高频开关电源的设计55400
高频开关电源的设计与制作(论文)

高频开关电源的设计与制作(论文)《高频开关电源的设计与制作》论文版本,是提取了重点来简单论述的。
这也是在毕业设计最后学校要求进行缩减后拿去参评校级优秀毕业设计的,当然这是获奖的啦!欢迎下载参考!高频开关电源的设计与制作洛阳理工学院电气工程与自动化系黄贝利指导老师杨文方2011摘要:开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。
我们设计了以MOSFET作为功率开关器件采用脉宽调制(PWM)技术,输出实时采样电压反馈信号,来控制输出电压变化的。
本文具体介绍了其系统构成,工作原理,基本控制器结构、功能和特点。
关键词:高频开关电源变换器SG3525 过流保护0. 前言随着电力电子技术的高速发展,开关电源不断向高频、高可靠、低耗、低噪声、抗干扰和模块化方向发展。
另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。
现在迫切需要物美价廉,能满足多种不同工况要求的多规格、多品种、系列化的高质量、高性能的高频高压开关电源。
虽国内已有少数厂家生产高频高压开关电源,但价格昂贵。
因此设计开发价格低廉的高频高压开关电压是大势所趋,具有良好的市场。
[1] [2]1. 系统设计原理及其框图开关电源采用功率半导体器件作为开关器件,通过周期性间断工作,控制开关器件的占空比来调整输出电压。
其中DC/DC变换器进行功率转换,它是开关电源的核心部分,此外还有起动、过流与过压保护、噪声滤波等电路。
输出采样电路检测输出电压变化,与基准电压研比较,误差电压经过放大及脉宽调制(PWM)电路,再经过驱动电路控制功率器件的占空比,从而达到调整输出电压大小的目的。
开关电源结构框图如图1所示:图1 开关电源结构框图2. 高频开关电源的电路设计2.1 电源输入滤波及桥式整流电源输入滤波又称电磁干扰(EMI),主要用于抑制电气噪声和消除电磁干扰。
经滤波后送入桥式整流电路,将其整流得到所需的300V高压直流电,然后再送入功率变换器。
(完整版)高频开关电源设计毕业设计

目录引言......................................................... 1本文概述 .................................................1.1选题背景............................................................................................................................1.2本课题主要特点和设计目标 ...........................................................................................1.3课题设计思路.................................................................................................................... 2SABER软件................................................2.1SABER简介 .....................................................................................................................2.2SABER仿真流程 .............................................................................................................2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计..................................3.1工作原理............................................................................................................................3.1.1 三相桥式全控整流电路的特点......................................................................................3.2保护电路............................................................................................................................3.2.1 过电压产生的原因..........................................................................................................3.2.2 过压保护 (1)3.2.3 过电流产生的原因 (1)3.2.4 过流保护 (1)3.3SABER仿真 (1)3.3.1 设计规范 (1)3.3.2 建立模型 (1)3.3.3 仿真结果 (1)3.3.4 结果分析 (1)3.4本章小结 (2)4功率因素校正技术 (2)4.1谐波 (2)4.1.1 谐波的危害 (2)4.1.2 谐波补偿和功率因素校正 (2)4.2有源功率因数校正 (2)4.2.1 APFC技术分类 (2)4.2.2 临界导电模式APFC的控制原理 (2)4.2.3 功率因素校正电路的缺点及解决方法 (2)4.3本章小结 (2)5软开关功率变换技术 (2)5.1软开关技术的提出 (2)5.1.1 开关损耗的成因 (2)5.2软开关技术 (2)5.2.1 软开关技术的一般实现方法 (2)5.2.2 软开关的发展历程主要分类 (2)5.3本章小结 (3)6双管正激变换器的设计 (3)6.1工作原理 (3)6.2SG3525的功能介绍以及应用 (3)6.2.1 SG3525基本工作原理和应用特点 (3)6.2.2 SG3525在双管正激开关电源中的应用 (3)6.3启动电路的改进 (3)6.4SABER仿真 (3)6.4.1 设计步骤简介 (3)6.4.2 设计规范 (3)6.4.3 开环设计(功率电路设计) (3)6.4.4 调制器设计和闭环仿真 (4)6.5仿真结果 (4)6.6本章小结 (4)7BOOST变换器的设计 (4)7.1工作原理 (4)7.2SABER仿真 (5)7.2.1 设计规范 (5)7.2.2 参数设计 (5)7.2.3 仿真结果 (5)7.3本章小结 (5)8系统集成调试 (5)9结论与展望 (5)谢辞 (5)参考文献 (5)附录 (5)引言人类已经进入工业经济时代,并处于转入高新技术产业迅猛发展的时期。
