比例线段(2)[上学期]--浙教版1
浙教版数学九年级上册4.1《比例线段》教案1
浙教版数学九年级上册4.1《比例线段》教案1一. 教材分析《比例线段》是浙教版数学九年级上册第四章的第一节内容。
本节主要让学生了解比例线段的定义、性质和应用,培养学生运用比例线段解决实际问题的能力。
教材通过引入实际问题,引导学生探索比例线段的性质,进而得出比例线段的定义,并通过例题和练习题使学生掌握比例线段的应用。
二. 学情分析九年级的学生已经具备了一定的几何知识,对线段、射线、直线等概念有了一定的了解。
但是,对于比例线段这一概念,学生可能较为陌生。
因此,在教学过程中,教师需要引导学生通过实际问题探索比例线段的性质,从而理解比例线段的定义。
三. 教学目标1.理解比例线段的定义及其性质。
2.学会运用比例线段解决实际问题。
3.培养学生的几何思维能力和解决实际问题的能力。
四. 教学重难点1.重点:比例线段的定义及其性质。
2.难点:运用比例线段解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生探索比例线段的性质。
2.启发式教学法:在教学过程中,教师引导学生思考、讨论,从而培养学生的问题解决能力。
3.实践性教学法:通过例题和练习题,使学生掌握比例线段的运用。
六. 教学准备1.教具:黑板、粉笔、投影仪、PPT等。
2.学具:学生每人一份比例线段的相关练习题。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,如“在一条直线上,两点间的距离是否相等?”引发学生的思考,进而引导学生探索比例线段的性质。
2.呈现(10分钟)教师通过PPT展示比例线段的定义及其性质,让学生初步了解比例线段的概念。
3.操练(10分钟)教师提出一些有关比例线段的问题,让学生分组讨论、解答。
例如:“已知线段AB和线段BC的长度比为2:3,求线段AC的长度。
”通过解答这些问题,学生能够更好地理解比例线段的性质。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成。
练习题包括判断题、选择题和解答题,题型多样,难度适中。
浙教版数学九年级上册4.1《比例线段》教学设计2
浙教版数学九年级上册4.1《比例线段》教学设计2一. 教材分析“比例线段”是浙教版数学九年级上册第四章第一节的内容,主要是让学生掌握比例线段的定义、性质和应用。
通过本节内容的学习,学生能够理解比例线段的概念,会求解比例线段,并能运用比例线段解决实际问题。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,对于线段、比例等概念有一定的理解。
但是,对于比例线段这一概念,学生可能较为陌生,需要通过实例和练习来加深理解。
此外,学生可能对于比例线段的运用存在一定的困难,需要通过大量的练习来提高。
三. 教学目标1.知识与技能:理解比例线段的定义,掌握比例线段的性质,会求解比例线段。
2.过程与方法:通过实例和练习,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.重点:比例线段的定义和性质。
2.难点:比例线段的求解和运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过问题引导学生思考,通过案例让学生理解比例线段的性质,通过小组合作让学生共同探讨比例线段的运用。
六. 教学准备1.教材和教辅。
2.课件和教学素材。
3.黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题引入比例线段的概念,例如:“在一条直线上有三个点A、B、C,且AB=6cm,BC=8cm,AC=10cm,求线段AB、BC、AC的比例。
”2.呈现(15分钟)讲解比例线段的定义和性质,通过PPT展示比例线段的图示和公式。
同时,给出比例线段的求解方法,例如:通过交叉相乘法求解比例线段。
3.操练(10分钟)让学生分组进行练习,每组选取一个实例,求解比例线段。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)选取一些练习题,让学生独立完成,检验学生对比例线段的掌握程度。
5.拓展(5分钟)让学生思考比例线段在实际生活中的应用,例如:在制作衣服时,如何利用比例线段来确定衣物的尺寸。
浙教版数学九年级上册4.1《比例线段》教学设计
浙教版数学九年级上册4.1《比例线段》教学设计一. 教材分析浙教版数学九年级上册4.1《比例线段》是全册的第一个单元,主要让学生理解比例线段的定义,掌握比例线段的性质和应用。
教材通过引入实际问题,让学生探究比例线段的关系,培养学生的动手操作能力和探究能力。
本节课的内容是学生进一步学习几何的基础,对于学生来说,具有很高的实用价值和意义。
二. 学情分析九年级的学生已经学习了八年级的数学知识,对于图形的认识和线段的知识有一定的基础。
