最全高考数学统计专题解析版【真题】
高考数学复习专题训练—统计与概率解答题(含解析)
高考数学复习专题训练—统计与概率解答题1.(2021·广东广州二模改编)根据相关统计,2010年以后中国贫困人口规模呈逐年下降趋势,2011~2019年全国农村贫困发生率的散点图如下:注:年份代码1~9分别对应年份2011年~2019年.(1)求y 关于t 的经验回归方程(系数精确到0.01);(2)已知某贫困地区的农民人均年纯收入X (单位:万元)满足正态分布N (1.6,0.36),若该地区约有97.72%的农民人均纯收入高于该地区最低人均年纯收入标准,则该地区最低人均年纯收入标准大约为多少万元?参考数据与公式:∑i=19y i =54.2,∑i=19t i y i =183.6. 经验回归直线y ^=b ^t+a ^的斜率和截距的最小二乘估计分别为b ^=∑i=1n t i y i -nt y ∑i=1n (t i -t )2 ,a ^=y −b ^t . 若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5,P (μ-3σ≤X ≤μ+3σ)≈0.997 3.2.(2021·湖北黄冈适应性考试改编)产品质量是企业的生命线.为提高产品质量,企业非常重视产品生产线的质量.某企业引进了生产同一种产品的A,B 两条生产线,为比较两条生产线的质量,从A,B 生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.(1)依据小概率值α=0.025的独立性检验,分析数据,能否据此推断是否为一级品与生产线有关.(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.①分别估计A,B生产线生产一件产品的平均利润;②你认为哪条生产线的利润较为稳定?并说明理由.附:①参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.②临界值表:3.(2021·福建宁德模拟改编)某工厂为了检测一批新生产的零件是否合格,从中随机抽测100个零件的长度d(单位:mm).该样本数据分组如下:[57,58),[58,59),[59,60),[60,61),[61,62),[62,63],得到如图所示的频率分布直方图.经检测,样本中d大于61的零件有13个,长度分别为61.1,61.1,61.2,61.2,61.3,61.5,61.6,61.6,61.8,61.9,62.1,62.2,62.6.(1)求频率分布直方图中a,b,c的值及该样本的平均长度x(结果精确到1 mm,同一组数据用该区间的中点值作代表);(2)视该批次样本的频率为总体的概率,从工厂生产的这批新零件中随机选取3个,记ξ为抽取的零件长度在[59,61)的个数,求ξ的分布列和数学期望;(3)若变量X满足|P(μ-σ≤X≤μ+σ)-0.682 7|<0.03且|P(μ-2σ≤X≤μ+2σ)-0.954 5|≤0.03,则称变量X满足近似于正态分布N(μ,σ2)的概率分布.如果这批样本的长度d满足近似于正态分布N(x,12)的概率分布,则认为这批零件是合格的,将顺利出厂;否则不能出厂.请问,能否让该批零件出厂?4.(2021·山东潍坊期末)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r(0<r<1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r的最小值;(2)当r=0.9时,求能正常工作的设备数X的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万元的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更新设备硬件总费用为8万元; 方案2:对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?答案及解析1.解 (1)t =1+2+3+4+5+6+7+8+99=5, y =12.7+10.2+8.5+7.2+5.7+4.5+3.1+1.7+0.69≈6.02, b ^=∑i=19t i y i -9t y∑i=19(t i -5)2=183.6-270.960≈-1.46,a ^=y −b ^t =6.02-(-1.46)×5=13.32.故y 关于t 的经验回归方程为y ^=-1.46t+13.32.(2)因为P (μ-2σ≤X ≤μ+2σ)≈0.954 5,所以P (X>μ-2σ)=0.954 5+1-0.954 52=0.977 25. 因为某贫困地区的农民人均年纯收入X 满足正态分布N (1.6,0.36),所以μ=1.6,σ=0.6,μ-2σ=0.4,P (X>0.4)=0.977 25,故该地区最低人均年纯收入标准大约为0.4万元.2.解 (1)根据已知数据可建立列联表如下:零假设为H 0:是否为一级品与生产线无关.χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )=200×(20×65-35×80)255×145×100×100≈5.643>5.024=x 0.025,依据小概率值α=0.025的独立性检验,推断H 0不成立,即认为是否为一级品与生产线有关.(2)A 生产线生产一件产品为一、二、三级品的概率分别为15,35,15.记A 生产线生产一件产品的利润为X ,则X 的取值为100,50,-20,其分布列为B生产线生产一件产品为一、二、三级品的概率分别为720,25 ,14.记B生产线生产一件产品的利润为Y,则Y的取值为100,50,-20, 其分布列为①E(X)=100×15+50×35+(-20)×15=46,E(Y)=100×720+50×25+(-20)×14=50.故A,B生产线生产一件产品的平均利润分别为46元、50元.②D(X)=(100-46)2×15+(50-46)2×35+(-20-46)2×15=1 464.D(Y)=(100-50)2×720+(50-50)2×25+(-20-50)2×14=2 100.因为D(X)<D(Y),所以A生产线的利润更为稳定.3.解(1)由题意可得P(61≤d<62)=10100=0.1,P(62≤d≤63)=3100=0.03,P(59≤d<60)=P(60≤d<61)=12(1-2×0.03-0.14-0.1)=0.35,所以a=0.031=0.03,b=0.11=0.1,c=0.351=0.35.x=(57.5+62.5)×0.03+58.5×0.14+(59.5+60.5)×0.35+61.5×0.1=59.94≈60.(2)由(1)可知从该工厂生产的新零件中随机选取1件,长度d在(59,61]的概率P=2×0.35=0.7,且随机变量ξ服从二项分布ξ~B(3,0.7),所以P(ξ=0)=C30×(1-0.7)3=0.027,P(ξ=1)=C31×0.7×(1-0.7)2=0.189,P(ξ=2)=C32×0.72×(1-0.7)=0.441,P(ξ=3)=C33×0.73=0.343,所以随机变量ξ的分布列为E(ξ)=0×0.027+1×0.189+2×0.441+3×0.343=2.1.(3)由(1)及题意可知x=60,σ=1.所以P(x-σ≤X≤x-σ)=P(59≤X≤61)=0.7.|P(x-σ≤X≤x+σ)-0.682 7|=|0.7-0.682 7|=0.017 3≤0.03,P(x-2σ≤X≤x-2σ)=P(58≤X≤62)=0.14+0.35+0.35+0.1=0.94,|P(x-2σ≤X≤x+2σ)-0.954 5|=|0.94-0.954 5|=0.014 5≤0.03.所以这批新零件的长度d满足近似于正态分布N(x,12)的概率分布.所以能让该批零件出厂.4.解(1)要使系统的可靠度不低于0.992,则P(X≥1)=1-P(X<1)=1-P(X=0)=1-(1-r)3≥0.992,解得r≥0.8,故r的最小值为0.8.(2)X为正常工作的设备数,由题意可知,X~B(3,r),P(X=0)=C30×0.90×(1-0.9)3=0.001,P(X=1)=C31×0.91×(1-0.9)2=0.027,P(X=2)=C32×0.92×(1-0.9)1=0.243,P(X=3)=C33×0.93×(1-0.9)0=0.729,从而X的分布列为(3)设方案1、方案2的总损失分别为X1,X2,采用方案1,更换部分设备的硬件,使得设备可靠度达到0.9,由(2)可知计算机网络断掉的概率为0.001,不断掉的概率为0.999,故E(X1)=80000+0.001×500 000=80 500元.采用方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,由(1)可知计算机网络断掉的概率为0.008,故E(X2)=50 000+0.008×500 000=54 000元,因此,从期望损失最小的角度,决策部门应选择方案2.。
高考数学经典试题与解析 专题九 计数原理与概率统计
专题九计数原理与概率统计——2025届高考数学考点剖析精创专题卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.[2023年全国高考真题]某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.231.答案:D解析:依题意,用1A ,2A 表示高一的2名学生,1B ,2B 表示高二的2名学生,则从4名学生中随机选2名学生的选法有()12,A A ,()12,B B ,()11,A B ,()12,A B ,()21,A B ,()22,A B ,共6种,其中2名学生来自不同年级的选法有()11,A B ,()12,A B ,()21,A B ,()22,A B ,共4种,所以所求概率4263P ==,故选D.2.将甲、乙等5名同学分别保送到北京大学、上海交通大学、浙江大学三所大学就读,则每所大学至少保送一人的不同保送方法有()A.120种 B.150种 C.180种 D.240种2.答案:B解析:根据题意,分2步进行分析:①先将甲、乙等5名同学分成3组:若分成1,2,2的3组,则有12254222C C C15 A =(种)方法;若分成1,1,3的3组,则有11354322C C C 10 A =(种)方法,故将5人分成3组,每组至少有1人,有151025+=(种)分组方法.②将分好的3组对应三所大学,则每所大学至少保送一人的不同保送方法有3325A 150=(种).3.[2023春·高二·四川内江·期中校考]在12nx ⎫-⎪⎭的展开式中,只有第五项的二项式系数最大,则展开式中6x 的系数是()A.454B.358-C.358D.73.答案:C解析:依题意知第五项的二项式系数最大,所以一共是9项,所以8n =,二项式展开项的通项公式为842218811C C 22rrr rr r r r T x x x -++⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,令462r +=,得4r =,所以6x 的系数为448135C 28⎛⎫-= ⎪⎝⎭.故选C.4.抛掷一枚质地均匀的骰子两次,记A ={两次的点数均为奇数},B ={两次的点数之和为8},则()P B A =∣()A.112B.29C.13D.234.答案:B解析:易知()()()n AB P BA n A =∣,其中AB 表示“两次的点数均为奇数,且两次的点数之和为8”,共有两种情况,即(3,5),(5,3),故()2n AB =.而1133()C C 9n A =⋅=,所以()2()()9n AB P B A n A ==∣.故选B.5.[2023春·高二·江苏盐城·月考联考]已知服从正态分布()2,N μσ的随机变量在区间(],μσμσ-+,(]2,2μσμσ-+和(]3,3μσμσ-+内取值的概率分别为68.26%,95.44%和99.74%.若某校高二年级1000名学生的某次考试成绩X 服从正态分布()290,15N ,则此次考试成绩在区间(]105,120内的学生大约有()A.477人B.136人C.341人D.131人5.答案:B 解析:根据题意,()()()60120751050.95440.68261051200.135922P X P X P X <≤-<≤-<≤===,则10000.1359135.9136⨯=≈,故此次考试成绩在区间(]105,120内的学生大约有136人.故选:B.6.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x (元)99.29.49.69.810销量y (件)1009493908578预计在今后的销售中,销量与单价仍然服从这种线性相关关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为()参考公式:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为1221ˆniii nii x ynxy bxnx ==-=-∑∑,ˆˆay bx =-.参考数据:615116iii x y==∑,622160.7i i x x =-=∑.A.9.4元B.9.5元C.9.6元D.9.7元6.答案:B解析:由题意,得1(99.29.49.69.810)9.56x =⨯+++++=,1(1009493908578)906y =⨯+++++=,6162216511669.590ˆ200.76i ii ii x y xybxx ==--⨯⨯===--∑∑,ˆ909.520280a=+⨯=,则ˆ20280y x =-+.设工厂获得利润L 元,则2(5)(20280)20(9.5)405L x x x =--+=--+,当9.5x =时,L 取得最大值.所以当单价定为9.5元时,工厂获得最大利润,故选B.7.[2024春·高一·河南三门峡·期末校考]某高中为了积极响应国家“阳光体育运动”的号召,调查该校3000名学生每周平均体育运动时长的情况,从高一、高二、高三三个年级学生中按照4:3:3的比例进行分层随机抽样,收集了300名学生每周平均体育运动时长(单位:小时)的数据,整理后得到如图所示的频率分布直方图.下列说法不正确的是()A.估计该校学生每周平均体育运动时长为5.8小时B.估计该校高一年级学生每周平均体育运动时长不足4小时的人数为300C.估计该校学生每周平均体育运动时长不少于8小时的百分比为10%D.估计该校学生每周平均体育运动时长不少于8小时的人数为6007.答案:C解析:对于A,估计该校学生每周平均体育运动时长为10.0530.250.370.2590.15110.05 5.8⨯+⨯+⨯+⨯+⨯+⨯=(小时),故选项A 正确;对于B,该校高一年级的总人数为430001200433⨯=++,由题中频率分布直方图可知,该校学生每周平均体育运动时长不足4小时的频率为()0.0250.120.25+⨯=,所以估计该校高一年级学生每周平均体育运动时长不足4小时的人数为12000.25300⨯=,故选项B 正确;对于C,估计该校学生每周平均体育运动时长不少于8小时的百分比为()0.0750.0252100%20%+⨯⨯=,故选项C 错误;对于D,估计该校学生每周平均体育运动时长不少于8小时的人数为300020%600⨯=,故选项D 正确.故选:C.8.甲、乙、丙三人参加“社会主义核心价值观”演讲比赛,若甲、乙、丙三人能荣获一等奖的概率分别为12,23,34,且三人是否获得一等奖相互独立,则这三人中至少有两人获得一等奖的概率为()A.14B.724C.1124D.17248.答案:D解析:设甲、乙、丙获得一等奖的概率分别是()12P A =,()23P B =,()34P C =,则不获一等奖的概率分别是()11122P A =-=,()21133P B =-=,()31144P C =-=,则这三人中恰有两人获得一等奖的概率为:()()()()()()()()()()()()P ABC P ABC P ABC P A P B P C P A P B P C P A P B P C ++=++1231131211123423423424=⨯⨯+⨯⨯+⨯⨯=,这三人都获得一等奖的概率为()()()()12312344P ABC P A P B P C ==⨯⨯=,所以这三人中至少有两人获得一等奖的概率1111724424P =+=.故选:D.二、多项选择题9.[2020年全国高考真题]我国新冠肺炎疫情防控进入常态化,各地有序推动复工复产.下面是某地连续11天的复工、复产指数折线图.根据该折线图,()A.这11天复工指数和复产指数均逐日增加B.在这11天期间,复产指数的增量大于复工指数的增量C.第3天至第11天,复工指数和复产指数都超过80%D.第9天至第11天,复产指数的增量大于复工指数的增量9.答案:CD解析:由题图可知第8,9天复工指数和复产指数均减小,故A 错误;第1天时复工指数小于复产指数,第11天时两指数相等,故复产指数的增量小于复工指数的增量,故B 错误;由题图可知第3天至第11天,复工复产指数都超过80%,故C 正确;第9天至第11天,复产指数的增量大于复工指数的增量,故D 正确.10.已知()*nx n ⎛+∈ ⎝N 的展开式中共有7项,则该二项展开式中()A.所有项的二项式系数和为64 B.所有项的系数和为1C.二项式系数最大的项为第4项 D.有理项共有4项10.答案:ACD解析:由题意知6n =,则6x ⎛⎝的展开式的通项为3666216C C (0,1,2,,6)2rr rr r r r T x x r --+===⋅ .对于A ,所有项的二项式系数和为6264=,故A 正确;对于B ,令1x =,得6613122⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,因此所有项的系数和为632⎛⎫⎪⎝⎭,不为1,故B 错误;对于C,由二项式系数的性质,可知6x ⎛⎝的展开式中第4项的二项式系数最大,为36C 20=,故C 正确;对于D ,当362r-∈Z ,即0,2,4,6r =时,对应的项为有理项,共有4项,故D 正确.故选ACD.11.[2023春·高二·江苏·期中联考]红、黄、蓝被称为三原色,选取任意几种颜色调配,可以调配出其他颜色.已知同一种颜色混合颜色不变,等量的红色加黄色调配出橙色,等量的红色加蓝色调配出紫色,等量的黄色加蓝色调配出绿色.现有红、黄、蓝颜料各2瓶,甲同学从6瓶中任取2瓶颜料,乙同学再从余下的4瓶中任取2瓶颜料,两人分别进行等量调配,A 表示事件“甲同学调配出红色”,B 表示事件“甲同学调配出绿色”,C 表示事件“乙同学调配出紫色”,则下列说法正确的是()A.1()15P A =B.1()4P C A =∣C.4()45P BC =D.