大连理工大学 材料科学基础 第五章 回复与再结晶
第五章塑性变形与回复再结晶--习题集
psi是一种压力单位,定义为英镑/平方英寸,145psi=1MpaPSI英文全称为Pounds per square inch。
P是磅pound,S是平方square,I 是英寸inch。
把所有的单位换成公制单位就可以算出:1bar≈14.5psi1 KSI = 1000 lb / in.2 = 1000 x 0.4536 x 9.8 N / (25.4 mm)2 = 6.89 N / mm2材料机械强度性能单位,要用到试验机来检测Density of Slip PlanesThe planar density of the (112) plane in BCC iron is 9.94 atoms/cm2. Calculate the planar density of the (110) plane and the interplanar spacings for both the (112) and the (110) planes. On which type of plane would slip normally occur?(112) planar density:The point of this problem is that slip generally occurs in high density directions and on high density planes. The high density directions are directions in which the Burgers' vector is short, and the high density planes are the "smoothest" for slip.It will help to visualize these two planes as we calculate the atom density.The (110) plane passes through the atom on the lattice point in the center of the unit cell. The plane is rectangular, with a height equal to the lattice parameter a0and a width equal to the diagonal of the cube face, which is 2 a0.Lattice parameter (height):Width:Thus, according to the geometry, the area of a (110) plane would beThere are two atoms in this area. We can determine that by counting the piece of atoms that lie within the circle (1 for the atom in the middle and 4 times 1/4 for the corners), or using atom coordinates as discussed in Chapter 3. Then the planar density isThe interplanar spacing for the (110) planes isFor the (112) plane, the planar density is not quite so easy to determine. Let us draw a larger array of four unit cells, showing the plane and the atoms it passes through.This plane is also rectangular, with a base width of √2 a0 (the diagonal of a cube face), and a height of √3 a0 (the body