高频开关电源设计

高频开关电源设计目录引言 (1)1本文概述 (2)1.1选题背景 (2)1.2本课题主要特点和设计目标 (2)1.3课题设计思路 (3)2SABER软件 (4)2.1SABER简介 (4)2.2SABER仿真流程 (5)2.3本章小结 (5)3三相桥式全控整流器的设计 (7)3.1工作原理 (7)3.1.1 三相桥式全控整流电路的特点 (8)3.2保护电路 (8)3.2.1 过电压产生的原因 (8)3.2.2 过压保护 (8)3.2.3 过电流产生的原因 (10)3.2.4 过流保护 (10)3.3SABER仿真 (13)3.3.1 设计规范 (13)3.3.2 建立模型 (13)3.3.3 仿真结果 (14)3.3.4 结果分析 (16)3.4本章小结 (16)4功率因素校正技术 (16)4.1谐波 (16)4.1.1 谐波的危害 (16)4.1.2 谐波补偿和功率因素校正 (17)4.2有源功率因数校正 (17)4.2.1 APFC技术分类 (17)4.2.2 临界导电模式APFC的控制原理 (18)4.2.3 功率因素校正电路的缺点及解决方法 (20)4.3本章小结 (20)5软开关功率变换技术 (21)5.1软开关技术的提出 (21)5.1.1 开关损耗的成因 (22)5.2软开关技术 (23)5.2.1 软开关技术的一般实现方法 (24)5.2.2 软开关的发展历程主要分类 (26)5.3本章小结 (26)6双管正激变换器的设计 (27)6.1工作原理 (27)6.2SG3525的功能介绍以及应用 (28)6.2.1 SG3525基本工作原理和应用特点 (29)6.2.2 SG3525在双管正激开关电源中的应用 (29)6.3启动电路的改进 (31)6.4SABER仿真 (31)6.4.1 设计步骤简介 (31)6.4.2 设计规范 (32)6.4.3 开环设计(功率电路设计) (32)6.4.4 调制器设计和闭环仿真 (36)6.5仿真结果 (39)6.6本章小结 (39)7BOOST变换器的设计 (40)7.1工作原理 (40)7.2SABER仿真 (42)7.2.1 设计规范 (42)7.2.2 参数设计 (42)7.2.3 仿真结果 (43)7.3本章小结 (44)8系统集成调试 (45)9结论与展望 (46)谢辞 (47)参考文献 (48)附录 (49)引言人类已经进入工业经济时代,并处于转入高新技术产业迅猛发展的时期。
高频开关电源毕业设计论文

摘要通信电源是电信网的能源,其供电质量的好坏直接关系到整个电信网的畅通,本设计分析了国内外高频开关电源的发展和现状,研究了高频开关电源的基本原理以及高频开关电源在电力直流操作电源系统中的应用,设计出一种实用于电力系统的高频开关电源,以替代传统的相控电源。
该系统以MOSFET作为功率开关器件,构成带隔离变压器的推挽式直流斩波开关变换器,采用脉宽调制PWM技术,从输出实时采样电压反馈信号,以控制输出电压的变化,控制电路和主电路之间通过变压器或光电耦合器进行隔离,并设计了软启动和过流保护电路。
关键词高频开关电源推挽式变换器MOSFETAbstractThe correspondence power switch is the telecommunication network energy, its power supply quality quality relates directly to the entire telecommunication network unimpededness, The Paper analyze the Present situation and development of h1gh_frequency Switching power supply(HF SPS) domestically and overseas,study and research the basal principle of HF SPS and its application in electric power system,then design HF SPS applied in e1eetric power system in order to replace the old supply controlled by phase angle. The feedback voltage achieved from output is used to control the change of the output.The primary circuit and the control circuit are insulated by transformer or photo coupler. The Soft_Start and the Over Current Self_protection are also designed.Keywords HF Switch power Supply Push-pull Converter MOSFET目录摘要 (I)Abstract................................................................................................................. I I第1章绪论 (1)1.1 本设计研究的意义 (1)1.2国内外的研究现状 (2)1.3通信高频开关电源的发展 (4)1.4 设计内容 (8)第2章主电路的设计 (9)2.1 高频开关电源的基本原理 (9)2.2 滤波电路的设计 (11)2.3 整流电路的设计 (14)2.4 变换电路的设计 (15)2.4.1 变换器中的开关元件 (20)2.4.2 功率开关管的选择 (25)2.4.3 变压器的设计 (27)第3章控制电路设计 (34)3.1 控制芯片 (34)3.2 触发脉冲生成电路 (38)第4章驱动电路的设计 (42)第5章保护电路的设计 (47)5.1 谐振软开关电路 (47)5.2 MOSFET管保护电路 (50)5.2.1 门极过电压保护 (50)5.2.2 漏源过电压保护 (51)5.2.3 负载过压保护 (52)第6章辅助电源 (54)经济与社会效益分析 (56)结论 (57)致谢 (58)参考文献 (59)附录1 (61)CONTENTS Abstract (I)Chapter 1Introduction (1)1.1 The significance of this research (1)1.2The current research at home