事件B 与事件C 相互独立11.答案:AC解析:从6瓶中任取2瓶颜料的方法数为26C .对于A ,A 表示事件“甲同学调配出红色”,若调出红色,需要2瓶颜料均为红色,有22C 种方法,则2226C 1()C 15P A ==,故A 正确;对于B ,事件A 发生需要2瓶颜料均为红色,事件C 发生需要1瓶红色颜料和1瓶蓝色颜料,在事件A 发生的条件下,事件C 不可能发生,所以()0P CA =∣,故B 错误;对于C ,若事件B 发生,则甲同学取出1瓶黄色颜料和1瓶蓝色颜料,则112226C C 4()C 15P B ==,此时还剩1瓶黄色颜料和1瓶蓝色颜料,2瓶红色颜料,则1224C 1()C 3P C B ==∣,故414()()()15345P BC P B P C B =⨯=⨯=∣,故C 正确;对于D ,若事件C 发生,则乙取了1瓶红色颜料和1瓶蓝色颜料,甲同学取了至少1瓶黄色颜料或甲同学取了一瓶红色颜料和一瓶蓝色颜料,则21111111222242222264C C C C C C C C 4()C C 15P C ++==,444()()()151545P B P C P BC ⋅=⨯≠=,事件B 与事件C 不相互独立,故D 错误.故选AC.三、填空题12.一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等).若,,{1,2,3,4}a b c ∈,且a ,b ,c 互不相同,则这个三位数为“有缘数”的概率是_________.12.答案:12解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数有6个,由1,3,4组成的三位自然数有6个,由2,3,4组成的三位自然数有6个,共有24个三位自然数.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个.所以这个三位数为“有缘数”的概率121242P ==.13.已知随机变量X 有三个不同的取值,分别是0,1,x ,其中(0,1)x ∈,又1(0)4P X ==,1(1)4P X ==,则随机变量X 方差的最小值为__________.13.答案:18解析:由1(0)4P X ==,1(1)4P X ==,得1()2P X x ==,所以随机变量X 的数学期望21()4x E X +=,则方差222221123121111()42444442162x x x D X x ⎡⎤+--⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯=⨯-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.当12x =时,()D X 取到最小值18,故答案为18.14.[2023届·西北工业大学附中·模拟考试]将8张连号的门票分给5个家庭,甲家庭需要3张连号的门票,乙家庭需要2张连号的门票,剩余的3张门票随机分给其余的3个家庭,并且甲、乙两个家庭不能连排在一起(甲、乙两个家庭内部成员的顺序不予考虑),则这8张门票不同的分配方法有_________种.14.答案:72解析:设8张门票的编号分别为1,2,3,4,5,6,7,8.若甲选123,则乙可以是56,67,78共3种,此时共有333A 18=种;若甲选234,则乙可以是67,78共2种,此时共有332A 12=种;若甲选345,则乙可以是78共1种,此时共有33A 6=种;若甲选456,则乙可以是12共1种,此时共有33A 6=种;若甲选567,则乙可以是12,23共2种,此时共有332A 12=种;若甲选678,则乙可以是12,23,34共3种,此时共有333A 18=种.综上所述,不同的分配方法有181266121872+++++=种.四、解答题15.[2024春·高一·青海西宁·期末]为了解学生的周末学习时间(单位:小时),高一年级某班班主任对本班40名学生某周末的学习时间进行了调查,将所得数据整理绘制出如图所示的频率分布直方图.根据直方图所提供的信息:(1)用分层抽样的方法在[)20,25和[]25,30中共抽取6人成立学习小组,再从该小组派3人接受检测,求检测的3人来自同一区间的概率;(2)估计这40名同学周末学习时间的25%分位数.15.答案:(1)1 5 ;(2)8.75小时.解析:(1)由图可知,40名学生中周末的学习时间在[)20,25的人数为0.035406⨯⨯=人,周末的学习时间在[]25,30的人数为0.0155403⨯⨯=人,从中用分层抽样抽取6人,则周末的学习时间在[)20,25的有4人,记为A,B,C,D;周末的学习时间在[]25,30的有2人,记为a,b;则再从中选派3人接受检测的基本事件有ABC,ABD,ABa,ABb,ACD,ACa,ACb, ADa,ADb,Aab,BCD,BCa,BCb,BDa,BDb,Bab,CDa,CDb,Cab,Dab共有20个,其中检测的3人来自同一区间的基本事件有ABC,ABD,ACD,BCD共有4个,所以检测的3人来自同一区间的概率41205 P==;(2)学习时间在5小时以下的频率为0.0250.10.25⨯=<,学习时间在10小时以下的频率为0.10.0450.30.25+⨯=>,所以25%分位数在区间[)5,10内,则0.250.1 558.750.30.1-+⨯=-,所以这40名同学周末学习时间的25%分位数为8.75小时.16.[2024春·高二·宁夏石嘴山·月考校考]2020年,是人类首次成功从北坡登顶珠峰60周年,也是中国首次精确测定并公布珠峰高程的45周年.华为帮助中国移动开通珠峰峰顶5G ,有助于测量信号的实时开通,为珠峰高程测量提供通信保障,也验证了超高海拔地区5G 信号覆盖的可能性,在持续高风速下5G 信号的稳定性,在条件恶劣地区通过简易设备传输视频信号的可能性.正如任总在一次采访中所说:“华为公司价值体系的理想是为人类服务.”有人曾问,在珠峰开通5G 的意义在哪里?“我认为它是科学技术的一次珠峰登顶,告诉全世界,华为5G 、中国5G 的底气来自哪里.现在,5G 的到来给人们的生活带来更加颠覆性的变革,某IT 公司基于领先技术的支持,5G 经济收入在短期内逐月攀升,该IT 公司在1月份至6月份的5G 经济收入y (单位:百万元)关于月份x 的数据如下表所示,并根据数据绘制了如图所示的散点图.月份x 123456收入y (百万元)6.68.616.121.633.041.0(1)根据散点图判断,y ax b =+与e dx y c =⋅(a ,b ,c ,d 均为常数)哪一个更适宜作为5G 经济收入y 关于月份x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的结果及表中的数据,求出y 关于x 的回归方程,并预测该公司7月份的5G 经济收入.(结果保留小数点后两位)(3)从前6个月的收入中抽取2个,记收入超过20百万元的个数为X ,求X 的分布列和数学期望.参考数据:x yu 621()i i x x =-∑61()()iii x x y y =--∑61()()iii x x uu =--∑ 1.52e 2.66e 3.5021.15 2.8517.70125.35 6.734.5714.30其中,设ln u y =,ln i i u y =(1,2,3,4,5,6i =).参考公式:对于一组具有线性相关关系的数据(),(21,2,3,,)i i x v n = ,其回归直线ˆˆˆvx βα=+的斜率和截距的最小二乘估计公式分别为()()()121ˆniii Ri i x x v v x x β==--=-∑∑,ˆˆv x αβ=-16.答案:(1)e dx y c =⋅更适宜(2) 1.520.38e ˆx y +=,65.35百万元(3)分布列见解析,1解析:(1)根据散点图判断,e dx y c =更适宜作为5G 经济收入y 关于月份x 的回归方程类型;(2)因为e dx y c =,所以两边同时取常用对数,得ln ln y c dx =+,设ln u y =,所以ln u c dx =+,因为 3.50x =, 2.85u =,所以61621()( 6.73ˆ0.380,17.70(iii ii x x u u dx x ==--==≈-∑∑所以ˆln 2.850.380 3.50 1.52c u dx=-≈-⨯=.所以ˆ 1.520.38u x =+,即ˆln 1.520.38y x =+,所以 1.520.38e ˆx y +=.令7x =,得 1.520.387 1.52 2.66ˆe e e 4.5714.3065.35y +⨯==⨯≈⨯≈,故预测该公司7月份的5G 经济收入大约为65.35百万元.(3)前6个月的收入中,收入超过20百万元的有3个,所以X 的取值为0,1,2,2326C 1(0)C 5P X ===,113326C C 3(1)C 5P X ===,2326C 1(2)C 5P X ===,所以X 的分布列为:X 012P153515所以()1310121555E X =⨯+⨯+⨯=.17.[2024春·高三·内蒙古赤峰·开学考试校考]卫生纸主要供人们生活日常卫生之用,是人民群众生活中不可缺少的纸种之一.某品牌卫生纸生产厂家为保证产品的质量,现从甲、乙两条生产线生产的产品中各随机抽取500件进行品质鉴定,并将统计结果整理如下:合格品优等品甲生产线250250乙生产线300200(1)判断能否有99.9%的把握认为产品的品质与生产线有关;(2)用频率近似为概率,从甲、乙两条生产线生产的产品中各随机抽取2件进行详细检测,记抽取的产品中优等品的件数为X ,求随机变量X 的分布列与数学期望.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d=+++()20P K k ≥0.100.050.0250.0100.0010k 2.7069.8415.0246.63510.82817.答案:(1)没有;(2)分布列见解析,95解析:(1)补充列联表如下:合格品优等品总计甲生产线250250500乙生产线300200500总计5504501000根据列联表中的数据,经计算得到221000(250200250300)10.10110.828550450500500K ⨯⨯-⨯=≈<⨯⨯⨯,所以没有99.9%的把握认为产品的品质与生产线有关.(2)由题意,甲生产线生产的产品中抽取优等品的频率为25015002=,乙生产线生产的产品中抽取优等品的频率为20025005=,所以估计从甲、乙生产线生产的产品中各随机抽取优等品的概率分别为12,25,由题意随机变量X 的所有可能取值是0,1,2,3,4,()22139025100P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()22211221312331C C 2525510P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2222211221313212372C C 2525525100P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯+⨯⨯⨯⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()22211221212313C C 252555P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2212142525P X ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,故X 的分布列为:X 01234P91003103710015125所以X 的期望()933711901234100101003255E X =⨯+⨯+⨯+⨯+⨯=.18.[2024春·高二·福建宁德·期末]毒品是人类的公敌,禁毒是社会的责任,当前宁德市正在创建全国禁毒示范城市,我市组织学生参加禁毒知识竞赛,为了解学生对禁毒有关知识的掌握情况,采用随机抽样的方法抽取了500名学生进行调查,成绩全部分布在75145~分之间,根据调查结果绘制的学生成绩的频率分布直方图如图所示.(1)求频率分布直方图中a 的值;(2)由频率分布直方图可认为这次全市学生的竞赛成绩X 近似服从正态分布()2,N μσ,其中μ为样本平均数(同一组数据用该组数据的区间中点值作代表),13.σ=现从全市所有参赛的学生中随机抽取10人进行座谈,设其中竞赛成绩超过135.2分的人数为Y ,求随机变量Y 的期望.(结果精确到0.01);(3)全市组织各校知识竞赛成绩优秀的同学参加总决赛,总决赛采用闯关的形式进行,共有20个关卡,每个关卡的难度由计算机根据选手上一关卡的完成情况进行自动调整,第二关开始,若前一关未通过,则其通过本关的概率为12;若前一关通过,则本关通过的概率为13,已知甲同学第一关通过的概率为13,记甲同学通过第n 关的概率为n P ,请写出n P 的表达式,并求出n P 的最大值.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈.18.答案:(1)0.012;(2)0.23;(3)13217216n n P -⎛⎫=+ ⎪⎝⎭,n P 的最大值为49.解析:(1)由频率分布直方图,得()100.0050.0190.030.020.0021a a ⨯++++++=,解得0.012a =.(2)由题意得:800.05900.121000.191100.3μ=⨯+⨯+⨯+⨯1200.21300.121400.02109.2+⨯+⨯+⨯=,()2109.2,13X N ~,()()()122135.220.022752P X P X P X μσμσμσ--<≤+>=>+=≈,()10,0.02275Y B ~,()0.22750.23E Y np ==≈.(3)记甲同学第()*n n ∈N 关通过为事件n A ,依题意,113P =,当2n ≥时,()113n n P A A -=,()112n n P A A -=,()n n P P A =,所以()()()()()1111n n n n n n n P A P A P A A P A P A A ----=+,所以()111111113262n n n n P P P P ---=+-=-+,所以1313767n n P P +⎛⎫-=- ⎪⎝⎭,又因为113P =,则1320721P -=-≠,所以数列37n P ⎧⎫-⎨⎬⎩⎭是首项为221-,公比为16-的等比数列,所以13217216n n P -⎛⎫=-- ⎪⎝⎭,当n 为奇数时,113213213721672167n n n P --⎛⎫⎛⎫=--=-<⎪⎪⎝⎭⎝⎭,当n 为偶数时,13217216n n P -⎛⎫=+ ⎪⎝⎭,则n P 随着n 的增大而减小,所以,249n P P ≤=,又4397>,所以n P 的最大值为49.19.[2024春·高二·江苏南通·月考校考]篮球运动是在1891年由美国马萨诸塞州斯普林尔德市基督教青年会训练学校体育教师詹姆士·奈史密斯博士,借鉴其他球类运动项目设计发明的.起初,他将两只桃篮钉在健身房内看台的栏杆上,桃篮上沿离地面约3.05米,用足球作为比赛工具,任何一方在获球后,利用传递、运拍,将球向篮内投掷,投球入篮得一分,按得分多少决定比赛胜负.在1891年的12月21日,举行了首次世界篮球比赛,后来篮球界就将此日定为国际篮球日.甲、乙两人进行投篮,比赛规则是:甲、乙每人投3球,进球多的一方获得胜利,胜利1次,则获得一个积分,平局或者输方不得分.已知甲和乙每次进球的概率分别是12和p ,且每人、每次进球与否都互不影响.(1)若23p =,求在进行一轮比赛后甲比乙多投进2球的概率;(2)若1223p ≤≤,且每轮比赛互不影响,乙要想至少获得3个积分且每轮比赛至少要超甲2个球,求:①设事件C 表示乙每轮比赛至少要超甲2个球,求()P C ;(结果用含p 的式子表示)②从数学期望的角度分析,理论上至少要进行多少轮比赛?19.答案:(1)124;(2)①321388p p +;②15解析:(1)设事件i A 表示甲在一轮比赛中投进i 个球,i B 表示乙在一轮比赛中投进i 个球,()0123i =,,,,D 表示进行一轮比赛后甲比乙多投进2球所以2031D A B A B =+()()()2031P D P A B P A B =+2332203133331111211C C C C 22323324⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⨯⨯⨯⨯⎭⎝⎭⎝⎭(2)①()()()()203031P C P B A P B A P B A =++()3332231323311113C 1C 22288p p p p p ⎛⎫⎛⎫⎛⎫=-⨯++⎡⎤⎢⎥⎢⎥=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎣⎭⎦⎝;②设随机变量X 表示n 轮比赛后,乙在每轮比赛至少要超甲2个球的情况下获得的积分,则有3213,88X B n p p ⎛⎫~+ ⎪⎝⎭,故()321388E X n p p ⎛⎫=+ ⎪⎝⎭,要满足题意,则()3E X ≥,即3213388n p p ⎛⎫+≥ ⎪⎝⎭,又12,23p ⎡⎤∈⎢⎥⎣⎦,故3231388n p p ≥+,令()321388f x x x =+,12,23x ⎡⎤∈⎢⎥⎣⎦,则()()3208f x x x '=+>在12,23⎡⎤⎢⎥⎣⎦恒成立,即()f x 在12,23⎡⎤⎢⎥⎣⎦上单调递增,故()f x 的最大值为211354f ⎛⎫=⎪⎝⎭,即321388p p +的最大值为1154,于是,3231388p p +的最小值为16211,因162141511<<,故理论上至少要进行15轮比赛.。
2012年高考真题汇编——理科数学(解析版)12:统计
2012高考真题分类汇编:统计1.【2012高考真题上海理17】设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )A .21ξξD D >B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关【答案】A【解析】由题意可知21ξξE E =,又由题意可知,1ξ的波动性较大,从而有21ξξD D >. 注意:本题也可利用特殊值法。