diagonal of a cube). It has four atoms at corners, which are counted as 1/4 for the portion inside the rectangle (4 x 1/4) and two atoms on the edges, counted as 1/2 for the portion inside the rectangle (2 x 1/2). This is a total of 2 atoms.Base width:Height:Hence, we can calculate the area and density as for the (110) plane.The planar density and interplanar spacing of the (110) plane are larger than that of the (112) plane, thus the (110) plane would be the preferred slip plane1.有一根长为5 m,直径为3mm的铝线,已知铝的弹性模量为70GPa,求在200N的拉力作用下,此线的总长度。
材料科学基础——第五章答案
第五章答案5-1略。
5-2何谓表面张力和表面能?在固态和液态这两者有何差别?解:表面张力:垂直作用在单位长度线段上的表面紧缩力或将物体表面增大一个单位所需作的功;σ=力/总长度(N/m)表面能:恒温、恒压、恒组成情况下,可逆地增加物系表面积须对物质所做的非体积功称为表面能;J/m2=N/m液体:不能承受剪应力,外力所做的功表现为表面积的扩展,因为表面张力与表面能数量是相同的;固体:能承受剪切应力,外力的作用表现为表面积的增加和部分的塑性形变,表面张力与表面能不等。
5-3在石英玻璃熔体下20cm处形成半径5×10-8m的气泡,熔体密度为2200kg/m3,表面张力为0.29N/m,大气压力为1.01×105Pa,求形成此气泡所需最低内压力是多少?解:P1(熔体柱静压力)=hρg=0.2×2200×9.81=4316.4Pa附加压力=2×0.29/5×10-8=1.16×107Pa故形成此气泡所需压力至少为P=P1+△P+P大气=4316.4+1.16×107+1.01×105=117.04×105Pa5-4(1)什么是弯曲表面的附加压力?其正负根据什么划分?(2)设表面张力为0.9J/m2,计算曲率半径为0.5μm、5μm的曲面附加压力?解:(1)由于表面张力的存在,使弯曲表面上产生一个附加压力,如果平面的压力为P0,弯曲表面产生的压力差为△P,则总压力为P=P0+△P。
附加压力的正负取决于曲面的曲率,凸面为正,凹面为负。
(2)根据Laplace公式:可算得△P=0.9×(1/0.5+1/5)=1.98×106Pa5-5什么是吸附和粘附?当用焊锡来焊接铜丝时,用挫刀除去表面层,可使焊接更加牢固,请解释这种现象?解:吸附:固体表面力场与被吸附分子发生的力场相互作用的结果,发生在固体表面上,分物理吸附和化学吸附;粘附:指两个发生接触的表面之间的吸引,发生在固液界面上;铜丝放在空气中,其表面层被吸附膜(氧化膜)所覆盖,焊锡焊接铜丝时,只是将吸附膜粘在一起,锡与吸附膜粘附的粘附功小,锉刀除去表面层露出真正铜丝表面(去掉氧化膜),锡与铜相似材料粘附很牢固。
材料科学基础重点总结4 材料形变和再结晶
5 材料的形变和再结晶材料在加工制备过程中或是制成零部件后的工作运行中都要受到外力的作用。
材料受力后要发生变形,外力较小时产生弹性变形;外力较大时产生塑性变形,而当外力过大时就会发生断裂。
本章主要内容:一.晶体的塑性变形单晶体的塑性变形多晶体的塑性变形合金的塑性变形塑性变形对材料组织与性能的影响二.回复和再结晶冷变形金属在加热时的组织与性能变化回复再结晶晶粒长大再结晶织构与退火孪晶5.1 晶体的塑性变形塑性加工金属材料获得铸锭后,可通过塑性加工的方法获得一定形状、尺寸和机械性能的型材、板材、管材或线材。
塑性加工包括锻压、轧制、挤压、拉拔、冲压等方法。
金属在承受塑性加工时,当应力超过弹性极限后,会产生塑性变形,这对金属的结构和性能会产生重要的影响。
