311空间向量及其运算

合集下载

空间向量及其运算

空间向量及其运算

空间向量及其运算引言空间向量是三维空间中的一种重要的数学概念,用于描述具有大小和方向的物理量。

本文将介绍空间向量的基本概念、表示方法和运算规则。

基本概念空间向量是由三个实数组成的有序三元组,分别表示向量在三个坐标轴上的分量。

通常用箭头在字母上方表示向量,如向量A表示为$\vec{A}$。

表示方法空间向量可以用坐标表示或者用一个点表示。

坐标表示法将向量的三个分量写成一个有序三元组$(x。

y。

z)$,表示向量在$x$轴上的分量为$x$,在$y$轴上的分量为$y$,在$z$轴上的分量为$z$。

点表示法将向量的起点放在坐标原点,然后将向量的终点绘制在空间中,用一条箭头连接起来。

运算规则空间向量的运算包括加法、减法和数量乘法。

加法:两个向量相加,就是将它们的对应分量相加得到一个新的向量。

例如,$\vec{A} = (x_1.y_1.z_1)$,$\vec{B} =(x_2.y_2.z_2)$,则$\vec{A} + \vec{B} = (x_1 + x_2.y_1 + y_2.z_1 + z_2)$。

减法:两个向量相减,就是将它们的对应分量相减得到一个新的向量。

例如,$\vec{A} = (x_1.y_1.z_1)$,$\vec{B} =(x_2.y_2.z_2)$,则$\vec{A} - \vec{B} = (x_1 - x_2.y_1 - y_2.z_1 - z_2)$。

数量乘法:一个向量与一个实数相乘,就是将向量的每个分量都乘以这个实数。

例如,$\vec{A} = (x。

y。

z)$,$k$为实数,则$k\vec{A} = (kx。

ky。

kz)$。

总结空间向量是三维空间中描述大小和方向的数学概念。

它可以用坐标表示法或者点表示法来表示。

空间向量的运算包括加法、减法和数量乘法。

以上是关于空间向量及其运算的简要介绍,希望能对您有所帮助。

高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算课件新人教A版选修

高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算课件新人教A版选修

表 示
字母表 法
示法
用一个字母表示,如图,此向量的起点是 A,终点


是 B,可记作 a,也可记作 A B ,其模记为|a|或|AB|
特殊向量
理解特殊向量应注意的几个问题 (1)零向量和单位向量均是从向量模的角度进行定义的,|0| =0,单位向量e的模|e|=1. (2)零向量不是没有方向,它的方向是任意的. (3)注意零向量的书写,必须是0这种形式. (4)两个向量不能比较大小.
第 三 章 空间向量与立体几何
3.1 空间向量及其运算
3.1.1 空间向量及其加减运算
自主学习 新知突破
1.经历向量及其运算由平面向空间推广的过程,了解空 间向量的概念.
2.掌握空间向量的加法、减法运算法则及其表示. 3.理解并掌握空间向量的加、减法的运算律.
李老师下班回家,先从学校大门口骑自行车向北行驶1 000 m,再向东行驶1 500 m,最后乘电梯上升15 m到5楼的住 处,在这个过程中,李老师从学校大门口回到住处所发生的总 位移就是三个位移的合成(如右图所示),它们是不在同一平面 内的位移,如何刻画这样的位移呢?
D.4个
解析: 共四个:AB,A1B1,CD,C1D1. 答案: D
3.两向量共线是两向量相等的________条件. 解析: 两向量共线就是两向量同向或反向,包含相等的 情况. 答案: 必要不充分
4.已知平行六面体 ABCD-A′B′C′D′,化简下列 表达式:
(1)A→B+BB→′-D→A′+D′ →D-B→C; (2)AC→′-A→C+A→D-AA→′. 解析: 根据平行六面体的性质. (1)原式=A→B+A′→D′+D′ →D+C→B=A→B+A′→D+C→B =D→C+D→A+A′→D=D→B+A′→D=A→′B; (2)原式=CC→′+A′→D=AA→′+A′→D=A→D.

原创1:3.1.1 空间向量及其加减运算

原创1:3.1.1 空间向量及其加减运算
以任意点O为起点,作向量=a,=b.
归纳小结
2.熟练应用三角形法则和平行四边形法则
(1)利用三角形法则进行加法运算时,注意“首尾相连”
和向量的方向是从第一个向量的起点指向第二个向量的终点.
进行减法运算时,注意“共起点”,差向量的方向是从减向量
的终点指向被减向量的终点.
(2)平行四边形法则一般用来进行向量的加法运算.
它们的合力的大小为多少N?
知识点一:空间向量的概念
(1)定义:空间中具有 大小 和 方向 的量叫做向量.
B
(2)表示:
有向线段





几何表示

代数表示

A
知识点一:空间向量的概念
(3)特殊的向量
由模定义
零向量( 0 )
单位向量
(4)相等向量
由方向及模定义
相反向量
相等向量
方向相同且大小相等的向量
第三章
§3.1.1
空间向量与立体几何
空间向量及其加减运算
高中数学选修2-1·精品课件
引入课题
F1
F3
F2
三个力的特点是:
三力既有大小又有方向,
但不在同一平面上.
所以解决这类问题,
已知|F1|=2000N,
需要空间知识.
|F2|=2000N, |F3|=2000N,
空间向量
这三个力两两之间的夹角
都为60°,
另解: − − −
= − − +
=( − ) − +
= − +
= +
=0
同起点
跟踪训练
另解:设O为空间中任意一点

3.1.1空间向量及其加减运算(说课稿)

3.1.1空间向量及其加减运算(说课稿)

3.1.1空间向量及其加减运算(说课稿)一.教材分析1.本节内容在高中教材中的地位和作用向量可以表示物体的位置,本身也是一种几何图形(有向线段),因而它成为几何学的基本研究对象;向量可以进行加减,数乘,数量积等运算,又成为了代数学的研究对象。

