《平方根》ppt课件

合集下载

《平方根》PPT教学课文课件

《平方根》PPT教学课文课件
2. 性质:(1)正数的算术平方根是一个正数; (2)0 的算术平方根是0; (3)负数没有算术平方根; (4)被开方数越大,对应的算术平方根也越大.
感悟新知
例 1 求下列各数的算术平方根. (1)64; (2)2 1 ; (3)0.36; (4)72; (5) (-5)2; 4 (6)0; (7) 81 ; (8)7; (9)-16. 解题秘方:先根据平方运算找出这个正数,然后根 据算术平方根的定义求出算术平方根.
感悟新知
解:(1) 1 9 表示1 9 的平方根.
16
16
5 4
2
25 16
19 16
,
1 9 5. 16 4
(2) 0.81表示0.81 的算术平方根, 0.04 表示0.04 的算
术平方根.
∵ 0.92=0.81,0.22=0.04,∴ 0.81 =0.9, 0.04=0.2.
∴ 0.81 - 0.04 =0.9-0.2=0.7.
感悟新知
例2 已知a 的算术平方根是3,b 的算术平方根是4,求 a+b 的算术平方根. 解题秘方:根据算术平方根与被开方数的关系求出a, b 的值,然后求a+b 的算术平方根.
感悟新知
解:因为a 的算术平方根是3,所以a=32=9. 因为b 的算术平方根是4,所以b=42=16. 所以a+b=9+16=25. 因为52=25,所以25 的算术平方根是5, 即a+b 的算术平方根是5.

99-7 3 2 <2.
∵32=1150,85=1160,∴32<85,

99-7 8 2 <5.
感悟新知
例 5 已知 7.16 ≈ 2.676, 71.6 ≈ 8.462, (1) 0.0716 ≈_0_._2_6_7_6__ ,71600 ≈ __2_6_7_._6__ . (2) 0.00716 ≈ _0_._0_8_4_6_2_ , 7160 ≈ __8_4_._6_2__. (3)若 a ≈ 26.76,则整数a 的值是 ____7_1_6____. 解题秘方:利用计算器求出各个算术平方根,对照 被开方数和算术平方根寻找小数点移动的规律.

平方根PPT精品课件

平方根PPT精品课件
即:x2 a(x 0), x叫做a的算术平方根,
记作:x a
特殊:0的算术平方根是0。记作 :0 0
例1 求下列各数的算术平方根:
(1)100 (2)6449 (3)0.0001
解:(1)因为 102 =100,所以100的算术平方根为10,
即 100 =10。
2
2
(2)因为 7 = 49,所以 49的算术平方根是
A.①③
B.①④
C.②③
D.②④
规律技巧总结
如何分析气压带的成因 (1)由于地面冷热不均,引起大气的膨胀上升, 或收缩下沉,从而导致近地面形成低气压区或高 气压区的原因,称之为热力原因。如赤道低气压 带和极地高气压带。
(1)图甲中字母所表示的纬度,正确的是( B )
A.A为10°N
B.C为30°N
变式训练2:读风带示意图,回答(1)~(2)题。
规律技巧总结
(1)从气压带来看,全球七个气压带是高低 相间分布的,且以赤道为轴南北对称分布。
(2)风带的分布是以赤道为轴南北对称分布 的。
由算术平方根的意义可知
小正方形 的对角线 的长是多 少呢?
x= 2
你知道 2有多大吗?
12 2 22 2 1.41421356
1 2 2
逼 1.42 2 1.52 近 法 1.4 2 1.5
1.412 2 1.422
无限不循环小数
1.41 2 1.42
1.4142 2 1.4152
25
0.81
0
判断: (1)5是25的算术平方根; (2)-6是 36 的算术平方根; (3)0的算术平方根是0; (4)0.01是0.1的算术平方根; (5)-5是-25的算术平方根。

