE=80°,∴∠BOE=∠AOB﹣∠AOE=120°﹣80°=40°,故答案为40;(2)∵∠AOE=2∠EOF,∴120°﹣∠BOE=2(60°﹣∠COF)∴∠BOE=2∠COF;(3)存在.理由如下:∵∠DOF=3∠DOE,设∠DOE=α,∠DOF=3α,∴∠EOF=∠AOF=2α,∠AOD=5α,∵∠AOD+∠BOD=120°,∴5α+70°=120°,∴α=10°,∴∠DOF=30°,∠AOE=40°,∠AOC=60°﹣40°=20°,∴∠COF=40°,∴=.23.解:(1)由非负数的性质可得:,∴a=﹣7,c=1,故答案为:﹣7,1.(2)设经过t 秒两点的距离为由题意得:,解得或,答:经过秒或秒P,Q 两点的距离为.(3)点P未运动到点C时,设经过x秒P,Q相遇,由题意得:3x=x+4,∴x=2,表示的数为:﹣7+3×2=﹣1,点P运动到点C返回时,设经过y秒P,Q相遇,由题意得:3y+y+4=2[1﹣(﹣7)],∴y=3,表示的数是:﹣3+3=0,当点P返回到点A时,用时秒,此时点Q所在位置表示的数是,设再经过z秒相遇,由题意得:,∴,∵+=<4+4,∴此时点P、Q均未停止运动,故z=还是符合题意.此时表示的数是:,答:在整个运动过程中,两点P,Q同时到达的点在数轴上表示的数分别是﹣1,0,﹣2.。
2019年广东省中考数学试卷以及答案
2019年广东省初中学业水平考题数学说明:1.全卷共4页,满分为120分,考题用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出解答后,用2B 铅笔把答题卡上对应题目选项的解答信息点涂黑,如需改动,用像皮檫干净后,再选涂其他解答,解答不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,解答必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的解答,然后再写上新的解答;不准使用铅笔和涂改液.不按以上要求作答的解答无效.5.考生务必保持答题卡的整洁.考题结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A .b 6÷b 3=b 2B .b 3·b 3=b 9C .a 2+a 2=2a 2D .(a 3)3=a 65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .ba <08.化简24的结果是A .﹣4B .4C .±4D .29.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1·x 2=210.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确解答填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 12.如图,已知a ∥b ,∠l=75°,则∠2 =________.13.一个多边形的内角和是1080°,这个多边形的边数是_________.14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=315米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD =2,求ECAE 的值.四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总 额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总 额不超过购买足球的总 额,最多可购买多少个篮球?22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=x k 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832 与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?解析卷1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 【解答】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×106【解答】B【解析】a ×10n 形式,其中0≤|a|<10.【考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是【解答】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2 B.b3·b3=b9 C.a2+a2=2a2 D.(a3)3=a6【解答】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【解答】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【解答】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .ba <0【解答】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简24的结果是A .﹣4B .4C .±4D .2【解答】B 【解析】公式a a 2 .【考点】二次根式9.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1·x 2=2【解答】D【解析】因式分解x (x-2)=0,解得两个根分别为0和2,代入选项排除法.【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个【解答】C【解析】AH=GF=2,∠ANH=∠GNF ,∠AHN=∠GFN ,△ANH ≌△GNF (AAS ),①正确;由①得AN=GN=1,∵NG ⊥FG ,NA 不垂直于AF ,∴FN 不是∠AFG 的角平分线,∴∠AFN ≠∠HFG ,②错误;由△AKH ∽△MKF ,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN ,∴K 为NH 的中点,即FN=2NK ,③正确;S △AFN =21AN ·FG=1,S △ADM =21DM ·AD=4,∴S △AFN :S △ADM =1:4,④正确. 【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确解答填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 【解答】4【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a∥b,∠l=75°,则∠2 =________.【解答】105°【解析】180°-75°=105°.【考点】平行线的性质13.一个多边形的内角和是1080°,这个多边形的边数是_________.【解答】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x﹣8y+9的值是___________.【解答】21【解析】由已知条件得x-2y=3,原式=4(x-2y)+9=12+9=21.【考点】代数式的整体思想15米,在实验楼的顶部B点测得15.如图,某校教学楼AC与实验楼BD的水平间距CD=3教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是_________________米(结果保留根号).【解答】15+153【解析】AC=CD·tan30°+CD·tan45°=15+153.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a、b代数式表示).【解答】a+8b【解析】每个接触部分的相扣长度为(a-b),则下方空余部分的长度为a-2(a-b)=2b-a,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a)=a+2b;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a)=a+4b;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a)=a+6b;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a)=a+8b. 【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:【解答】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值:4-x x-x 2-x 1-2-x x22÷⎪⎭⎫⎝⎛ ,其中x=2.【解答】解:原式=2-x 1-x 4-x x-x 22÷ =2-x 1-x ×()()()1-x x 2-x 2x + =x 2x +当x=2,原式=222+=2222+=1+2.【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD=2,求EC AE的值.【解答】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC ∴EC AE =DBAD ∵DBAD =2 ∴EC AE =2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【解答】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×404=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种 ∴P (甲乙)=62=31 答:同时抽到甲、乙两名学生的概率为31. 【考点】数据收集与解析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总 额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总 额不超过购买足球的总 额,最多可购买多少个篮球?【解答】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【解答】解:(1)由题意可知,AB=2262+=102,AC=2262+=102, BC=2284+=54(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=21BC=52 (或用等面积法AB ·AC=BC ·AD 求出AD 长度) ∵S 阴影=S △ABC -S 扇形EAFS △ABC =21×102×102=20 S 扇形EAF =()25241π =5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=x k 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ). (1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.