5.1.1 单晶体的塑性变形单晶体塑性变形的两种方式:滑移孪生滑移:滑移是晶体在切应力的作用下,晶体的一部分相对于另一部分沿着某些晶面和晶向发生相对滑动。
滑移线:为了观察滑移现象,可将经良好抛光的单晶体金属棒试样进行适当拉伸,使之产生一定的塑性变形,即可在金属棒表面见到一条条的细线,通常称为滑移线.滑移带:在宏观及金相观察中看到的滑移带并不是单一条线,而是由一系列相互平行的更细的线所组成的,称为滑移带。
滑移系:塑性变形时位错只沿着一定的晶面和晶向运动,这些晶面和晶向分别称为“滑移面”和“滑移方向”。
一个滑移面和此面上的一个滑移方向结合起来组成一个滑移系。
滑移的临界分切应力τk晶体的滑移是在切应力作用下进行的,但其中许多滑移系并非同时参与滑移,而只有当外力在某一滑移系中的分切应力达到一定临界值时,该滑移系方可以首先发生滑移,该分切应力称为滑移的临界分切应力。
滑移的特点晶体的滑移并不是晶体的一部分相对于另一部分同时做整体的刚性的移动,而是通过位错在切应力作用下沿着滑移面逐步移动的结果,因此实际滑移的临界分切应力τk 比理论计算的低得多。
(滑移面为原子排列最密的面)单晶体滑移时,除滑移面发生相对位移外,往往伴随着晶面的转动。
5 回复与再结晶
冷加工:在再结晶温度以下的塑性变形 过程。发生加工硬化。 (温加工:只发生动态回复的变形;) 热加工:在再结晶温度以上进行的塑性 加工过程。(硬化、回复、再 结晶。) 热 加 工 温 度 : T 再 <T 热 加 工 <T 固 - 100 ~ 200℃。
(2)热加工后的组织与性能
5.3 再结晶
再结晶是低位错密度、等轴状晶粒取代 高缺陷密度、拉长晶粒的过程。 再结晶是形核长大过程,但不是相变 再结晶的驱动力也是形变储存能(位错 能量) 再结晶彻底改变变形组织,消除加工硬 化等冷变形影响。
5.3.1再结晶的形核与长大
(1) 形核 再结晶形核就是形成小块低缺陷的区域;是依靠可动 性较大界面的突发式移动实现的。 界面的移动性取决于两个因素
织构的控制与应用
冲压用钢板,存在织构,冲压后冲压件出现薄 厚不均,并且在冲压件边缘出现一些凸出部分 (称为“制耳”),要求尽量减小织构。 超深冲钢板(IF钢),希望沿板面任何方向与 板面法线的塑性应变比尽可能大,要求较强的 {111}面平行于板面的织构。 电工用的硅钢(Fe-3.5%Si)板希望有{110} <001>织构(高斯织构)和{100}<001>织构 (立方织构),这样的钢板有很好的导磁性能 (一般硅钢片的织构是二次再结晶织构)。
再结晶的应用
再结晶退火
恢复变形能力 改善显微组织 消除各向异性 提高组织稳定性
再结晶温度:T再+100~200℃。
5.4 晶粒长大
加热时,晶粒会逐渐长大,降低界面面积。 冷变形金属在再结晶完成后,继续加热也会发生晶粒 长大。 晶粒长大是通过大角度界面的移动、大晶粒吃掉小晶 粒方式进行的。 驱动力:界面能降低;
材料科学基础第五章
晶体的滑移过程不仅没有降低位错数量,反而大 大增加,这意味着,在变形过程中位错以某种机制 增殖了。 (1)Frank-Read 位错源 (Frank-Read Source)
由弗兰克-瑞德源提出的一种位错增殖机制
F-R源动作过程 材料科学基础第五章
刃位错AB的两端A和B被位错用结点钉扎住
塑性变形
外形尺寸变化
内部组织、性能变化
材料科学基础第五章
※ 1. 弹性和粘弹性(Elasticity and Viscoelasticity)
一. 弹性变形(Elastic Deformation)
二. 低碳钢的拉伸试验
三. 弹性变形: 可逆性
四.
外力去处后可完全恢复
五.
材料科学基础第五章
本质:可从原子间结合力的 角度来了解之
材料科学基础第五章
转动的原因 两对力偶:
s1 -s2
为上下两滑移面的法向分应力
在该力偶作用下,使滑移面转至轴 向平行
t1-t2 垂直于滑移方向的分切应力
在该力偶作用下,使滑移方向转到最大 分切应力方向
t1 -t2 是//滑移方向的真正引起滑
移的有效分切应力
材料科学基础第五章
晶体滑移晶体转动位向变化取向因子变化 分切应力值变化
几何 硬 化现象 软
5. 多系滑移 Multiple slip