平方根ppt课件

平方根ppt课件
在直角三角形中,直角边的平方和等 于斜边的平方。因此,斜边的平方根 是直角边的长度与另一条直角边的长 度之间的比例中项。
平方根的历史背景
平方根的早期发展
在古代文明中,人们已经意识到某些数的平方的值。例如,古埃及人和古巴比 伦人已经知道π和√2的近似值。随着数学的发展,人们对平方根的认识逐渐深 入。
电容
在计算电容时,需要使用平方根来 计算电容器容纳电荷的能力。
在日常生活中的应用
建筑测量
在建筑测量中,需要使用平方根 来计算建筑物的面积和体积。
土地测量
在土地测量中,需要使用平方根 来计算土地的面积和周长。
商业交易
在商业交易中,需要使用平方根 来计算商品的价格和利润。
05
平方根的注意事项
Chapter
平方根函数的奇偶性
平方根函数的值域
函数$y = sqrt{x}$的值域为所有非负 实数。
函数$y = sqrt{x}$是非奇非偶函数, 因为对于所有的x值,都有$sqrt{-x} neq sqrt{x}$。
平方根的几何性质
平方根与数轴的关系
在数轴上,一个数的平方根表示该数距离原点的距离。例如,4位 于2的右边,因为2是4的平方根。
平方根的除法性质
如果a和b都是正数,那么 $frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$。
平方根的加法性质
如果a和b都是正数,那么 $sqrt{a} + sqrt{b}$不一 定等于$sqrt{a + b}$。
平方根的函数性质
平方根函数的单调性
对于函数$y = sqrt{x}$,当x的值从 负无穷增加到正无穷时,y的值也从负 无穷增加到正无穷,因此该函数是单 调递增的。

《平方根》ppt课件

《平方根》ppt课件

那么这个数叫做a的平方根 (1)-9的平方根是-3 (
)
判断一个数有没有平方根,只要看这个数的符号。
一个数的平方根的表示方法:
那么x叫做a 平方根。
(4)1 的平方根是 1 (

01的平方根是 ( )
例如: 3 =9;(-3) =9; 2 即:若x2=a,那么x叫做a平方根。
∴(

2
(1)-9的平方根是-3 (
+1
-1
1
1
+1 -1
+2 -2
4
4
+2 -2
+3
9
9
-3
+3 -3
注意:开平方运算的结果往往不是唯一的 4
填空:
16 25 49 81
如果一个数的平方等于a 那么这个数叫做a的平方根
5
概念:
如果一个数的平方等于a a是x的2次幂
(1)-9的平方根是-3 (
)
即:若x2=a,
1、检验下面各题中前面的数是不是后面的数的平方根。
(2)∵ (0.3)2 = 0.09
∴ (C)
(A)0.09 是 0.3的平方根. (B)0.09是0.3的3倍. (C)0.3 是0.09 的平方根. (D)0.3不是0.09的平方根.
10
1. 判断下列说法是否正确:
× (1)-9的平方根是-3 (
)
× (2)49的平方根是7 (
)
√ (3)(-2)2的平方根是±2 (

× (4)1 的平方根是 1 (

√ (5)-1 是 1的平方根 (

× (6)7的平方根是±49 (
)
× (7)若X2 = 16, 则X = 4 (

浙教版七年级数学上册《平方根》课件(共23张PPT)

浙教版七年级数学上册《平方根》课件(共23张PPT)
1.2是1.44的 平方根
因为1.2²=1.44, 所以1.2是1.44的平方根 因为(–1.2)²=1.44, 所以–1.2也是1.44的平方根
一般地,如果一个数的平方等于ɑ,那
么这个数叫做ɑ的平方根(或二次方根)
一般地,如果一个数的平方等于ɑ,那
么这个数叫做ɑ的平方根(或二次方根)
根据定义,就学能科网 求一个数的平方根
例如:32 9 3是9的平方根 又329 3是也9的平方根
可以合写为:
32 9 9的平方根是3
∵ (_±__4_)2 = 16 , ∴ 16的平方根是__±__4_
∵(_±__0_._7_)2 = 0.49 ,∴ 0.49的平方根是_±__0_._7
∵zx(xk_w _0__)2 = 0 ,
∴ 0的平方根是__0__
(× )
(5)-1 是 1的平方根;
(√ )
(6)7的平方根是±49.
(× )
(7)若X2 = 16 则X = 4
(× )
5 2 的平方根是 5
,
2
64
64
,
52 5 ,
64 8 ,