【解答】解:(1)x <-1或0<x <4(2)∵反比例函数y=xk 2图象过点A (﹣1,4) ∴4=1-k 2,解得k 2=﹣4 ∴反比例函数表达式为x 4-y = ∵反比例函数x4-y =图象过点B (4,n ) ∴n=44-=﹣1,∴B (4,﹣1)∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1) ∴⎩⎨⎧+=+=b k 41-b -k 411,解得⎩⎨⎧==3b 1-k 1 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP :S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC ∴BNMN BP AP = ∵MN=a+1,BN=4-a ∴21a -41a =+,解得a=32 ∴-a+3=37 ∴点P 坐标为(32,37)(或用两点之间的距离公式AP=()()224-3a -1a +++,BP=()()223-a 1-a -4++,由21BP AP =解得a 1=32,a 2=-6舍去) 【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.【解答】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D∴ED=EC(2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A 在⊙O 上∴AF 是⊙O 的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA ∴BCAB AB BE ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832+与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【解答】(1)解:由y=837 -x 433x 832+=()32-3x 83+得点D 坐标为(﹣3,32) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:过点D 作DG⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC∽△FOC ∴COCG FO DG = 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF,OA=1,DG=3,CG=m+32∵CO⊥FA∴FO=OA=1 ∴m32m 13+=,解得m=3 (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=3x+3,再求出点C 的坐标)∴点C 坐标为(0,3) ∴CD=CE=()223233++=6∵tan∠CFO=FOCO =3 ∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC∥BA∵BF=BO-FO=6∴CE=BF∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,837-m 433m 832+),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=32(A )当P 在点A 右侧时,m >1(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在 (b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-(舍去),m 2=1(舍去),这种不存在 (B )当P 在线段AB 之间时,﹣7<m <1(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM =∴3241-m 837-m 433m 832=+,解得m 1=35-,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时11AD DD AM PM = ∴﹣3241-m 837-m 433m 832=+432,解得m 1=﹣11,m 2=1(舍去) (b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴﹣3241-m 837-m 433m 832=+,解得m 1=337-,m 2=1(舍去) 综上所述,点P 的横坐标为35-,﹣11,337-,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想。
深圳市南山区2019-2020学年七年级上期末数学试卷及解析
2019-2020学年广东省深圳市南山区七年级(上)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)下列调查中,最适合采用普查方式进行的是()A.对深圳市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对央视“新闻60分”栏目收视率的调查D.对某中学教师的身体健康状况的调查2.(3分)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.用两颗钉子固定一根木条B.把弯路改直可以缩短路程C.用两根木桩拉一直线把树栽成一排D.沿桌子的一边看,可将桌子排整齐3.(3分)2017年11月19日上午8:00,“2017华润•深圳南山半程马拉松赛”在华润深圳湾体育中心(“春茧”)前正式开跑,共有约16000名选手参加了比赛.16000用科学记数法可表示为()A.0.16×104B.0.16×105C.1.6×104D.1.6×105 4.(3分)下列计算正确的是()A.3x2y﹣2x2y=x2y B.5y﹣3y=2C.3a+2b=5ab D.7a+a=7a25.(3分)如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm6.(3分)下列结论中,正确的是()A.单项式3xy27的系数是3,次数是2B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是三次三项式7.(3分)若x2+3x﹣5的值为7,则3x2+9x﹣2的值为()A.44B.34C.24D.148.(3分)有理数a在数轴上的位置如图所示,下列各数中,可能在0到1之间的是()A.|a|﹣1B.|a|C.﹣a D.a+19.(3分)如图是小刚一天中的作息时间分配的扇形统计图,如果小刚希望把自己每天的阅读时间调整为2小时,那么他的阅读时间需增加()A.105分钟B.60分钟C.48分钟D.15分钟10.(3分)如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()A.4B.6C.12D.811.(3分)某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元12.(3分)如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥AD+BD>AB.A.2个B.3个C.4个D.5个二、填空题:(本题共有4题,每小题3分,共12分.把答案填在答题卡上)13.(3分)如图所示,截去正方体一角变成一个新的多面体,这个多面体有个面.14.(3分)a的相反数是−32,则a的倒数是.15.(3分)x,y表示两个数,规定新运算“※”及“△”如下:x※y=6x+5y,x△y=3xy,那么(﹣2※3)△(﹣4)=.16.(3分)如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有1499个黑棋子,则n=.三、解答题(本大题有7题,其中17题9分,18题8分,19题7分,20题7分,21题7分,22题7分,23题7分,共52分,把答案填在答题卷上)17.(9分)计算:(1)(﹣4)×3+(﹣18)÷(﹣2)(2)−22+(23−34)×12(3)先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.18.(8分)解答下列方程的问题(1)已知x=3是关于x的方程:4x﹣a=3+ax的解,那么a的值是多少?(2)解方程:5x−76+1=3x−14.19.(7分)如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加个小正方体.20.(7分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生?(2)将图1补充完整;(3)求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.21.(7分)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=54°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠CBE的度数.22.(7分)阅读理解:高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程. 解:设s=1+2+3+…+100,①则s=100+99+98+…+1,②①+②,得2s=101+101+101+ (101)(两式左右两端分别相加,左端等于2S ,右端等于100个101的和)所以2s=100×101,s=12×100×101=5050③ 所以1+2+3+…+100=5050.后来人们将小高斯的这种解答方法概括为“倒序相加法”.请解答下面的问题:(1)请你运用高斯的“倒序相加法”计算:1+2+3+ (200)(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:1+2+3+…+n= .(3)计算:101+102+103+ (2018)23.(7分)以下是两张不同类型火车的车票(“D ××××次”表示动车,“G ××××次”表示高铁):(1)根据车票中的信息填空:该列动车和高铁是 向而行(填“相”或“同”).(2)已知该弄动车和高铁的平均速度分别为200km/h 、300km/h ,两列火车的长度不计.①经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到lh ,求A 、B 两地之间的距离.②在①中测算的数据基础上,已知A 、B 两地途中依次设有5个站点P 1、P 2、P 3、P 4、P 5,且AP 1=P 1P 2=P 2P 3=P 3P 4=P 4P 5=P 5B ,动车每个站点都停靠,高铁只停靠P 2、P 4两个站点,两列火车在每个停靠站点都停留5min .求该列高铁追上动车的时刻.2019-2020学年广东省深圳市南山区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)下列调查中,最适合采用普查方式进行的是()A.对深圳市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对央视“新闻60分”栏目收视率的调查D.对某中学教师的身体健康状况的调查【考点】全面调查与抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进而得出答案.