2.【2012高考真题陕西理6】从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( ) A. x x <甲乙,m甲>m 乙 B. x x <甲乙,m 甲<m 乙 C. x x >甲乙,m 甲>m 乙 D. x x >甲乙,m 甲<m 乙 【答案】B.【解析】根据平均数的概念易计算出乙甲x x <,又2022218=+=甲m ,2923127=+=乙m 故选B.3.【2012高考真题山东理4】采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15 【答案】C【解析】从960中用系统抽样抽取32人,则每30人抽取一人,因为第一组号码为9,则第二组为39,公差为30.所以通项为2130)1(309-=-+=n n a n ,由7502130451≤-≤n ,即302125302215≤≤n ,所以25,17,16 =n ,共有1011625=+-人,选C.4.【2012高考真题江西理9】样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z ax a y =+-,其中102α<<,则n,m 的大小关系为 A .n m < B .n m > C .n m = D .不能确定 【答案】A【解析】由题意知样本),,,(11m n y y x x 的平均数为y nm mx n m n n m y m x n z +++=++=,又y x z )1(αα-+=,即n m m n m n +=-+=αα1,。
高考数学最新真题专题解析—统计(新高考卷)
高考数学最新真题专题解析—统计(新高考卷)【母题来源】2022年新高考I 卷 【母题题文】一支医疗团队研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好 良好 病例组 40 60 对照组1090异⋅(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”,P(B|A)与P(B|A)P(B|A)的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R . (i)证明:R =P(A|B).P(A|B)P(A|B)(ii)利用该调查数据,给出P(A|B),P(A|B)的估计值,并利用(i)的结果给出R 的估计值.附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),P(K 2≥k)0.050 0.010 0.001 k3.8416.63510.828【答案】解:(1)得到2×2联表如下:不够良好 良好 总计 病例组 40 60 100 对照组 10 90 100 总计50150200∵K 2=200×(40×90−60×10)2100×100×50×150=24>10.828∴有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异; (2)(i)证明:∵P(B|A)=P(BA)P(A),P(B|A)=P(BA)P(A),P(B|A)=P(BA)P(A),P(B|A)=P(B A)P(A), ∴R =P(B|A)P(B|A)P(B|A)P(B|A)=P(BA)P(A)P(BA)P(A)÷P(BA)P(A)P(B A)P(A)=P(BA)P(BA)·P(B A)P(BA)又∵P(A|B)=P(AB)P(B),P(A|B)=P(AB)P(B),P(A|B)=P(A B)P(B),P(A|B)=P(AB)P(B),∴P(A|B)·P(A|B)P(A|B)=P(AB)P(B)P(AB)P(B)·P(A B)P(B)P(AB)P(B)=P(AB)·P(A B)P(AB)=P(BA)·P(B A)P(BA),∴R =P(A|B)·P(A|B)P(A|B)(ii)∵P(A|B)=P(AB)P(B)=40100=25,P(A|B)=P(AB)P(B)=60100=35,P(A|B)=P(A B)P(B)=90100=910,P(A|B)=P(AB)P(B)=10100=110∴P(A|B)P(A|B)⋅P(A|B)P(A|B)=2535×910110=6∴R =P(A|B).P(A|B)P(A|B)=6即P(A|B)=25,P(A|B)=110,R 的估计值为6. 【母题来源】2022年新高考II 卷 【母题题文】在某地区进行某种疾病调查,随机调查了100位这种疾病患者的年龄,得到如下样本数据频率分布直方图.(1)估计该地区这种疾病患者的平均年龄; (同一组数据用该区间的中点值作代表)(2)估计该地区以为这种疾病患者年龄位于区间[20,70)的概率;(3)已知该地区这种疾病患者的患病率为0.1%,该地区年龄位于区间[40,50)的人口数占该地区总人口数的16%,从该地区选出1人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(精确到0.0001).【答案】解:(1)平均年龄x=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023+55×0.020+65×0.017+75×0.006+85×0.002)×10=47.9(岁)(2)设A={一人患这种疾病的年龄在区间[20,70)},则P(A)=1−P(A)=1−(0.001+0.002+0.006+0.002)×10=1−0.11=0.89(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式,得P(C|B)=P(BC)P(B)=0.1%×0.023×1016%=0.001×0.230.16=0.0014375≈0.0014.【命题意图】1.考察频率分布直方图。
高考真题与模拟训练 专题26 计数原理与概率统计(解析版)
专题26 计数原理与概率统计第一部分 真题分类1.(2021·天津高考真题)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________. 【答案】23 2027【解析】由题可得一次活动中,甲获胜的概率为564253⨯=;则在3次活动中,甲至少获胜2次的概率为23232122033327C ⎛⎫⎛⎫⨯⨯+= ⎪ ⎪⎝⎭⎝⎭.故答案为:23;2027.2.(2021·江苏高考真题)下图是某项工程的网络图(单位:天),则从开始节点①到终止节点⑧的路径共有( )A .14条B .12条C .9条D .7条【答案】B【解析】由图可知,由①→④有3条路径,由④→⑥有2条路径,由⑥→⑧有2条路径,根据分步乘法计算原理可得从①→⑧共有32212⨯⨯=条路径. 故选:B3.(2021·江苏高考真题)已知()12nx -的展开式中2x 的系数为40,则n 等于( ) A .5 B .6 C .7 D .8【答案】A【解析】()()222221n C x n n x -=-,所以()21405n n n -=⇒=.故选:A.4.(2021·天津高考真题)从某网络平台推荐的影视作品中抽取400部,统计其评分分数据,将所得400个评分数据分为8组:[)66,70、[)70,74、、[]94,98,并整理得到如下的费率分布直方图,则评分在区间[)82,86内的影视作品数量是( )A .20B .40C .64D .80【答案】D【解析】由频率分布直方图可知,评分在区间[)82,86内的影视作品数量为4000.05480⨯⨯=. 故选:D.5.(2020·天津高考真题)从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A .10B .18C .20D .36【答案】B【解析】根据直方图,直径落在区间[)5.43,5.47之间的零件频率为:()6.25 5.000.020.225+⨯=, 则区间[)5.43,5.47内零件的个数为:800.22518⨯=. 故选:B.6.(2020·北京高考真题)在5(2)x 的展开式中,2x 的系数为( ). A .5- B .5C .10-D .10【答案】C 【解析】)52x 展开式的通项公式为:()()55215522r rrrr r r T Cx C x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-.故选:C.7.(2020·海南高考真题)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C .第3天至第11天复工复产指数均超过80%;D .第9天至第11天复产指数增量大于复工指数的增量; 【答案】CD【解析】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A 错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B 错误;由图可知,第3天至第11天复工复产指数均超过80%,故C 正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D 正确;8.(2021·江苏高考真题)已知关于x 的二次函数()24f x ax bx a =-+.(1)若{}1,1,2,3a ∈-,{}0,1,2b ∈,求事件(){A f x =在[)1,+∞上是增函数}的概率; (2)若[]1,2a ∈,[]0,2b ∈,求事件B =“方程()0f x =没有实数根”的概率. 【答案】(1)512;(2)38.【解析】(1)根据题意有:0a >,且对称轴21bx a=. 基本事件总数为114312C C ⋅=,满足事件A 的事件数为(1,0),(2,0),(2,1),(3,0),(3,1)共有5个,P ∴(A )512=; (2)方程240ax bx a -+=无实根,则22(4)40a b a ≠⎧⎨--<⎩,∴22040a ab ≠⎧⎨->⎩, 又[1a ∈,2],[0b ∈,2],20a b ∴->, 如图,∴11(1)1322()28P B +⨯==.9.(2021·全国高考真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===. (1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x+++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <; (3)根据你的理解说明(2)问结论的实际含义. 【答案】(1)1;(2)见解析;(3)见解析. 【解析】(1)()00.410.320.230.11E X =⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p =++-+,因为32101p p p p +++=,故()()32322030f x p x p x p p p x p =+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤, 故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<; 故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数, 若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>. 此时()()20300f p p p '=-++<,()230120f p p p '=+->, 故()f x '有两个不同零点34,x x ,且3401x x <<<, 且()()34,,x x x ∈-∞+∞时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数, 而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.10.(2020·海南高考真题)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.64;(2)答案见解析;(3)有.【解析】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80 (]75,11510 10 20 合计7426100222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关.第二部分 模拟训练1.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用2⨯勾⨯股+(股-勾)2=4⨯朱实+黄实=弦实,化简,得勾2+股2=弦2,设勾股中勾股比为1:3,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在红(朱)色图形内的图钉数大约为()(参考数据:2 1.414,3 1.732≈≈)A.866 B.500 C.300 D.134【答案】A【解析】不妨设勾长13则朱色面积为1314232⨯=22132,面积为224=,所以落在红(朱)色图形内的图钉数大约为2310005003500 1.732866=≈⨯=.故选:A2.琵琶、二胡、编钟、箫、笛、瑟、琴、埙、笙和鼓这十种民族乐器被称为“中国古代十大乐器”.为弘扬中国传统文化,某校以这十种乐器为题材,在周末学生兴趣活动中开展了“中国古代乐器”知识讲座,共连续安排四节课,一节课只讲一种乐器,一种乐器最多安排一节课,则琵琶、二胡一定安排,且这两种乐器互不相邻的概率为()A.1360B.16C.115D.715【答案】C【解析】由题意得:10种乐器种任选4种,故总的可能性有410A种,琵琶、二胡一定安排且不相邻的可能性有2283A A种,所以两种乐器互不相邻的概率2283410115A APA==.故选:C3.造纸术、印刷术、指南针、火药被称为中国古代四大发明,这四种发明对中国古代的政治、经济、文化的发展产生了巨大的推动作用;2017年5月,来自“一带一路”沿线的20国青年评选出了“中国的新四大发明”:高铁、扫码支付、共享单车和网购.若从这8个发明中任取两个发明,则两个都是新四大发明的概率为( ) A .114B .17C .314D .14【答案】C【解析】从8个发明中任取两个发明共有28C 28=种, 两个都是新四大发明的有24C 6=种, ∴所求概率为632814P ==, 故选:C4.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率x (每分钟鸣叫的次数)与气温y (单位:℃)存在着较强的线性相关关系.某地观测人员根据下表的观测数据,建立了y 关于x 的线性回归方程ˆ0.25yx k =+ x (次数/分钟)2030405060y (℃) 25 27.5 29 32.5 36则当蟋蟀每分钟鸣叫60次时,该地当时的气温预报值为( ) A .33℃ B .34℃C .35℃D .35.5℃【答案】C【解析】由题意,得40x=,30y =,则0.25300.254020k y x =-=-⨯=;当60x =时,35y =. 故选:C.5.将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即满足AC AB =BC AC =512-≈0.618,后人把这个数称为黄金分割,把点C 称为线段AB 的黄金分割点.图中在ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,在ABC 内任取一点M ,则点M 落在APQ 内的概率为( )A .512B 5-2C .514-D .522-【答案】B【解析】由几何概型公式知,所求概率为515112252 APQABCBC BCS PQ BQ BPS BC BC BC⎛⎫----⎪-⎝⎭====-.故选:B.6.在新冠疫情的持续影响下,全国各地电影院等密闭式文娱场所停业近半年,电影行业面临巨大损失.2011~2020年上半年的票房走势如下图所示,则下列说法正确的是()A.自2011年以来,每年上半年的票房收入逐年增加B.自2011年以来,每年上半年的票房收入增速为负的有5年C.2018年上半年的票房收入增速最大D.2020年上半年的票房收入增速最小【答案】D【解析】由图易知自2011年以来,每年上半年的票房收入相比前一年有增有减,增速为负的有3年,故A,B错误;2017年上半年的票房收入增速最大,故C错误;2020年上半年的票房收入增速最小,故D正确.故选:D7.某士特产超市为预估2021年元旦期间游客购买土特产的情况,对2020年元且期间的90位游客购买情况进行统计,得到如下人数分布表.购买金额(元)[0,15)[15,30)[30,45)[45,60)[60,75)[75,90)人数10 15 20 15 20 1060元与性别有关.不小于60元小于60元合计(23次,每次中奖概率为P (每次抽奖互不影响,且P 的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元若游客甲计划购买80元的土特产,请列出实际付款数X (元)的分布列并求其数学期望. 参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++附表:【答案】(1)列联表见解析,有95%的把握认为购买金额是否少于60元与性别有关;(2)分布列见解析,75EX =.【解析】(1)22⨯列联表如下:2290(12204018)1440 5.830 3.84130605238247K ⨯⨯-⨯==≈>⨯⨯⨯,因此有95%的把握认为购买金额是否少于60元与性别有关. (2)X 可能取值为65,70,75,80,且10201903p +==. 由题意知:33311(65)327P X C ⎛⎫=== ⎪⎝⎭,223122(70)339P X C ⎛⎫==⨯= ⎪⎝⎭,213124(75)339P X C ⎛⎫==⨯⨯= ⎪⎝⎭,30328(80)327P X C ⎛⎫=== ⎪⎝⎭, 所以X 的分布列为1246570758075279927EX =⨯+⨯+⨯+⨯=. 8.一年一度的剁手狂欢节——“双十一”,使千万女性朋友们非常纠结.2020年双十一,淘宝点燃火炬瓜分2.5个亿,淘宝、京东、天猫等各大电商平台从10月20号就开始预订,进行了强大的销售攻势.天猫某知名服装经营店,在10月21号到10月27号一周内,每天销售预定服装的件数x (百件)与获得的纯利润y (单位:百元)之间的一组数据关系如下表:(1)若y 与x (2)试求y 与x 的线性回归方程;(3)该服装经营店打算11月2号结束双十一预定活动,预计在结束活动之前,每天销售服装的件数x (百件)与获得的纯利润y (单位:百元)之间的关系仍然服从(1)中的线性关系,若结束当天能销售服装14百件,估计这一天获得的纯利润与前一周的平均利润相差多少百元?(有关计算精确到小数点后两位)参考公式与数据:ˆˆˆybx a =+,()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.713487i ii x y==∑.【答案】(1)y 与x 是正相关;(2)ˆ 4.7551.36yx =+;(3)结束当天获得的纯利润比前一周的平均利润多38.00百元.【解析】解:(1)由题目中的数据表格可以看出,y 随着x 的增大而增大, ∴判断出y 与x 是正相关; (2)由题设知,721280ii x==∑,345678967x ++++++==,6669738189909155977y ++++++==,∴5593487761337ˆ 4.7528073628b -⨯⨯===-⨯, 则559ˆ6 4.7551.367a=-⨯≈, ∴线性回归直线方程为ˆ 4.7551.36yx =+; (3)由(1)知,当14x =时, 4.751451.361ˆ17.86y=⨯+=(百元), ∴11月2号这天估计可获得的纯利润大约为117.86百元; 由(1)知,前一周的平均利润为55979.867y =≈(百元), 故结束当天获得的纯利润比前一周的平均利润多38.00百元.。