但是,对于比例线段的定义和性质,他们可能还比较陌生。
因此,在教学过程中,需要从基础入手,让学生逐步理解和掌握比例线段的知识。
同时,学生已经具备了一定的探究能力和动手操作能力,可以利用这一点,让学生在实际操作中理解和掌握比例线段的性质。
三. 教学目标1.理解比例线段的定义,掌握比例线段的性质。
2.能够运用比例线段解决实际问题,提高学生的应用能力。
3.培养学生的动手操作能力和探究能力,提高学生的数学素养。
四. 教学重难点1.比例线段的定义和性质。
2.比例线段在实际问题中的应用。
五. 教学方法1.引导探究法:通过引导学生动手操作,探究比例线段的性质,提高学生的探究能力。
2.实例讲解法:通过引入实际问题,让学生理解比例线段的定义和应用,提高学生的应用能力。
3.小组讨论法:通过小组讨论,让学生互相交流,共同解决问题,提高学生的合作能力。
六. 教学准备1.准备相关的实际问题,用于引导学生理解和应用比例线段。
2.准备比例线段的模型或者图片,用于帮助学生形象地理解比例线段。
3.准备黑板和粉笔,用于板书教学内容和重点。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,激发学生的兴趣,引导学生进入学习状态。
例如:在一条直线上,有三点A、B、C,且AB=6cm,BC=8cm,AC=10cm,请问AB、BC、AC三条线段之间是否存在某种特殊关系?2.呈现(10分钟)教师通过展示比例线段的模型或者图片,让学生直观地理解比例线段的定义。
浙教版数学九年级上册《4.2 由平行线截得的比例线段》教学设计1
浙教版数学九年级上册《4.2 由平行线截得的比例线段》教学设计1一. 教材分析《4.2 由平行线截得的比例线段》这一节主要让学生掌握利用平行线截得的线段之间的比例关系,通过几何图形和线段的组合,引导学生发现和证明线段之间的比例关系,为后面进一步学习相似三角形和相似多边形打下基础。
二. 学情分析九年级的学生已经掌握了平行线的性质,同时也具备了一定的逻辑思维能力和空间想象能力。
但是,对于证明两个线段之间的比例关系,可能还存在一定的困难,因此,在教学过程中,需要通过具体例题,引导学生发现规律,再进行证明。
三. 教学目标1.理解平行线截得线段之间的比例关系。
2.学会利用平行线截得的线段之间的比例关系解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.重点:平行线截得线段之间的比例关系的发现和证明。
2.难点:如何引导学生发现并证明平行线截得线段之间的比例关系。
五. 教学方法1.采用问题驱动法,引导学生发现和证明平行线截得线段之间的比例关系。
2.利用几何画板软件,动态展示平行线截得的线段之间的比例关系,帮助学生直观理解。
3.通过小组合作交流,培养学生的团队协作能力。
六. 教学准备1.教学课件。
2.几何画板软件。
3.练习题。
七. 教学过程1.导入(5分钟)利用几何画板软件,动态展示平行线截得的线段,引导学生关注线段之间的比例关系。
2.呈现(10分钟)呈现一组平行线截得的线段,请学生观察并发现其中的比例关系。
学生可能发现同位角相等,内错角相等等性质。
3.操练(10分钟)请学生利用平行线的性质,证明同位角相等,内错角相等。
通过几何画板软件,引导学生直观理解。
4.巩固(10分钟)请学生利用平行线截得的线段之间的比例关系,解决实际问题。
如:在一条直线上,距离某一点A相等的两条线段AB和AC,求证AB和AC平行。
5.拓展(10分钟)引导学生思考:在空间中,平行线截得的线段之间是否也存在比例关系?请学生举例说明。
4.1.2 比例线段 课件(共27张PPT)2023-2024学年浙教版九年级上册数学
=
.
,
要点提醒
(1)求两条线段的比必须选定同一长度单位,但比值与
单位的大小无关.
(2)两条线段的长度都是正数,所以两条线段的比值总
是正数.
由右图我们还可以看到,线段OC与OC′
的比和线段AB与A′B′的比相等,也就是
′
=
.
′
′
一般地,四条线段a,b,c,d中,如果a与b的比等于c与d的比,
第4章
4.1
相似三角形
比例线段
第2课时 比例线段
1
学习目标
2
课时导入
3
感悟新知
4
随堂检测
5
课堂小结
了解两条线段的比和成比例线段的概念.
会计算两条线段的比,并会判断四条线段是否成比例.
了解比例尺的概念,并能解决相关的实际问题.
重要提示:1.用方程思想寻找几何图形中四条线段成比例是常
用方法.
2.四条线段成比例可以解决一些实际问题,如地图上的某两
设实际距离为s,则
=
台北 基隆
,
∴s=35×9000000=315000000(mm),
即s=315(km).
量得图中∠a=28°.
答:基隆市在高雄市的北偏东28°方向,
到高雄市的实际距离约为315 km.
北
台中
α
台南
高雄
比例尺 1∶9000000
练2 现在有一棵很高的古树,欲测出它的高度,但又不
长度之比.
(3)判:若这两个比值相等,则这四条线段是成比例线段;
若这两个比值不相等,则这四条线段不是成比例线段.