and abroad (2)1.3The development of the communication frequency switching powersupply (4)1.4 Design content (8)Chapter 2The design of the main circuit (9)2.1 The basic principles of high-frequency switching power supply (9)2.2 The design of the filter circuit (11)2.3 The design of the rectifier circuit (14)2.4 Input devices to protect (15)2.4.1 Surge current suppression (20)2.4.2 Thermistor technical analysis (25)2.4.3 The design of the transformer (27)Chapter 3 The control circuit design (34)3.1 Control chip (34)3.2 Trigger pulse generating circuit (38)Chapter 4 The design of the drive circuit (42)Chapter 5 The design of the protection circuit (47)5.1 Resonant soft-switching circuit (47)5.2 MOSFET protection circuit (50)5.2.1 Gate over-voltage protection (50)5.2.2 Drain-source voltage protection (51)5.2.3 Load over-voltage protection (52)Chapter 6Auxiliary power supply (54)The economic and social bencfit and analysis (56)Conclusion (57)Acknowledgements (58)Reference (59)Appendix 1 (61)第1章绪论通信用高频开关电源,英文译为Communication with the high-frequency switching power supply)是指用通过电路控制开关管进行高速的道通与截止。
大功率高频软开关电化学电源的设计

大功率高频软开关电化学电源的设计移相全桥软开关谐振参数1引言在电化学行业中,由于其加工对象的特殊性,一般要求电源能够提供低电压、大电流的输出,而且功率要求也很大。
目前主流的电化学电源,主要是相控电源,因其使用工频变压器且开关器件晶闸管为硬开关,所以相控电源体大笨重,效率低,噪音高,动态性能差。
与传统相控电源相比,高频开关电源具有高效节能,重量轻,体积小,动态性能好等显著的优点,这些优点都是建立在其较高的工作频率之上的。
但是在硬开关条件下,开关损耗与开关频率成正比,这阻碍了高频开关电源效率的提高及其进一步高频化。
软开关技术的出现缓解了这一矛盾,但传统的ZVS 移相全桥变换器中开关管的软开关实现范围有限,难以应用于负载变化较大的场合[1]。
本文中所设计的高频开关电化学电源,额定输出功率为30kW,电压0~15V、电流0~2000A 连续可调。
该设计采用了ZVS技术,且通过系统的方法对谐振参数进行了精确计算,并在实验中逐步优化。
因此该电源显著拓宽了功率开关管的ZVS实现范围,而且效率高,工作稳定,各项指标都满足了设计要求。
2主电路拓扑的设计全桥变换器中,高压开关管两端的暂态尖峰电压被其体二极管箝位于输入电压,耐压要求较低,宜于获得大功率输出[2]。
因此,本设计选择全桥式电路作为基本拓扑,开关管选用绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)。
高频开关电源的众多优势,归根结底是由其高频化衍生而来的。
但是,功率开关管的开关损耗制约了高频开关电源工作频率的进一步提高,因此软开关技术应运而生。
目前应用较为普遍的软开关技术是零电压开关(zero voltage switch,ZVS)技术,该技术中超前桥臂和滞后桥臂均实现ZVS。
相比于零电压零电流(zero voltage and zero current switch, ZVZCS)技术和零电流(zero current switch,ZCS)技术,ZVS移相全桥逆变器结构简单,控制、驱动电路易于设计和调试,且ZVS移相全桥逆变器可以直接利用变压器漏感作为谐振电感[3]。
高频开关电源的设计

目录1绪论 (1)1.1高频开关电源概述 (1)1.2意义及其发展趋势 (2)2高频开关电源的工作原理 (3)2.1高频开关电源的基本原理 (3)2.2高频开关变换器 (5)2.2.1单端反激型开关电源变换器 (5)2.2.2多端式变换器 (6)2.3控制电路 (8)3高频开关电源主电路的设计 (9)3.1P W M开关变换器的设计 (9)3.2变换器工作原理 (10)3.3变换器中的开关元件及其驱动电路 (11)3.3.1开关器件 (11)3.3.2M O S F E T的驱动 (11)3.4高频变压器的设计 (13)3.4.1概述 (13)3.4.2变压器的设计步骤 (13)3.4.3变压器电磁干扰的抑制 (15)3.5整流滤波电路 (15)3.5.1整流电路 (15)3.5.2滤波电路 (16)4总结 (19)参考文献 (20)1 绪论1.1高频开关电源概述八十年代,国高频开关电源只在个人计算机、电视机等若干设备上得到应用。
由于开关电源在重量、体积、用铜用铁及能耗等方面都比线性电源和相控电源有显著减少,而且对整机多相指标有良好影响,因此它的应用得到了推广。
近年来许多领域,例如电力系统、邮电通信、军事装备、交通设施、仪器仪表、工业设备、家用电器等都越来越多应用开关电源,取得了显著效益。
究其原因,是新的电子元器件、新电磁材料、新变换技术、新控制理论及新的软件(简称五新)不断地出现并应用到开关电源的缘故。
五新使开关电源更上一层搂,达到了频率高、效率高、功率密度高、功率因数高、可靠性高(简称五高)。
有了五高,开关电源就有更强的竞争实力,应用也更为扩大,反过来又遇到更多问题和更实际的要求。
这些问题和要求可归纳为以下五个方面:(l)能否全面贯彻电磁兼容各项标准?(2)能否大规模稳定生产或快捷单件特殊生产?(3)能否组建大容量电源?(4)电气额定值能否更高(如功率因数)或更低(如输出电压)?(5)能否使外形更加小型化、外形适应使用场所要求?这五个问题是开关电源能否在更广泛领域应用的关键,是五个挑战。
高频开关电源设计与应用