高考数学概率统计解答题专题
高考数学概率统计解答题专题一、归类解析题型一:离散型随机变量的期望与方差【解题指导】离散型随机变量的期望和方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的期望和方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,注意离散型随机变量的取值与概率的对应.【例】某品牌汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示.已知分9期付款的频率为0.2.4S店经销一辆该品牌的汽车,顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为1.5万元;分12期或15期付款,其利润为2万元.用η表示经销一辆汽车的利润.(1)求上表中的a,b值;(2)若以频率作为概率,求事件A“购买该品牌汽车的3位顾客中,至多有1位采用分9期付款”的概率P(A);(3)求η的分布列及期望E(η).【变式训练】某项大型赛事,需要从高校选拔青年志愿者,某大学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X,求X的分布列及期望.题型二:概率与统计的综合应用【解题指导】概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.【例】某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个? 【变式训练】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获得利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的期望. 题型三:概率与统计案例的综合应用【解题指导】 概率与统计案例的综合应用常涉及相互独立事件同时发生的概率、频率分布直方图的识别与应用、数字特征、独立性检验等基础知识,考查学生的阅读理解能力、数据处理能力、运算求解能力及应用意识.【例】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:每周移动支付次数1次 2次 3次 4次 5次 6次及以上总计 男 10 8 7 3 2 15 45 女 5 4 6 4 6 30 55 总计1512137845100(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,能否在犯错误概率不超过0.005的前提下,认为是否为“移动支付活跃用户”与性别有关?(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.①求抽取的4名用户中,既有男“移动支付达人”又有女“移动支付达人”的概率;②为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为X ,求X 的分布列及期望. 附公式及表如下:χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2.P (χ2≥k 0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828【变式训练】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料是否可以认为“体育迷”与性别有关?非体育迷体育迷合计 男 女 10 55 合计(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列、期望E (X )和方差D (X ). 附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2.P (χ2≥k 0) 0.10 0.05 0.01 k 02.7063.8416.635二、专题突破训练1.为了增强消防安全意识,某中学对全体学生做了一次消防知识讲座,从男生中随机抽取50人,从女生中随机抽取70人参加消防知识测试,统计数据得到如下列联表:优秀 非优秀 合计 男生 15 35 50 女生 30 40 70 合计4575120(1)试判断能否有90%的把握认为消防知识的测试成绩优秀与否与性别有关?(2)为了宣传消防知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6人组成宣传小组.现从这6人中随机抽取2人到校外宣传,求到校外宣传的同学中男生人数X 的分布列和期望. 附:χ2=n n 11n 22-n 12n 212n 1+n 2+n +1n +2.2(1)求出y关于x的回归直线方程y=b x+a,并在坐标系中画出回归直线;(2)试预测加工10个零件需要的时间.3.为了评估天气对某市运动会的影响,制定相应预案,该市气象局通过对最近50多年气象数据资料的统计分析,发现8月份是该市雷电天气高峰期,在31天中平均发生雷电14.57天(如图所示).如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.(1)求在该市运动会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);(2)设运动会期间(8月12日至23日,共12天),发生雷电天气的天数为X,求X的期望和方差(精确到0.01).4.某婴幼儿游泳馆为了吸引顾客,推出优惠活动,即对首次消费的顾客按80元收费,并注册成为会员,对会员消费的不同次数给予相应的优惠,标准如下:假设每位顾客游泳1(1)估计该游泳馆1位会员至少消费2次的概率;(2)某会员消费4次,求这4次消费中,游泳馆获得的平均利润;(3)假设每个会员最多消费4次,以事件发生的频率作为相应事件发生的概率,从该游泳馆的会员中随机抽取2位,记游泳馆从这2位会员的消费中获得的平均利润之差的绝对值为X,求X的分布列和期望E(X).。
高中数学经典概率与统计(解析版)
概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。
高考数学概率统计大题综合试题含答案解析
概率统计大题综合知识点总结1.数字样本特征(1)众数:在一组数据中出现次数最多的数(2)中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数(3)平均数:x =x 1+x 2+⋯⋯+x nn ,反映样本的平均水平(4)方差:s 2=(x 1−x )2+(x 2−x )2+⋯⋯(x n −x )2n反映样本的波动程度,稳定程度和离散程度;s 2越大,样本波动越大,越不稳定;s 2越小,样本波动越小,越稳定;(5)标准差:σ=s 2,标准差等于方差的算术平方根,数学意义和方差一样(6)极差:等于样本的最大值−最小值2.求随机变量X 的分布列的步骤:(1)理解X 的意义,写出X 可能取得全部值;(2)求X 取每个值的概率;(3)写出X 的分布列;(4)根据分布列的性质对结果进行检验.还可判断随机变量满足常见分布列:两点分布,二项分布,超几何分布,正态分布.3.求随机变量的期望和方差的基本方法:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求aX +b a ,b ∈R 的期望与方差,利用期望和方差的性质E aX +b =aE X +b ,D aX +b =a 2D X 进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算,若ξ~B (n ,p ),则Eξ=np ,Dξ=np (1-p ).4.求解概率最大问题的关键是能够通过P ξ=k ≥P ξ=k +1P ξ=k ≥Pξ=k -1构造出不等关系,结合组合数公式求解结果5.线性回归分析解题方法:(1)计算x ,y,ni =1x i 2 ,ni =1x i y i 的值;(2)计算回归系数a ,b ;(3)写出回归直线方程y =b x +a.线性回归直线方程为:y =b x +a ,b=ni =1x i −x y i −yni =1x i −x2=ni =1x i y i −nx yni =1x i 2−nx2,a =y −b x其中x ,y为样本中心,回归直线必过该点(4)线性相关系数(衡量两个变量之间线性相关关系的强弱)r=ni=1x i−xy i−yni=1x i−x2ni=1y i−y2=ni=1x i y i−nx yni=1x i2−nx 2ni=1y i2−ny 2r>0,正相关;r<0,负相关r ≤1,且r 越接近于1,线性相关性越强;r 越接近于0,线性相关性越弱,几乎不存在线性相关性6.独立性检验解题方法:(1)依题意完成列联表;(2)用公式求解;(3)对比观测值即可得到所求结论的可能性独立性检验计算公式:K2=n ad-bc2a+bc+da+cb+d模拟训练一、解答题1.(2023·福建三明·统考三模)在二十大报告中,体育、健康等关键词被多次提及,促进群众体育和竞技体育全面发展,加快建设体育强国是全面建设社会主义现代化国家的一个重要目标.某校为丰富学生的课外活动,加强学生体质健康,拟举行羽毛球团体赛,赛制采取3局2胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且是否上场是随机的,每局比赛结果互不影响.经过小组赛后,最终甲、乙两队进入最后的决赛,根据前期比赛的数据统计,甲队种子选手M对乙队每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队最终2:1获胜且种子选手M上场的概率;(2)已知甲队2:1获得最终胜利,求种子选手M上场的概率.2.(2023·湖北武汉·统考模拟预测)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.(1)若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,ξ表示选取的人中来自该中学的人数,求ξ的分布列和数学期望;(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动.规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利,假设每轮答题结果互不影响.已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为p1,p2,且p1+p2=43,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?3.(2023·福建宁德·校考二模)某科研团以为了考察某种药物预防疾病的效果,进行动物实验,得到如下列联表.患病未患病总计服用药物1045末服用药物50总计30(1)请将上面的列联表补充完整.(2)认为“药物对预防疾病有效”犯错误的概率是多少?(3)为了进一步研究,现按分层抽样的方法从未患病动物中抽取10只,设其中未服用药物的动物数为ξ,求ξ的分布列与期望.下面的临界值表供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k 2.0722706 3.841 5.024 6.6357.87910.828(参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)4.(2023·江苏常州·校考一模)设X,Y是一个二维离散型随机变量,它们的一切可能取的值为a i,b j,其中i,j∈N*,令p ij=P X=a i,Y=b j,称p ij i,j∈N*是二维离散型随机变量X,Y的联合分布列,与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式;X,Yb1b2b3⋅⋅⋅a1p11p12p13⋅⋅⋅a2p21p22p23⋅⋅⋅a3p31p32p33⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅现有n n∈N*个球等可能的放入编号为1,2,3的三个盒子中,记落入第1号盒子中的球的个数为X,落入第2号盒子中的球的个数为Y.(1)当n=2时,求X,Y的联合分布列,并写成分布表的形式;(2)设p k=nm=0P X=k,Y=m,k∈N且k≤n,求nk=0kp k的值.(参考公式:若X~B n,p,则nk=0kC k np k1-pn-k=np)5.(2023·江苏南京·南京市第九中学校考模拟预测)某种疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了若干名该疾病的患者进行调查,发现女性患者人数是男性患者的2倍,男性患A型疾病的人数占男性患者的56,女性患A型疾病的人数占女性患者的13.A型病B型病合计男女合计(1)填写2×2列联表,若本次调查得出“在犯错误的概率不超过0.005的前提下认为‘所患疾病的类型'与‘性别'有关”的结论,求被调查的男性患者至少有多少人?(2)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为m m>0元.该团队研发的疫苗每次接种后产生抗体的概率为p0<p<1,如果一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期.若p=23,试验人数为1000人,试估计该试验用于接种疫苗的总费用.K2=n ad-bc2a+bc+da+cb+d,P K2≥k00.100.050.010.0050.001k0 2.706 3.841 6.6357.87910.8286.(2023·安徽蚌埠·统考三模)某校为了丰富学生课余生活,组建了足球社团.为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各100名进行调查,部分数据如表所示:喜欢足球不喜欢足球合计男生40女生30合计(1)根据所给数据完成上表,依据α=0.001的独立性检验,能否认为该校学生喜欢足球与性别有关?(2)社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范点球射门.已知这两名男生进球的概率均为23,这名女生进球的概率为12,每人射门一次,假设各人射门相互独立,求3人进球总次数X的分布列和数学期望.附:χ2=n ad-bc2a+bc+da+cb+dα0.10.050.010.0050.001 xα 2.706 3.841 6.6357.87910.8287.(2023·海南海口·海南华侨中学校考模拟预测)在以视觉为主导的社交媒体时代,人们常借助具有美颜功能的产品对自我形象进行美化.移动端的美颜拍摄类APP 主要有两类:A 类是以自拍人像、美颜美妆为核心功能的APP ;B 类是图片编辑、精修等图片美化类APP .某机构为调查市民对上述A ,B 两类APP 的使用情况,随机调查了部分市民.已知被调查的市民中使用过A 类APP 的占60%,使用过B 类APP 的占50%,设个人对美颜拍摄类APP 类型的选择及各人的选择之间相互独立.(1)从样本人群中任选1人,求该人使用过美颜拍摄类APP 的概率;(2)从样本人群中任选5人,记X 为5人中使用过美颜拍摄类APP 的人数,设X 的数学期望为E X ,求P X =E X ;(3)在单独使用过A ,B 两类APP 的样本人群中,按类型分甲、乙两组,并在各组中随机抽取8人,甲组对A 类APP ,乙组对B 类APP 分别评分如下:甲组评分9486929687939082乙组评分8583859175908380记甲、乙两组评分的平均数分别为x 1 ,x 2 ,标准差分别为s 1,s 2,试判断哪组评价更合理.(设V i=s ix i (i =1,2),V i 越小,则认为对应组评价更合理.)参考数据:0.1925≈0.439,0.2325≈0.482.8.(2023·广东·统考模拟预测)某工厂车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是14,且一台机器的故障由一个维修工处理.已知此厂共有甲、乙、丙3名维修工,现有两种配备方案,方案一:由甲、乙、丙三人维护,每人负责2台机器;方案二:由甲乙两人共同维护6台机器,丙负责其他工作.(1)对于方案一,设X 为甲维护的机器某一时刻发生故障的台数,求X 的分布列与数学期望E (X );(2)在两种方案下,分别计算某一时刻机器发生故障时不能得到及时维修的概率,并以此为依据来判断,哪种方案能使工厂的生产效率更高?9.(2023·福建福州·福建省福州第一中学校考模拟预测)相关统计数据显示,中国经常参与体育锻炼的人数比例为37.2%,城乡居民达到《国民体质测定标准》合格以上的人数比例达到90%以上.某健身连锁机构对其会员的年龄等级和一个月内到健身房健身次数进行了统计,制作成如下两个统计图.图1为会员年龄分布图(年龄为整数),其中将会员按年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或40岁及以上)两类;图2为会员一个月内到健身房次数分布扇形图,其中将一个月内到健身房锻炼16次及以上的会员称为“健身达人”,15次及以下的会员称为“健身爱好者”,且已知在“健身达人”中有56是“年轻人”.