可以说向量是重要的数学模型,是沟通代数,几何的桥梁。

在学习了立体几何初步和平面向量的基础上进行的空间向量的学习为空间向量解决立体几何问题提供了新的视角,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。

而本节内容又是整个空间向量的基础,是后续学习的前提,因此学好这节内容就显得尤为重要。

2.教学重难点(1)教学重点:类比平面向量知识理解掌握空间向量的有关概念及其加减运算。

(2)教学难点:空间向量的加减运算。

二.学情分析由于学生已学过平面向量知识有一定的向量基础,学习过立体几何知识有一定的空间观念,因此在教学中可运用类比和归纳让学生体验数学结构上的和谐性。

由于空间向量是在平面向量的基础上推广的,涉及内容和平面向量类似,学生应该容易接受。

但要在教学过程中注意维数增加给学生带来的不利影响。

三.教学目标1.知识目标理解空间向量的相关概念,掌握空间向量的加减运算及其运算律。

2.能力目标(1)体会类比和归纳的数学思想。

(2)进一步培养学生的空间观念。

(3)体会数形结合的思想。

3.情感态度、价值观目标:(1)培养学生认真参与,积极交流的主体意识。

(2)培养学生探索精神和创新意识。

(3)使学生懂得数学源于生活,服务于生活。

四.教法学法教法:采取类比引导、计算机辅助教学、反馈评价等方式;学法:采取自主探索、类比猜想、合作交流等形式。

五.教学过程根据课改的精神,本着“以学生发展为本”的教学理念,结合学生实际,对教学内容作如下安排:1.创设情境——引入新课我将以三名学生从空间三个不同的方向提拉一物体这样一个生活实例出发,让学生感受向量在生活中的存在,以及学习空间向量的必要性。

课件2:3.1.1 空间向量及其加减运算

课件2:3.1.1 空间向量及其加减运算

叫做空间向量,向量的 大小 叫做向量的长度或模.
(2)与平面向量一样,空间向量也用 有向线段 表示.起点是
A,终点是 B 的向量 a 也可以记作
→ AB
.其模记作 |a|或|A→B|
.
(3) 长度为 0 的向量叫做零向量,记为 0;模为 1 的向量 叫做单位向量. (4) 方向相同且模相等 的 向 量 称 为 相 等 向 量 . 与 向 量 a___长__度__相__等__方__向_相__反___的向量称为 a 的相反向量,记为 -a .
2.向量加减运算时,特别注意相反向量的应用,三角形 法则的应用.
3.将一个向量用其他向量线性表示是重点,要特别注意 加法“首尾相接”,减法必须同一起点,指向被减.
巩固训练
一、选择题
1.化简下列各式:(1)A→B+B→C+C→A;(2)A→B-A→C+B→D-C→D;
(3)O→A-O→D+A→D;(4)N→Q+Q→P+M→N-M→P.结果为零向量的个数
跟踪练习 3 在正方体 ABCD-A1B1C1D1 中,E、F 分别为棱 BC,
A1B1 的中点,设D→A=a,D→C=b,D→D1=c,用 a、b、c 表 示向量B→1E,C→F.
[解析] B→1E=B→1B+B→E=B→1B+12B→C =-D→D1-12D→A=-c-12a; C→F=C→C1+C→1F=C→C1+C→1B1+12B→1A1 =D→D1+D→A-12D→C=c+a-12b.
O→An=O→A1+A→1A2+……An-1An=a1+a2+……+an. 用折线作向量的和时,有可能折线的终点恰恰重合到起点上, 这时的和向量就为零向量. 2.向量减法满足三角形法则:“同始连终、指向被减”. 即以同一点 O 作始点,作O→A=a,O→B=b,连结终点 A,B,则 A→B=b-a,B→A=a-b.