电源网讯传统的工频交流整流电路,因为整流桥后面有一个大的电解电容来稳定输出电压,所以使电网的电流波形变成了尖脉冲,滤波电容越大,输入电流的脉宽就越窄,峰值越高,有效值就越大。
这种畸变的电流波形会导致一些问题,比如无功功率增加、电网谐波超标造成干扰等。
功率因数校正电路的目的,就是使电源的输入电流波形按照输入电压的变化成比例的变化。
使电源的工作特性就像一个电阻一样,而不在是容性的。
目前在功率因数校正电路中,最常用的就是由BOOST变换器构成的主电路。
而按照输入电流的连续与否,又分为DCM、CRM、CCM模式。
DCM模式,因为控制简单,但输入电流不连续,峰值较高,所以常用在小功率场合。
C CM模式则相反,输入电流连续,电流纹波小,适合于大功率场合应用。
介于DCM和CCM之间的CRM称为电流临界连续模式,这种模式通常采用变频率的控制方式,采集升压电感的电流过零信号,当电流过零了,才开通MO S管。
这种类型的控制方式,在小功率PFC电路中非常常见。
今天我们主要谈适合大功率场合的CCM模式的功率因数校正电路的设计。
要设计一个功率因数校正电路,首先我们要给出我们的一些设计指标,我们按照一个输出500W左右的APFC电路来举例:已知参数:交流电源的频率fac——50Hz最低交流电压有效值Umin——85Vac最高交流电压有效值Umax——265Vac输出直流电压Udc——400VDC输出功率Pout——600W最差状况下满载效率η——92%开关频率fs——65KHz输出电压纹波峰峰值Voutp-p——10V那么我们可以进行如下计算:1,输出电流Iout=Pout/Udc=600/400=1.5A2,最大输入功率Pin=Pout/η=600/0.92=652W3,输入电流最大有效值Iinrmsmax=Pin/Umin=652/85=7.67A4,那么输入电流有效值峰值为Iinrmsmax*1.414=10.85A5,高频纹波电流取输入电流峰值的20%,那么Ihf=0.2*Iinrmsmax=0.2*10.85=2.17A6,那么输入电感电流最大峰值为:ILpk=Iinrmsmax+0.5*Ihf=10.85+0.5*2.17=11.94A7,那么升压电感最小值为Lmin=(0.25*Uout)/(Ihf*fs)=(0.25*400)/(2.17*65KHz)=709uH8,输出电容最小值为:Cmin=Iout/(3.14*2*fac*Voutp-p)=1.5/(3.14*2*50*10)=477.7uF,实际电路中还要考虑hold up时间,所以电容容量可能需要重新按照hold up的时间要求来重新计算。
电力高频开关电源的设计与分析

电力高频开关电源的设计与分析作者:时东阳来源:《消费电子》2021年第10期在当前的社会环境中,信息技术的发展速度十分迅猛,这也使得各种各样的电子设备得到了广泛的普及应用,而无论何种电子设备,其都需要稳定的电源提供支持。
而线性电源就属于一种常用的电源,然而,线性电源自身所具备的缺点也十分明显,其内部输入电压的有效范围相对较窄,输出的电压也必须要低于输入电压,并且其整体体积相对较大,在某些特殊场合当中无法达到基本的使用需求。
而开关转换器则是通过开关管,对基本的开合状态进行更加全面的控制,使得电能的各种形态能够更好地适用于开关当中,确保输入电压能够稳定控制在一定范围当中,同时,在开关电源进行正常工作的过程中,也可以采用高频的DC/DC转换器,使得开关电源转换器能够具备高频化特征,这就形成了高频开关电源。
(一)标准化以及模块化开关电源设备的标准化转变,使得开关电源的应用范围更加广泛,这也进一步突出了开关电源标准化发展的重要作用。
而实现开关电源标准化发展的关键就在于整合不同用户所提出的基本需求,并针对性地制定出相应的要求内容,以此为基础来对研制生产环节加以规范,同时,标准化还能够更好地协调科研、生产以及使用三者之间的具体关系,确保开关电源系统自身具备更加科学合理的指标性能。
而电力高频开关电源的模块化。
主要就是将部分具备着特殊功能的电路进行集成处理,实现最佳的性能,提升整体资源利用率,而在当前的社会环境中,整体集成度也呈现出一种不断提升的状态,而将电力高频开关电源当中一些特殊功能有效集成在一起,能够强化其总体性能,在便于群众使用的同时,提高应用系统自身的稳定性。
(二)数字化以及智能化电力高频开关电源设备的数字化发展,就是将现代化的数字信号应用到其中,以此来代替传统的模拟信号,从而更好地完成一些制定功能。
而在当前嵌入式的发展模式当中。
可以明显看出开关电源数字控制以及模拟控制这两种现代化技术,其必然会在未来的发展进程中处于一种长期共存的状态,这也进一步突出了数字化发展的重要性。
高频开关电源的设计

高频开关电源的设计摘要从90年代开始,开关电源逐步得到广泛的应用。
开关电源的核心是DC-DC变换器。
影响开关电源的主要因素是其拓扑结构、开关频率、控制方式及关键元器件,如开关管、储能电感或脉冲变压器等。
本文首先介绍了本次设计的高频开关电源的现实意义和需要达到的目标要求,并介绍了主电路和控制电路的设计,采用了理论分析和实际硬件实验相结合的研究方法。
该系统以MOSFET作为功率开关器件,构成全桥开关变换器,整个电源由输入电路、主逆变器、输出滤波电路、辅助电源等部分组成。
系统主电路逆变部分采用了脉宽调制技术(PWM),PWM信号由集成控制器UC3875产生,从输出端实时采样电压、电流反馈信号,以控制输出电压和电流的变化。
实现了功率开关管的零电压开通和近似零电压关断,设计出高效率(达90%)、高可靠性、低电磁干扰的高频开关整流模块(48V/20A)。
关键词:高频开关电源;相移脉宽调制;零电压开关;DC-DC变换AbstractSince the nineteen's of last century, switch power has been used worldwide step by step. The core of switch power is DC-DC converter. The main factors that afect the performance of switch power is its topology, switch frequency,control mode and its key device units such as the switch tube, energy-storage inductor and pulse transformer.This paper introduces the practical significance of the high frequency switching power supply designed by us, and introduces the corresponding railway standards of the People'sRepublic of China. The main circuit and