(1)现从该健身连锁机构会员中随机抽取一个容量为100的样本,根据图表数据,补全2×2列联表,并依据小概率值α=0.05的独立性检验,是否可以认为“健身达人”与年龄有关?年轻人非年轻人合计健身达人健身爱好者合计(2)该健身机构在今年年底将针对全部的150名会员举办消费返利活动,预设有如下两种方案.方案1:按分层抽样从健身爱好者和健身达人中总共抽取20位“幸运之星”给予奖励.其中,健身爱好者和健身达人中的“幸运之星”每人分别奖励500元和800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得100元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位健身爱好者均可参加1次摸奖游戏;每位健身达人均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.附:χ2=n(ad-bc)2a+bc+da+cb+d.α0.100.050.0250.0100.0050.001χα 2.706 3.841 5.024 6.6357.87910.82810.(2023·云南昭通·校联考模拟预测)为了检测某种抗病毒疫苗的免疫效果,需要进行临床人体试验.研究人员将疫苗注射到200名志愿者体内,一段时间后测量志愿者的某项指标值,按0,20 ,20,40 ,40,60 ,60,80 ,80,100 分组,绘制频率分布直方图如图所示.试验发现志愿者体内产生抗体的共有160人,其中该项指标值不小于60的有110人.假设志愿者注射疫苗后是否产生抗体相互独立.(1)填写下面的2×2列联表,并根据列联表及小概率值α=0.05的独立性检验,判断能否认为注射疫苗后志愿者产生抗体与指标值不小于60有关.抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40名志愿者进行第二次注射疫苗,结果又有m 名志愿者产生抗体.(i )用频率估计概率,已知一名志愿者注射2次疫苗后产生抗体的概率p =0.9,求m 的值;(ⅱ)以(i )中的概率p 作为人体注射2次疫苗后产生抗体的概率,再进行另一组人体接种试验,记110名志愿者注射2次疫苗后产生抗体的数量为随机变量X ,求P X =k 最大时的k 的值.参考公式:χ2=n ad -bc 2a +b c +d a +c b +d(其中n =a +b +c +d 为样本容量).α0.500.400.250.150.1000.0500.025x α0.4550.7081.3232.0722.7063.8415.02411.(2023·湖南长沙·长沙市实验中学校考二模)首批全国文明典范城市将于2023年评选,每三年评选一次,2021年长沙市入选为全国文明典范城市试点城市,目前我市正全力争创首批全国文明典范城市,某学校号召师生利用周末从事创建志愿活动.高一(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宣传员、文明监督员三项可供选择,每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为12;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为12,每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不影响,求:(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.12.(2023·江苏南京·南京市第一中学校考模拟预测)为了宣传航空科普知识,某校组织了航空知识竞赛活动.活动规定初赛需要从8道备选题中随机抽取4道题目进行作答.假设在8道备选题中,小明正确完成每道题的概率都是34且每道题正确完成与否互不影响,小宇能正确完成其中6道题且另外2道题不能完成.(1)求小明至少正确完成其中3道题的概率;(2)设随机变量X表示小宇正确完成题目的个数,求X的分布列及数学期望;(3)现规定至少完成其中3道题才能进入决赛,请你根据所学概率知识,判断小明和小宇两人中选择谁去参加市级比赛(活动规则不变)会更好,并说明理由.13.(2023·广东·校联考模拟预测)某商场在五一假期间开展了一项有奖闯关活动,并对每一关根据难度进行赋分,竞猜活动共五关,规定:上一关不通过则不进入下一关,本关第一次未通过有再挑战一次的机会,两次均未通过,则闯关失败,且各关能否通过相互独立,已知甲、乙、丙三人都参加了该项闯关活动.(1)若甲第一关通过的概率为23,第二关通过的概率为56,求甲可以进入第三关的概率;(2)已知该闯关活动累计得分服从正态分布,且满分为450分,现要根据得分给共2500名参加者中得分前400名发放奖励.①假设该闯关活动平均分数为171分,351分以上共有57人,已知甲的得分为270分,问甲能否获得奖励,请说明理由;②丙得知他的分数为430分,而乙告诉丙:“这次闯关活动平均分数为201分,351分以上共有57人”,请结合统计学知识帮助丙辨别乙所说信息的真伪.附:若随机变量Z∼Nμ,σ2,则Pμ-σ≤X≤μ+σ≈0.6827;Pμ-2σ≤X≤μ+2σ≈0.9545;Pμ-3σ≤X≤μ+3σ≈0.9973.14.(2023·广东韶关·统考模拟预测)研究表明,如果温差本大,人们不注意保暖,可能会导致自身受到风寒刺激,增加感冒患病概率,特别是对于几童以及年老体弱的人群,要多加防范某中学数学建模社团成员研究了昼夜温差大小与某小学学生患感冒就诊人数多少之间的关系,他们记录了某六天的温差,并到校医室查阅了这六天中每天学生新增感冒就诊的人数,得到数据如下:日期第一天第二天第三天第四天第五天第六天昼夜温差x (°C )47891412新增感就诊人数y (位)y 1y 2y 3y 4y 5y 6参考数据:6iy 2i=3463,6iy i -y 2=289(1)已知第一天新增感冒就的学生中有4位男生,从第一天多增的感冒就诊的学生中随机取2位,其中男生人数记为X ,若抽取的2人中至少有一位女生的概率为56,求随机变量X 的分布列和数学期望;(2)已知两个变量x 与y 之间的样本相关系数r =1617,请用最小二乘法求出y 关于x 的经验回归方程y =b x +a ,据此估计昼夜温差为15°C 时,该校新增感冒就诊的学生人数. 参考数据:r =n ix i -x y i -y n i =1x i -x 2 ⋅ni =1y i -y2,b =ni x i -x y i -yni =1x i -x 2 15.(2023·重庆·统考模拟预测)某地区由于农产品出现了滞销的情况,从而农民的收入减少,很多人开始在某直播平台销售农产品并取得了不错的销售量.有统计数据显示2022年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示,若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,且“经常使用直播销售用户”中有34是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,依据小概率值α=0.05的χ2独立性检验,能否认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2023年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售、根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不是不赚,且这三种情况发生的概率分别为35,15,15;方案二:线上直播销售,根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为12,310,15.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.050.0250.0100.0050.001xα 2.072 2.706 3.841 5.024 6.6357.87910.828其中χ2=n ad-bc2a+bc+da+cb+d,n=a+b+c+d.16.(2023·河北衡水·衡水市第二中学校考三模)某医疗科研小组为研究某市市民患有疾病A 与是否具有生活习惯B 的关系,从该市市民中随机抽查了100人,得到如下数据:疾病A 生活习惯B 具有不具有患病2515未患病2040(1)依据α=0.01的独立性检验,能否认为该市市民患有疾病A 与是否具有生活习惯B 有关?(2)从该市市民中任选一人,M 表示事件“选到的人不具有生活习惯B ”,N 表示事件“选到的人患有疾病A ”,试利用该调查数据,给出P N M的估计值;(3)从该市市民中任选3人,记这3人中具有生活习惯B ,且末患有疾病A 的人数为X ,试利用该调查数据,给出X 的数学期望的估计值.附:χ2=n (ad -bc )2a +b c +d a +c b +d,其中n =a +b +c +d .α0.100.050.0100.001 x α2.7063.8416.63510.82817.(2023·江苏扬州·统考模拟预测)随着网络技术的迅速发展,各种购物群成为网络销售的新渠道.在凤梨销售旺季,某凤梨基地随机抽查了100个购物群的销售情况,各购物群销售凤梨的数量情况如下:凤梨数量(盒)100,200 200,300 300,400 400,500 500,600购物群数量(个)12m2032m(1)求实数m的值,并用组中值估计这100个购物群销售风梨总量的平均数(盒);(2)假设所有购物群销售凤梨的数量X服从正态分布Nμ,σ2,其中μ为(1)中的平均数,σ2=12100.若该凤梨基地参与销售的购物群约有1000个,销售风梨的数量在266,596(单位:盒)内的群为“一级群”,销售数量小于266盒的购物群为“二级群”,销售数量大于等于596盒的购物群为“优质群”.该凤梨基地对每个“优质群”奖励1000元,每个“一级群”奖励200元,“二级群”不奖励,则该风梨基地大约需要准备多少资金?(群的个数按四舍五入取整数)附:若X服从正态分布X~Nμ,σ2,则P(μ-σ<X<μ+σ)≈0.683,P(μ-2σ<X<μ+2σ)≈0.954,P(μ-3σ<X<μ+3σ)≈0.997.18.(2023·浙江·校联考模拟预测)某校有一个露天的篮球场和一个室内乒乓球馆为学生提供锻炼场所,甲、乙两位学生每天上下午都各花半小时进行体育锻炼,近50天天气不下雨的情况下,选择体育锻炼情况统计如下:上下午体育锻炼项目的情况(上午,下午)(篮球,篮球)(篮球,乒乓球)(乒乓球,篮球)(乒乓球,乒乓球)甲20天15天5天10天乙10天10天5天25天假设甲、乙选择上下午锻炼的项目相互独立,用频率估计概率.(1)分别估计一天中甲上午和下午都选择篮球的概率,以及甲上午选择篮球的条件下,下午仍旧选择篮球的概率;(2)记X 为甲、乙在一天中选择体育锻炼项目的个数,求X 的分布列和数学期望E (X );(3)假设A 表示事件“室外温度低于10度”,B 表示事件“某学生去打乒乓球”,P (A )>0,一般来说在室外温度低于10度的情况下学生去打乒乓球的概率会比室外温度不低于10度的情况下去打乒乓球的概率要大,证明:P (A |B )>P (A |B).19.(2023·广东深圳·统考二模)某校体育节组织定点投篮比赛,每位参赛选手共有3次投篮机会.统计数据显示,每位选手投篮投进与否满足:若第k 次投进的概率为p (0<p <1),当第k 次投进时,第k +1次也投进的概率保持p 不变;当第k 次没能投进时,第k +1次能投进的概率降为p2.(1)若选手甲第1次投进的概率为p (0<p <1),求选手甲至少投进一次的概率;(2)设选手乙第1次投进的概率为23,每投进1球得1分,投不进得0分,求选手乙得分X 的分布列与数学期望.20.(2023·湖北武汉·华中师大一附中校考模拟预测)2021年春节前,受疫情影响,各地鼓励外来务工人员选择就地过年.某市统计了该市4个地区的外来务工人数与就地过年人数(单位:万),得到如下表格:A 区B 区C 区D 区外来务工人数x /万3456就地过年人数y /万2.5344.5(1)请用相关系数说明y 与x 之间的关系可用线性回归模型拟合,并求y 关于x 的线性回归方程y =a +bx 和A 区的残差(2)假设该市政府对外来务工人员中选择就地过年的每人发放1000元补贴.①若该市E 区有2万名外来务工人员,根据(1)的结论估计该市政府需要给E 区就地过年的人员发放的补贴总金额;②若A 区的外来务工人员中甲、乙选择就地过年的概率分别为p ,2p -1,其中12<p <1,该市政府对甲、乙两人的补贴总金额的期望不超过1400元,求p 的取值范围.参考公式:相关系数r =ni =1x i y i -nx yn i =1x 2i -nx 2ni =1y 2i -ny2,回归方程y =a +bx 中斜率和截距的最小二乘估计公式分别为b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .21.(2023·山西运城·山西省运城中学校校考二模)甲、乙两人进行象棋比赛,赛前每人发3枚筹码.一局后负的一方,需将自己的一枚筹码给对方;若平局,双方的筹码不动,当一方无筹码时,比赛结束,另一方最终获胜.由以往两人的比赛结果可知,在一局中甲胜的概率为0.3、乙胜的概率为0.2.(1)第一局比赛后,甲的筹码个数记为X,求X的分布列和期望;(2)求四局比赛后,比赛结束的概率;(3)若P i i=0,1,⋯,6表示“在甲所得筹码为i枚时,最终甲获胜的概率”,则P0=0,P6=1.证明:P i+1-P ii=0,1,2,⋯,5为等比数列.22.(2023·湖北襄阳·襄阳四中校考三模)为倡导公益环保理念,培养学生社会实践能力,某中学开展了旧物义卖活动,所得善款将用于捐赠“圆梦困境学生”计划.活动共计50多个班级参与,1000余件物品待出售.摄影社从中选取了20件物品,用于拍照宣传,这些物品中,最引人注目的当属优秀毕业生们的笔记本,已知高三1,2,3班分别有12,13,14的同学有购买意向.假设三个班的人数比例为6:7:8.(1)现从三个班中随机抽取一位同学:(i)求该同学有购买意向的概率;(ii)如果该同学有购买意向,求此人来自2班的概率;(2)对于优秀毕业生的笔记本,设计了一种有趣的“掷骰子叫价确定购买资格”的竞买方式:统一以0元为初始叫价,通过掷骰子确定新叫价,若点数大于2,则在已叫价格基础上增加1元更新叫价,若点数小于3,则在已叫价格基础上增加2元更新叫价;重复上述过程,能叫到10元,即获得以10元为价格的购买资格,未出现叫价为10元的情况则失去购买资格,并结束叫价.若甲同学已抢先选中了其中一本笔记本,试估计其获得该笔记本购买资格的概率(精确到0.01).23.(2023·广东茂名·统考二模)春节过后,文化和旅游业逐渐复苏,有意跨省游、出境游的旅客逐渐增多.某旅游景区为吸引更多游客,计划在社交媒体平台和短视频平台同时投放宣传广告并进行线上售票,通过近。
专题16 统计-2023年高考数学真题题源解密(新高考)(解析版)
专题16 统计目录一览2023真题展现考向一样本的数字特征考向二频率分布直方图真题考查解读近年真题对比考向一样本的数字特征考向二频率分布直方图考向三独立性检验命题规律解密名校模拟探源易错易混速记/二级结论速记考向一样本的数字特征1.(多选)(2023•新高考Ⅰ•第9题)有一组样本数据x1,x2,⋯,x6,其中x1是最小值,x6是最大值,则( )A.x2,x3,x4,x5的平均数等于x1,x2,⋯,x6的平均数B.x2,x3,x4,x5的中位数等于x1,x2,⋯,x6的中位数C.x2,x3,x4,x5的标准差不小于x1,x2,⋯,x6的标准差D.x2,x3,x4,x5的极差不大于x1,x2,⋯,x6的极差【答案】BD解:A选项,x2,x3,x4,x5的平均数不一定等于x1,x2,⋯,x6的平均数,A错误;B选项,x2,x3,x4,x5的中位数等于x3x42,x1,x2,⋯,x6的中位数等于x3x42,B正确;C选项,设样本数据x1,x2,⋯,x6为0,1,2,8,9,10,可知x1,x2,⋯,x6的平均数是5,x2,x3,x4,x5的平均数是5,x1,x2,⋯,x6的方差s12=16×[(0﹣5)2+(1﹣5)2+(2﹣5)2+(8﹣5)2+(9﹣5)2+(10﹣5)2]=50,x2,x3,x4,x5的方差s22=14×[(1﹣5)2+(2﹣5)2+(8﹣5)2+(9﹣5)2]=252,s12>s22,∴s1>s2,C错误.D选项,x6>x5,x2>x1,∴x6﹣x1>x5﹣x2,D正确.考向二频率分布直方图2.(2023•新高考Ⅱ•第19题)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将未患病者判定为阳性的概率,记为q(c).假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率p(c)=0.5%时,求临界值c和误诊率q(c);(2)设函数f(c)=p(c)+q(c).当c∈[95,105],求f(c)的解析式,并求f(c)在区间[95,105]的最小值.解:(1)当漏诊率p(c)=0.5%时,则(c﹣95)•0.002=0.5%,解得c=97.5;q(c)=0.01×2.5+5×0.002=0.035=3.5%;(2)当c∈[95,100]时,f(c)=p(c)+q(c)=(c﹣95)•0.002+(100﹣c)•0.01+5×0.002=﹣0.008c+0.82≥0.02,当c∈(100,105]时,f(c)=p(c)+q(c)=5×0.002+(c﹣100)•0.012+(105﹣c)•0.002=0.01c﹣0.98>0.02,故f(c)=−0.008c+0.82,95≤c≤100 0.01c−0.98,100<c≤105,所以f(c)的最小值为0.02.【命题意图】考查样本的数字特征、频率分布直方图、相关性、独立性检验.【考查要点】考查相关性、频率分布直方图、样本的数字特征、独立性检验、回归分析等.考查学生读取数据、分析数据、处理数据的能力.【得分要点】1.众数、中位数、平均数(1)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.(2)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(x1+x2+⋯+x n).(3)平均数:一组数据的算术平均数,即x=1n2.频率分布直方图(1)频率分布直方图:在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中的各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图.(2)频率分布直方图的特征①各长方形面积等于相应各组的频率的数值,所有小矩形面积和为1.②从频率分布直方图可以清楚地看出数据分布的总体趋势.③从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息被抹掉.(3)频率分布直方图求数据①众数:频率分布直方图中最高矩形的底边中点的横坐标.②平均数:频率分布直方图各小矩形的面积乘底边中点的横坐标之和.③中位数:把频率分布直方图分成两个面积相等部分的平行于y轴的直线横坐标.3.极差、方差与标准差(1)①用一组数据中最大数据减去最小数据的差来反映这组数据的变化范围,这个数据就叫极差.②一组数据中各数据与平均数差的平方和的平均数叫做方差.③方差的算术平方根就为标准差.(2)方差和标准差都是反映这组数据波动的大小,方差越大,数据的波动越大.4.独立性检验(1)分类变量: 如果某种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.(2)原理:假设性检验.一般情况下:假设分类变量X 和Y 之间没有关系,通过计算K 2值,然后查表对照相应的概率P ,发现这种假设正确的概率P 很小,从而推翻假设,最后得出X 和Y 之间有关系的可能性为(1﹣P ),也就是“X 和Y 有关系”.(表中的k 就是K 2的观测值,即k =K 2).利用随机变量2K (也可表示为2χ)2()()()()()n ad bc a b c d a c b d -=++++(其中n a b c d =+++为样本容量)来判断“两个变量有关系”的方法称为独立性检验.(3)2×2列联表:设X ,Y 为两个变量,它们的取值分别为12{}x x ,和12{}y y ,,其样本频数列联表(22⨯列联表)如下:1y 2y 总计1x a b a b +2x cd c d+总计a c+b d+a b c d+++(4)范围:K 2∈(0,+∞);性质:K 2越大,说明变量间越有关系.(5)解题步骤:①认真读题,取出相关数据,作出2×2列联表;②根据2×2列联表中的数据,计算K 2的观测值k ;③通过观测值k 与临界值k 0比较,得出事件有关的可能性大小.考查相关性、频率分布直方图、样本的数字特征、独立性检验、回归分析等.考查形式以多选题和解答题为主。