选修2-1-第三章-空间向量及其运算知识点

选修2-1-第三章-空间向量及其运算知识点

空间向量及其运算知识点1.空间向量的有关概念⑴空间向量:在空间中,具有大小和方向的量叫做空间向量.(2)单位向量:模为1的向量称为单位向量(3)相等向量:方向相同且模相等的向量.(4)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量.(5)共面向量:平行于同一个平面的向量.2•空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量uuu uuu uuuu uuuu uuuuuOAn=OA+A| A2+ A2A g+ + An—i A n•运算律:①加法交换律: a + b= b + a ②加法结合律:(a+ b) + c= a + (b + c)③数乘分配律:入(+ b)=入a入b.3.共线向量、共面向量定理和空间向量基本定理(1)共线向量定理对空间任意两个向量 a, b(b丰0) a II b的充要条件是存在实数人使得a =^b推论:|点P在直线 AB上的充要条件是:uuu um存在实数人使得AP AB ①uuu uir uur或对空间任意一点O,有OP OA AB ②um uur urn或对空间任意一点O, 有OP xOA yOB其中x+ y= 1 ③urn uur um uir uuu uur uur uur【推论③推导过程: OP OA AB OA (AO OB) (1 )OA OB】(2)共面向量定理如果两个向量a, b不共线,那么p与a, b共面的充要条件是存在唯一有序实数对(x,y)使p = xa+ yb推论:|空间一点P位于平面 ABC内的充要条件|是uur uur uur存在唯一有序实数对(x,y)使AP xAB yAC ,uin uir uur uuu或对空间任意一点O, 有OP OA xAB yACurn uur uur uuu或对空间任意一点O, 有OP xOA yOB zOC,其中x+ y+ z= 1uur uur uuu uuu uur uur uuu【推论③推导过程呈:OP OA xAB yAC (1 x y)OA xOB yOC】(3)空间向量基本定理如果三个向量a, b, c不共面,那么对空间任一向量p,存在有序实数组{x, y, z},使得p = xa+ yb+ zc基底:把{a, b, c}叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角:已知两个非零向量 a , b,在空间任取一点 0,作OA= a, Ofe= b,则/ AOB叫做向量a与b的夹角,记作〈a, b >,其范围是0w〈 a, b >三爭若〈a, b〉=寸,则称a与b互相垂直,记作a丄b.②两向量的数量积:已知空间两个非零向量a, b,向量a, b的数量积记作a b,且a b= | a||b |cos〈 a, b >.(2)空间向量数量积的运算律:①结合律:(扫)b=?(ab);②交换律:a b = b a;③分配律:a ( b+ c)= a b + a c.5.空间向量的坐标表示及应用(1)数量积的坐标运算:a(2) 共线与垂直的坐标表示:b = a 1b 1 + a 2b 2+ a 3b 3.a / b? a= ?b? a 1 =入 b, a 2=入 2, a 3=入 3 (入€ R),a 丄b? a b= 0? a 1b 1+ a 2b 2+ a 3b 3= 0(a, b 均为非零向量). (3)模、夹角和距离公式: | a| = .'a a = 'a ! + a 2 + a 3,a b a 1b 1 + a 2b 2+ a 3b 3C0S a,b |a||b|.'a 2+ a 2+ a 3 • b 1 + b 2 +.设 A(a 1, b 1, C 1), B(a 2, b 2,⑵,贝U d AB = | AB| = : a 2 — a 1 2+b 2— b 1 2+Q —C 1 26. 用空间向量解决几何问题的一般步骤:(1) 适当的选取基底{a, b, c}; (2) 用a ,b ,c 表示相关向量; (3) 通过运算完成证明或计算问题.题型一 空间向量的线性运算 用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量 的和与差的形式,进而寻找这些向量与基向量的关系.例1:三棱锥 O —ABC 中,M, N 分别是OA, BC 的中点,G 是厶ABC 的重心,用基向量 OA, OB, OC 表示MG , OG解析:M G = M A + AG= 2O A+ 3AN= ^OA+ |(O N —O A)=苏+f[2(OB+ OC)—OA]= — |O A+ 3<5B + ^OCC )G = O M + M G = ?OA- 6<5A +|<5B +1(5C = £O A+ |OB + 扌OC〉1 T T —urn uu n uuu uuu例 2:如图所示,ABCD — A 1B 1C 1D 1 中,ABCD 是平行四边形.若 AE= |EC A*= 2FD,且 EF =x AB+y AD+zAA ,题型二共线定理应用 向量共线问题: 充分利用空间向量运算法则,用空间中的向量表示 a 与b 共线.点共线问题:证明点共线问题可转化为证明向量共线问题,如证明 例3:如图所示,四边形 ABCD, ABEF 都是平行四边形且不共面,1 1•/ E A = — 3心-3( AB+ AD) 1 1 2 uuu A F = AD+ DF= AD — F D= A D — A 1D= A D —; (A 1A+ AD)= — AD 3331 uuu 1 uuu AA EF= EA+ AF= AD3 3 1 uuu AA 31 uuu AB 3a 与b ,化简得出a = b ,从而得出a// b,即A 、B 、C 三点共线,即证明 AB 与AC 共线.M , N 分别是AC, BF 的中点,判断CE 与 MN 是否连接 AF, EF= EA+ A F.ABCD- A 1B 1C 1D 1 中,E 在 A 1D 1 上,且 A 1E= 2EDi,AA 1= c.2 2 2 2 2 2 2 A 1 F= §FC= 5A 1 C=5(AC — AA 1) = 5(AB + AD — AA 1) =5a + £b — £c42 2 2 TTTT2 215b — §c= 5 a — 3b — c , EB= EA + A 1A+ AB= — 3b — c+ a= a — 3b — c,T T2•- EF= 5EB •所以E, F, B 三点共线.题型三共面定理应用yPC,或对空间任一点 O,有 OP= OA+ xPB+ yPC 或 OP= xOA+ yOB+ zOC(x+ y+ z= 1)即可uur CE uir CBuur BE uuu MNuuu MC uir CB uuu BN 1 uuu — AC 2TMN , uir i uu uur 1 uuu uu CB (BA BE) (AC BA)uir CB 1 uur 1 uir2BE"CB1 uur BE 2••• CE= 2MN ,••• CE// 即CE 与MN 共线.例5 :已知A 、B 、2C 三点不共线,对于平面 ABC 外一点O,若OP= 5ITT1 2OA+ 5OB+ 5OC,则点P 是否与A 、B 、C定共面试说明理由. 2 UUU 解析:••• OP 5 1TULT OA 2T1 uu u — OB 52 uuu -OC3 2 uuu uir -(OP + PA) 5 1 uuu uir —(OP + PB) 5 2 uu u uuu uiu 2 uir 1 uir 2 uu —(OP + PC)=OP + —PA+— PB + — PC 3 5 5 3• AP=;AB+;AC,故 A 、B 、C P 四点共面•F 在对角线A 1C 上,且心託点共面问题:证明点共面问题可转化为证明向量共面问题,如要证明P 、A 、B 、C 四点共面,只要能证明 PA= xPB+例4:如图所示,在正方体2 T例6:如图所示,已知P 是平行四边形 ABCD 所在平面外一点, 连结PA 、PB PC PD,点E 、F 、G 、H 分别为△ PAB△ PBC △ PCD △ PDA 的重心,应用向量共面定理证明:E 、F 、G 、H 四点共面.证明:分别延长PE 、 ••• E、F 、G 、H 分别是所在三角形的重心,•f f f例7:正方体ABCD- A 1B 1C 1D 1中,E, F 分别是BBi 和A 1D 1的中点,求证向量 A 1B, BQ, EF 是共面向量.Dy Ci157i1 11 1证明:如图所示,EF= EB+ BA i + A 1F = 2B i B-A i B+ 尹1。