【解答】解:A、对深圳市居民日平均用水量的调查,适合抽样调查,故此选项错误;B、对一批LED节能灯使用寿命的调查,适合抽样调查,故此选项错误;C、对央视“新闻60分”栏目收视率的调查,适合抽样调查,故此选项错误;D、对某中学教师的身体健康状况的调查,适合全面调查,故此选项正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(3分)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.用两颗钉子固定一根木条B.把弯路改直可以缩短路程C.用两根木桩拉一直线把树栽成一排D.沿桌子的一边看,可将桌子排整齐【考点】线段的性质:两点之间线段最短【分析】根据实际、线段的性质判断即可.【解答】解:A、用两颗钉子固定一根木条体现基本事实“两点确定一条直线”;B、把弯路改直可以缩短路程体现基本事实“两点之间,线段最短”;C、用两根木桩拉一直线把树栽成一排体现基本事实“两点确定一条直线”;D、沿桌子的一边看,可将桌子排整齐体现基本事实“线段的延长线”;故选:B.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.3.(3分)2017年11月19日上午8:00,“2017华润•深圳南山半程马拉松赛”在华润深圳湾体育中心(“春茧”)前正式开跑,共有约16000名选手参加了比赛.16000用科学记数法可表示为()A.0.16×104B.0.16×105C.1.6×104D.1.6×105【考点】科学记数法—表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:16000用科学记数法可表示为1.6×104,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列计算正确的是()A.3x2y﹣2x2y=x2y B.5y﹣3y=2C.3a+2b=5ab D.7a+a=7a2【考点】合并同类项【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.【解答】解:A、3x2y﹣2x2y=x2y,故原题计算正确;B、5y﹣3y=2y,故原题计算错误;C、3a和2b不是同类项,不能合并,故原题计算错误;D、7a+a=8a,故原题计算错误;故选:A.【点评】此题主要考查了合并同类项,关键是掌握合并同类项的法则.5.(3分)如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm【考点】两点间的距离【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10cm,M是AB中点,∴BM=12AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.【点评】本题考查了线段的长短比较,根据点M是AB中点先求出BM的长度是解本题的关键.6.(3分)下列结论中,正确的是()A.单项式3xy27的系数是3,次数是2B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是三次三项式【考点】单项式;多项式【分析】根据单项式的次数与系数定义分别判断得出即可.【解答】解:A、单项式3xy27的系数是37,次数是3,故此选项错误;B、单项式m的次数是1,系数是1,故此选项错误;C、单项式﹣xy2z的系数是﹣1,次数是4,故此选项正确;D、多项式2x2+xy+3是三次二项式,故此选项错误.故选:C.【点评】此题主要考查了单项式的次数与系数的定义,熟练掌握相关的定义是解题关键.7.(3分)若x2+3x﹣5的值为7,则3x2+9x﹣2的值为()A.44B.34C.24D.14【考点】代数式求值【分析】先由x2+3x﹣5=7得x2+3x=12,再整体代入到原式=3(x2+3x)﹣2,计算可得.【解答】解:∵x2+3x﹣5=7,∴x2+3x=12,则原式=3(x2+3x)﹣2=3×12﹣2=36﹣2=34,故选:B.【点评】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.8.(3分)有理数a在数轴上的位置如图所示,下列各数中,可能在0到1之间的是()A.|a|﹣1B.|a|C.﹣a D.a+1【考点】数轴;绝对值;有理数大小比较【分析】根据数轴得出﹣2<a<﹣1,再逐个判断即可.【解答】解:A、∵从数轴可知:﹣2<a<﹣1,∴|a|﹣1大约0<|a|﹣1<1,故本选项符合题意;B、∵从数轴可知:﹣2<a<﹣1,∴|a|>1,故本选项不符合题意;C、∵从数轴可知:﹣2<a<﹣1,∴﹣a>1,故本选项不符合题意;D、∵从数轴可知:﹣2<a<﹣1,∴a+<0,故本选项不符合题意;故选:A.【点评】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出﹣2<a<﹣1是解此题的关键.9.(3分)如图是小刚一天中的作息时间分配的扇形统计图,如果小刚希望把自己每天的阅读时间调整为2小时,那么他的阅读时间需增加()A.105分钟B.60分钟C.48分钟D.15分钟【考点】扇形统计图【分析】扇形统计图中扇形的圆心角与百分比成正比,从图中可以求出原用于阅读的时间,则他的阅读需增加时间可求.【解答】解:原用于阅读的时间为24×(360﹣135﹣120﹣30﹣60)÷360=1(小时),∴把自己每天的阅读时间调整为2时,那么他的阅读时间需增加1小时.故选:B.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.10.(3分)如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()A.4B.6C.12D.8【考点】几何体的展开图【分析】根据观察、计算,可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【解答】解:长方体的高是1,宽是3﹣1=2,长是6﹣2=4,长方体的容积是4×2×1=8,故选:D.【点评】本题考查了几何体的展开图,展开图折叠成几何体,得出长方体的长、宽、高是解题关键.11.(3分)某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元【考点】一元一次方程的应用【分析】设这件商品的原价为x元,则他购买这件商品花了0.8x元,根据原价﹣现价=差额,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件商品的原价为x元,则他购买这件商品花了0.8x元,根据题意得:x﹣0.8x=50,解得:x=250,∴0.8x=0.8×250=200.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(3分)如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥AD+BD>AB.A.2个B.3个C.4个D.5个【考点】点到直线的距离【分析】根据点到直线的距离,垂直的定义,三角形三边的关系,可得答案.【解答】解:由∠BAC=90°,AD⊥BC,得AB⊥AC,故①正确;AD与AC不垂直,故②错误;点C到AB的垂线段是线段AC的长,故③错误;点A到BC的距离是线段AD的长度,故④正确;线段AB的长度是点B到AC的距离,故⑤正确;AD+BD>AB,故⑥正确;故选:C.【点评】本题考查了点到直线的距离,利用点到直线的距离,垂直的定义,三角形三边的关系是解题关键.二、填空题:(本题共有4题,每小题3分,共12分.把答案填在答题卡上)13.(3分)如图所示,截去正方体一角变成一个新的多面体,这个多面体有7个面.【考点】截一个几何体【分析】截去正方体一角变成一个多面体,这个多面体多了一个面、棱不变,少了一个顶点.【解答】解:仔细观察图形,正确地数出多面体的面数是7.故答案为:7.【点评】本题考查了正方体的截面.关键是明确正方体的面数,顶点数,棱的条数,形数结合,求出截去一个角后得到的几何体的面数,顶点数,棱的条数.14.(3分)a的相反数是−32,则a的倒数是23.【考点】相反数;倒数【分析】直接利用相反数的定义得出a 的值,再利用倒数的定义得出答案.【解答】解:∵a 的相反数是−32,∴a=32, 则a 的倒数是:23. 故答案为:23. 【点评】此题主要考查了倒数与相反数,正确把握相关定义是解题关键.15.(3分)x ,y 表示两个数,规定新运算“※”及“△”如下:x ※y=6x +5y ,x △y=3xy ,那么(﹣2※3)△(﹣4)= ﹣36 .【考点】有理数的混合运算【分析】根据x ※y=6x +5y ,x △y=3xy ,可以计算出题目中所求式子的值.【解答】解:∵x ※y=6x +5y ,x △y=3xy ,∴(﹣2※3)△(﹣4)=[6×(﹣2)+5×3]△(﹣4)=3△(﹣4)=3×3×(﹣4)=﹣36,故答案为:﹣36.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.(3分)如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有1499个黑棋子,则n= 300 .【考点】规律型:图形的变化类【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【解答】解:观察图1有5×1﹣1=4个黑棋子;图2有5×2﹣1=9个黑棋子;图3有5×3﹣1=14个黑棋子;图4有5×4﹣1=19个黑棋子;…图n有5n﹣1个黑棋子,当5n﹣1=1499,解得:n=300,故答案:300【点评】本题考查了图形的变化类问题,解题的关键是能够仔细观察并发现图形的变化规律,难度不大.三、解答题(本大题有7题,其中17题9分,18题8分,19题7分,20题7分,21题7分,22题7分,23题7分,共52分,把答案填在答题卷上)17.(9分)计算:(1)(﹣4)×3+(﹣18)÷(﹣2)(2)−22+(23−34)×12(3)先化简,再求值:x2﹣(5x2﹣4y)+3(x2﹣y),其中x=﹣1,y=2.【考点】有理数的混合运算;整式的加减—化简求值【分析】(1)先计算乘除法,再计算加减即可得;(2)先计算乘方、利用乘法分配律去掉括号,再计算乘法,最后计算加减可得;(3)先根据整式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.【解答】解:(1)(﹣4)×3+(﹣18)÷(﹣2)=﹣12+9=﹣3;(2)原式=−4+23×12−34×12=﹣4+8﹣9=﹣5;(3)原式=x2﹣5x2+4y+3x2﹣3y=x2﹣5x2+3x2+4y﹣3y=﹣x2+y,当x=﹣1,y=2时,原式=﹣(﹣1)2+2=﹣1+2=1.【点评】本题主要考查有理数的混合运算和整式的化简求值,解题的关键是熟练掌握有理数和整式的混合运算顺序和运算法则.18.(8分)解答下列方程的问题(1)已知x=3是关于x的方程:4x﹣a=3+ax的解,那么a的值是多少?(2)解方程:5x−76+1=3x−14.【考点】解一元一次方程【分析】(1)直接把x的值代入,进而求出答案;(2)首先去分母进而去括号,再移项合并同类项得出答案.【解答】解:(1)∵x=3是的方程:4x﹣a=3+ax的解,∴12﹣a=3+3a,∴﹣a﹣3a=3﹣12,∴﹣4a=﹣9,∴a=9 4;(2)去分母得:2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣3,10x﹣9x=﹣3+14﹣12,解得:x=﹣1.【点评】此题主要考查了一元一次方程的解法,正确掌握解题方法是解题关键.19.