the control circuit are introduced in this paper, the research method includes the theory analysis and the practical experiments.The full-bridge converter is made up of four MOSFET. The system consists of the AC input stage, main inverter, output low-pass filter, auxiliary power supply etc. The theory of PWM is used in the system, and single of PWM is offered by controller UC3875.The feedback voltage and current achieved from output is used to control the change of the output. The Zero-Voltage Switching on and approximate Zero-Voltage Switching of the power devices are realized. High frequency switching rectifier module (48V/20A) has been designed with high efficiency (90%), high reliability and low EMI.Key words:High frequency switching power, Phase-Shifting PWM ZVS,Zero Voltage Switching,DC-DC Conversion高频开关电源的构成及其基本原理高频开关电源是将交流输入(单相或三相)电压变成所需要的直流电压的装置。
高频开关电源原理

高频开关电源原理
高频开关电源是一种常用的电源设计方案,采用高频开关器件(如MOSFET或IGBT)作为开关元件,在高频范围内进行开关操作。
其工作原理如下:
1. 输入电源:高频开关电源的输入通常为交流电源,如220V
的市电。
首先,接入整流电路将交流电转换为直流电。
整流电路通常使用二极管桥整流器,将交流电的负半周整流为正半周的直流电。
2. 输入滤波:为了消除输入电源的干扰和波动,需要进行输入滤波。
输入滤波电路通常采用电容和电感的组合,能够削弱输入信号的高频成分和脉冲噪声。
3. 控制电路:高频开关电源需要一套精确的控制电路来实现高频开关器件的开关操作。
此控制电路通常包括PWM(脉宽调制)控制器,用于产生高频开关信号,以及反馈电路,用于监测输出电压并调节控制信号。
4. 高频开关器件:在高频开关电源中,常使用MOSFET或IGBT等器件作为开关元件。
这些器件具有较低的开关损耗和
较高的开关速度,能够在高频范围内进行有效的开关操作。
5. 输出变换:高频开关电源的输出通常需要进行变换,以适应不同电路的需求。
输出变换电路包括变压器及滤波电路,能够将输入电压变换为合适的输出电压,并滤除输出中的高频噪声。
6. 输出调节:高频开关电源需要对输出电压进行精确的调节。
通过反馈电路监测输出电压,并通过PWM控制器调节开关器件的开关频率和占空比,实现输出电压的稳定性。
总结起来,高频开关电源通过高频开关器件的开关操作,在输入电源经过整流、滤波、变换和调节等处理后,得到稳定的输出电压。
它具有高效率、小体积、轻重量等优点,广泛应用于电子设备、通信设备等领域。
高频开关电源设计

毕业论文(设计)题目:高频开关电源设计(英文):High Frequency Switching PowerSupply院别:自动化学院专业:电气工程及其自动化姓名:学号:指导教师:日期:摘要本文分析了国内外高频开关电源的发展和现状,研究了高频开关电源的基本原理以及高频开关电源在电力直流操作电源系统中的应用,设计出一种实用于电力系统的高频开关电源,以替代传统的相控电源。
该系统以MOSFET作为功率开关器件,构成桥式BACK开关变换器,采用脉宽调制PWM技术,PWM控制信号由集成控制器UC3825产生,从输出实时采样电压反馈信号,以控制输出电压的变化,控制电路和主电路之间通过变压器或光电藕合器进行隔离,并设计了软启动和过流保护电路。
通过实验证明该系统能安全、可靠运行,达到了设计要求。
【关键词】:高频开关电源,Buck变换器,PWM,MOSFETAbstraCtThe PaPer analyze the Present situation and development o f h1gh_frequeney Switehing power supply(HF SPS) domestieally and overseas,study and researeh the basal prineiple of HF SPS and its applieation in electric power system,then design HF SPS applied in e1eetric power system in order to replace the old supply controlled by phase angle。
The buek full_brige converter is made of four MOSFET,and the theory of PWM is used。
The signal of PWM is offered by controller UC3825. The feedbaek voltage achieved from output is used to control the change of the output.The primary circuit and the control cireuit are insulated by transformer or photocoupler. The Soft_Start and the Over Current Self_protcetion are also designed。
高频开关电源的设计

路 的设 计 原则 .并 给 出 了设 计方案 。 为 以后 设 计 大功率 高频 开关 电源提 供 参考 。
关 键 词 : 高 频 开 关 电 源 脉 宽 调 制 P M 主 电 路 逆 变 控 制 电路 W
1 引言
开关 电源 是 直流 电源 系统 的一个 重要 组成 部 分 。高频 开关 技术 是采 用高 频 功率半 导 体 器 件 和 脉 宽 调 制 fWM)技 术 的 功 率 变换 技 术 。 开关 电源 的 逆 变单 元 工 作 在 高 频 开 关 状 P
... . .. ... .. .. .