高中数学3-1-1空间向量及其加减运算

高中数学3-1-1空间向量及其加减运算
课前探究学习 课堂讲练互动
试一试:在空间中,将所有的单位向量的起点移到同一点
A,那么它们的终点构成怎样的图形?
提示 球面.
课前探究学习
课堂讲练互动
2. 空间向量的加减法与运算律 类似平面向量,定义空间向量的加、减法运 算(如图):
空间向量的 加减法=
→ → a+b OB=OA+AB=______; → a-b CA=OA-OC=______.
3.1
空间向量及其运算
3.1.1 空间向量及其加减运算
【课标要求】 1.经历向量及其运算由平面向空间推广的过程,了解空间向 量的概念. 2.掌握空间向量的加法、减法运算.
课前探究学习 课堂讲练互动
【核心扫描】 1. 空间向量的基本概念和性质.(难点) 2. 空间向量的加减法运算.(重点)
课前探究学习
(4)两个向量不能比较大小,若两个向量的方向相同且模相 等,称这两个向量为相等向量,与向量起点的选择无关. 3.向量的加减法法则 空间任意两个向量都是共面的,它们的加减法运算类似于平
面向量的加减法,如图所示.
OB=OA+AB=a+b



BA=OA-OB=a-b
课前探究学习 课堂讲练互动



注意:①首尾相接的若干向量之和,等于由起始向量的起












课前探究学习
课堂讲练互动
[正解] DA-DB+B1C-B1B+A1B1-A1B → =BA+BC+BB1 =BD+BB1=BD+DD1=BD1.






→ →

空间向量及其运算和空间位置关系(含解析)

空间向量及其运算和空间位置关系(含解析)