外力下,滑移首先发生在分切应力最大,且te tc的滑 移系-原始滑移系(primary slip system)上。但由于伴 随晶体转动空间位向变化另一组原取向不利(硬取向) 滑移系逐渐转向比较有利的取向(软取向),从而开始滑 移,形成两组(或多组)滑移系同时进行或交替进行,称 为多系滑移。
材料科学基础第五章
• 聚合物的变形行为与其结构特点有关。聚合物由 大分子链构成,这种大分子链 一般都具有柔性(但柔 性链易引起粘性流动,可采用适当交联保证弹性), 除了整个分子的相对运动外,还可实现分子不同链段 之间的相对运动。
• 在热加工过程中,金属内部同时进行着加工硬化和再结晶软化这两个 相反的过程,不过此时的再结晶是在加工的同时发生的,称为动态再 结晶。热加工后金属的性能就取决于硬化和软化这两个因素的抵消 程度。
5.4.1动态回复与动态再结晶
• 1.动态回复
特点:流变应力不随应变而变的稳态流变。 动态回复时应力-应变曲 线 :
• 3.退火孪晶
某些面心立方金属和合金如铜及铜合金,镍及镍合金和奥氏 体不锈钢等冷变形后经再结晶退火后,其晶粒中会出现孪晶。
三种典型的退火孪晶形态:
A为晶界交角处的退火孪晶; B为贯穿晶粒的完整退火孪晶; C为一端终止于晶内的不完整 退火孪晶。
退火孪晶的形成机制:一般认为退火孪晶是在晶粒生长过程 中形成的。当晶粒通过晶界移动而生长时,原子层在晶界角 处(111)面上的堆垛顺序偶然错堆,就会出现一共格的孪 晶界并随之而在晶界角处形成退火孪晶。
• 蠕变曲线
蠕变曲线上的任一点的斜率,表示该点的蠕变速 率。
蠕变过程分为三个阶段:
• Ⅰ瞬态或减速蠕变阶段
• Ⅱ稳态蠕变阶段
• Ⅲ加速蠕变阶段
• 蠕变机制
• a.位错蠕变:在蠕变过程中,滑移仍然是一种重 要的变形方式。
• b.扩散蠕变:当温度很高和应力很低时,扩散蠕 变是其变形机理。它是在高温条件下空位的移动 造成的。
814材料科学基础-第五章 材料的形变和再结晶知识点讲解
北京科技大学材料科学与工程专业814 材料科学基础主讲人:薛春阳第五章材料的形变和再结晶本章主要内容1.弹性和黏弹性2.晶体的塑性变形3.回复和再结晶4.热变形和动态回复、动态再结晶5.陶瓷形变的特点本章要求1.了解弹性和黏弹性的基本概念2.熟悉单晶体的塑性变形过程3.熟悉多晶体的塑性变形过程4.掌握塑性变形对材料组织和性能的影响5.掌握回复和再结晶的概念和过程6.熟悉动态回复和动态再结晶的概念和过程7.了解陶瓷变形的特点和一些基本概念应变应力b σsσe σbk s e ob εk ε变形的五个阶段:1.弹性变形2.不均匀的屈服变形3.均匀的塑性变形4.不均匀的塑性变形5.断裂阶段抗拉强度屈服强度弹性极限知识点1 弹性的不完整性定义:我们在考虑弹性变形的时候,通常只是考虑应力和应变的关系,而没有考虑时间的影响,即把物体看作是理想弹性体来处理。
但是,多数工程上应用的材料为多晶体甚至为非晶体,或者是两者皆有的物质,其内部存在着各种类型的缺陷,在弹性变形是,可能出现加载线与卸载线不重合、应变跟不上应力的变化等有别于理想弹性变形的特点的现象,我们称之为弹性的不完整性。
弹性不完整的现象主要包括包申格效应、弹性后效、弹性滞后、循环韧性等1.包申格效应材料预先加载才生少量的塑性变形(4%),而后同向加载则 升高,反向加载则 下降。
此现象称之为包申格效应。
它是多晶体金属材料的普遍现象。
2.弹性后效一些实际晶体中,在加载后者卸载时,应变不是瞬时达到其平衡值,而是通过一种弛豫过程来完成其变化的。
这种在弹性极限 范围内,应变滞后于外加应力,并和时间有关的现象,称之为弹性后效或者滞弹性。
3.弹性滞后由于应变落后与应力,在应力应变曲线上,使加载与卸载线不重合而是形成一段闭合回路,我们称之为弹性滞后。
弹性滞后表明,加载时消耗于材料的变形功大于卸载时材料恢复所释放的变形功,多余的部分被材料内部所消耗,称之为内耗,其大小用弹性滞后环的面积度量。
第五章 回复和再结晶
§ 5.8 晶粒长大 本节主要讲授内容: 本节主要讲授内容: 1)晶粒的正常长大 晶粒的正常长大 2)异常晶粒长大 异常晶粒长大
驱动力:界面能差; 驱动力:界面能差; 长大方式: 长大方式: 正常长大; 正常长大; 异常长大(二次再结晶) 异常长大(二次再结晶)