a 0 时,
2
a
a
,
9
2 5 的算术平方根是 3 ,
5
3 2 的平方根是 3
,
若 x2 49 ,则 x 7
则:16的平方根可以写作:____1_6_=±4 3 表示:__3_的__平__方__根_____
练习一:判断正误,若错误请说明理由
(1)-zxxkw 4的平方根是-2
(2) 4 没有平方根
(3)1 的平方根是 1
(×) ( ×) (× )
(4)-1 是 1的平方根 ( √ )

平方根ppt课件

平方根ppt课件

1.下列说法正确的是( C ) A.16的算术平方根是±4 C.-1是1的一个平方根
B.任何数都有两个平方根 D.0.01的平方根是0.1
2.若一个数的平方是81,则这个数为( D )
A.3
B.-9
C.9
D.±9
3.填空:
(1)- 121 =__-__1_1___;
(2)± 1-34 =___±_12____;
例 2 填空:
(1)± 16 =__±__4____;
(2)
4 25
2 =____5____;
(3)- 62 =__-__6____;
(4) 81 的平方根是___±__3___.
训练 2.填空: (1)± 36 =__±__6____; (2)- 0.01 =__-__0_._1__; (3)± (-3)2 =__±__3____; (4) 100 的平方根是__±__1_0___.
6.【分类讨论】已知一个正数m的平方根是3a-4和2a-1. 推理探究:(1)当3a-4与2a-1相等时,求m的值;
解:由题意,得3a-4=2a-1. 解得a=3. 所以3a-4=5. 所以m=(3a-4)2=52=25.
(2)当3a-4与2a-1互为相反数时,求m的值; 归纳总结:(3)m的值为__2_5_或__1__.
±1.2
9 100
±130
11 (-7)2
± 11
±7
算术平方根
0
5 1.2
3 10 11
7
1.正数有____两____个平方根,它们互为__相__反__数__;0的平方根 是____0____;负数__没__有____平方根. 2.平方根与算术平方根的区别与联系:(1)区别:正数有两个平方根, 但只有一个算术平方根.(2)联系:正数的两个平方根中正的平方根就 是它的算术平方根,0的算术平方根和平方根都是0;只有非负数才有 平方根和算术平方根.

14.1 平方根 - 第1课时课件(共20张PPT)

14.1 平方根 - 第1课时课件(共20张PPT)
-3
-
-1
0
1
3
...
x2
...
...
一个正数有两个平方根,它们互为相反数.0只有一个平方根,是0本身.负数没有平方根.
平方根的性质:
归纳:
平方根的表示方法:正数a的正的平方根记作: 读作“根号a”.正数a的负的平方根记作: 读作“负根号a”.正数a的两个平方根记作:
2.某正数的两个不同的平方根是2a-1与-a+2,则这个数是( )A.1 B.3 C.-3 D.93.7的平方根是________.
Dห้องสมุดไป่ตู้
4.求下列各数的平方根:(1)64;(2)1.21;(3)2
拓展提升
1.若一个数的平方等于5,则这个数等于________.2.
C
3.若3x-2和5x+6是一个正数a的平方根,求这个正数a的值.
新知引入
做一做
定义:
一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根,也叫做a的二次方根.
一起探究
1.填写下表:2.观察填写后的表格,探究:(1)正数的平方根有几个,它们之间有什么关系?(2)0有平方根吗?如果有,它是什么数?(3)负数有平方根吗?
x
...
归纳小结
同学们再见!
授课老师:
时间:2024年9月15日
被开方数
读作:正、负根号a
观察框图,说一说求一个数的平方运算和求一个数的平方根运算具有怎样的关系.
谈一谈
我们把求一个数的平方根的运算,叫做开平方.
对于正数来说,开平方与平方互为逆运算.
例1 求下列各数的平方根:(1)81;(2);(3)0.04.
例题解析
随堂练习