归纳与技巧:空间向量及其运算和空间位置关系基础知识归纳一、空间向量及其有关概念OP=x OA+y OB+z OC且x+二、数量积及坐标运算1.两个向量的数量积(1)a·b=|a||b|cos〈a,b〉;(2)a⊥b⇔a·b=0(a,b为非零向量);(3)|a|2=a2,|a|=x2+y2+z2.2.向量的坐标运算三、平面的法向量(1)所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量有无数多个,它们是共线向量.(2)在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是唯一的.基础题必做1.(课本习题改编)已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2)则下列结论正确的是()A.a∥c,b∥c B.a∥b,a⊥cC.a∥c,a⊥b D.以上都不对解析:选C∵c=(-4,-6,2)=2a,∴a∥c.又a·b=0,故a⊥b.2.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.{a,a+b,a-b} B.{b,a+b,a-b}C.{c,a+b,a-b} D.{a+b,a-b,a+2b}解析:选C若c、a+b、a-b共面,则c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则a、b、c为共面向量,与{a,b,c}为空间向量的一组基底矛盾,故c,a+b,a-b可构成空间向量的一组基底.3.(教材习题改编)下列命题:①若A、B、C、D是空间任意四点,则有AB+BC+CD+DA=0;②若MB=x MA+y MB,则M、P、A、B共面;③若p=x a+y b,则p与a,b共面.其中正确的个数为()A.0B.1C.2 D.3解析:选D可判断①②③正确.4.在四面体O-ABC中,OA=a,OB=b,OC=c,D为BC的中点,E为AD的中点,则OE=________(用a,b,c表示).解析:如图,OE=12OA+12OD=12OA +14OB +14OC =12a +14b +14c . 答案:12a +14b +14c5.已知ABCD -A 1B 1C 1D 1为正方体,①(1A A +11A D +11A B )2=311A B 2;②1A C ·(11A B -1A A )=0;③向量1AD 与向量1A B 的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB ·1AA ·AD |.其中正确命题的序号是________.解析:设正方体的棱长为1,①中(1A A +11A D +11A B )2=311A B 2=3,故①正确;②中11A B -1A A =1AB ,由于AB 1⊥A 1C ,故②正确;③中A 1B 与AD 1两异面直线所成角为60°,但1AD 与1A B 的夹角为120°,故③不正确;④中|AB ·1AA ·AD |=0.故④也不正确.答案:①②解题方法归纳1.用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.2.直线的方向向量与平面的法向量的确定:(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB 为直线l 的方向向量,与AB 平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.空间向量的线性运算典题导入[例1] 如图,在平行六面体ABCD -A 1B 1C 1D 1中G 为△A 1BD 的重心,设AB =a ,AD =b ,1AA =c ,试用a ,b ,c 表示1AC ,AG .[自主解答] 1AC =AB +BC +1CC =AB +AD +1AA =a +b +c .AG =1AA +1A G=1AA +13(1A D +1A B )=1AA +13(AD -1AA )+13(AB -1AA )=131AA +13AD +13AB =13a +13b +13c .本例条件不变,设A 1C 1与B 1D 1交点为M ,试用a ,b ,c 表示MG . 解:如图,MG =1MA +1A G=-12(11A B +11A D )+13(1A D +1A B )=-12a -12b +13(AD -1AA )+13(AB -1AA )=-12a -12b +13b -13c +13a -13c=-16a -16b -23c解题方法归纳用已知向量表示未知向量,一定要结合图形,以图形为指导是解题的关键,要正确理解向量加法、减法与数乘运算的几何意义,灵活运用三角形法则及四边形法则.以题试法1.如图所示,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N分别为OA 、BC 的中点,点G 在线段MN 上,且MG =2GN ,若OG =x OA +y OB +z OC ,则x ,y ,z 的值分别为________.解析:∵OG =OM +MG =12OA +23MN=12OA +23(ON -OM ) =12OA +23ON -23OM =12OA +23×12(OB +OC )-23×12OA =16OA +13OB +13OC ∴x ,y ,z 的值分别为16,13,13.答案:16,13,13共线、共面向量定理的应用典题导入[例2] 如右图,已知平行六面体ABCD -A ′B ′C ′D ′,E 、F 、G 、H 分别是棱A ′D ′、D ′C ′、C ′C 和AB 的中点,求证E 、F 、G 、H 四点共面.[自主解答] 取ED '=a ,EF =b ,EH =c ,则HG =HB +BC +CG =D F '+2ED '+12AA '=b -a +2a +12(AH +HE +EA ')=b +a +12(b -a -c -a )=32b -12c ,∴HG 与b 、c 共面.即E 、F 、G 、H 四点共面. 解题方法归纳应用共线向量定理、共面向量定理证明点共线、点共面的方法比较:三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA =λPB 且同过点P MP =x MA +y MB对空间任一点O,OP=OA→+t AB对空间任一点O,OP=OM+x MA+y MB对空间任一点O,OP=x OA+(1-x)OB对空间任一点O,OP=x OM+y OA+(1-x-y)OB以题试法2.已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,用向量方法,求证:(1)E、F、G、H四点共面;(2)BD∥平面EFGH.证明:(1)连接BG,则EG=EB+BG=EB+12(BC+BD)=EB+BF+EH=EF+EH,由共面向量定理知:E、F、G、H四点共面.(2)因为EH=AH-AE=1 2AD-12AB=12(AD-AB)=12BD,又因为E、H、B、D四点不共线,所以EH∥BD.又EH⊂平面EFGH,BD⊄平面EFGH,所以BD∥平面EFGH.利用空间向量证明平行或垂直典题导入[例3]已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,边长为2a,AD=DE=2AB,F为CD的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .[自主解答] 依题意,以AC 所在的直线为x 轴,AB 所在的直线为z 轴,过点A 且垂直于AC 的直线为y 轴,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).∵F 为CD 的中点,∴F ⎝⎛⎭⎫32a ,32a ,0.(1)易知,AF =⎝⎛⎭⎫32a ,32a ,0,BE =(a ,3a ,a ),BC =(2a,0,-a ),∵AF =12(BE +BC ),AF ⊄平面BCE ,∴AF ∥平面BCE .(2)∵AF =⎝⎛⎭⎫32a ,32a ,0,CD =(-a ,3a,0),ED =(0,0,-2a ),∴AF ·CD =0,AF ·ED =0, ∴AF ⊥CD ,AF ⊥ED ,即AF ⊥CD ,AF ⊥ED . 又CD ∩ED =D ,∴AF ⊥平面CDE . 又AF ∥平面BCE ,∴平面BCE ⊥平面CDE .解题方法归纳利用直线的方向向量与平面的法向量,可以判定直线与直线、直线与平面、平面与平面的平行和垂直.(1)设直线l 1的方向向量v 1=(a 1,b 1,c 1),l 2的方向向量v 2=(a 2,b 2,c 2). 则l 1∥l 2⇔v 1∥v 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ). l 1⊥l 2⇔v 1⊥v 2⇔a 1a 2+b 1b 2+c 1c 2=0.(2)设直线l 的方向向量为v =(a 1,b 1,c 1),平面α的法向量为n =(a 2,b 2,c 2),则l ∥α⇔v ⊥n ⇔a 1a 2+b 1b 2+c 1c 2=0.l ⊥α⇔v ∥n ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2).(3)设平面α的法向量n 1=(a 1,b 1,c 1),β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2,α⊥β⇔n 1⊥n 2.以题试法3. 如图所示的长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,BB 1=2,M 是线段B 1D 1的中点.(1)求证:BM ∥平面D 1AC ; (2)求证:D 1O ⊥平面AB 1C .证明:(1)建立如图所示的空间直角坐标系,则点O (1,1,0)、D 1(0,0,2), ∴1OD =(-1,-1,2), 又点B (2,2,0),M (1,1,2), ∴BM =(-1,-1,2), ∴1OD =BM , 又∵OD 1与BM 不共线, ∴OD 1∥BM .又OD 1⊂平面D 1AC ,BM ⊄平面D 1AC , ∴BM ∥平面D 1AC .(2)连接OB 1.∵1OD ·1OB =(-1,-1,2)·(1,1,2)=0,1OD ·AC =(-1,-1,2)·(-2,2,0)=0,∴1OD ⊥1OB ,1OD ⊥AC , 即OD 1⊥OB 1,OD 1⊥AC ,又OB 1∩AC =O ,∴D 1O ⊥平面AB 1C .1. 若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)解析:选D 若l ∥α,则a ·n =0.而A 中a ·n =-2, B 中a ·n =1+5=6,C 中a ·n =-1, 只有D 选项中a ·n =-3+3=0.2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627 B.637 C.607D.657解析:选D 由题意得c =t a +μ b =(2t -μ,-t +4μ,3t -2μ),∴⎩⎪⎨⎪⎧7=2t -μ,5=-t +4μ,λ=3t -2μ.∴⎩⎪⎨⎪⎧t =337,μ=177,λ=657.3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB =a ,AD =b ,1AA =c ,则下列向量中与BM 相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 解析:选A BM =1BB +1B M =1AA +12(AD -AB )=c +12(b -a )=-12a +12b +c .4. 如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA ,BC 〉的值为( ) A .0 B.12 C.32D.22解析:选A 设OA =a ,OB =b ,OC =c , 由已知条件〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA ·BC =a ·(c -b )=a ·c -a ·b=12|a ||c |-12|a ||b |=0,∴cos 〈OA ,BC 〉=0. 5. 