有两种方式: 有两种方式:正常长大和异常长大 1)正常晶粒长大: 正常晶粒长大: 表现为大多数晶粒几乎同时逐渐均匀长大。 表现为大多数晶粒几乎同时逐渐均匀长大。是靠 晶界迁移,相互吞食而进行的,它使界面能减小。 晶界迁移,相互吞食而进行的,它使界面能减小。 引起晶界迁移的驱动力是界面能和界面曲率。 引起晶界迁移的驱动力是界面能和界面曲率。
4、再结晶后的晶粒大小 、
(1)预先变形程度 ) (2)原始晶粒尺寸 )
加热速度:越快,再结晶温度越高, (3)加热速度:越快,再结晶温度越高,推迟再结晶形核 和长大过程,所以再结晶晶粒细小。可知, 和长大过程,所以再结晶晶粒细小。可知,同一再结晶退火 温度,用快速加热方法,可得细小再结晶晶粒。 温度,用快速加热方法,可得细小再结晶晶粒。 (4)退火温度 ) 提高退火温度,不仅使再结晶后的晶粒粗大, 提高退火温度,不仅使再结晶后的晶粒粗大,而且还影 响临界变形度的大小 (5)微量熔质原子和杂质 ) 一般都能起细化晶粒的作用。 一般都能起细化晶粒的作用。
去应力退火:降低应力(保持加工硬化效果),防止工件变 去应力退火:降低应力(保持加工硬化效果),防止工件变 ), 开裂,提高耐蚀性。 形、开裂,提高耐蚀性。
§ 5.7 再结晶 本节主要讲授内容: 本节主要讲授内容: 1)再结晶过程 再结晶过程 2)再结晶的形核和长大 再结晶的形核和长大 3)再结晶温度及其影响因素 再结晶温度及其影响因素 4)再结晶后的晶粒大小 再结晶后的晶粒大小 5)再结晶织构与退火挛晶 再结晶织构与退火挛晶
第五章、形变和再结晶
形变和再结晶弹性变形时,出现的有别于理想弹性变形的现象,称之为弹性的不完整性包申格效应弹性的不完整性材料经预先加载产生少量塑性变形。
而后同向加载则屈服强度增加,反向加载则屈服强度降低。
弹性后效在弹性极限内,应变滞后于外加应力,并和时间有关的现象弹性滞后应变落后于应力,在应力-应变曲线上加载线与卸载线不重合而形成一封闭回线,称为弹性滞后滑移系数目:BCC﹥FCC﹥HCP滑移的临界分切应力(定值)反映单晶体受力起始屈服的物理量晶体中的多个滑移系并非同时参与滑移,只有当外力在某一滑移系中的分切应力达到一定临界值时,该滑移系方可首先进行滑移,该分切应力称为滑移的临界分切应力F/A =σs滑移面趋向于与轴向平行滑移方向趋向于最大分切应力方向取向因子(施密特因子)任一给定Φ角,若Φ+λ=90°,滑移方向位于F与滑移面法线所组成的平面上,沿此方向,所需切应力较小,得到以下两个结论❶当Φ=45°时,取向因子具有最大值0.5。
以最小的拉应力达到发生滑移所需的分切应力,σs最小❷Φ=90°/λ=90°,取向因子为0,不能产生滑移Φ由45→0°或由45→90°,σs↑(变硬)取向因子大的为软取向取向因子小的为硬取向hcp晶体软/硬取向σs差距很大fcc晶体软/硬取向σs差距不大(2倍)——思考:为什么?•b——滑移方向上的原子间距• a ——滑移面的面间距•ν——泊松比•W=a/(1-ν)——位错宽度τP-N= 2G/(1-ν)exp(-2πW/b) 派一纳(P-N)力滑移的特点:滑移总是沿密排面上的密排方向进行(P-N)力小,则屈服应力低,反之亦然(3)滑移和孪生1.滑移和孪生均在切应力作用下,沿一定晶面的一定晶向进行,产生塑性变形。
——同2.孪生借助于切变进行,所需切应力大,速度快,在滑移较难进行时发生——异3.滑移→原子移动的相对位移是原子间距的整数值→不引起晶格位向的变化;孪生→原子移动的相对位移是原子间距的分数值→孪晶晶格位向改变→促进滑移——异4.孪生产生的塑性变形量小(≤滑移变形量的10%),但引起的晶格畸变大。
材料科学基础第五章1.1
抗拉强度
屈服强度 弹性极限
低碳钢ζ—ε曲线
静拉伸示意图
载荷-伸长曲线
真应力-应变曲线(考虑动态截面积的变化)
不同材料,其应力-应变曲线不同,如:
屈服强度(σ0.2) :有的金属材料的屈服点极不明显 ,在测量上有困难,因此为了衡量材料的屈服 特性,规定产生永久残余塑性变形等于一定值( 一般为原长度的0.2%)时的应力,称为条件屈服 强度或简称屈服强度σ0.2
d 式中ζ为应力;dt