4.1.2成比例线段教学设计浙教版数学九年级上册
如果dcb a =,那么ad=bc. 如果ad=bc ,那么dcb a =.注意:a ,b ,c ,d 都不为0.活动意图说明:通过复习,激发学生学习动机和兴趣,吸引学生注意力,为引进新知识的学习做好心理准备。
环节二:探究成比例线段 教师活动2:如图:有两条线段,AB 的长度是m ,CD 的长度是n ,线段AB 与CD 的比是多少?AB CD mnAB :CD =m :n 两条线段的比两条线段的长度的比叫做这两条线段的比.如图,线段OC=2,OC'=4,线段OC 与OC'的比是2:4=21 ,记作;21OC'OC = .21B'A'AB ,记作212:22的比是B',线段AB与A'22B',A'2线段AB ====通过计算上述两条线段的比,你能发现什么?线段OC 与OC'的比和线段AB 与A'B'的比相等, 也就是.B'A'AB OC'OC =四条线段a ,b ,c ,d 中,如果a 与b 的比等于c学生活动2:学生思考,求出线段AB 与CD 的比。
师生总结两条线段的比的定义。
学生在教师的引导下总结什么叫成比例线段。
与d 的比,即dcb a =,那么这四条线段a ,b ,c ,d 叫作成比例线段,简称比例线段. 例如,图中OC ,OC',AB ,A'B'是比例线段. 注意:求两条线段的比必须选定同一长度单位,但比值与单位的大小无关.活动意图说明:学生在教师引导下探索成比例线段的定义,在教学中运用探究式教学模式,使学生体验教学再创造的思维过程,培养学生的创造意识和科学精神。
环节三:例题讲解 教师活动3:如图,在Rt △ABC 中,CD 是斜边AB 上的高. 请找出一组比例线段,并说明理由.分析:根据 ad=bcdc b a =, 问题可转化为找出四条线段,使其中两条线段的乘积等于另两条线段的乘积.解:记Rt △ABC 的面积为S ,则 AC · BC=2S ,CD · AB=2S , ∴ AC · BC=CD · AB ,,BCAB CD AC =∴∴AC ,CD ,AB ,BC 是一组比例线段. 下图表示我国台湾省几个城市的位置关系,问基隆市在高雄市的哪一个方向?到高雄市的实际距离是多少千学生活动3:学生在教师的指导下完成课本问题。
2024年浙教版数学九年级上册4.1《比例线段》教学设计
2024年浙教版数学九年级上册4.1《比例线段》教学设计一. 教材分析《比例线段》是浙教版数学九年级上册4.1的内容,主要介绍了比例线段的定义、性质和应用。
通过本节课的学习,学生能够理解比例线段的含义,掌握比例线段的判定方法,并能够运用比例线段解决实际问题。
教材通过生动的实例和丰富的练习,帮助学生深入理解和掌握比例线段的知识。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对线段、比例等概念有一定的了解。
但学生在学习比例线段时,可能会对比例线段的定义和性质产生困惑,难以理解和运用。
因此,在教学过程中,需要注重对学生的基础知识的巩固,通过生动的实例和具体的操作,帮助学生理解和掌握比例线段的概念和性质。
三. 教学目标1.理解比例线段的定义和性质。
2.能够判定两条线段是否成比例线段。
3.能够运用比例线段解决实际问题。
4.培养学生的几何思维能力和解决问题的能力。
四. 教学重难点1.比例线段的定义和性质的理解。
2.比例线段的判定方法的掌握。
3.运用比例线段解决实际问题的能力。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,激发学生的学习兴趣和动力。
2.利用多媒体和实物模型,生动形象地展示比例线段的定义和性质,帮助学生直观地理解和记忆。
3.通过小组讨论和合作交流,培养学生的团队协作能力和解决问题的能力。
4.提供丰富的练习题,让学生在实践中巩固和运用比例线段的知识。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾线段和比例的基础知识,为新课的学习做好铺垫。
2.呈现(10分钟)利用多媒体和实物模型,生动形象地展示比例线段的定义和性质,让学生直观地理解和记忆。
3.操练(10分钟)让学生通过小组讨论和合作交流,共同完成一些关于比例线段的练习题,巩固和运用所学知识。
4.巩固(5分钟)让学生独立完成一些关于比例线段的练习题,检验学生对知识的掌握程度,并及时给予指导和帮助。
浙教版九年级数学上册《比例线段》评课稿
浙教版九年级数学上册《比例线段》评课稿一、课程背景《比例线段》是浙教版九年级数学上册的一节重要课程,该节课主要介绍了比例线段的概念、性质和应用。
通过学习这一知识点,学生能够进一步理解比例的概念,并能够在实际生活中灵活运用比例线段的知识。
二、教学目标1.了解比例线段的定义,认识比例线段的性质;2.掌握比例线段的求解方法;3.能够应用比例线段的知识解决实际问题;4.培养学生的分析和解决问题的能力。
三、教学重点与难点1. 教学重点•比例线段的概念和性质;•比例线段的求解方法。
2. 教学难点•如何灵活运用比例线段求解实际问题。
四、教学内容及学情分析1. 教学内容•比例线段的定义和性质;•比例线段的求解方法;•比例线段的应用。
2. 学情分析该班学生的数学基础较好,平时乐于思考,善于运用所学知识解决实际问题。
然而,对于比例线段这一知识点,学生仍存在一定的困惑和不足。
因此,本节课的教学重点是帮助学生理解比例线段的概念,掌握求解比例线段的方法,并培养学生运用比例线段解决实际问题的能力。
五、教学过程1. 导入引入通过提出一个小问题引入比例线段的定义,激发学生的兴趣和思考能力。
例如:“小明根据地图上的比例尺,测量了自己家到学校的实际距离为800米,而地图上的距离是4厘米。
请问这个比例尺是多少?”2. 概念解释与示例分析介绍比例线段的定义和基本性质,并通过一些具体的示例进行分析和讲解。
3. 求解方法的讲解与练习详细介绍比例线段的求解方法,包括直接取比、交叉相乘法等,并通过一些练习题进行演练和讲解。
4. 实际问题的应用引导学生将比例线段的知识应用于实际问题的解决中,提供一些生活中常见的问题供学生思考和讨论,培养学生的分析和解决问题的能力。
例如:“小明和小刚同时从A地出发,前往B地,小明的速度是每小时60公里,而小刚的速度是每小时50公里。
已知小明到达B地用时4小时,请问小刚到达B地需要多少小时?”5. 总结与反思通过课堂小结,对本节课所学的内容进行总结,并向学生提出思考问题,引导他们反思本节课的学习收获。
九年级数学比例线段2
2 5
B
C
1 2 = = A′B′ 2 2 2 1 5 A C = = A′C′ 2 2 5 C′
∴ A B = A C A′B′ A′C′
1 1 B′ A
A′
请找出左图的3组 比例线段,并写出 比例式.