_J
1
,
-
EM I
c T
一
N: P
D D 3 4
2 2
●
Ns
}
s l ・ D 2 6
—
———]
l
J- 卜 _
l
图 1 半 桥 式 高频 开 关 电 源 主 电路
此 电路 中 ,E 滤 波器 主要 用 于抑 制 交 流 电 网与 直流 变换 电路 之 间 的高频 噪声 干扰 。 MI
D1 D  ̄ 4构 成整 流 电路 ,将 2 0 2 V交 流 电转 换 成 直流 电 ,C 、C 、S 、S 、D 、D 1 2 1 2 5 6构 成 半 桥 式 DC A — C变 换 器 ,将 直 流 电压 逆 变 为 高频 交 流 方波 电压 ,并经 过 高 频 变压 器 T输 出 。
态 。 由于 工作 频率 高 ,电路 中的滤 波 电感 和 电容 的体 积可 大大 缩小 ;同时 ,高频 变 压器 取
代 了工频 变压 器 .则变 压 器 的体 积减 小 、重 量降 低 :另外 ,由于开 关 管高频 工作 ,功率 损
高频开关电源系统整流电路设计

高频开关电源系统整流电路设计
要设计一套通信用开关电源系统,首先要明白对它的全面要求,然后再
设计系统的各个部分。
高频开关电源主回路和控制回路所用的电路形式,元器件,控制方式都发展很快。
它们的设计具有特殊的内容和方法。
1 设计要求和具体电路设计
通信基础开关电源系统的关键部分是开关电源整流模块。
整流模块的规
格很多,结合在工
作中遇到的实际情况,提出该模块设计的硬指标如下:
1) 电网允许的电压波动范围
单相交流输入,有效值波动范围:220 V±20%,即176~264 V; 频率:45~65 Hz。
2) 直流输出电压,电流
输出电压:标称-48V,调节范围:浮充,43~565V;均充,45~58V。
输出电流:额定值:50A。
3) 保护和告警性能
①当输入电压低到170 VAC 或高到270 VAC,或散热器温度高到75 ℃时,自动关机。
②当模块直流输出电压高到60 V,或输出电流高到58~60 A 时,自动关机。
③当输出电流高到53~55 A 时,自动限流,负载继续加大时,调低输出电压。
4) 效率和功率因数
模块的效率不低于88%,功率因数不低于0.99。
高频开关电源的EMC设计

高频开关电源的EMC设计0 引言目前,在计算机及外围设备、通信、自动控制、家用电器等领域中大量使用高频开关电源,但高频开关电源的突出缺点是能产生较强的电磁干扰(Electro Magnet-ic Interference,EMI)。
由于高频开关电源的一次整流桥是非线性器件,其形成的电流是严重失真的正弦半波,含有丰富的高次谐波,形成了一系列连续、脉动和瞬变干扰。
因此,在高频开关电源设计中必须考虑电磁兼容性(Electro Magnet-ic Compatbility,EMC)的设计。
电网完全在自然环境中,连接着各种电子电气设备,有着复杂的电磁转换过程,可能会引起一些问题:外来噪声使高频开关电源设备的控制电路出现误动作;通信设备由于高频开关电源设备的噪声而出现误动作;高频开关电源设备对电网产生噪声污染;高频开关电源设备向空间散发噪声。
根据上述情况,针对高频开关电源存在的缺点,在此对其电路及印制电路板(Printed Circuit Board,PCB)进行了电磁兼容性的设计研究。
1 高频开关电源的EMC 设计1.1 高频开关电源主电路组成高频开关电源主电路组成框图如图1 所示,它由输入滤波电路、高频逆变电路、输出整流电路及输出直流滤波电路等组成。
1.2 输入滤波电路的EMC 设计输入滤波电路的EMC 设计如图2 所示。
VD2 为瞬态电压抑制二极管,Rv1 为压敏电阻,它们都具有很强的瞬变浪涌吸收能力,能很好地保护后级元气件或电路免遭浪涌电压的破坏。
Z1 为直流抗电磁干扰滤波器,必须良好接地,且接地线要短。
L1 和C1 组成低通滤波电路,当L1 的电感量较大时,必须增加VD1 和R1 形成续流回路,以吸收L1 断开时释放时的电场能量,否则,L1 产生的电压尖峰就会形成EMI。
L1 的磁芯使用闭合磁芯,可以避免开环磁芯的漏磁场形成EMI。
C1 采用大容量的电容,可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1绪论 (1)1.1高频开关电源概述 (1)1.2意义及其发展趋势 (2)2高频开关电源的工作原理 (3)2.1 高频开关电源的基本原理 (3)2.2 高频开关变换器 (5)2.2.1 单端反激型开关电源变换器 (5)2.2.2 多端式变换器 (6)2.3 控制电路 (8)3高频开关电源主电路的设计 (9)3.1 PWM开关变换器的设计 (9)3.2 变换器工作原理 (10)3.3 变换器中的开关元件及其驱动电路 (11)3.3.1 开关器件 (11)3.3.2 MOSFET的驱动 (11)3.4高频变压器的设计 (13)3.4.1 概述 (13)3.4.2 变压器的设计步骤 (13)3.4.3 变压器电磁干扰的抑制 (15)3.5 整流滤波电路 (15)3.5.1 整流电路 (15)3.5.2 滤波电路 (16)4 总结 (19)参考文献 (20)1 绪论1.1高频开关电源概述八十年代,国高频开关电源只在个人计算机、电视机等若干设备上得到应用。