一些非晶体,有时甚至多晶体,在比较小的应 力时可以同时表现出弹性和粘性,这就是粘弹性现 象。 粘弹性变形的特点是应变落后于应力。当加上 周期应力时,应力—应变曲线就成一回线,所包含 的面积即为应力循环一周所损耗的能量,即内耗。
5.2晶体的塑性变形 应力超过弹性极限,材料发生塑性变形,即产 生不可逆的永久变形。 5.2.1单晶体的塑性变形 在常温和低温下,单晶体的塑性变形主要通过 滑移方式进行的,此外,尚有孪生和扭折等方式。 1.滑移
纳米铜的室温超塑性
一、概述
金属的应力—应变曲线 金属在外力作用下一般经历弹性变形(elastic deformation)、弹塑性变形(plastic deformation)和断裂(fracture)三个阶段。
1.工程应力一应变曲线
工程应力一应变(ζ-ε)曲线: ζ= P/Ao ε= (L-Lo)/ Lo P—为载荷 Ao—原始试样的截面积 L、Lo—变形后和变形前试样的长度 低碳钢ζ—ε曲线如图5.1(P151)
1.包申格效应 材料经预先加载产生少量塑性变形(小于4%), 而后同向加载则e升高,反向加载则e下降。此现 象称之为包申格效应。它是多晶体金属材料的普遍 现象。
实际材料T10钢的包辛格效应
材料科学基础回复与再结晶
(3)弥散和稠密分布的第二相粒子钉扎晶界,阻 碍迁动。
35
5. 退火温度: 退火温度越高,再结晶速度越大。退火温度与
再结晶速度v的关系可用阿累尼乌斯公式表示: v再=Aexp(-Q/RT)
动态再结晶时,大量位错被再结晶核心的大角 度界面推移而消除,当这样的软化过程占主导地位 时,流变应力下降,应力-应变曲线出现峰值。
随材料内、外影响因素的不同,应变曲线可出 现单峰或多峰现象。
55
56
动态再结晶组织结构变化的特点: (1)晶内存在被缠结位错所分割成的亚晶粒。 (2)反复形核,有限长大,晶粒较细。
再结晶退火温度:T再+100~200℃。
39
第三节 晶粒长大
再结晶结束后,材料的晶粒一般比较细小(等 轴晶),若继续升温或延长保温时间,晶粒会继续 长大。晶粒长大是一个自发过程,晶粒长大的驱动 力来自总的界面能的降低。
晶粒长大按其特点可分为两类:
(1)正常晶粒长大(大多数晶粒几乎同时逐渐均 匀长大);(2)异常晶粒长大(少数晶粒突发性 的不均匀长大)。
19
第二节 再结晶
再结晶:冷变形金属被加热到适当温度时,在变形 组织内部新的无畸变的等轴晶粒逐渐取代变形晶粒, 而使形变强化效应完全消除的过程。
再结晶是一个显微组织重新改组,变形储存能 充分释放,性能显著变化的过程,其驱动为回复后 未被释放的变形储存能。
20
一、再结晶的形核与长大
1. 形核(非均匀形核)
形变温度越高,应变速率越小,应变量越大, 越有利于动态再结晶。 应用:采用低的变形终止温度、大的最终变形量、 快的冷却速度可获得细小晶粒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粒长大后趋于缓慢。
8
B:电阻率resistivity:其大小与点阵 中的点缺陷密切相关,随温度升高, 空位浓度下降,故电阻率呈现连续 下降趋势。
C:内应力inner stress:回复之后, 宏观内应力基本消除,微观内应力 部分消除;再结晶后,冷变形造成 的内应力全部消除。
D:密度density:密度在再结晶阶段急剧增加,主要是 由于此时位错密度显著降低造成的。
4th
冷加工变形:加工硬化,可使位错数量增加, 金属的强度和硬度增加
冷加工缺点:内应力,这种残余应力在金属零 件进一步加工和使用过程中往往会产生不应有的变 形,使用中也会由于大气环境与内应力的共同作用, 造成零件的应力腐蚀;冷加工也可能使电阻率增加 等。这时金属处于一种不稳定状态。
1
体发
不生
应
锈应
• 再结晶不是一个恒温过程,它是自某一温度开始, 在一个温度范围内连续进行的过程,发生再结晶 的最低温度称再结晶温度。
31
影响再结晶温度的因素:
• 1、金属的预先变形度:金属预先变形程度越大, 再结晶温度 越低。当变形度达到一定值后,再结晶温度趋于某一最低值, 称最低再结晶温度。
• 纯金属的最低再结晶温度与其熔点之 间的近似关系: T再≈(0.35-0.4)T熔, 其 中T再、T熔为绝对温度K.