(7分)如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有10个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加4个小正方体.【考点】作图﹣三视图【分析】(1)最前面1排1个小正方体,中间1排有3个正方体,最后面一排共6个小正方体,再计算总和即可.(2)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,1;据此可画出图形.(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加第一排的右边2列的2个,第2排的右边第3列的2个,然后可得答案.【解答】解:(1)正方体的个数:1+3+6=10,(2)如图所示:;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加第一排的右边2列的2个,第2排的右边第3列的2个,2+2=4.答:最多还能在图1中添加4个小正方体.故答案为:10;4.【点评】此题主要考查了三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.20.(7分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生?(2)将图1补充完整;(3)求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.【考点】用样本估计总体;扇形统计图;条形统计图【分析】(1)根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;(2)根据(1)中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.【解答】解:(1)130÷65%=200,答:此次抽样调查中,共调查了200名学生;(2)反对的人数为:200﹣130﹣50=20,补全的条形统计图如右图所示;(3)扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:20 200×360°=36°;(4)1500×50200=375,答:该校1500名学生中有375名学生持“无所谓”意见.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(7分)我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=54°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠CBE的度数.【考点】角平分线的定义;角的计算【分析】(1)由折叠的性质可得∠A′BC=∠ABC=54°,由平角的定义可得∠A′BD=180°﹣∠ABC ﹣∠A′BC ,可得结果;(2)由(1)的结论可得∠DBD′=72°,由折叠的性质可得∠2=12∠DBD′=12×72°=36°,由角平分线的性质可得∠1=54°,再相加即可求解.【解答】解:(1)∵∠ABC=54°,∴∠A′BC=∠ABC=54°,∴∠A′BD=180°﹣∠ABC ﹣∠A′BC=180°﹣54°﹣54°=72°;(2)由(1)的结论可得∠DBD′=72°,∴∠2=12∠DBD′=12×72°=36°,∠ABD′=108°, ∴∠1=12∠ABD′=12×108°=54°, ∴∠CBE=∠1+∠2=90°.【点评】本题主要考查了角平分线的定义,根据角平分线的定义得出角的度数是解答此题的关键.22.(7分)阅读理解:高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程. 解:设s=1+2+3+…+100,①则s=100+99+98+…+1,②①+②,得2s=101+101+101+ (101)(两式左右两端分别相加,左端等于2S ,右端等于100个101的和)所以2s=100×101,s=12×100×101=5050③ 所以1+2+3+…+100=5050.后来人们将小高斯的这种解答方法概括为“倒序相加法”.请解答下面的问题:(1)请你运用高斯的“倒序相加法”计算:1+2+3+ (200)(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:1+2+3+…+n= 12n (n +1) . (3)计算:101+102+103+ (2018)【考点】有理数的混合运算;规律型:数字的变化类【分析】(1)原式利用高斯的“倒序相加法”计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,利用高斯的“倒序相加法”计算即可求出值.【解答】解:设s=1+2+3+…+100①,则s=100+99+98+…+1②,①+②,得2s=101+101+101+…+101,(两式左右两端分别相加,左端等于2s ,右端等于100个101的和)所以2s=100×101,s=12×100×101=5050③, 所以1+2+3+…+100=5050,后来人们将小高斯的这种解答方法概括为“倒序相加法”.请解答下面的问题:(1)1+2+3+…+200,s=1+2+3+…+200①,则s=200+199+198+…+1②,①+②,得2s=201+201+201+ (201)所以2s=200×201,s=12×200×201=20100, 所以1+2+3+…+200=20100;(2)猜想:1+2+3+…+n=12n (n +1); 故答案为:12n (n +1); (3)s=101+102+103+…+2018①,则s=2018+2017+2016+…+1②,①+②,得2s=2119+2119+2119+ (2119)所以2s=(2018﹣100)×2119,s=12×1918×2119=2032121, 所以101+102+103+…+2018=2032121.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(7分)以下是两张不同类型火车的车票(“D××××次”表示动车,“G××××次”表示高铁):(1)根据车票中的信息填空:该列动车和高铁是同向而行(填“相”或“同”).(2)已知该弄动车和高铁的平均速度分别为200km/h、300km/h,两列火车的长度不计.①经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到lh,求A、B两地之间的距离.②在①中测算的数据基础上,已知A、B两地途中依次设有5个站点P1、P2、P3、P4、P5,且AP1=P1P2=P2P3=P3P4=P4P5=P5B,动车每个站点都停靠,高铁只停靠P2、P4两个站点,两列火车在每个停靠站点都停留5min.求该列高铁追上动车的时刻.【考点】一元一次方程的应用【分析】(1)根据两车的出发地及目的地,即可得出两车方向相同;(2)①设A、B两地之间的距离为xkm,根据时间=路程÷速度结合高铁比动车少用2小时,即可得出关于x的一元一次方程,解之即可得出结论;②根据AP1=P1P2=P2P3=P3P4=P4P5=P5B可求出每个相邻站点距离,利用时间=路程÷速度可求出两车经过每个相邻站点的时间,结合两车出发的时间及停靠站点休息的时间可得出高铁在P2站、P3站之间追上动车,设高铁经过t小时之后追上动车,根据路程=时间×速度,即可得出关于t的一元一次方程,解之即可得出t值,再加上出发时间即可求出结论.【解答】解:(1)∵动车和高铁均从A地到B地,∴两车方向相同.故答案为:同.(2)①设A、B两地之间的距离为xkm,根据题意得:x 200﹣x 300=2, 解得:x=1200.答:A 、B 两地之间的距离是1200km .②每个相邻站点距离为1200÷6=200km ,动车到每一站所花时间为200÷200×60=60(分钟),高铁到每一站所花时间为200÷300×60=40(分钟).∵60÷(60﹣40)=3,∴高铁在P 2站、P 3站之间追上动车.设高铁经过t 小时之后追上动车,根据题意得:(t ﹣560)×300=(t +1﹣560×2)×200, 解得:t=2312, ∴7:00+2312=8:55. 答:该列高铁在8:55追上动车.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据车票上起始站找出结论;(2)①找准等量关系,正确列出一元一次方程;②通过分析两车的行驶过程,找出高铁追上动车的大致位置.数学期末考注意事项期末考试眼瞅着就要到了,同学们正紧张地进行复习,其实,考试也有考试的学问和技巧。
2019年中考数学试卷(word版,含答案) (18)
2019年初中毕业升学考试数 学 试 题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.5的相反数是A .﹣5B .5C .15-D .152.函数y 中的自变量x 的取值范围是 A .x ≠12 B .x ≥1 C .x >12 D .x ≥123.分解因式224x y -的结果是A .(4)(4)x y x y +-B .4()()x y x y +-C .(2)(2)x y x y +-D .2()()x y x y +- 4.已知一组数据:66,66,62,67,63这组数据的众数和中位数分别是 A .66,62 B .66,66 C .67,62 D .67,66 5.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是 A .长方体 B .四棱锥 C .三棱锥 D .圆锥 6.下列图案中,是中心对称图形但不是轴对称图形的是7.下列结论中,矩形具有而菱形不一定具有的性质是A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直 8.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为 A .20° B .25° C .40° D .50° 9.如图,已知A 为反比例函数ky x=(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为A .2B .﹣2C .4D .﹣4 10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 A .10 B .9 C .8 D .7第8题 第9题 第16题二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.49的平方根为 .12.2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20000000人次,这个年接待客量可以用科学记数法表示为 人次. 13.计算:2(3)a += .14.某个函数具有性质:当x >0时,y 随x 的增大而增大,这个函数的表达式可以是 (只要写出一个符合题意的答案即可).15.已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm . 16.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式30kx b ->的解集为 .第17题 第18题17.如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内自由移动,若⊙Oxy O-6OOB CABE Fxy-6OABBCHGB的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 .18.