由于开关电源在重量、体积、用铜用铁及能耗等方面都比线性电源和相控电源有显著减少,而且对整机多相指标有良好影响,因此它的应用得到了推广。
近年来许多领域,例如电力系统、邮电通信、军事装备、交通设施、仪器仪表、工业设备、家用电器等都越来越多应用开关电源,取得了显著效益。
究其原因,是新的电子元器件、新电磁材料、新变换技术、新控制理论及新的软件(简称五新)不断地出现并应用到开关电源的缘故。
五新使开关电源更上一层搂,达到了频率高、效率高、功率密度高、功率因数高、可靠性高(简称五高)。
有了五高,开关电源就有更强的竞争实力,应用也更为扩大,反过来又遇到更多问题和更实际的要求。
这些问题和要求可归纳为以下五个方面:(l)能否全面贯彻电磁兼容各项标准?(2)能否大规模稳定生产或快捷单件特殊生产?(3)能否组建大容量电源?(4)电气额定值能否更高(如功率因数)或更低(如输出电压)?(5)能否使外形更加小型化、外形适应使用场所要求?这五个问题是开关电源能否在更广泛领域应用的关键,是五个挑战。
(简称五挑战)把挑战看成开关电源发展的动力和机遇,一向是电源科技工作者的态度。
以功率因数为例,AC-DC开关电源或其他电子仪器输入端产生功率因数下降问题,用什么办法来解决?毫无疑问,利用开关电源本身的工作原理来解决开关电源应用中产生的问题是最积极的态度。
实践中,用DC-DC开关电源和有源功率因数校正的开关电源,(成本比单机增加20%):成功解决了这个问题。
现在,又进一步发展成单级有功率因数校正的开关电源,(成本只增加5%);在三相升压式单开关整流器中减少谐波方法,有人采用注入六次谐波调脉宽控制,抑制住输入电流的五次谐波,解决了电流谐波畸变率小于100k的要求。
1.2意义及其发展趋势发电厂和变电所中,为了供给控制、信号、保护、自动装置、事故照明、直流油泵和交流不停电电源装置等的用电,要求有可靠的直流电源。
为此,发电厂和ll0KV以上的变电所通常用蓄电池作为直流电源,对上述的电源要求有高度的可靠性和稳定性,电源容量和电压质量均应在最严重的事故情况下保证用电设备的可靠工作。
根据电力系统的要求,蓄电池直流系统的电压等级为:1、控制负荷专用的蓄电池组的电压采用11OV。
2、动力负荷和直流事故照明专用的电压采用220V。
3、国的发电厂和变电所的直流电压大多采用220V。
所以,22OV直流电源在电力系统的操作电源系统中占有非常重要的地位。
高频开关电源的设计目前,直流电源主要包括三种:相控电源、线性电源、开关电源。
相控电源即相位控制型稳压电源,它的主要原理就是将市电直接经过整流滤波提供直流,由改变晶闸管的导通相位角来控制整流器的输出电压,所以如果采用适当的控制电路使晶闸管的导通相位根据输入电压或负载电流变化自动调整,整流器的输出电压就能稳定不变。
线性电源也是一种常用的稳压电源,通过串联调整管可以连续控制,它的功率调整管总是工作在放大区,流过的电流是连续的。
线性稳压电源通常包括:调整管、比较放大器、反馈采样部分以及基准电压部分。
开关电源的功率调整管工作在开关状态,功率损耗小,效率高,由于开关工作频率高,变压器的体积大大减小,滤波电感、电容数值较小。
在目前的电力系统中,大部分用的都是相控电源,但是,相控电源用的是工频变压器,体积大,而且输出电压的纹波系数大,监控系统不完善,采用主从备份方式,用户使用不方便,对电力系统新的要求也达不到标准,另外,由于充电设备与蓄电池并联运行,纹波系数较大,会出现蓄电池脉动充电放电,影响蓄电池的使用寿命。
而高频开关电源体积小、重量轻、频率高、输出纹波小、模块叠加、N+1热备份设计、便于计算机管理等优点,符合现代电源的潮流。
所以,电力系统中的操作电源有高频开关电源取代相控电源的趋势。
2 高频开关电源的工作原理2.1 高频开关电源的基本原理高频开关电源是将交流输入(单相或三相)电压变成所需的直流电压的装置。
基本的隔离式高频开关电源的原理框图如图2-1-1所示,高频开关电源主要由输入电网滤波器、输入整流滤波器、高频变换器、输出整流滤波器、控制电路、保护电路、辅助电源等几部分组成。
其基本原理是:交流输入电压经电网滤波、整流滤波得到一直流电压,通过高频变换器将直流电压变换成高频交流电压,再经高频变压器隔离变换,输出所需的高频交流电压,最后经过输出整流滤波电路,将变换器输出的高频交流电压整流滤波得到需要的高质量、高品质的直流电压。
图 2-1-1 开关电源基本原理框图以全桥式变换器高频开关电源为例,图2-1-2表示了交流输入电压到最后输出所需直流电压的各环节电压波形变换流程。