A B
A′B′
=
A C
A′C′
B
C
一般地,如果四条线段a,b,c,d中,a与b的比等于c与d的
答:树AB的高为12米.
试一试
2 如图,DE是△ABC的中位线,请尽可能多的 A 写出比例线段. D E
B
C
再见 Class Over
浙教版九年级《数学》上册
1、设线段AB=2cm,AC=4cm,
1 两条线段的长度比是 2:4= 2
两 条 线 段 单 位 要 统 一
2、设线段AB=200cm,AC=4m,
a c ad bc b d
,问题就转化为找出
试一试
1,如图在平行四边形ABCD中,
DE AB, DF BC 找出图中的一组比例
线段(用小写字母表示)并说明理由.
D b A c E a d C
F
B
例4,如图表示我过台湾省几个城市的位置 关系,问基隆市在高雄市的哪个方向?到高 雄的实际距离是多少km?
a c 比, 即 ,那么这四条线段叫做成比例线段, b d ' ' 简称比例线段. 例如, AB, A' B' , AC, AC 是比例线段.
例1 已知线段a=10mm , b=6cm, c=2cm , d=3cm .
问:这四条线段是否成比例?为什么? 答:这四条线段成比例. ∵a=10mm=1cm
浙教版数学九年级上册4.1《比例线段》说课稿2
浙教版数学九年级上册4.1《比例线段》说课稿2一. 教材分析《比例线段》是浙教版数学九年级上册4.1的内容,本节课的主要内容是比例线段的定义、性质和应用。
比例线段是初中数学中的一个重要概念,它在解决实际问题和几何证明中有着广泛的应用。
教材通过引入比例线段的概念,让学生理解比例线段的性质,并学会运用比例线段解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对线段、比例等概念有一定的了解。
但学生在学习比例线段时,可能会对比例线段的定义和性质理解不深,难以运用比例线段解决实际问题。
因此,在教学过程中,教师需要引导学生通过观察、操作、思考等活动,深入理解比例线段的含义,并学会运用比例线段解决实际问题。
三. 说教学目标1.知识与技能目标:理解比例线段的定义,掌握比例线段的性质,能运用比例线段解决实际问题。
2.过程与方法目标:通过观察、操作、思考等活动,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.教学重点:比例线段的定义和性质。
2.教学难点:比例线段的运用和实际问题的解决。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等教学方法,引导学生主动探究,积极参与课堂活动。
2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,生动形象地展示比例线段的概念和性质,提高学生的学习兴趣。
六. 说教学过程1.导入新课:通过复习线段和比例的知识,引出比例线段的概念,激发学生的学习兴趣。
2.探究新知:引导学生通过观察、操作、思考等活动,发现比例线段的性质,并能够证明。
3.巩固新知:通过例题和练习,让学生学会运用比例线段解决实际问题。
4.拓展延伸:引导学生思考比例线段在实际生活中的应用,培养学生的应用意识。
5.课堂小结:总结本节课的主要内容,让学生巩固所学知识。
七. 说板书设计板书设计要简洁明了,能够突出比例线段的关键信息。
新浙教版九年级数学上册《比例线段》课件1
m
底部的距离大约是多
少米(精确到0.1m)?
?
468×0.618≈289.2m
A
B
你们知道如何确定线段AB的黄金 分割点所在的位置吗?
例5:
已知线段AB=a,用直尺和圆规作出 它的黄金分割点
a
A
B
小结 拓展
悟出一个新自己
❖ 什么是黄金分割. ❖ 如何去确定黄金分割点或黄金比. ❖ 将所学知识网络化. ❖ 要用数学美去装点和美化生活. ❖ 与同伴谈谈你对黄金分割的收获与体
谢谢观赏
You made my day!
我们,还在路上……
数学美的魅力 1
古希腊巴特农神庙
古埃及胡夫金字塔
古希腊的一些神庙,在建筑时高 和宽也是按黄金比0.618来建立, 他们认为这样的长方形看来是较 美观;其大理石柱廓,就是根据 黄金分割律分割整个神庙的.
文明古国埃及的金字塔,形似方锥, 大小各异。但这些金字塔底面的边 长与高这比都接近于0.618.
观察 欣赏
会.