平方根ppt课件

平方根ppt课件
平方根ppt课件
目 录
• 引言 • 平方根的基本概念 • 平方根的运算规则 • 平方根的应用 • 练习与思考 • 总结与回顾
01
引言
什么是平方根
01
平方根是一个数学术语,它指的 是一个数的二次方根。
02பைடு நூலகம்
平方根通常用符号“√”表示,例 如,4的平方根是2。
平方根的重要性
平方根在数学中有着重要的应用,例 如在解决几何问题、计算面积和体积 等方面。
平方根的概念也是进一步学习数学的 基础。
02
平方根的基本概念
平方的概念
定义
一个数乘以其自身所得的结果称 为这个数的平方。
例子
4的平方是16,因为4乘以其自身 等于16。
应用
平方的概念在生活和科学计算中都 有广泛的应用,如计算面积和体积 等。
平方根的符号和读法
01
02
03
符号
一个数的平方根可以用符 号“√”表示,读作“根 号”。
算术根是平方根中的一个特例,它只取非负的那 一根;而平方根则包含正负两个方向。
平方根与指数幂的关系
平方根和指数幂是互为逆运算。一个数的平方根 等于该数的指数幂的倒数。
3
平方根的应用
平方根在现实生活中有着广泛的应用,如测量、 工程设计、物理学等领域。
THANKS FOR WATCHING
感谢您的观看
例子
√16表示16的平方根,读 作“根号16”。
注意
平方根的符号和算术平方 根的符号不同,算术平方 根的符号是“√( )”。
平方根与算术平方根
定义
一个非负数a的平方根有两个, 它们是互为相反数的数,分别 称为a的平方根和负平方根。
例子

湘教八年级数学上册《平方根》课件(共17张PPT)

湘教八年级数学上册《平方根》课件(共17张PPT)
3.1平方根
一个正数x的平方等于a,即 x2= a,这 个正数x叫做a的算术平方根
a的算术平方根记为 a 读作“根号a”
x2 = a (x为正数)
x a
规定0的算术平方根是0,记作 0 0
被开方数a≥0 算术平方根 a ≥0
( 1) 9的 算 术 平 方 根 是3_ _
(2) 9 的算术平方根是_3 _
1.若12.53.53, 51.251.118 那么1251 1.8 ;0 .125 0.35 35 。
2.若 已7.知 452.72, 9y27.92; 那y么 745 00。
求下列各数的算术平方根,并用“ < ” 分别 把被开方数和算术平方根连接起来 1,4,9,16,25
02的 值 , 对 于a任 ,a2意 ? |数 a|
练习 1.( : m1) 2 3,则 m 4或- 2 。
2.若(a 2)2 2a,则 a的取值范围是 a ≤2 。
探究:
若(x3)2 x30, 则x的取值范围 是X ≤0 。
(2) 求 ( 4)2, (9)2, (2) 52, (4) 92, (0)2的 值 , 对 于 任 意a, 非( 负 a)2数 ?
21.414213 56
31.73205 08
52.23606 79
72.64575 13
利用计算器计算:
0.06250.25 0.625 0.791
6.25 2.5
62.5 7.91
625 25
6250 79.1
62500 250
你能直接说 625出00与 006250的 00值吗 你发现其中有什 ?么规律
( 3) 0.01的 算 术 平 方 根 是0_.1_
(4) 10 -6 的算术平方根是__

平方根ppt课件

平方根ppt课件


取值范
正数的算术平方根
正数的平方根是一
围不同
一定是正数
正一负
感悟新知
知3-讲
续表:
算术平方根
具有包
联 含关系
平方根
平方根包含算术平方根,算术平方根是
平方根中正的那个(0除外)
系 存在条 平方根和算术平方根都只有非负数才有,
件相同
0的平方根与算术平方根都是0
感悟新知
知3-讲
特别提醒
1. 任何一个数的平方都是非负数,所以求算术平方根时,被开
C. ±6是36的平方根: =±6
D. -2是4的负的平方根: =-2
感悟新知
知3-练
6-2. 求下列各式的值:
(1) ;
(2)-



解: 1 600=40.