图 2-1-2 高频开关电源的波形变化下面就图2-1-1中每一部分的作用、原理分别简述如下:(1)输入电网滩波器:消除来自电网的各种干扰,如电动机起动,电器开关的合闸与关断,雷击等产生的尖峰干扰。
同时也防止开关电源产生的高频噪声向电网扩散而污染电网。
一个典型的三相输入电网滤波器如图2-1-3所示:图 2-1-3 三相电网滤波器示意图(2)输入整流滤波器:将电网输入的交流电进行整流滤波,为变换器提供波纹较小的直流电压。
而且,当电网瞬时停电时,滤波电容器储存的能量尚能使开关电源输出维持一定的时间。
对三相交流电输入,其典型电路如图2-1-4所示:图 2-1-4 输入整流滤波器电路图(3)高频开关变换器(DC\AC):它是开关电源的关键部分。
它把直流电压变换成高频交流电,经过高频变压器再变成所需要的隔离输出交流电压。
(4)输出整流滤波:将变换器输出的高频交流电压滤波得到需要的直流电压。
同时还防止高频噪音对负载的干扰。
电路原理与输入滤波器相同。
(5)控制电路:检测输出直流电压,与基准电压比较,进行隔离放大,调制振荡器输出的脉冲宽度,从而控制变换器以保持输出电压的稳定。
一般控制电路还包括启动及禁止电路。
(6)保护电路:在开关电源发生过电压、过电流或短路时,保护电路使开关电源停止工作以保护负载和开关电源本身。
有的还有发出报警信号的功能。
(7)辅助电源:为控制电路和保护电路提供满足一定技术要求的直流电源,以保证它们工作稳定可靠。
辅助电源可以是独立的,也可以由开关电源本身产生。
2.2 高频开关变换器在高频开关电源中,高频开关变换器是核心部分,围绕开关变换器将会有很多的控制和保护电路,变换器的种类的选取将会影响整个功率器件耐压程度等很多参数,也会对系统的其它各部分产生相应的影响,所以,高频开关变换器的设计是很重要的一个环节,我们在后面的章节将会对它进行详细地分析和介绍。
按电力电子技术的习惯称谓,AC-DC称为整流,包括整流及离线式变换,DC-AC称为逆变,AC-AC称为交-交变频(包括变压),DC-DC称为直流一直流变换。
所以,广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一种形态的主电路叫作开关变换器电路。
转变时用自动控制闭环稳定输出并有保护环节则称开关电源。
开关电源的主要部分是DC-DC变换器,它是转换的核心,涉及频率变换。
值得指出,常见到离线式开关变换器名称,是AC-DC变换,也常称开关整流器,它不单是整流的意义,而且整流后又作了DC-DC变换,离线是指变换器中有高频变压器隔离。
2.2.1单端反激型开关电源变换器图2-2-1所示为单端反激型开关电源的主回路,当功率晶体管T导通时,高频变压器的原边电压等于输入电源电压U,其极性为上正下负。
与之对应的高频开关电源的设计频变压器副边电压为上负下正,此时整流二极管D承受的是反向偏置电压,故不导通。
负载R L上的电流是靠输出电容C0的放电电流来提供,此时,高频变压器将电能变为磁能储存起来,而在晶体管受控截止时,高频变压器原、副边电压极性改变。
整流二极管D(和反相型开关电源中的续流二极管相对应)由反偏变为正偏导通,高频变压器就将原先储存的磁能变为电能,通过整流二极管向负载供电和向输出电容C0充电。
此电路的整流二极管D是在功率晶体管截止时才导通的。
故称此电路为反激型电路。
图 2-2-1 单端反激型开关电源主回路2.2.2多端式变换器多端式变换器的主要回路最基本的有以下三种:推挽、半桥、全桥。
如图2-2-3所示:a. 推挽式开关电源主回路b. 半桥式式开关电源主回路C. 全桥式开关电源主回路图 2-2-3(a.b.c) 三种多端式变换器这里以全桥变换器说明它的功率变换原理:全桥式开关电源变换器的原理图如图2-2-3c所示,VT1、VT4与VT2、VT3由基极激励驱动而轮流通断,从而将直流电压Vi变换成高频矩形波交流电压,然后通过Dl、D2整流,L、C2滤波后给负载提供稳定的直流电压。
四个功率开关管组成桥的四臂,桥的一对交点输入直流电压,另一对交点接高频变压器原边绕组。
VT1和VT4由一组开关信号驱动,VT1和VT4导通时电流方向对原边绕组是又上向下。
过半个周期,VT1和VT4截止,VT2和VT3在另一组驱动信号下导通,导通电流由电源Vi正端经VT3,原边绕组由下向上,VT2流向电源负端。
两对开关管是轮流导通,导通时绕组电压近似等于Vi。
每只开关管均为并联一只高速功率二极管,其钳位作用以减小开关管由导通转换为截止时,变压器产生的电压尖峰,以保护开关管不被击穿。
全桥式变换器的优点是:主变压器原边绕组比推挽式少了一半,变压器利用率提高;开关管可用低耐压(如400V)、大电流的功率管输出功率大。
DC-DC可分为PWM 式、谐振式和它们的结合式。
为保证输出电压不随输入电压和负载变化,谐振式主要靠调节开关频率,属于调频系统。
PWM型开关电源具有控制简单,稳态直流增益,与负载无关等优点,缺点是开关损失随开关频率的提高而增加。
调频系统不如PWM 开关那样易控,加上谐振电压和电流峰值高,开关应力大。