1: 2也是一个很.已 有知 趣线 A的 B 如 段 比 图 ,用 直尺和圆A规 B 上求 的作 一 P,使 点 AP:AB1: 2
a
A
B
1.作顶角为36°的等腰△ABC;量出
尝试
底BC与腰AB的长度,计算: B C 0.;618
AB
2.作∠B的平分线,交AC于点D,量出CD的长度,
再计算: C D 0..(6精1确8 到0.001)
bc
叫a,c的比例中项 abb2 ac
做 一 做:
bc
(1)判 断1是 否 是11和2的 比 例 中?项如 果 是,请 写 出 相 应 的 比.例 23
2求 线 段a,b的 比 例 中:项
九年级数学上册 4.2 由平行线截得的比例线段教案1 (新版)浙教版
《由平行线截得的比例线段》教学目标㈠知识与技能:1.掌握平行线分线段成比例定理的推论.2.用推论进行有关计算和证明.㈡教学思考:通过探究平行线分线段成比例定理的推论,培养学生数学思维能力.㈢解决问题:学生经历观察、操作、探究、交流、归纳、总结过程获得结论,体验解决问题的多样性,感悟比例中间量的作用.教学重点推论及应用教学难点推论的应用教学方法引导、探究教学媒体投影、胶片教学过程【活动一】引入新课问题1 上节我们学习了什么内容?本节将研究什么?学生共同手工拼图,通过思考探究得出结论.在本次活动中,教师应重点关注:1.操作过程中学生是否把被截得两直线交点放在相应位置.2.学生是否有探究本节所学内容的兴趣和欲望.设计意图:使学生通过动手操作、观察、直观得出初步结论.【活动二】探究推论问题2.被截直线的交点若落在第一条或第二条平行线上,平行线分线段成比例定理是否还成立?问题3.若上述问题成立,可得什么特殊结论?321123教师提问,引导学生猜想,并在拼好的图上测量、计算、证明. 推论:投影出示.在本次活动中,教师应重点关注: 1.学生是否认真、仔细的测量和计算. 2.学生能否用定理证明所得推论.设计意图:培养学生大胆猜测,从实践中得出结论. 【活动三】问题4 看图说比例式 ABCD3()2() AB DE1() DEBC学生结对子,师生结对子说出比例式. 在本次活动中,教师应重点关注: 1.学生能否顺利回答对方所提出的比例式. 2.学生是否与同伴交流中达到互帮互学. 3.学生能否体会由平行得出多个比例式.设计意图:给学生表现机会,让学生体验成功的喜悦,调动学生积极性.【活动四】教学例3问题5 已知:如图:BC∥DE,AB=15,AC=9,BD=4,求:AE学生独立思考后,分组交流得出多种解题途径,老师引导学生找出最佳方案.在本次活动中,教师应重点关注:1.学生能否顺利写出解决问题的比例式;2.在小组交流中学生能否在探究中发现解决问题的多种途径及最佳方案.设计意图:以学生分组讨论方式展开探究活动,培养学生探索、发现、找出多种解决问题的方法的能力.【活动五】.问题6 如图:DE∥BC,AB=15,AC=7,AD=2,求EC在本次活动中,教师应重点关注:1.学生是否能顺利说出较简便的解题途径.2.学生在语言表达上是否规范.设计意图:培养学生快速解决问题的能力.【活动六】教学例4问题7 如图:⊿APM中,AM∥BN,CM∥DN,求证:PA:PB=PC:PD分析:师生共同完成.过程:由学生自己写出.在本次活动中,教师应重点关注:1.学生是否能在复杂图形中找出相应的比例式.2.学生能否体会到比例中间量的作用.设计意图:培养学生识别图形的能力.【活动七】问题8 如图:P是四边形OACB对角线的任意一点,且PM∥CB,PN∥CA,求证:OA:AN=OB:MB同桌交流、研讨,由学生分析讲解,写出过程.在本次活动中,教师应重点关注:1.学生是否快速找到比例的中间量.2.学生书写解题过程是否规范.设计意图:培养学生的语言表达能力.【活动八】小结:我们本节课学习了哪些知识,通过探究你有哪些收获?你认为自己的表现如何?老师重点关注:1.学生归纳总结能力;2.能否发表自己的见解,倾听他人的意见,反思学习过程;3.学生对推论的理解及应用程度.思考题:如果一条直线截三角形的两边(或两边的延长线),所得对应线段成比例,那么这条直线是否平行于第三边?。
浙教版数学九年级上册《4.2 由平行线截得的比例线段》教学设计2
浙教版数学九年级上册《4.2 由平行线截得的比例线段》教学设计2一. 教材分析《4.2 由平行线截得的比例线段》是浙教版数学九年级上册第四章第二节的内容。
本节内容是在学生掌握了平行线、射线、线段等基本概念的基础上进行学习的。
本节课的主要内容是让学生了解由平行线截得的比例线段的性质,并学会运用这一性质解决实际问题。
教材通过生活中的实例引入课题,激发学生的学习兴趣,接着引导学生通过观察、操作、归纳等方法发现并证明性质,最后通过练习巩固所学知识。
二. 学情分析九年级的学生已经掌握了平行线、射线、线段等基本概念,具备一定的观察、操作、归纳能力。
但部分学生对平行线的理解可能还不够深入,因此在教学过程中需要教师引导学生进一步理解平行线的性质。
此外,学生对于解决实际问题的能力有待提高,教师在教学过程中应注重培养学生的应用能力。
三. 教学目标1.理解由平行线截得的比例线段的性质。
2.学会运用由平行线截得的比例线段解决实际问题。
3.培养学生的观察能力、操作能力、归纳能力及应用能力。
四. 教学重难点1.重点:由平行线截得的比例线段的性质。
2.难点:运用由平行线截得的比例线段解决实际问题。
五. 教学方法1.引导发现法:教师引导学生观察、操作、归纳,发现由平行线截得的比例线段的性质。
2.实例分析法:教师通过生活中的实例,引导学生理解并运用由平行线截得的比例线段解决实际问题。
3.练习法:教师设计适量练习,让学生巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示教材中的实例及练习题。
2.教学素材:准备一些实际问题,供课堂练习使用。
3.板书设计:设计板书,突出本节课的主要内容。
七. 教学过程1.导入(5分钟)教师通过展示生活中的实例,引导学生观察并思考:由平行线截得的比例线段有哪些性质?2.呈现(10分钟)教师引导学生观察教材中的示意图,让学生通过观察、操作、归纳等方法发现并证明由平行线截得的比例线段的性质。
3.操练(10分钟)教师设计适量练习,让学生运用所学知识解决问题。
浙教版数学九年级上册教学课件:4.1 比例线段 (共15张PPT)精品
如图,已知AD,CE是△ABC中BC、 的高线, 求证:AD:CE=AB:BC
A
E
B
DC
如图在平行四边形 ABCD 中,DE⊥AB,DF⊥B 找出图中的一组比例线段(用小写字母表示相应 并说明理由.