14
2 =-
25
(3)± (-);± (-2)2=±2.
(4) . .
0.003 6=0.06.
解:因为152=225,所以225的算术平方根是15.
(2)72;
72的算术平方根是7.
感悟新知
知3-练
(3)(-6)2;
解:因为(-6)2=36=62,所以(-6)2的算术平方根是6.
(4) .
因为 16=4=22,所以 16的算术平方根是 2.
感悟新知
知3-练
例 5 已知a的算方:根据平方根的性质,找出两个平方根
之间的关系列方程求值.
感悟新知
知2-练
(1)一个正数的两个平方根分别是3a-5 和a-3,则这个正
数是多少?
解:根据题意,得(3a-5)+(a-3)=0,
解得a=2,所以这个正数为(3a-5)2=(3×2-5)2=1.

《平方根》PPT课件

《平方根》PPT课件
第六章 实数
6.1.3 平方根
判断下列各数有没有算术平方根,如果有请求出它们 的算术平方根。
9 100;1 6 ;0.25 ; 0 ; -25; 9 ;
解:因为102 100 ,所以100的算术平方根是10,即 100 10
因为
3 4
2
的算术平方根是 4 ,即
9 16
(1)100
9
(2) 16
(3) 0.25
9
100 16
3
算术平方根 10 4
平方根
10
3 4
0.25
0.5
0.5
0 -2 -3 5
0 没有 没有 5 0 没有 没有 5
7 a(a 0)
7
a
7 a
观察这个表格,你发现平方根有什么特点呢?
6.例题解析
例5 说出下列各式的意义,并求 它们的值:
• 32 =__9__
• 3² =__9__
• 42=__1_6_
• 4² =__1_6_
• 52 =__2_5_
• 5² =_2_5__
32= 9
42=16
∵(±3)²=9 ∴±3是9的平方 根,也可以说9的
平方根是±3
52=25
可逆
平方运算
开平方运算
3.例题解析
例1 求下列各数的平方根:
(1)81x2 49 0 ;(2)49x2 1 50
解:(1)原方程变形为x2 49,所以
(2)原方程变形为
x2
81
1
50
,
x2
x 49 7
1
81
, 所以x
9
1
49 49
7
(1) 36 ; (2) 0.81; (3) 49 . 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3: 求 下 列 各 式 的 值 ,
(1) 1 (2) 9 (3) 22 (4) 36 25
(5) 62 82 (6) 6 1 (7)( 7)2 4
探探索究:& 交流
怎样用两个面积为1的小正方形拼 成一个面积为2的大正方形?
如图,把两个小正方形沿对角线剪开,
将所得的4个直角三角形拼在一起,就
答:有意义的是
5 3 32
无意义的是 3
目前,户外活动中, 刺激度排名榜首的是 “蹦极”。 “蹦极”就 是跳跃者站在高约40 米以上(相当于10层 楼高)的跳台上,把一 端固定的长长的橡皮条 绑牢跳下。跳跃者在空 中享受 “自由落体”。
我们将要参加的 “蹦极”
运动的起跳点高度如果
是34.3米那么我们在空
解:(1)因为 102 =100,所以100的算术平方根为10,
即 100 =10。
2
2
(2)因为 7 = 49,所以 49的算术平方根是
8 64
64
7
8 ,即
49 = 7
64 8
(3)因为 0.012 =0.0001,所以0.0001的算术平方
根为0.01,即 0.0001 =0.01。
例2: 求 下 列 各 数 的 算 术 平方 根 , (1)121 (2)32 (3) 81 (4)( 25)2 (5)2 1
中能享受
秒钟
的“自由落体”。
(h=4.9t2)
1、 16 = _____4______. 2、16的算术平方根是____4_____. 3、 16 的算术平方根等于___2______.
4、√(-3)2 的算术平方根等于____3_____.
说出下列各式所表示的意义,并分别求出它们的值。
100 :表示100的算术平方根,值为 10 ;
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/
PPT课件:/kejian/ 数学课件:/kejian/shuxue/ 美术课件:/kejian/meishu/ 物理课件:/kejian/wuli/ 生物课件:/kejian/shengwu/
9 16
:表示
9 16
的算术平方根,值为
3 4