平行六面体ABCD -A 1B 1C 1D 1中,向量AB 、AD 、1AA 两两的夹角均为60°,且|AB |=1,|AD |=2,|1AA |=3,则|1AC |等于( )A .5B .6C .4D .8解析:选A 设AB =a ,AD =b ,1AA =c ,则1AC =a +b +c , 1AC 2=a 2+b 2+c 2+2a ·c +2b ·c +2c ·a =25, 因此|1AC |=5.6.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ =λMN 的实数λ的值有( )A .0个B .1个C .2个D .3个解析:选C 建立如图所示的坐标系,设正方体的棱长为2, 则P (x ,y,2),O (1,1,0), ∴OP 的中点坐标为⎝⎛⎭⎫x +12,y +12,1,又知D 1(0,0,2),∴Q (x +1,y +1,0), 而Q 在MN 上,∴x Q +y Q =3, ∴x +y =1,即点P 坐标满足x +y =1. ∴有2个符合题意的点P ,即对应有2个λ.7.在下列条件中,使M 与A 、B 、C 一定共面的是________.①OM =2OA -OB -OC ;②OM =15OA +13OB +12OC ;③MA +MB +MC =0;④OM +OA +OB +OC =0.解析:∵MA +MB +MC =0,∴MA =-MB -MC ,则MA 、MB 、MC 为共面向量,即M 、A 、B 、C 四点共面.答案:③8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析:以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴1B E =(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB =(1,1,y ),由于AB ⊥B 1E ,故若B 1E ⊥平面ABF ,只需PB ―→·1B E =(1,1,y )·(x -1,0,1)=0⇒x +y =1. 答案:19.如图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB的中点,cos 〈DP ,AE 〉=33,若以DA 、DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为________.解析:设PD =a ,则A (2,0,0),B (2,2,0),P (0,0,a ),E ⎝⎛⎭⎫1,1,a 2. ∴DP =(0,0,a ),AE =⎝⎛⎭⎫-1,1,a 2. 由cos 〈DP ,AE 〉=33, ∴a 22=a 2+a 24·33,∴a =2. ∴E 的坐标为(1,1,1).答案:(1,1,1)10.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ;(2)PD ⊥平面ABE .证明:AB 、AD 、AP 两两垂直,建立如图所示的空间直角坐标系,设P A =AB =BC =1,则P (0,0,1).(1)∵∠ABC =60°,∴△ABC 为正三角形.∴C ⎝⎛⎭⎫12,32,0,E ⎝⎛⎭⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC ·CD =0, 即y =233,则D ⎝⎛⎭⎫0,233,0, ∴CD =⎝⎛⎭⎫-12,36,0.又AE =⎝⎛⎭⎫14,34,12, ∴AE ·CD =-12×14+36×34=0, ∴AE ⊥CD ,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD =⎝⎛⎭⎫0,233,-1. 又AE ·PD =34×233+12×(-1)=0, ∴PD ⊥AE ,即PD ⊥AE .∵AB =(1,0,0),∴PD ·AB =0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面AEB .法二:AB =(1,0,0),AE =⎝⎛⎭⎫14,34,12, 设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD =⎝⎛⎭⎫0,233,-1,显然PD =33n . ∵PD ∥n ,∴PD ⊥平面ABE ,即PD ⊥平面ABE .11.已知矩形ABCD 中,AB =6,BC =62,E 为AD 的中点(图甲).沿BE 将△ABE 折起,使二面角A -BE -C 为直二面角(图乙),且F 为AC 的中点.(1)求证:FD∥平面ABE;(2)求证:AC⊥BE.证明:(1)如图1,设M为BC的中点,连接DM、MF.∵F为AC的中点,M为BC的中点,∴MF∥AB.又∵BM綊DE,∴四边形BMDE为平行四边形,∴MD∥BE.∵MF∩MD=M,AB∩BE=B,∴平面DFM∥平面ABE.又∵PD⊂平面DFM,FD⊄平面ABE,∴FD∥平面ABE.(2)在矩形ABCD(如图2)中,连接AC,交BE于G.BE·AC=(BA+AE)·(AB+BC)=-AB2+AE·BC=-36+36=0.∴AC⊥BE.∴在图3中,AG⊥BE,CG⊥BE.又∵AG∩GC=G,∴BE⊥平面AGC.又∵AC⊂平面AGC,∴AC⊥BE.12.如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=3,BC=4.(1)求证:BD⊥PC;(2)设点E在棱PC上,PE=λPC,若DE∥平面P AB,求λ的值.解:(1)证明:如图,在平面ABCD内过点D作直线DF∥AB,交BC于点F,以D为坐标原点,DA、DF、DP所在的直线分别为x、y、z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,3,0),D (0,0,0),C (-3,3,0).(1)设PD =a ,则P (0,0,a ),BD =(-1,-3,0),PC =(-3,3,-a ),∵BD ·PC =3-3=0,∴BD ⊥PC . (2)由题意知,AB =(0,3,0),DP =(0,0,a ),PA =(1,0,-a ),PC =(-3,3,-a ),∵PE =λPC ,∴PE =(-3λ,3λ,-aλ),DE =DP +PE =(0,0,a )+(-3λ,3λ,-aλ)=(-3λ,3λ,a -aλ).设n =(x ,y ,z )为平面P AB 的法向量,则⎩⎪⎨⎪⎧ AB ·n =0,PA ·n =0, 即⎩⎪⎨⎪⎧3y =0,x -az =0.令z =1,得x =a ,∴n =(a,0,1),∵DE ∥平面P AB ,∴DE ·n =0,∴-3aλ+a -aλ=0,即a (1-4λ)=0,∵a ≠0,∴λ=14.1.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4 B.407,-157,4 C.407,-2,4 D .4,407,-15 解析:选B ∵AB ⊥BC ,∴AB ·BC =0, 即3+5-2z =0,得z =4.又BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,BC =(3,1,4),则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎨⎧ x =407,y =-157.2.设空间四点O ,A ,B ,P 满足OP =OA +t AB ,其中0<t <1,则有( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段BA 的延长线上D .点P 不一定在直线AB 上解析:选A ∵0<t <1,∴P 点在线段AB 上.3.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点.求证:(1)FC 1∥平面ADE ;(2)平面ADE ∥平面B 1C 1F .证明:(1)如图所示,建立空间直角坐标系D -xyz ,则有D (0,0,0)、A (2,0,0)、C (0,2,0)、C 1(0,2,2)、E (2,2,1)、F (0,0,1),所以1FC =(0,2,1),DA =(2,0,0),AE =(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的一个法向量,则n 1⊥DA ,n 1⊥AE , 即⎩⎪⎨⎪⎧ n 1·DA =2x 1=0,n 1·AE =2y 1+z 1=0. 解得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1. 令z 1=2,则y 1=-1,所以n 1=(0,-1,2).因为1FC ·n 1=-2+2=0,所以1FC ⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)由(1)得B 1(2,2,2),11C B =(2,0,0).设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量,则n 2⊥1FC ,n 2⊥11C B , 即⎩⎪⎨⎪⎧ n 2·1FC =2y 2+z 2=0,n 2·11C B =2x 2=0.解得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,则y 2=-1,所以n 2=(0,-1,2).因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .1.已知在一个60°的二面角的棱上,如图有两个点A ,B ,AC ,BD 分别是在这个二面角的两个半平面内垂直于AB 的线段,且AB=4 cm ,AC =6 cm ,BD =8 cm ,则CD 的长为________.解析:设BD =a ,AB =b ,AC =c ,由已知条件|a |=8,|b |=4,|c |=6,〈a ,b 〉=90°,〈b ,c 〉=90°,〈a ,c 〉=60°,|CD |2=|CA +AB +BD |2=|-c +b +a |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c =68,则|CD |=217. 答案:217 cm2.如图所示,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CD =∠C 1CB =∠BCD =60°.(1)求证:C 1C ⊥BD ;(2)当CD CC 1的值是多少时,能使A 1C ⊥平面C 1BD ?请给出证明. 解:(1)证明:设CD =a ,CB =b ,1CC =c ,由已知|a |=|b |,且〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,BD =CD -CB =a -b ,1CC ·BD =c ·(a -b )=c ·a -c ·b =12|c ||a |-12|c ||b |=0,∴1C C ⊥BD ,即C 1C ⊥BD . (2)若A 1C ⊥平面C 1BD ,则A 1C ⊥C 1D ,1CA =a +b +c ,1C D =a -c .∴1CA ·1C D =0,即(a +b +c )·(a -c )=0. 整理得:3a 2-|a ||c |-2c 2=0,(3|a |+2|c |)(|a |-|c |)=0,∴|a |-|c |=0,即|a |=|c |. 即当CD CC 1=|a ||c |=1时,A 1C ⊥平面C 1BD . 3.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、CD 的中点.求证:PB ∥平面EFG .证明:∵平面P AD ⊥平面ABCD ,且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB =(2,0,-2),FE =(0,-1,0),FG =(1,1,-1),设PB =s FE +t FG ,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧ t =2,t -s =0,-t =-2,解得s =t =2.∴PB =2FE +2FG ,又∵FE 与FG 不共线,∴PB 、FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .。