判断四条线段是否成比例的方法有:
(1)两条线段的比值与另两条线段的比 等,则四条线段成比例。-定义法
bd
段.
例如, AB,A′B′ A′C′是比例线段.
你能在图中再找出几 例线段吗?并写出比
例1 已知线段a=10mm , b=3cm, c=2cm , d=6cm .问:这四条线段是 比例?为什么?
变一变 在如图三个长方形中,哪两 方形的长和宽是比例线段?
例2 如图,在直角三角形ABC中, 是斜边AB上的高线,请找出一组比 段,并说明理由.
4.1比例线段ห้องสมุดไป่ตู้
两条线段的长度的比,叫做这两条线段
1
1
A
AB= 2
B C
AC= 5
AABC=
2 5
AB AC AB AC
AB 2 AB 2 2
AC 5
AC 2 5
一般地,四条线段 a,b,c,d 中,如果 a 与 b 的比等于 c 与 即 a c ,那么这四条线段 a,b,c,d 叫做成比例线段,简
2.如图,DE是△ABC的中位线,请 能多的写出比例线段.
知识回顾: 说说你在这节课中的收获与体
谢谢!
墨子,(约前468~前376)名翟,鲁人 ,一说 宋人, 战国初 期思想 家,政 治家, 教育家 ,先秦 堵子散 文代表 作家。 曾为宋 国大夫 。早年 接受儒 家教育 ,后聚 徒讲学 ,创立 与儒家 相对立 的墨家 学派。 主张•兼 爱”“ 非攻“ 尚贤” “节用 ”,反 映了小 生产者 反对兼 并战争 ,要求 改善经 济地位 和社会 地位的 愿望, 他的认 识观点 是唯物 的。但 他一方 面批判 唯心的 宿命论 ,一方 面又提 出同样 是唯心 的“天 志”说 ,认为 天有意 志,并 且相信 鬼神。 墨于的 学说在 当时影 响很大 ,与儒 家并称 为•显 学”。 《墨子》是先秦墨家著作,现存五 十三篇 ,其中 有墨子 自作的 ,有弟 子所记 的墨子 讲学辞 和语录 ,其中 也有后 期墨家 的作品 。《墨 子》是 我国论 辩性散 文的源 头,运 用譬喻 ,类比 、举例 ,推论 的论辩 方法进 行论政 ,逻辑 严密, 说理清 楚。语 言质朴 无华, 多用口 语,在 先秦堵 子散文 中占有 重要的 地位。 公输,名盘,也作•“般”或•“班 ”又称 鲁班, 山东人 ,是我 国古代 传说中 的能工 巧匠。 现在, 鲁班被 人们尊 称为建 筑业的 鼻祖, 其实这 远远不 够.鲁 班不光 在建筑 业,而 且在其 他领域 也颇有 建树。 他发明 了飞鸢 ,是人 类征服 太空的 第一人 ,他发 明了云 梯(重武 器),钩 钜(现 在还用) 以及其 他攻城 武器, 是一位 伟大的 军事科 学家, 在机械 方面, 很早被 人称为 “机械 圣人” ,此外 还有许 多民用 、工艺 等方面 的成就 。鲁班 对人类 的贡献 可以说 是前无 古人, 后无来 者,是 我国当 之无愧 的科技 发明之 父。
2022秋九年级数学上册 第4章 相似三角形4.1 比例线段2黄金分割课件(新版)浙教版
2.已知点 C 把线段 AB 分成两条线段 AC,BC,下列说法错误的是( C )
A.若点 C 是线段 AB 的黄金分割点(CA>CB),则 CA=
5-1 2 AB
B.如果 AC2=AB·BC,那么线段 AB 被点 C 黄金分割
C.如果线段 AB 被点 C 黄金分割,那么 AC 与 AB 的比叫做黄金比
第4章 相似三角形
4.1 比例线段 第2课时 黄金分割
提示:点击 进入习题
1C 2C 3C见习题
1.已知点C是线段AB的黄金分割点,且AC>BC,则下列 各式成立的是( C )
A.AB2=AC·CB B.CB2=AC·AB C.AC2=BC·AB D.AC2=2BC·AB
A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH
【点拨】设正方形的边长为 2,先根据正方形的性质以及勾 股定理,求得 DF 的长为 5,再根据 DF=GF 求得 CG= 5 -1,最后根据 CG 与 CD 的比为 52-1,可判断出矩形 DCGH 为黄金矩形.
【答案】D
6.已知线段 a,b,c 满足a3=b2=6c≠0,且 a+2b+c=26. (1)求线段 a,b,c 的长; 解:设a3=b2=6c=k(k≠0), ∴a=3k,b=2k,c=6k.
(3)根据(2)的结论你能找出一个黄金分割点吗? 解:能.图中的点M为线段AD的黄金分割点.
(1)求MA,DM的长;
解:如图,∵P 为边 AB 的中点, ∴AP=12AB=1. ∴DP= AP2+AD2= 12+22= 5. ∴PF=PD= 5. ∴FA=PF-AP= 5-1. ∴MA=FA= 5-1,DM=AD-MA=3- 5.
(2)求证:AM2=AD·DM; 证明:∵AM2=( 5-1)2=6-2 5, AD·DM=2(3- 5)=6-2 5, ∴AM2=AD·DM.