111
32 42
25
感谢您的阅读! 为 了 便于学习和使用, 本文档下载后内容可 随意修改调整及打印。
学习永远不晚。 JinTai College
练习: 一、填空题:
(1)121的算术平方根是 11 ;
0.25的算术平方根是 0.5 ;
1
1
256 的算术平方根是 16 ;
探究 a 1、被a可开方以数取a是任非何负数数吗,即?a 0
2、 a a是是非负什数么,数即?a 0
也就是说,非负数的“算术平方根”是非负数。
负数不存在算术平方根,即当 PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuwen/ 英语课件:/kejian/yingyu/ 科学课件:/kejian/kexue/ 化学课件:/kejian/huaxue/
25
0.81
0
练一练
一、 a的算术平方根(a>0)怎么表示 ____a_______.
二、 32 =9, 则3是9的_算__术_平__方_根___,
表示为__9___3_.
三、0的算术平方根是___0____,表示
为__0___0___.
练习:下列各式中哪些有意义?哪些无意义?
为什么?
5; 3; 3; 32 ;
第7章 实数
平方根
小欧还要准备一些面积如下的正方形画布, 请你帮他把这些正方形的边长都算出来:
面积 x2 =a 1 1.96 2.25 9
16
36
4 25
2
边长x 1 1.4 1.5 3 4 6 2 ?
5
上面的问题,实际上是已知一个正数的平方, 求这个正数的问题.
一般地,如果一个正数x的平方等于 a,即 x2 =a,那么这个正数x叫做a的 算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
9 16
:表示
9 16
的算术平方根,等于
3 4

随堂练习
1.自由下落物体的高度h(单位:m)与 下落时间t(单位:s)的关系是
h=4.9 t2 。如图,有一个物体从490m
高的建筑物上自由落下,到达地面需要 多长时间?
学以致用
例1 求下列各数的算术平方根:
(1)100 (2)6449 (3)0.0001
4
练习:求下列各数的算术平方根, (1)0.0025 (2)1.12 (3) 0.0001 (4)( 2.6)2 (5)6 1
4
判断: (1)5是25的算术平方根; (2)-6是 36 的算术平方根; (3)0的算术平方根是0; (4)0.01是0.1的算术平方根; (5)-5是-25的算术平方根。
地理课件:/kejian/dili/
历史课件:/kejian/lishi/
a
0
时,
a 无意义。
如: 6 无意义 ; 8是64的算术平方根或 64 8
3 是算术平方根的运算符号
你能根据等式:122 =144说出 144的算术平方根是多少吗? 并用等式表示出来。
下列式子表示什么意思?你 能求出它们的值吗?
得到一个面积为2的大正方形。你知道
这个大正方形的边长是多少吗?
设大正方形的边长为x,则
x2 =2.
由算术平方根的意义可知
即:x2 a(x 0), x叫做a的算术平方根,
记作:x a
特殊:0的算术平方根是0。记作:0 0
• 判断:
• (1)5是25的算术平方根; • (2)-6是 36 的算术平方根; • (3)0的算术平方根是0; • (4)0.01是0.1的算术平方根; • (5)-5是-25的算术平方根。
0 的算术平方根是 0 ;
(2)100的算术平方根是 10 ;
49 的算术平方根是 7 ;
64
8
0.81的算术平方根是 0.9 ;
(3)
2
1
2
的算术平方根是
5 2
;.09 ;
2aa 0算术平方根是 2a ;
二、说下列各式所表示的意义,并分别求出它们的值。
100 :表示100的算术平方根,等于 10 ;
相关文档
最新文档