概率与统计- 高考数学试题分项版解析(解析版)
专题11 概率与统计1. 【2014高考福建卷文第13题】如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为___________.2. 【2014高考广东卷文第6题】为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.203. 【2014高考广东卷文第12题】从字母a 、b 、c 、d 、e 中任取两个不同的字母,则取到字母a 的概率为 .4. 【2014高考湖北卷文第5题】随机投掷两枚均匀的投骰子,他们向上的点数之和不超过5的概率为1P ,点数之和大于5的概率为2P ,点数之和为偶数的概率为3P ,则( )A. 321P P P <<B. 312P P P <<C. 231P P P <<D. 213P P P << 【答案】C 【解析】试题分析:依题意,36101=P ,3626361012=-=P ,36183=P ,所以231P P P <<.选C. 考点:古典概型公式求概率,容易题.5. 【2014高考湖北卷文第6题】根据如下样本数据:x3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0a > ,0<b B.0a > ,0>b C.0a < ,0<b D.0a < ,0>b6. 【2014高考湖北卷文第11题】甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80 的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.7. 【2014高考湖南卷文第3题】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D. 【考点定位】抽样调查8. 【2014高考湖南卷文第5题】在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )4.5A 3.5B 2.5C 1.5D 9. 【2014高考江苏卷第4题】 从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 .10. 【2014高考江苏卷第6题】某种树木的底部周长的取值范围是[]80,130,它的频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100 cm.【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.【考点】频率分布直方图.11. 【2014高考江西卷文3第题】掷两颗均匀的骰子,则点数之和为5的概率等于( )1.18A 1.9B 1.6C 1.12D12. 【2014高考江西卷文第7题】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( ) 表1 不及格 及格 总计 男 6 14 20 女1022 32 总计 16 3652A.成绩 表2 不及格 及格 总计 男 4 16 20 女1220 32 总计 163652B.视力表3 不及格 及格 总计 男 8 12 20 女824 32 总计 163652C.智商表4 不及格 及格 总计 男 14 6 20 女23032总计 16 36 52D.阅读量13.14. 【2014高考辽宁卷文第6题】若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π 15. 【2014高考全国1卷文第13题】将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【答案】23【解析】试题分析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:42P63 ==.考点:古典概率的计算16.【2014高考全国2卷文第13题】甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.17.【2014高考山东卷文第8题】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋅⋅⋅⋅⋅⋅,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18【答案】C【解析】由图知,样本总数为2050.0.160.24N==+设第三组中有疗效的人数为x,则60.36,1250xx+==,故选C.考点:频率分布直方图.18.【2014高考陕西卷文第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D19. 【2014高考陕西卷文第9题】某公司10位员工的月工资(单位:元)为1x ,2x ,…,10x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为(A )x ,22s 100+ (B )100x +,22s 100+ (C )x ,2s (D )100x +,2s20.【2014高考四川卷文第2题】在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
2022年高考数学真题:计数原理与概率统计(解析版)
第8讲计数原理与概率统计一、单选题1.(2022·全国·高考真题(理))某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为123,,p p p ,且3210p p p .记该棋手连胜两盘的概率为p ,则()A .p 与该棋手和甲、乙、丙的比赛次序无关B .该棋手在第二盘与甲比赛,p 最大C .该棋手在第二盘与乙比赛,p 最大D .该棋手在第二盘与丙比赛,p 最大【答案】D 【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p 甲;该棋手在第二盘与乙比赛且连胜两盘的概率p 乙;该棋手在第二盘与丙比赛且连胜两盘的概率p 丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,比赛顺序为乙甲丙及丙甲乙的概率均为12,则此时连胜两盘的概率为p 甲则 21321331231211(1)(1)(1)(1)22p p p p p p p p p p p p p甲123123()2p p p p p p ;记该棋手在第二盘与乙比赛,且连胜两盘的概率为p 乙,则123123213123(1)(1)()2p p p p p p p p p p p p p 乙记该棋手在第二盘与丙比赛,且连胜两盘的概率为p 丙则132132312123(1)(1)()2p p p p p p p p p p p p p 丙则 123123213123123()2()20p p p p p p p p p p p p p p p p p 甲乙 213123312123231()2()20p p p p p p p p p p p p p p p p p 乙丙即p p 甲乙,p p 乙丙,则该棋手在第二盘与丙比赛,p 最大.选项D 判断正确;选项BC 判断错误;p 与该棋手与甲、乙、丙的比赛次序有关.选项A 判断错误.故选:D2.(2022·全国·高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A.12种B.24种C.36种D.48种【答案】B【解析】【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224种不同的排列方式,故选:B3.(2022·全国·高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有27C21种不同的取法,若两数不互质,不同的取法有:2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种,故所求概率2172213 P.故选:D.4.(2022·全国·高考真题(理))某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2,所以A错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%80%20%,讲座前问卷答题的正确率的极差为95%60%35%20%,所以D错.故选:B.5.(2022·全国·高考真题(文))从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有 1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155.故选:C.二、填空题6.(2022·全国·高考真题)已知随机变量X 服从正态分布 22,N ,且(2 2.5)0.36P X ,则( 2.5)P X ____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为 22,X N ,所以 220.5P X P X ,因此2.522 2.50.50.360.14P X P X P X .故答案为:0.14.7.(2022·全国·高考真题(文))从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为35C 10甲、乙都入选的方法数为13C 3 ,所以甲、乙都入选的概率310P故答案为:3108.(2022·全国·高考真题)81()y x y x的展开式中26x y 的系数为________________(用数字作答).【答案】-28【解析】【分析】81y x y x可化为 88y x y x y x ,结合二项式展开式的通项公式求解.【详解】因为 8881=y y x y x y x y x x,所以 81y x y x 的展开式中含26x y 的项为6265352688C 28y x y C x y x y x , 81y x y x的展开式中26x y 的系数为-28故答案为:-289.(2022·全国·高考真题(理))从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有48C 70n 个结果,这4个点在同一个平面的有6612m 个,故所求概率1267035m P n.故答案为:635.三、解答题10.(2022·全国·高考真题)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)47.9岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A {一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式()1()P A P A 即可解出;(3)根据条件概率公式即可求出.(1)平均年龄(50.001150.002250.012350.017450.023x 550.020650.017750.006850.002)1047.9 (岁).(2)设A {一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A .(3)设{B 任选一人年龄位于区间 [40,50),{C 任选一人患这种疾病},则由条件概率公式可得()0.1%0.023100.0010.23(|)0.00143750.0014()16%0.16P BC P C B P B.11.(2022·全国·高考真题)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B;(ⅱ)利用该调查数据,给出(|),(|)P A B P A B 的估计值,并利用(ⅰ)的结果给出R 的估计值.附22()()()()()n ad bc K a b c d a c b d ,2P K k 0.0500.0100.001k3.8416.63510.828【答案】(1)答案见解析(2)(i )证明见解析;(ii)6R ;【解析】【分析】(1)由所给数据结合公式求出2K 的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i)根据定义结合条件概率公式即可完成证明;(ii)根据(i )结合已知数据求R .(1)由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d,又2( 6.635)=0.01P K ,24 6.635 ,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P ARP B A P B A P A P AB P A P AB,所以()()()()()()()()P AB P B P AB P B RP B P AB P B P AB所以(|)(|)(|)(|)P A B P A BRP A B P A B,(ii)由已知40(|)100P A B ,10(|)100P A B ,又60(|)100P A B ,90(|)100P A B ,所以(|)(|)=6(|)(|)P A B P A BRP A B P A B12.(2022·全国·高考真题(理))甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.【答案】(1)0.6;(2)分布列见解析, 13E X .【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为,,A B C,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.(1)设甲在三个项目中获胜的事件依次记为,,A B C,所以甲学校获得冠军的概率为P P ABC P ABC P ABC P ABC0.50.40.80.50.40.80.50.60.80.50.40.20.160.160.240.040.6.(2)依题可知,X的可能取值为0,10,20,30,所以,00.50.40.80.16P X ,100.50.40.80.50.60.80.50.40.20.44P X , 200.50.60.80.50.40.20.50.60.20.34P X ,300.50.60.20.06P X .即X 的分布列为X0102030P0.160.440.340.06期望 00.16100.44200.34300.0613E X .13.(2022·全国·高考真题(文))某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i12345678910总和根部横截面积ix 0.040.060.040.080.080.050.050.070.070.060.6材积量iy 0.250.400.220.540.510.340.360.460.420.403.9并计算得10101022iii i i=1i=1i=10.038, 1.6158,0.2474x y x y .(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数ii( 1.377)(nx x y y r.【答案】(1)20.06m ;30.39m (2)0.97(3)31209m 【解析】【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值.(1)样本中10棵这种树木的根部横截面积的平均值0.60.0610x 样本中10棵这种树木的材积量的平均值 3.90.3910y据此可估计该林区这种树木平均一棵的根部横截面积为20.06m ,平均一棵的材积量为30.39m (2)1010iii i10x x y y x y xyr0.01340.970.01377则0.97r (3)设该林区这种树木的总材积量的估计值为3m Y ,又已知树木的材积量与其根部横截面积近似成正比,可得0.06186=0.39Y,解之得3=1209m Y .则该林区这种树木的总材积量估计为31209m。
专题3-10 导数与数列,导数与概率统计(解析版)2023年高考数学二轮专题全套热点题型
a=1.