如图,在△ABC 中,AB =AC =5,BC=D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为 .三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)1013()2--+-; (2)3233)(2a a a -⋅. 20.(本题满分8分)解方程:(1)0522=--x x ; (2)1421+=-x x . 21.(本题满分8分)如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .(1)求证:△DBC ≌△ECB ; (2)求证:OB =OC .22.(本题满分6分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为 ; (2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程) 23.(本题满分6分)B《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生人数分布扇形统计图各等级学生平均分统计表(1)扇形统计图中“不及格”所占的百分比是 ; (2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级. 24.(本题满分8分)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin ∠ABOOAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.25.(本题满分8分)不及格“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离y (km)与出发时间之间的函数关系式如图1中线段AB 所示,在小丽出发的同时,小明从乙地沿同一条公路汽骑车匀速前往甲地,两人之间的距离x (km)与出发时间t (h)之间的函数关系式如图2中折线段CD —DE —EF 所示.(1)小丽和小明骑车的速度各是多少? (2)求E 点坐标,并解释点的实际意义.26.(本题满分10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A 为圆O 上一点,请用直尺(不带刻度)和圆规作出得内接正方形;(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图.①如图2,在□ABCD 中,E 为CD 的中点,作BC 的中点F ;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC 的高AH .27.(本题满分10分)CBBAA D已知二次函数42-+=bx ax y (a >0)的图像与x 轴交于A 、B 两点,(A 在B 左侧,且OA <OB ),与y 轴交于点C .D 为顶点,直线AC 交对称轴于点E ,直线BE 交y 轴于点F ,AC :CE =2:1.(1)求C 点坐标,并判断b 的正负性;(2)设这个二次函数的图像的对称轴与直线AC 交于点D ,已知DC :CA =1:2,直线BD 与y 轴交于点E ,连接BC .①若△BCE 的面积为8,求二次函数的解析式;②若△BCD 为锐角三角形,请直接写出OA 的取值范围.28.(本题满分10分)如图1,在矩形ABCD 中,BC =3,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作△PAB 关于直线PA 的对称△PAB′,设点P 的运动时间为t (s).(1)若AB=2,当点B′落在AC 上时,显然△PAB′是直角三角形,求此时t 的值;②是否存在异于图2的时刻,使得△PC B′是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB′与直线CD 相交于点M ,且当t <3时存在某一时刻有结论∠PAM =45°成立,试探究:对于t >3的任意时刻,结论∠PAM =45°是否总是成立?请说明理由.参考答案1.A 2.D 3.C 4.B 5.A 6.C 7.C 8.B 9.D 10.B 11.23±12.7210´ 13.269a a ++ 14.2y x =(答案不唯一) 15.3 16.x <2 17.25 18.8 19.(1)【解答】解:原式=4 (2)【解答】解:原式=6a 20.(1)【解答】解:61,6121-=+=x x ; (2)【解答】解:3=x ,经检验3=x 是方程的解 21.(1) 证明:∵AB=AC , ∴∠ECB=∠DBC 在中与ECB DBC ∆∆ECB CB BC DBC CE BD ∠⎪⎩⎪⎨⎧==∠=∴ ECB DBC ∆≅∆(2)证明:由(1)知ECB DBC ∆≅∆ ∴∠DCB=∠EBC ∴OB=OC 22. (1)12(2)开始2112121211221221ììïïïïíïïïïîïïìïïïïíïïïïîïíìïïïïïíïïïïîïïìïïïïíïïïïîî红红黑黑红红黑黑红黑红黑红黑红黑 共有等可能事件12种 其中符合题目要求获得2份奖品的事件有2种所以概率P=1623.(1) 4%(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1(3)设总人数为n 个 , 80.0 ≤ 41.3×n×4%≤89.9 所以 48<n<54 又因为 4%n 为整数 所以n=50即优秀的学生有52%×50÷10%=260 人 24.(1) 作MN BO ,由垂径定理得N 为OB 中点 MN=12OA ∵MN=3∴OA=6,即A (-6,0) ∵sin ∠ABO=2,OA=6 ∴OB= 即B (0,设y kx b =+,将A 、B带入得到3y x =+(2)∵第一问解得∠ABO=60°,∴∠AMO=120°所以阴影部分面积为221=434S =--π((π25.(1)()()=36 2.25=16/=361-16=20/V km h V km h ÷÷小丽小明(2)93620=5914416=)559144,55km E ÷⨯⎛⎫⇒ ⎪⎝⎭(h )(实际意义为小明到达甲地26.(1)连结AE 并延长交圆E 于点C ,作AC 的中垂线交圆于点B ,D ,四边形ABCD 即为所求(2)①法一:连结AC,BD 交于点O,连结EB 交AC 于点G,连结DG 并延长交CB 于点F , F 即为所求法二:连结AC,BD 交于点OEACB连结EO 并延长交AB 于点G 连结GC,BE 交于点M连结OM 并延长交CB 于点F ,F 即为所求②27.(1) 令x=0,则4-=y ,∴C (0,-4) ∵ OA <OB ,∴对称轴在y 轴右侧,即02 ab- ∵a >0,∴b <0 (2)①过点D 作DM ⊥oy ,则21===CO MC OA DM CA DC , ∴AO DM 21=设A (-2m ,0)m >0,则AO=2m,DM=m ∵OC=4,∴CM=2∴D (m ,-6),B (4m ,0) A 型相似可得OBBNOE DN = EDACBCAB∴OE=884421BEF △=⨯⨯=m S∴1=m∴A (-2,0),B (4,0) 设)4)(2(-+=x x a y 即a ax ax y 822--= 令x=0,则y=-8a ∴C (0,-8a ) ∴-8a=-4,a=21 ∴4212--=x x y ②易知:B (4m ,0)C (0,-4)D (m ,-6),通过分析可得∠CBD 一定为锐角 计算可得2222221616,4,936CB m CD m DB m =+=+=+ 1°当∠CDB 为锐角时,222CD DB CB +>22249361616m m m ++++>,解得2m 2-<<2°当∠BCD 为锐角时,222CD CB DB +>22241616936m m m ++++>,解得m m <m 2<,m 42<∴4OA < 28.(1)①勾股求的 易证'CBA CB P △∽△,''4B P =解得②1°如图,当∠PCB ’=90 °时,在△PCB ’中采用勾股得:222(3)t t +-=,解得t=22°如图,当∠PCB ’=90 °时,在△PCB’中采用勾股得:222(3)t t +-=,解得t=63ABP ’为正方形,解得(2)如图3-t tB'B'CBAADPD3B'CA BD∵∠PAM=45°∴∠2+∠3=45°,∠1+∠4=45° 又∵翻折∴∠1=∠2,∠3=∠4又∵∠ADM=∠AB ’M (AAS ) ∴AD=AB ’=AB即四边形ABCD 是正方形 如图,设∠APB=x∴∠PAB=90°-x ∴∠DAP=x易证△MDA ≌△B ’AM (HL ) ∴∠BAM=∠DAM ∵翻折∴∠PAB=∠PAB ’=90°-x∴∠DAB ’=∠PAB ’-∠DAP=90°-2x ∴∠DAM=21∠DAB ’=45°-x ∴∠MAP=∠DAM+∠PAD=45°MA DP4321MB'BCB'A D PP。
2019深圳中考真题数学试卷(含详细解析和答案)
2019年深圳市初中毕业升学考试数学一、选择题(每小题3分,共12小题,满分36分)1.51-的绝对值是( )A. -5B.51C. 5D.51-【答案】B【解析】考点绝对值.2.下列图形是轴对称图形的是( )【答案】A【考点】轴对称图形与中心对称图形3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A.4.6×109 B.46×107 C.4.6×108 D.0.46×109 【答案】C【考点】科学计数法4.下列哪个图形是正方体的展开图( )【答案】B【考点】立体图形的展开.5.这组数据20,21,22,23,23的中位数和众数分别是( ) A.20,23 B.21,23 C.21,22 D.22,23 【答案】D【解析】中位数:先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数. 众数是出现次数最多的那个数就是众数,即是23.故选D6.下列运算正确的是( )A.422a a a =+B.1243a a a =⋅ C.1243)(a a = D.22)(ab ab =【答案】C【解析】整式运算,A.2222a a a =+; B 743a a a =⋅ ;D 222)(b a ab =.故选C7.如图,已知AB l =1,AC 为角平分线,下列说法错误的是( ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】两直线平行,同位角相等,即∠2=∠3.故选B.8.如图,已知AB=AC ,AB=5,BC=3,以AB 两点为圆心,大于21AB 的长为半径画圆,两弧相交于点M,N ,连接MN 与AC 相较于点D ,则△BDC 的周长为( ) A.8 B.10 C.11 D.13【答案】A【解析】尺规作图,因为MN 是线段AB 的垂直平分线,则AD=BD ,又因为AB=AC=5,BC=3,所以△BDC的周长为8.9.已知)0(2≠++=a c bx ax y 的图象如图,则b ax y +=和xcy =的图象为( )【答案】C【解析】根据)0(2≠++=a c bx ax y 的图象可知抛物线开口向下,则0<a ,抛物线与y 轴交点在负半轴,故c <0,对称轴在y 轴的右边,则b >0.10.下列命题正确的是( ) A.矩形对角线互相垂直 B.