3.1.1空间向量及其加减数乘运算 共29页

3.1.1空间向量及其加减数乘运算 共29页
空间向量及其运算
空间向量 基本概念
B
a 向量
A
1、定义:既有大小又有方向的量。
几何表示法:用有向线段表示
字母表示法: 用小写字母表示,或者用表示向量的 有向线段的起点和终点字母表示。 2、长度或模:向量的大小 记作:a AB
3、零向量:长度为零的向量。记作:0
4、单位向量:长度为1的向量。
5、相反向量:与向量 a 长度相等而方向 相反的向量,称为a 的相 反向量。记作:- a
P
a
(或APtAB)
B
则A、B、P三点共线。
A
若 O 若PP 为xAO ,A B中y点O ,B(xy1), O
则 A则、 B O、 PP三 1 点 OA共 线 OB。 向量参数表示式 2
3. 共面向量
平行于同一平面的向量,叫做共面向量 空间任意两个向量是共面的,但空间 任意三个向量就不一定共面。
空间向量及其加减与数乘运算
平面向量
概念 定义 表示法 相等向量
空间向量
具有大小和方向的量
加法 加法:三角形法则或
减法 平行四边形法则
数乘 运算
减法:三角形法则
加法:三角形法则或 平行四边形法则
减法:三角形法则
运 加法交换律 abba 算 加法结合律 律 (ab)ca(bc)
加法交换律 abba
3.利用空间向量共线定理和共面定理, 可以解决立体几何中的共点、共线、共 面和平行等问题,这是一种向量方法.
成立吗? 加法结合律
向量加法结合律在空间中仍成立吗?
( a + b )+ c = a +( b + c )
O
O
a
a
b +c

高中数学3.1空间向量及其运算3.1.1空间向量及其加减运算课件新人教A版选修2_1

高中数学3.1空间向量及其运算3.1.1空间向量及其加减运算课件新人教A版选修2_1

(3)空间向量加法的平行四边形法则.先把已知的两个空间向量 的起点平移到同一点,再以这两个向量为邻边作平行四边形,则这两 条邻边所夹的平行四边形的对角线所在的向量(起点与平移后的两 个向量的起点相同)就是这两个已知向量的和.如图,若 ������������ =a, ������������ =b,则������������ = ������������ + ������������ =a+b.
(6)向量减法的几何作法:如右图,在平面内任取一点 O,作 ������������ =a, ������������ =b,则������������ =a-b,即 a-b 表示从向量 b 的终点指向向量 a 的终点的向量,这是向量减法的几何意义.
题型一
题型二
空间向量的概念 【例1】 给出以下命题: ①若两个空间向量相等,则它们的起点相同,终点也相同; ②若空间向量a,b满足|a|=|b|,则a=b; ③在正方体 ABCD-A1B1C1D1 中,必有������������ = ������1 ������1 ; ④若空间向量m,n,p满足m=n,n=p,则m=p; ⑤空间中任意两个单位向量必相等. 其中正确的命题序号为 .
如图①, ������������ = ������������ + ������������ =a+b. 如图②, ������������ = ������������ + ������������ =a+b; ������������ = ������������ − ������������ =a-b. (2)空间向量的加法运算满足: 交换律:a+b=b+a; 结合律:(a+b)+c=a&零向量,记作0,零向量的方向是 任意的.当有向线段的起点A与终点B 重合时, ������������ =0. (4)单位向量:模为1的向量. (5)相反向量:与向量a长度相等而方向相反的向量,称为a的相反 向量,记为-a. (6)相等向量:方向相同且模相等的向量称为相等向量.在空间,同 向且等长的有向线段表示同一向量或相等向量. 归纳总结(1)零向量的方向不确定,是任意的;由于零向量的这一 特性,在解题时一定要看清题目中所指的向量是“零向量”还是“非 零向量”. (2)零向量与零向量相等;任意两个相等的非零向量都可以用空间 中的同一条有向线段来表示,并且与有向线段的起点无关.