于是
f′(x)=
1 x
-1=
1
x
x
,
当 x(0,1)时,f′(x)>0,f(x)为增函数,当 x(1,+∞)时,f′(x)<0,f(x)为减函数,
即 f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).
(2) 由(1)知 x1(0,+∞),f(x1)≤f(1)=0,即 f(x1)的最大值为 0, 由题意知:对∀x1(0,+∞),∃x2(-∞,0)使得 f(x1)≤g(x2)成立,只需 f(x)max≤g(x)max.
在区间 ea1,1 单调递减.
又 f ea1 f 1 0 ,与 f x0 恒成立相矛盾.
综上, 实数 a 的取值范围为1, .
(2)
由(1)知当 a 1 时, x 1 x ln x ≤ 0 0 x ≤1
即 ln x ≥ x 1 1 1
x
x
令 x 1 ,则 ln 1 ≥1 n
.............................................................22
题型一:利用放缩通项公式解决数列求和中的不等问题
【典例分析】
例题
1.(2022·全国·高三专题练习)已知正项数列an 满足
a0
0,
a2 n1
an2
2(n
1), n
N
.
(1)求证: an2 an1 ; an1 an
.
4.(2022·湖南张家界·高二期末)已知函数 f x ln x ax 1,其中 a R .
(1)当 a 1 时,求函数 f (x) 的单调区间;
(2)①若 f x 0 恒成立,求 a 的最小值;
高考数学2024概率与统计历年题目全解
高考数学2024概率与统计历年题目全解概率与统计作为高考数学中的重要部分,一直是考生们难以逾越的“坎”。
为了帮助广大考生更好地应对高考概率与统计部分的考题,本文将对高考数学2024年概率与统计题目进行全面解析,希望能够为考生们提供帮助和指导。
1. 选择题部分选择题是高考中概率与统计部分的常见题型,也是考生们容易出错的地方。
以下是2024年高考概率与统计选择题的解答:题目一:已知事件A发生的概率为P(A)=0.6,事件B发生的概率为P(B)=0.3,且事件A与事件B相互独立。
求事件A发生且事件B不发生的概率。
解答一:事件A发生且事件B不发生,表示为A发生的概率P(A)乘以B不发生的概率P(B'),即P(A且B')=P(A)×P(B')=0.6×(1-0.3)=0.6×0.7=0.42。
因此,事件A发生且事件B不发生的概率为0.42。
题目二:已知事件C发生的概率为P(C)=0.4,事件D发生的概率为P(D)=0.5,且事件C与事件D相互独立。
求事件C或事件D发生的概率。
解答二:事件C或事件D发生,表示为C发生的概率P(C)加上D发生的概率P(D),即P(C或D)=P(C)+P(D)=0.4+0.5=0.9。
因此,事件C或事件D发生的概率为0.9。
2. 计算题部分计算题是概率与统计部分的重要考察内容,需要考生们掌握一定的计算方法和技巧。
以下是2024年高考概率与统计计算题的解答:题目一:某班有40名学生,其中20名男生、20名女生。
现从该班级随机选取3名学生,求选出的3名学生全为男生的概率。
解答一:选出的3名学生全为男生的概率等于从20名男生中选取3名学生的概率除以从40名学生中选取3名学生的概率。
即P(全为男生)=C(20,3)/C(40,3)=[20×19×18]/[40×39×38]=0.0283。
因此,选出的3名学生全为男生的概率为0.0283。
专题15 概率与统计专项高考真题(带答案及解析)
专题15概率与统计(解答题)1.【2021·全国高考真题(理)】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x y s s ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高.【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的结论进行判断.【详解】(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610s +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410s +++++++++==.(2)依题意,0.320.15y x -==⨯=,=,y x -≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高.2.【2021·北京高考真题】为加快新冠肺炎检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和数学期望E (X );(2)若采用“5合1检测法”,检测次数Y 的期望为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果).【答案】(1)①20次;②分布列见解析;期望为32011;(2)()()E Y E X >.【分析】(1)①由题设条件还原情境,即可得解;②求出X 的取值情况,求出各情况下的概率,进而可得分布列,再由期望的公式即可得解;(2)求出两名感染者在一组的概率,进而求出()E Y ,即可得解.【详解】(1)①对每组进行检测,需要10次;再对结果为阳性的组每个人进行检测,需要10次;所以总检测次数为20次;②由题意,X 可以取20,30,()12011P X ==,()1103011111P X ==-=,则X 的分布列:X2030P1111011所以()1103202030111111E X =⨯+⨯=;(2)由题意,Y 可以取25,30,两名感染者在同一组的概率为232981510020499C C P C ==,不在同一组的概率为19599P =,则()()49529502530=999999E Y E X =⨯+⨯>.3.【2021·全国高考真题】某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)B 类.【分析】(1)通过题意分析出小明累计得分X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B 类问题的数学期望,比较两个期望的大小即可.【详解】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=;()()200.810.60.32P X ==-=;()1000.80.60.48P X ==⨯=.所以X 的分布列为X020100P0.20.320.48(2)由(1)知,()00.2200.321000.4854.4E X =⨯+⨯+⨯=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=;()()800.610.80.12P Y ==-=;()1000.80.60.48P X ==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=.因为54.457.6<,所以小明应选择先回答B 类问题.4.【2021·全国高考真题】一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义.【答案】(1)1;(2)见解析;(3)见解析.【分析】(1)利用公式计算可得()E X .(2)利用导数讨论函数的单调性,结合()10f =及极值点的范围可得()f x 的最小正零点.(3)利用期望的意义及根的范围可得相应的理解说明.【详解】(1)()00.410.320.230.11E X =⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p =++-+,因为32101p p p p +++=,故()()32322030f x p x p x p p p x p =+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤,故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<;故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数,若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>.此时()()20300f p p p '=-++<,()230120f p p p '=+->,故()f x '有两个不同零点34,x x ,且3401x x <<<,且()()34,,x x x ∈-∞+∞ 时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数,而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.5.【2020年高考全国Ⅰ卷理数】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.【解析】(1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为11131161684---=.(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为111178168816+++=.6.【2020年高考全国Ⅰ卷理数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)8(0ii x x =-=∑,2021)9000(i iy y =-=∑,201)()800(i i i y y x x =--=∑.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数)((iinx y r x y --=∑1.414≈.【解析】(1)由已知得样本平均数20160120i iy y===∑,从而该地区这种野生动物数量的估计值为60×200=12000.(2)样本(,)i i x y (1,2,,20)i =的相关系数20220.943(iix y y x r --=∑.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.7.【2020年高考全国III 卷理数】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:K 2=()()()()2) n ad bc a b c d a c b d -++++,P (K 2≥k )0.0500.0100.001k 3.841 6.63510.828.【解析】(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:空气质量等级1234概率的估计值0.430.270.210.09(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=.(3)根据所给数据,可得22⨯列联表:人次≤400人次>400空气质量好3337空气质量不好228根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.8.【2020年高考山东】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:2SO [0,50](50,150](150,475]PM 2.5[0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:2SO PM 2.5[0,150](150,475][0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥0.0500.0100.001k3.8416.63510.828【解析】(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且2SO 浓度不超过150的天数为32186864+++=,因此,该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150的概率的估计值为640.64100=.(2)根据抽查数据,可得22⨯列联表:2SO PM 2.5[0,150](150,475][0,75]6416(75,115]1010(3)根据(2)的列联表得22100(64101610)7.48480207426K ⨯⨯-⨯=≈⨯⨯⨯.由于7.484 6.635>,故有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关.9.【2020年高考北京】某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)【解析】(Ⅰ)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为:2121311313((1)()3433436C -+-=;(Ⅲ)01p p <【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题.10.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)a=0.35,b=0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00.【解析】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.11.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【答案】(1)0.5;(2)0.1.【解析】(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.12.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【答案】(1)分布列见解析,()2E X =;(2)20243.【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333k k k P X k k -===.所以,随机变量X 的分布列为X0123P 1272949827随机变量X 的数学期望2()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y ===== .由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立,从而由(1)知()({3,1}{2,0})P M P X Y X Y ===== (3,1)(2,0)P X Y P X Y ===+==(3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=.13.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=.(2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====.所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD ==()()()()P C P D P C P D =+0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为X012P 0.240.520.24故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”.假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化,则由上个月的样本数据得33011()C 4060P E ==.答案示例1:可以认为有变化.理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,P (E )比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.14.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.【答案】(1)分布列见解析;(2)(i)证明见解析,(ii)45 127p =,解释见解析.【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,所以X 的分布列为X1-01P (1)αβ-(1)(1)αβαβ+--(1)αβ-(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-,即114()i i i i p p p p +--=-.又因为1010p p p -=≠,所以1{}(0,1,2,,7)i i p p i +-= 为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+ 877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-,所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=.4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.。
最全高考数学统计专题解析版【真题】doc资料(19页)
最全高考数学统计专题解析版【真题】doc资料(19页)0]的人数为A. 11A. 11B. 12C. 13D. 14WORD版))某班级有500.030WORD版))某班级有500.0300.0250CI50.0100.005o 讯甜70 80卿W2 . ( 20xx年普通高等学校招生统一考试安徽数学(理)试题(纯名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93. 下列说法一定正确的是()A ?这种抽样方法是一种分层抽样B ?这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D ?该班级男生成绩的平均数小于该班女生成绩的平均数3 . ( 20xx年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60),[60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()588 B. 480 C. 450 D. 1204 . (20xx年高考xx卷(理))总体有编号为01,02,…,19,20的20个个体组成。
利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816657208026314070243699728019832049234493582003623486969387481A . 08B . 07C . 02D . 01(20xx年高考上海卷(理))盒子中装有编号为 1,2,3,4,5,6,7,8,9 的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示)6.( 20xx年高考湖北卷(理))从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示.(I)直方图中X的值为;7. ( 20xx年普通高等学校招生全国统一招生考试江苏卷(数学)(II)在这些用户中,用电量落在区间7. ( 20xx年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为.8. (20xx年高考上海卷(理))设非零常数d是等差数列X1,X2,X3,L ,X19的公差,随机变量等可能地取值X1,X2,X3,L ,X19,则方差D9.(20xx年普通高等学校招生统一考试xx省数学(理)卷(纯 WORD版))某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,9.为个位数?第17第17题图((I )根据茎叶图计算样本均值;(n)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间 12名工人中有几名优秀工人;(川)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率?( 20xx年普通高等学校招生统一考试天津数学(理)试题(含答案))一个盒子里装有 7张卡片,其中有红色卡片4张,编号分别为1, 2, 3, 4;白色卡片3张,编号分别为2, 3,从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(I )求取出的4张卡片中,含有编号为3的卡片的概率.(n)再取出的4张卡片中,红色卡片编号的最大值设为X求随机变量X 的分布列和数学期望?11 . (20xx年高考陕西卷(理))在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手?各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(I )求观众甲选中3号歌手且观众乙未选中 3号歌手的概率;(n ) X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列和数学期望.12. ( 20xx年普通高等学校招生统一考试xx数学(理)试题(含答案))某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有 3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出中红球与蓝球的个数,设一.二.三等奖如下:1个球,根据摸出4个球奖级摸出红.蓝球个数一等奖3红1蓝二等奖3红0蓝三等奖2红1蓝获奖金额200元50元10元其余情况无奖且每次摸奖最多只能获得一个奖级(1)求一次摸奖恰好摸到 1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望 E X20xx年高考题【20xx 新课标文】在一组样本数据(X1, y1), (X2, y2),...,(xn, yn)(n>2, X1,X2, (x)1不全相等)的散点图中,若所有样本点(Xi, yi)(i=1,2,…,n)都在直线尸?x+1上,则这组样本数据的样本相关系数为1(A)— 1 ( B) 0 ( C)( D) 1【20xx山东文】(4)在某次测量中得到的 A样本数据如下:82, 84, 84, 86, 86 , 86,88, 88, 88, 88.若B样本数据恰好是 A样本数据都加2后所得数据,则 A, B两样本的下列数字特征对应相同的是(A)众数(B)平均数(C)中位数(D)标准差【20xx四川文】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。
高考数学专题统计测评含解析