方程x x 142=的解为14=x C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等 【答案】D【解析】矩形的对角线互相平分且相等,故A 错;方程x x 142=的解为14=x 或0=x ,故B 错;六边形内角和为720°,故C 错.故选D11.定义一种新运算:⎰-=⋅-abnn n b a dx x n 1,例如:⎰-=⋅khh k xdx 222,若⎰-=--m522mdx x ,则m=( )A. -2B. 52-C. 2D.52 【答案】B 【解析】⎰-=-=-=----m51122511)5(mm m m m dx x ,则m=52-,故选B. 12.已知菱形ABCD ,E,F 是动点,边长为4,BE=AF ,∠BAD=120°,则下列结论正确的有几个( ) ①△BEC ≌△AFC ; ②△ECF 为等边三角形 ③∠AGE=∠AFC ④若AF=1,则31=GE GF A. 1 B. 2 C. 3 D. 4【答案】D【解析】在四边形ABCD 是菱形,因为∠BAD=120°,则∠B=∠DAC=60°,则AC=BC ,且BE=AF ,故可得△BEC ≌△AFC ;因为△BEC ≌△AFC ,所以FC=EC ,∠FCA=∠ECB ,所以△ECF 为等边三角形;因为∠AGE=180°-∠BAC-∠AEG ;∠AFC=180°-∠FAC-∠ACF ,则根据等式性质可得∠AGE=∠AFC ;因为AF=1,则AE=3,所以根据相似可得31=GE GF . 二、填空题(每小题3分,共4小题,满分12分)13.分解因式:=-a ab 2. 【答案】)1)(1(-+b b a【解析】)1)(1()1(22-+=-=-b b a b a a ab14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是 .【答案】83 【解析】全部共有8张卡片,标有数字2的卡片有3张,随机抽取一张,故抽到2概率为83. 15.如图在正方形ABCD 中,BE=1,将BC 沿CE 翻折,使点B 对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使点D 对应点落在对角线AC 上,求EF= .【答案】6 【解析】16.如图,在Rt △ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xky =上,且y 轴平分脚ACB ,求k= 。
【优质部编】2019-2020中考数学试题分项版解析汇编(第02期)专题2.1 方程(含解析)
专题2.1 方程一、单选题1.【北京市2018年中考数学试卷】方程组的解为A. B. C. D.【答案】D【解析】分析:根据方程组解的概念,将4组解分别代入原方程组,一一进行判断即可.详解:将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.点睛:考查方程组的解的概念,能同时满足方程组中每个方程的未知数的值,叫做方程组的解.2.【山东省东营市2018年中考数学试题】小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19 B. 18 C. 16 D. 15【答案】B点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.【湖南省湘西州2018年中考数学试卷】若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A. 1 B.﹣3 C. 3 D. 4【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.4.【云南省昆明市2018年中考数学试题】关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m 的取值范围是()A. m<3 B. m>3 C.m≤3 D.m≥3【答案】A【解析】分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m 的取值范围即可.详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m>0,∴m<3,故选:A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5.【广西钦州市2018年中考数学试卷】某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. 80(1+x)2=100 B. 100(1﹣x)2=80 C. 80(1+2x)=100 D. 80(1+x2)=100【答案】A【解析】【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.6.【四川省眉山市2018年中考数学试题】我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是().A. 8% B. 9% C. 10% D. 11%【答案】C点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.【湖南省怀化市2018年中考数学试题】一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km 7.所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.= B.= C.= D.=【答案】C点睛:此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.8.【云南省昆明市2018年中考数学试题】甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.9.【黑龙江省哈尔滨市2018年中考数学试题】方程的解为()A. x=﹣1 B. x=0 C. x= D. x=1【答案】D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.10.【山东省淄博市2018年中考数学试题】“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【答案】C点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选:A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.【湖南省张家界市2018年初中毕业学业考试数学试题】若关于的分式方程的解为,则的值为( )A. B. C. D.【答案】C点睛:此题主要考查了分式方程的解,正确解方程是解题关键.13.【台湾省2018年中考数学试卷】若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A. 24 B. 0 C.﹣4 D.﹣8【答案】A【解析】分析:利用加减法解二元一次方程组,求得a、b的值,再代入计算可得答案.详解:,①﹣②×3,得:﹣2x=﹣16,解得:x=8,将x=8代入②,得:24﹣y=8,解得:y=16,即a=8、b=16,则a+b=24,故选:A.点睛:本题主要考查二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组的能力.14.【新疆自治区2018年中考数学试题】某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A. B. C. D.【答案】B点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.15.【湖南省常德市2018年中考数学试卷】阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A. B. C. D.方程组的解为【答案】C【解析】【分析】根据阅读材料中提供的方法逐项进行计算即可得.【详解】A、D==2×(-2)-3×1=﹣7,故A选项正确,不符合题意;B、D x==﹣2﹣1×12=﹣14,故B选项正确,不符合题意;C、D y==2×12﹣1×3=21,故C选项不正确,符合题意;D、方程组的解:x==2,y==﹣3,故D选项正确,不符合题意,故选C.【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.16.【广西壮族自治区桂林市2018年中考数学试题】若,则x,y的值为()A. B. C. D.【答案】D点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.17.【浙江省台州市2018年中考数学试题】甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A. 5 B. 4 C. 3 D. 2【答案】B【解析】分析:可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.详解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.18.【河北省2018年中考数学试卷】有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A. B.C. D.【答案】A【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.19.【湖南省邵阳市2018年中考数学试卷】程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人【答案】A【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.20【湖北省恩施州2018年中考数学试题】.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元【答案】C【解析】分析:设两件衣服的进价分别为x、y元,根据利润=销售收入-进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240-两件衣服的进价后即可找出结论.详解:设两件衣服的进价分别为x、y元,根据题意得:120-x=20%x,y-120=20%y,解得:x=100,y=150,∴120+120-100-150=-10(元).故选:C.点睛:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【湖北省武汉市2018年中考数学试卷】将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019 B. 2018 C. 2016 D. 2013【答案】D【解析】【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题22.【上海市2018年中考数学试卷】方程组的解是_____.【答案】,【解析】【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.【详解】,②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,故答案为,.【点睛】本题考查了解二元二次方程组,根据方程组的结构特点灵活选取合适的方法求解是关键.这里体现的消元与转化的数学思想.23.【湖南省长沙市2018年中考数学试题】已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.