空间向量及其运算

空间向量及其运算

空间向量及其运算
空间向量是指在三维空间中的一个有方向的矢量,由一个点和一个方向确定,可以用一个箭头表示,箭头的长度表示矢量的大小,箭头的方向表示矢量的方向。

空间向量的运算包括:
1.
加法:两个空间向量可以相加,结果是一个新的空间向量,其大小和方向是由两个空间向量的大小和方向决定的。

2.
减法:两个空间向量可以相减,结果是一个新的空间向量,其大小和方向是由两个空间向量的大小和方向决定的。

3.
乘法:空间向量可以与一个标量相乘,结果是一个新的空间向量,其大小是原空间向量的大小乘以标量,方向不变。

4.
除法:空间向量可以与一个标量相除,结果是一个新的空间向量,其大小是原空间向量的大小除以标量,方向不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A4
⑵首尾顺次相接的若干向量构成一个封闭图形, 则它们的和为零向量.即:
A1 A2 A2 A3 A3 A4 An1 An An A1 0
A1
An 1
……
A2
An
A3
A4
四、平行六面体
平行四边形ABCD按向量 a 平移到A1B1C1D1的 轨迹形成的几何体叫做平行六面体.
记作:平行六面体ABCD—A1B1C1D1 它的六个面都是平行四边形,每个面的边叫做 平行六面体的棱.
(4)若空间向量 m、n、p 满足 m n, n p,则 m p;
(5)空间中任意两个单位向量必相等。
其中不正确命题的个数是( C )
A.1
B.2
C.3
D.4
变式:如图所示,长方体中 (1)写出与向量 AB 相等的其余向量;
(2) 写出与向量 AA1相反的向量。
(1)A1B1, D1C1, DC.
ab ba
(2)加法结合律:
(a b) c = a (b c)
O
O
a a
b +c
A
b
B
c
C
A
b
C
Bc
推论:
⑴首尾顺次相接的若干个向量之和,等于由起始向 量的起点指向末尾向量的终点的向量.即:
A1 A2 A2 A3 A3 A4 An1 An A1 An
A1
An 1
A2
An
……
A3
平面向量
空间向量
定义 表示法 向量的模 相等向量
相反向量
具有大小和方向的量 几何表示法 字母表示法 a AB
向量的大小 a AB
长度相等且方向相同 的向量
长度相等且方向相反 的向量
具有大小和方向的量 几何表示法 字母表示法 a AB
向量的大小 a AB 长度相等且方向相同的 向量
长度相等且方向相反 的向量
3.1.1 空间向量及其加法、减法运算
思考: 一个质量分布均匀的正三角形钢板,重量为
500kg,在它的三个顶点处同时受力 F1, F2, F3 ,每个 力与它相邻的三角形两边之间的夹角都是60度,且大 小均为200kg,问钢板将如何运动?
F1
F2
O F3
G
一:空间向量的基本概念
阅读教材P84-85填写下表
平面向量
空间向量
概念 定义 表示法 相等向量
具有大小和方向的量
加法 加法:三角形法则或 减法 平行四边形法则 运算 减法:三角形法则
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
加法交换律 a b b a 加法结合律 (a b) c a (b c)
单位向量 模长为1的向量
模长为1的向量
零向量 长度为零的向量(方向?) 长度为零的向量(方向?)
例1、给出以下命题:
(1)两个空间向量相等,则它们的起点、终点相同;
(2)若空间向量a、b满足| a || b | ,则 a b ;
(3)在正方体 ABCD A1B1C1D1中,必有 AC A1C1 ;
OC OA OB a b, BA OA OB a b
三角形法则:在三角形OAC和三角形OAB中,
OC OA AC a b, BA OA OB a b
三:空间向量的加法满足交换律和结合律
C B
b
O
A
a
(1)加法交换律:
OB OA AB a b OB OC CB b a
相同起点的那条对角线所确定的一个向量即是这三个向量之 和.
思考: 一个质量分布均匀的正三角形钢板,重量为
500kg,在它的三个顶点处同时受力 F1, F2, F3 ,每个 力与它相邻的三角形两边之间的夹角都是60度,且大 小均为200kg,问钢板将如何运动?
F
F1
F2 O F3
G
小结
类比、数形结合
a
a
D1
A1
C1 B1
ห้องสมุดไป่ตู้
五、例 练
例2:已知平行六面体ABCD-A1B1C1D1(如图), 化简下列向量表达式,并标出化简结果的向量.
(1) AB BC
(2) AB AD AA1
(3)
1 3
(
AB
AD
A A1 )
1 (4) AB AD 2 CC1
始点相同的三个不共面向量之和,等于以这三个
向量为棱的平行六面体的以公共始点为始点的对角线
作业 《金榜》+《作业本》
及P97页1、2
(2)B1B,C1C, D1D, A1A.
思考:
空间任意两个向量是否都可以平移到同一平面内?为什么?
B
b
O
A
思考:平面是否唯一?
a
O′
结论:空间任意两个向量都可以平移到同一个平面内, 成为共面的两个向量,因此: 空间任意两个向量都是共面的.
二:空间向量的加、减运算
Ba
C
b
b
O
A
a
平行四边形法则:在平行四边形OACB中,
所示向量.(如:例2(2))
变式:如图所示,已知平行六面体ABCD-A1B1C1D1 , 化简:
(1) AB BB1 D1A1 D1D BC;
(2)AC1 AC AD AA1.
1 (3)2
(
AB
AD)
A
C1
AO.
三个不共面向量的和与这三个向量的关系
平移这三个向量,使其具有同一起点.以平移后这三个向量 的长为棱作一平行六面体,则这平行六面体中与这三个向量具有
相关文档
最新文档