第14章测评(时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为( )A.2B.5C.15D.8020×0.25=5.2.某单位有职工750人,其中青年职工350人、中年职工250人、老年职工150人.为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( ) A.7 B.15C.25D.35n,则n750=7350,解得n=15.3.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9[23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12[35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据约占( )A.211B.13C.12D.2366,而落在[31.5,43.5)内的样本数为12+7+3=22,故总体中大于或等于31.5的数据约占2266=13.4.甲组数据为5,12,16,21,25,37,乙组数据为1,6,14,18,38,39,则甲、乙的平均数、极差及中位数相同的是( )A.极差B.平均数C.中位数D.都不相同,可知极差不同,甲的中位数为16+212=18.5,乙的中位数为14+182=16,x 甲=5+16+12+25+21+376=583,x 乙=1+6+14+18+38+396=583,所以甲、乙的平均数相同.故选B.5.下表记录了某地区一年之内的月平均降水量.月份123456789101112月平均降水量/cm5.84.85.34.65.65.65.17.15.65.36.46.625百分位数为( )A.5.1B.5.2C.5.3D.5.64.6,4.8,5.1,5.3,5.3,5.6,5.6,5.6,5.8,6.4,6.6,7.1,因为12×25%=3,所以25百分位数为5.1+5.32=5.2,故选B.6.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率直方图如图所示.由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a ,最大频率为0.32,则a 的值为( )A.64B.54C.48D.27100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组频数和为38.所以第三组频数为38-16=22.又最大频率为0.32,故第四组频数为0.32×100=32.所以a=22+32=54.故选B.7.记样本x 1,x 2,…,x m 的平均数为x ,样本y 1,y 2,…,y n 的平均数为y (x ≠y ).若样本x 1,x 2,…,x m ,y 1,y 2,…,y n 的平均数为z =14x +34y ,则m n 的值为( )A.3B.4C.14D.13x 1+x 2+…+x m =m x ,y 1+y 2+…+y n =n y ,z =(x 1+x 2+…+x m )+(y 1+y 2+…+y n )m +n =mx +ny m +n =mx m +n +ny m +n =14x +34y .所以m m +n =14,n m +n =34,可得3m=n ,所以m n =13.8.从某项综合能力测试中抽取了100人的成绩,统计如下表所示,则这100人成绩的标准差为( )分数54321人数2010303010A.3B.2105C.3D.85∵x =5×20+4×10+3×30+2×30+1×10100=3,∴s 2=1100×(20×22+10×12+30×12+10×22)=160100=85,∴s=2105.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是( )A.在统计里,最常用的简单随机抽样方法有抽签法和随机数表法B.一组数据的平均数一定小于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大,不小于最小值,B 项错误,其余全对.10.如图①为某省2020年1~4月份快递业务量统计图,图②为该省2020年1~4月份快递业务收入统计图,对统计图理解正确的是( )①②A.2020年1~4月份快递业务量3月份最高,2月份最低,差值接近2 000万件B.2020年1~4月份快递业务量同比增长率均超过50%,在3月份最高,和春节蛰伏后网购迎来喷涨有关C.从两图中看,业务量与业务收入变化高度一致D.从1~4月份来看,业务量与业务收入有波动,但整体保持高速增长①可知快递业务量3月份为4 397万件,2月份为2 411万件,差值为4 397-2 411=1 986(万件),故A正确;由图①可知B也正确;对于C,由两图易知业务量从高到低变化排序是3月,4月,1月,2月,业务收入从高到低变化排序是3月,4月,1月,2月,保持高度一致,所以C正确;对于D,由图知业务收入2月比1月减少,4月比3月减少,整体不具备高速增长之说,所以D不正确.11.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”,根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A.甲地:总体平均数为3,中位数为4B.乙地:中位数为2,众数为3C.丙地:极差为3,80百分位数为4D.丁地:总体平均数为2,总体方差为37人,故A不正确;乙地中位数为2,众数为3,可以有一天的感染人数为8,故B不正确;C中数据的最大可能取值为7,故C正确;当总体平均数是2,若有一个数据超过7,则s2>110(8-2)2=3.6,则方差就超过3,所以总体平均数是2,总体方差为3时,没有数据超过7,故D正确.12.如图是某公司2020年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )A.2020年3月的销售任务是400台B.2020年月销售任务的平均值不超过600台C.2020年第一季度总销量为900台D.2020年月销量最大的是6月份3月份的销售任务是400台,所以A正确;由题图得2020年月销售任务超过600台的只有3个月,则平均值不超过600台,所以B正确;由题图得第一季度的总销量为300×50%+200×100%+400×120%=830(台),故C不正确;由题图得销量最大的月份是5月份,为800台,故D不正确.三、填空题:本题共4小题,每小题5分,共20分.13.某网站针对“是否支持某节目上春晚”对网民进行调查,得到如下数据:网民态度支持反对无所谓人数(单位:人)8000600010 000若采用分层抽样的方法从中抽取48人进行座谈,则持“支持”态度的网民抽取的人数为 .每个个体被抽到的概率等于488000+6000+10000=1500,∴1500×8 000=16.14.下列调查的样本不合理的是 .①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任情况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各选取3名学生进行调查.在班级旁画“√”,与了解最受欢迎的教师没关系,故调查的样本不合理;②样本合理,属于合理的调查;③样本不合理,老年公寓中的老年人不能代表全市老年人,故样本缺少代表性;④在每个小组中各选取3名学生进行调查,属于合理调查.故调查的样本不合理的是①③.15.如图是样本容量为200的频率直方图.根据样本的频率直方图估计,样本数据落在[6,14)内的频数为 ,数据落在[2,14)内的频率约为 . 0.76样本数据落在[6,14)内的频率=0.08×4+0.09×4=0.68,且样本容量为200,∴样本数据落在[6,14)内的频数=0.68×200=136;∵数据落在[2,14)内的频率=(0.02+0.08+0.09)×4=0.76.16.某市2020年各月平均房价同比(与上一年同月比较)和环比(与相邻上月比较)涨幅情况如图所示,根据此图考虑该市2020年各月平均房价:①同比2019年有涨有跌;②同比涨幅3月份最大,12月份最小;③1月份最高;④5月比9月高.其中正确结论的编号为 .2020年各月平均房价同比(与上一年同月比较)和环比(与相邻上月比较)涨幅情况折线图,知该市2020年各月平均房价:①同比2019年一直在涨,故①错误;②同比涨幅3月份最大,12月份最小,故②正确;③因为1至4月房价一直在涨,所以1月份最高错误,故③错误;④因为5月至9月房价一直在涨,所以5月比9月低,故④错误.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知数据x 1,x 2,…,x 10的平均数x =20,方差s 2=0.015.求:(1)3x 1,3x 2,…,3x 10的平均数和方差;(2)4x 1-2,4x 2-2,…,4x 10-2的平均数和方差.设3x 1,3x 2,…,3x 10的平均数为x ',方差为s'2,x '=110(3x 1+3x 2+…+3x 10)=310(x 1+x 2+…+x 10)=3x =3×20=60;s'2=110[(3x 1-3x )2+(3x 2-3x )2+…+(3x 10-3x )2]=910[(x 1-x )2+(x 2-x )2+…+(x 10-x )2]=9s 2=9×0.015=0.135.(2)设4x 1-2,4x 2-2,…,4x 10-2的平均数是x ″,方差为s ″2,∵x =110(x 1+x 2+…+x 10)=20,∴x ″=110(4x 1-2+4x 2-2+…+4x 10-2)=110(4x 1+4x 2+…+4x 10-20)=410(x 1+x 2+…+x 10)-2=4x -2=4×20-2=78.∵s 2=110[(x 1-x )2+(x 2-x )2+…+(x 10-x )2]=0.015,s ″2=110[(4x 1-2-4x +2)2+(4x 2-2-4x +2)2+…+(4x 10-2-4x +2)2]=1610[(x 1-x )2+(x 2-x )2+…+(x 10-x )2]=16×0.015=0.24.故4x 1-2,4x 2-2,…,4x 10-2的平均数和方差分别是78和0.24.18.(12分)随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分,现将评分分为5组,如表:组别一二三四五满意度评分[0,2)[2,4)[4,6)[6,8)[8,10]频数510a 3216频率0.05b 0.37c.16(1)求表格中的a ,b ,c 的值;(2)估计用户的满意度评分的平均数;(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?由频数分布表得50.05=10b =a 0.37=32c ,解得a=37,b=0.1,c=0.32.(2)估计用户的满意度评分的平均数为1×0.05+3×0.1+5×0.37+7×0.32+9×0.16=5.88.(3)从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为25×(0.05+0.1+0.37)=13.19.(12分)下表给出了某学校120名12岁男生的身高统计分组与频数(单位:cm).区间[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)[146,150)[150,154)[154,158]人数58102233201165(1)列出样本的频率分布表;(2)画出频率直方图;(3)试估计身高小于134 cm的数据约占多少百分比(精确到1%).样本的频率分布表如下:区间[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)[146,150)[150,154)[154,158]频数58102233201165频率124115112116011401611120120124(2)频率直方图如下:(3)根据样本的频率分布表估计身高小于134 cm的人数占总人数的23120×100%≈19%.20.(12分)现有A,B两个班级,每个班级各有45名学生参加测验,参加的每名学生可获得0分,1分,2分,3分,4分,5分,6分,7分,8分,9分这几种不同分值中的一种,A班的测试结果如下表所示:分数/分0123456789人数/名1357686432B班的成绩如图所示.(1)你认为哪个班级的成绩比较稳定?(2)若两班共有60人及格,则参加者最少获得多少分才可能及格.由表格得,A班的平均成绩=(1×3+2×5+3×7+4×6+5×8+6×6+7×4+8×3+9×2)÷45≈4.53(分),由图得,B班的平均成绩为(1×3+2×3+3×8+4×18+5×10+6×3)÷45≈3.84(分),∴A班的平均成绩高;又A班的成绩0~9分都有,B班成绩在1~6分之间,即A班分数更分散,B班分数更集中,∴A班的方差较大,∴B班的成绩比较稳定.(2)若两个班合计共有60人及格,即有30人不及格,从两表中可得出,3分(含3分)以下的有1+3+5+7+3+3+8=30(人),即参加者最少获4分才可以及格.21.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面统计图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(1)若n=19,求y与x的函数解析式;(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?当x≤19时,y=3 800;当x>19时,y=3 800+500(x-19)=500x-5 700.所以y与x的函数解析式为y=3800,x≤19,500x-5700,x>19(x∈N).(2)由统计图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1100×(3 800×70+4 300×20+4 800×10)=4 000,若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1100×(4 000×90+4 500×10)=4 050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.22.(12分)某工厂有工人1 000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人).现用分层抽样方法(按A 类、B 类分两层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A 类工人中和B 类工人中各抽查多少工人?(2)从A 类工人中的抽查结果和从B 类工人中的抽查结果分别如表1和表2.表1生产能力分组[100,110)[110,120)[120,130)[130,140)[140,150]人数48x 53表2生产能力分组[110,120)[120,130)[130,140)[140,150]人数6y 3618①先确定x ,y ,再补全频率直方图(如图).就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).A 类工人生产能力的频率直方图B 类工人生产能力的频率直方图类工人中和B 类工人中分别抽查25名和75名.(2)①由4+8+x+5+3=25,得x=5.由6+y+36+18=75,得y=15.频率直方图如图:A 类工人生产能力的频率直方图B 类工人生产能力的频率直方图从图可以判断,B 类工人中个体间的差异程度更小.②x A =425×105+825×115+525×125+525×135+325×145=123,x B =675×115+1575×125+3675×135+1875×145=133.8,x =25100×123+75100×133.8=131.1.A类工人生产能力的平均数、B类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最全高考数学统计专题解析版【真题】-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第十一章统计、统计案例第一部分六年高考荟萃2013年高考题1 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为()A.11 B.12 C.13 D.142 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数3 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.1204 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。
利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481)A.08 B.07 C.02 D.015.(2013年高考上海卷(理))盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)6.(2013年高考湖北卷(理))从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示. (I)直方图中x 的值为___________;(II)在这些用户中,用电量落在区间[)100,250内的户数为_____________.7.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为_____________.8.(2013年高考上海卷(理))设非零常数d 是等差数列12319,,,,x x x x 的公差,随机变量ξ等可能地取值12319,,,,x x x x ,则方差_______D ξ=9.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.179201530第17题图(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率. 10.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X 的分布列和数学期望.11.(2013年高考陕西卷(理))在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名歌手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.12.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一.二.三等奖如下:奖级摸出红.蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望()E X.2012年高考题1.【2012新课标文】在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A、101B、808C、1212D、20124.【2012陕西文】对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是()A.46,45,56 B.46,45,53C.47,45,56 D.45,47,535.【2012江西文】小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为A.30%B.10%C.3%D.不能确定6.【2012湖南文】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y=0.85x-85.71,则下列结论中不正确...的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重必为58.79kg 7.【2012湖北文】容量为20的样本数据,分组后的频数如下表则样本数据落在区间[10,40]的频率为 A 0.35 B 0.45 C 0.55 D 0.658.【2012广东文由正整数组成的一组数据1234,,,x x x x ,其平均数和中位数都是2,且标准差等于1,则这组数据为 .(从小到大排列)9.【2012山东文】右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.10.【2012浙江文】某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.11.【2012湖南文】图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________.08910352图(注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦,其中x 为x 1,x 2,…,x n 的平均数)12.【2012湖北文】一支田径运动队有男运动员56人,女运动员42人。
现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有______人。
13.【2102福建文】一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______.14.【2012江苏】某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生. 15.【2012辽宁文】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名。
下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性。
(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女合计(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率。
附2 2112212211212(), n n n n nn n n nχ++++-=16.【2012安徽文】若某产品的直径长与标准值的差的绝对值不超过...1mm 时,则视为合格品,否则视为不合格品。
在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。
计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:分组频数频率[-3, -2) 0.10[-2, -1) 8(1,2] 0.50(2,3] 10(3,4]合计50 1.00(Ⅰ)将上面表格中缺少的数据填在答题卡...的相应位置;(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。
据此估算这批产品中的合格品的件数。
17.【2012广东文】(本小题满分13分)某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)。