【答案】2点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.24.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【解析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【详解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1,故答案为:1.【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.25.【山东省聊城市2018年中考数学试题】已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是_____.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.26.【湖南省邵阳市2018年中考数学试卷】已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是_____.【答案】0【解析】【分析】设方程的另一个解是n,根据根与系数的关系可得出关于n的一元一次方程,解之即可得出方程的另一个解.【详解】设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为:0.【点睛】本题考查了一元二次方程的解以及根与系数的关系,熟记一元二次方程ax2+bx+c=0(a≠0)的两根之和等于﹣、两根之积等于是解题的关键.27.【山东省烟台市2018年中考数学试卷】已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是_____.【答案】3<m≤5.点睛:本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.28.【江苏省淮安市2018年中考数学试题】若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=_____.【答案】4【解析】分析:把x与y的值代入方程计算即可求出a的值.详解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.点睛:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.29.【湖北省襄阳市2018年中考数学试卷】我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是_____元.【答案】53【解析】【分析】设该商品的价格是x元,共同购买该物品的有y人,根据“每人出8元,则多3元;每人出7元,则差4元”,即可得出关于x、y的二元一次方程组,解方程组即可得出结论.【详解】设该商品的价格是x元,共同购买该物品的有y人,根据题意得:,解得:,故答案为:53.【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是解题的关键.30.【四川省内江市2018年中考数学试题】已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b (x+1)+1=0的两根之和为__________.【答案】1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.31.【四川省内江市2018年中考数学试题】关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.【答案】k≥﹣4【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+4x-k=0有实数根,∴△=42-4×1×(-k)=16+4k≥0,解得:k≥-4.故答案为:k≥-4.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.32.【四川省内江市2018年中考数学试卷】已知关于的方程的两根为,,则方程的两根之和为___________.【答案】1【解析】分析:设t=x+1,则方程a(x+1)2+b(x+1)+1=0化为at2+at+1=0,利用方程的解是x1=1,x2=2得到t1=1,t2=2,然后分别计算对应的x的值可确定方程a(x+1)2+b(x+1)+1=0的解.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.33.【四川省内江市2018年中考数学试】关于的一元二次方程有实数根,则的取值范围是__________.【答案】k≥﹣4.点睛:此题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.34.【山东省威海市2018年中考数学试题】用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为__.【答案】44﹣16.【解析】分析:图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得:,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6+6)2=44﹣16,故答案为:44﹣16.点睛:本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.35.【山东省威海市2018年中考数学试题】关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.【答案】m=4.点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.36.【湖南省张家界市2018年初中毕业学业考试数学试题】关于x的一元二次方程有两个相等的实数根,则______.【答案】【解析】分析:根据题意可得△=0,进而可得k2-4=0,再解即可.详解:由题意得:△=k2-4=0,解得:k=±2,故答案为:±2.点睛:此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.37.【新疆自治区2018年中考数学试题】某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是_____元.【答案】4详解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.38.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.39.【山东省聊城市2018年中考数学试卷】已知关于的方程有两个相等的实根,则的值是__________.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.三、解答题40.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.41.【北京市2018年中考数学试卷】关于的一元二次方程.(1)当时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的,的值,并求此时方程的根.【答案】(1)原方程有两个不相等的实数根.(2),,.【解析】分析:(1)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(1)解:由题意:.∵,∴原方程有两个不相等的实数根.(2)答案不唯一,满足()即可,例如:解:令,,则原方程为,解得:.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.42.【湖北省随州市2018年中考数学试卷】己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若=﹣1,求k的值.【答案】(1)k>﹣;(2)k=3.【解析】【分析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次方程,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=﹣2k﹣3、x1x2=k2,结合=﹣1即可得出关于k的分式方程,解之经检验即可得出结论.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)根据根与系数的关系结合=﹣1找出关于k的分式方程.43.【湖北省孝感市2018年中考数学试题】已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.44.【山东省东营市2018年中考数学试题】关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【答案】(1)sinA=;(2)△ABC的周长为或16.【解析】分析:(1)利用判别式的意义得到△=25sin2A-16=0,解得sinA=;(2)利用判别式的意义得到100-4(k2-4k+29)≥0,则-(k-2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.详解:(1)根据题意得△=25sin2A-16=0,∴sin2A=,∴sinA=±,∵∠A为锐角,∴sinA=;分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5,∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=2.∴△ABC的周长为10+2;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴AD=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为10+2或16.点睛:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.45.【湖北省黄石市2018年中考数学试卷】已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.【答案】(1)m<1;(2)0.(2)由根与系数的关系得:x1+x2=2,即,解得:x1=2,x2=0,由根与系数的关系得:m=2×0=0.点睛:本题考查了根与系数的关系和根的判别式、一元二次方程的解,能熟记根与系数的关系的内容和根的判别式的内容是解此题的关键.46.【江苏省盐城市2018年中考数学试题】一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解答】A.矩形对角线互相垂直,不正确;
B.方程x2=14x的解为x=14,不正确;
C.六边形内角和为540°,不正确;
D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;
选D.
11、【答案】B
【分析】根据新定义运算得到一个分式方程,求解即可.
17、计算:
18、先化简 ,再将 代入求值.
19、某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.
(1)这次共抽取学生进行调查,扇形统计图中的x=______.