浙教版数学九年级上册4.1《比例线段》说课稿1
浙教版数学九年级上册4.1《比例线段》说课稿1一. 教材分析《比例线段》是浙教版数学九年级上册第四章第一节的内容。
本节内容是在学生已经掌握了线段、射线、直线的概念以及平行线、相交线的基础知识上进行学习的。
比例线段是数学中一种重要的比较方法,它不仅可以解决实际问题,而且也是解决比例、比例分配等问题的重要工具。
本节内容主要包括比例线段的定义、性质和应用。
教材通过生活中的实例引入比例线段的概念,然后引导学生探究比例线段的性质,最后通过练习让学生掌握比例线段的运用。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和探究能力,对于线段、射线、直线等基础知识也有了一定的了解。
但是,学生对于比例线段的理解和运用还需要进一步的引导和培养。
此外,学生可能对于比例线段的实际应用场景还不够了解,需要通过实例和练习来加深理解。
三. 说教学目标1.知识与技能目标:让学生掌握比例线段的定义、性质和运用。
2.过程与方法目标:通过实例引入比例线段的概念,引导学生探究比例线段的性质,培养学生解决问题的能力。
3.情感态度与价值观目标:让学生体验数学与生活的紧密联系,培养学生的学习兴趣。
四. 说教学重难点1.教学重点:比例线段的定义、性质和运用。
2.教学难点:比例线段的性质的证明和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、案例教学法等。
2.教学手段:利用多媒体课件、实物模型、练习题等。
六. 说教学过程1.导入:通过生活中的实例引入比例线段的概念,让学生感受数学与生活的联系。
2.新课导入:介绍比例线段的定义和性质,引导学生进行探究和证明。
3.实例分析:通过具体的例子让学生理解比例线段的运用和解决实际问题的能力。
4.练习巩固:让学生通过练习题来巩固比例线段的定义、性质和运用。
5.总结提升:对本节内容进行总结,强调比例线段的重要性和应用场景。
七. 说板书设计板书设计要清晰、简洁,能够突出比例线段的定义、性质和运用。
浙教版数学九年级上册4.1《比例线段》教学设计4
浙教版数学九年级上册4.1《比例线段》教学设计4一. 教材分析“比例线段”是浙教版数学九年级上册第四章第一节的内容,这部分内容是在学生已经掌握了比例的性质和线段的有关知识的基础上进行学习的。
比例线段是指在两个比例中,如果两个外项相等,那么两个内项也相等。
本节课的教学内容主要包括比例线段的定义、比例线段的性质以及比例线段的运用。
通过本节课的学习,使学生能理解和掌握比例线段的知识,提高他们的数学思维能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和数学基础,他们对比例和线段的知识有一定的了解。
但是,对于比例线段的深度理解和运用还需要加强。
学生在学习过程中可能会对比例线段的性质产生疑问,因此,在教学过程中,需要引导学生通过观察、操作、思考、讨论等活动,自主探索比例线段的性质,提高他们的数学素养。
三. 教学目标1.理解比例线段的定义,掌握比例线段的性质。
2.能够运用比例线段的知识解决实际问题。
3.培养学生的逻辑思维能力和合作交流能力。
四. 教学重难点1.比例线段的定义和性质。
2.比例线段的运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生观察、操作、思考,从而探索比例线段的性质。
同时,通过小组合作学习,培养学生的合作交流能力。
六. 教学准备1.教学课件。
2.练习题。
3.教学道具。
七. 教学过程1.导入(5分钟)通过设置问题,引导学生回顾比例和线段的知识,为新课的学习做好铺垫。
2.呈现(10分钟)通过课件展示比例线段的定义和性质,让学生初步了解比例线段的概念。
3.操练(15分钟)让学生通过观察、操作、思考,探索比例线段的性质。
在此过程中,教师给予引导学生,解答学生的疑问。
4.巩固(10分钟)通过练习题,让学生运用比例线段的知识解决问题,巩固所学内容。
5.拓展(5分钟)引导学生思考比例线段在实际生活中的应用,提高学生的实际问题解决能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,加深对比例线段知识的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[问答题,简答题]激发学习动机的技术。 [判断题]市场达到有效的重要前提:一是投资者具有正确判断证券价格变动的能力;二是所有影响证券价格的信息都是自由流动的。()A.正确B.错误 [单选]狭窄性腱鞘炎最常发生的部位是()A.小指B.环指C.中指D.食指E.拇指 [填空题]“解放思想、实事求是”是邓小平理论的()。 [名词解释]审美注意 [单选]不属于教师在美术教学行为中的角色的是()。A.学生学习的参与者B.学生学习的引导者C.学生学习的合作者D.学生学习的执行者 [单选,A2型题,A1/A2型题]《金匮要略》论历节病的成因是()。A.外感风寒湿之气B.肝肾亏虚,筋骨失养C.肝肾亏虚,风寒湿侵D.肝肾不足,寒伤骨髓E.阳气亏虚,血行不利 [单选]肺结核的治疗原则是()A.