(2)请补全统计图;
(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;
∴∠AGE=∠AFC,故③正确;
∴∠AEG=∠FCG
∴△AEG∽△FCG,
∴ ,
∵∠AGE=∠FGC,∠AEG=∠FCG
∴∠CFG=∠GAE=∠FAC,
∴△ACF∽△FCG,
∴
∴
∵AF=1,
∴BE=1,
∴AE=3,
∴ ,故④正确.
选D.
13、【答案】a(b+1)(b-1)
【分析】本题考查了因式分解。
选C.
4、【答案】B
【分析】根据正方体展开图的11种特征,选项A、C、D不是正方体展开图;选项B是正方体展开图的“1-4-1”型.
【解答】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.
选B.
5、【答案】D
【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.
20、如图所示,某施工队要测量隧道长度 , 米, ,施工队站在点 处看向 ,测得仰角 ,再由 走到 处测量, 米,测得仰角为 ,求隧道 长.( , , ).
21、有 两个发电厂,每焚烧一吨垃圾, 发电厂比 发电厂多发40度电, 焚烧20吨垃圾比 焚烧30吨垃圾少1800度电.
(1)求焚烧1吨垃圾, 和 各发多少度电?
(2) 两个发电厂共焚烧90吨垃圾, 焚烧的垃圾不多于 焚烧的垃圾的两倍,求 厂和 厂总发电量的最大值.
22、如图所示抛物线 过点 ,点 ,且
(1)求抛物线的解析式及其对称轴;
(2)点 在直线 上的两个动点,且 ,点 在点 的上方,求四边形 的周长的最小值;
【解答】根据题意得,
,
则 ,
经检验, 是方程的解,
选B.
12、【答案】D
【分析】①易证△ABC为等边三角形,得AC=BC,∠CAF=∠B,结合已知条件BE=AF可证△BEC≌△AFC;②得FC=EC,∠FCA=∠ECB,得∠FCE=∠ACB,进而可得结论;③证明∠AGE=∠BFC则可得结论;④分别证明△AEG∽△FCG和△FCG∽△ACF即可得出结论.
由题意:可证
又∵
∴
令 ,则
∵ 轴平分
∴
∵ 轴
∴可证
则 ,即 ,解得:
∴
故 .
17、【答案】11
【分析】根据算术平方根、特殊角的三角函数值、负整数指数幂、零指数幂的意义进行计算,最后再进行加减运算即可得解.
【解答】 ,
.
18、【答案】1
【分析】直接利用分式的混合运算法则进而化简得出答案.
【解答】原式
将 代入得:
【解答】先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数.
众数是出现次数最多的那个数就是众数,即是23.
故选D.
6、【答案】C
【分析】分别计算出各项的结果,再进行判断即可.
【解答】A. ,故原选项错误;
B. ,故原选项错误;
C. ,计算正确;
D. ,故原选项错误.
故选C.
7、【答案】B
【分析】利用平行线的性质得到∠2=∠4,∠3=∠2,∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2=∠4=∠3,∠5=2∠1,从而可对各选项进行判断.
【解答】∵l1∥AB,
∴∠2=∠4,∠3=∠2,∠5=∠1+∠2,
∵AC为角平分线,
∴∠1=∠2=∠4=∠3,∠5=2∠1.
选B.
【解答】解:原式= =a(b+1)(b-1),故答案为:a(b+1)(b-1).
14、【答案】
【分析】直接利用概率公式计算进而得出答案.
【解答】∵现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,
∴将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是: .
故答案为: .
15、【答案】
【分析】作 于点 ,构造直角三角形,运用勾股定理求解即可.
【解答】作 于点 ,
由折叠可知: , ,
∴正方形边长
∴ .
故答案为: .
16、【答案】
【分析】作 轴,证明△COD∽△AED,求得AE=1,再证明△CBO∽△BAE,求得OE= ,进而可求出k的值.
【解答】如图所示:作 轴
4、下列哪个图形是正方体的展开图()
A. B.
C. D.
5、这组数据20,21,22,23,23的中位数和众数分别是()
A.20,23B.21,23C.21,22D.22,23
6、下列运算正确的是()
A. B. C. D.
7、如图,已知 , 为角平分线,下列说法错误的是()
A. B. C. D.
8、如图,已知 ,以 两点为圆心,大于 的长为半径画圆,两弧相交于点 ,连接 与 相较于点 ,则 的周长为()
12、已知菱形 , 是动点,边长为4, ,则下列结论正确的有几个()
① ;② 为等边三角形
③ ④若 ,则
A.1B.2C.3D.4
二、填空题(每小题3分,共4小题,满分12分)
13、分解因式: =______.
14、现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是______.
A.8B.10C.11D.13
9、已知 的图象如图,则 和 的图象为()
A. B.
C. D.
10、下列命题正确的是()
A.矩形对角线互相垂直
B.方程 的解为
C.六边形内角和为540°
D.一条斜边和一条直角边分别相等的两个直角三角形全等
11、定义一种新运算: ,例如: ,若 ,则 ()
A.-2B. C.2D.
(4)依据喜爱二胡的学生所占的百分比,即可得到该校喜爱二胡的学生数量.
【解答】(1)80÷40%=200(人),
2019年深圳市初中毕业升学考试数学
一、选择题(每小题3分,共12小题,满分36分)
1、 的绝对值是()
A.-5B. C.5D.
2、下列图形是轴对称图形的是()
A. B. C. D.
3、预计到2025年,中国5G用户将超过460000000,将460000000用科学计数法表示为()
A.4.6×109B.46×107C.4.6×108D.0.46×109
【解答】根据二次函数y=ax2+bx+c(a≠0)的图象,
可得a<0,b>0,c<0,
∴y=ax+b过一、二、四象限,
双曲线 在二、四象限,
∴C是正确的.
选C.
10、【答案】D
【分析】由矩形的对角线互相平分且相等得出选项A不正确;
由方程x2=14x的解为x=14或x=0得出选项B不正确;
由六边形内角和为(6-2)×180°=720°得出选项C不正确;
(3)点 为抛物线上一点,连接 ,直线 把四边形 的面积分为3∶5两部分,求点 的坐标.
23、已知在平面直角坐标系中,点 ,以线段 为直径作圆,圆心为 ,直线 交 于点 ,连接 .
(1)求证:直线 是 的切线;
(2)点 为 轴上任意一动点,连接 交 于点 ,连接 :
①当 时,求所有 点的坐标(直接写出);
②求 的最大值.
参考答案
1、【答案】B
【分析】负数的绝对值是其相反数,依此即可求解.
【解答】-5的绝对值是5.
选C.
2、【答案】A
【分析】根据轴对称图形的概念求解.
【解答】A、是轴对称图形,故本选项正确;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
15、如图在正方形 中, ,将 沿 翻折,使点 对应点刚好落在对角线 上,将 沿 翻折,使点 对应点落在对角线 上,求 ______.
16、如图,在 中, , ,点 在 上,且 轴平分角 ,求 ______.
三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)
选A.
3、【答案】C
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
【解答】460000000=4.6×108.
【解答】在四边形 是菱形中,
∵ ,
∴
∵
∴
∴△ABC为等边三角形,
∴
又 ,
∴ ,故①正确;
∴ ,
∴∠FCE=∠ACB=60°,
∴ 为等边三角形,故②正确;
∵∠AGE+∠GAE+∠AEG=180°,∠BEC+∠CEF+∠AEG=180°,