早期、规律、适量、全程、联合B.早期、规律、适量、短程、联合C.早期、规律、足量、全程、联合D.中期、规律、适量、全程、联合E.中期、规律、足量、全程、联合 [单选]指导2011-2020年我国质量发展的工作方针是:()。A.以人为本,安全为先,诚信守法,夯实基础,创新驱动,以质取胜;B.以质取胜,诚信为本,安全为先,夯实基础,创新驱动,促进发展;C.以人为本,安全为先,诚信至上,夯实基础,创新驱动,又好又快。 [单选]与鼻咽癌的描述不相符的是()A.颈淋巴结转移有时为首发症B.有时表现为分泌性中耳炎C.放射治疗为首选D.可引起较多颅神经症状E.病变局限者手术切除为首选 [判断题]金属塑性一般受金属晶粒影响,晶粒大,塑性差。()A.正确B.错误 [单选]()主要用于连接和定位。A.销B.键C.轴D.法兰 [判断题]确定课程内容的能力中心法是指企业培训继续教育工程,需要开设具备企业特殊性的实用性、综合性比较强的课程。A.正确B.错误 [单选,A型题]患者男性,65岁,心电图显示预激综合征,食管电生理检查诱发出心动过速,心电图如图3-16-6(图中ESO为食管导联心电图)所示,应诊断为()。A.房室结折返性心动过速B.顺向型房室折返性心动过速C.房性折返性心动过速D.逆向型房室折返性心动过速E.心房扑动 [填空题]党的七届二中全会提出的“两个务必”的具体内容是()。 [单选]汽油馏分的族组成分析,现多采用()。A、质谱法B、气相色谱法C、电位分析法D、液相色谱法 [单选]胎盘功能检查方法不包括()A.缩宫素激惹试验B.羊水肌酐值C.尿E测定D.尿E/C比值E.血清HPL值 [单选,A1型题]关于麻黄药理作用叙述错误的是()A.兴奋中枢B.升高血压C.抗炎D.镇咳E.保肝 [填空题]现已确定石油中烃类主要是()、()、()。 [判断题]各种定期储蓄存款的到期日,以对年、对月、对日为准。如遇到期日为该月没有的日期,以月底为到期日。A.正确B.错误 [单选,A型题]破伤风痉挛毒素()A.抑制多种细胞的蛋白质合成B.阻断上下神经元之间的正常抑制性神经冲动传递C.抑制胆碱能运动神经释放乙酰胆碱D.激活肠粘膜腺苷环化酶,增高细胞内cAMP水平E.作用于呕吐中枢 [单选]人居环境建设的基本原则包括()。A.生态原则和经济原则B.技术原则和社会原则C.文化原则D.A+B+CE.A+C [单选]关于妊娠合并心脏病孕妇在分娩期的处理,错误的是()。A.剖宫产指征稍宽B.无论有元感染征象均使用抗生素C.肌内注射麦角新碱以防产后出血D.可使用吗啡镇静E.宫口开全后不能鼓励产妇屏气用力 [单选]要成功实施信息系统安全管理并进行维护,应首先对系统的()进行评估鉴定。A.风险B.资产C.威胁D.脆弱性 [单选]下列()不是保安押运人员的基本素质要求。A.遵纪守法B.特立独行C.严于律己D.团结协作 [单选]对吸入性损伤早期诊断最有意义的是()A.颜面部烧伤B.密闭现场C.胸片D.烦躁E.声嘶及喘鸣 [单选]下列各项中,不会引起事业结余发生增减变动的是()。A.从事经营活动取得的收入B.附属单位按规定缴纳的款项C.开展专业业务活动取得的收入D.外单位捐赠未限定用途的财物 [问答题,简答题]2010版GMP新修订共有几个附录,它们的名称是什么? [单选]出境、入境的人员,必须遵守。()A.中华人民共和国的法律、行政法规B.中华人民共和国行政法规C.以上都是D.以上都不是 [填空题]客运经营者在旅客运输途中擅自变更运输车辆或者将旅客移交他人运输的,由()责令改正,处1000元以上3000元以下的罚款;情节严重的,由原许可机关吊销《道路运输经营许可证》。 [单选,A型题]产气荚膜梭菌区别于其他厌氧菌最有特点的生物学性状是()A.革兰阳性粗大杆菌B.远端芽胞C.厌氧性D.菌落光滑,有溶血E.分解糖大量产气 [单选,A1型题]在生产实践中可人工控制猪在白天集中分娩的生殖激素是()A.PGF2aB.PMSGC.HCGD.OTE.GnRH [单选]在对市场经济进行规制的法律体系中,()处于基本法的地位。A.民商法B.婚姻法C.刑法D.民事诉讼法 [单选]易产生静电的易燃易爆化学物品生产设备与装置,必须按规定设置()设施,并定期进行检查。A、静电导除B、防雷电C、消防安全D、防火措施 [单选]关于阿米巴性肝脓肿的描述,错误的是()A.手术切开排脓应采用持续负压闭式引流B.合并细菌感染者尽早使用抗生素C.应尽早行经皮肝穿刺置管引流术D.全身营养支持治疗E.主要采用抗阿米巴药物治疗 [多选]如图所示,硬膜外穿刺时经历哪几层组织A.皮肤B.皮下组织C.棘上韧带D.棘间韧带E.黄韧带 [单选]发展有效行动方案、明确任务和责任的过程以及决策行动过程的环节是社会工作通用过程模式中的()环节。A.接案的决定B.问题预估C.制订服务计划D.评估 [单选]安装井架底座时先把()划出来,找好安放底座的位置,用吊车将大梁逐件摆上,连接固定好。A.底座对角线B.井口中心线C.底座边线D.井场边界 [单选]下列资产负债表项目中,根据若干总账科目期末余额分析计算填列的是()。A.货币资金B.长期借款C.短期借款D.资本公积 [单选,A1型题]临产后,阴道检查确诊胎方位时,以哪一条颅缝的方向为准()A.额缝B.冠状缝C.矢状缝D.人字缝E.颞缝