R m r m 0
R — 屈服强度回复率
m — 变形后屈服强度 r — 回复后屈服强度 0 — 原始态的屈服强度
1.0
同一变形度的Fe在不同温度下的回复
0.8
300oC
350oC
0.6
400oC
0.4
450oC
0.2
500oC
0 100 200 300 400
回复是一个驰豫过程(relaxation process) 时间/min.
(b)亚晶迁移机制:位错密度较大的亚晶界,向位向差较大的
周围亚晶方向迁移,并逐渐转化为大角晶界,成为形核中心并
长大。
25
再结晶的形核率和长大速率
再结晶的形核率是指单位时间、单位体积内形成的 再结晶核心的数目,一般用N表示;晶核一旦形成便 会继续长大至相邻晶粒彼此相遇,长大速率用G表示。
26
再 结 晶的形核与长大都受到储存能的驱动,主要影 响因素有:
33
3. 原始晶粒尺寸:晶粒越细,再结晶温度越低;
4.第二相粒子:可提高、或降低再结晶温度;
若粒子粗大且粒子间距也大,位错绕过粒子,留下位错环, 或位错塞积在粒子附近,粒子周围畸变严重,促进再结晶, 降低T再;
若粒子细小且弥散分布,位错且过粒子,不会发生明显聚集, 但对位错运动和晶界迁移有阻碍作用,再结晶困难,提高T再
34
5、加热速度和保温时间 • 提高加热速度会使再结晶推迟到较高温度发生, 延长加热时
间, 使原子扩散充分, 再结晶温度降低。 • 生产中,把消除加工硬化的热处理称为再结晶退火
recrystallization annealing。 • 再结晶退火温度比再结晶温度高100~200℃。
35
再结晶后晶粒的大小
由约翰逊-梅厄方 程得再结晶晶粒尺 寸d 为:
d
常数
(
GN)
1 4
G ~ 长大速率; N~ 形核率
影响因素
(a)变形度的影响
(b)温度的影响
36
再结晶晶粒大小的控制(晶粒大小-变形量关系图)
1、预先变形度
• 预先变形度的影响,实质上是变形均匀程度的影响.
• 当变形度很小时,晶格畸变小,不足以引起再结晶.
变形程度较小 时(小于20%), 各晶粒间由于变形不均匀而引起 位错密度不同,相应亚晶尺寸不 同,为降低系统的自由能,位错 密度小的晶粒中的亚晶通过晶界 凸入另外晶粒中,以吞食方式开 始形成无畸变的再结晶晶核。
24
2. 亚晶形核:变形程度较大时发生此机制,又分为两种
(a)
(b)
(a)亚晶合并机制:相邻亚晶界上的位错网络通过解离、拆散、 位错的攀移、滑移,逐渐转移到周围其它亚晶界上,导致亚晶 合并。
• 金属熔点越高, T再也越高.
Fe的再结晶温度?
T再与ε的关系
T再℃ = (T熔℃+273)×0.4–273,如Fe的T再=(1538+273)×0.4–273=451℃
32
2、金属的纯度 • 金属中的微量杂质或合金元素,尤其高熔点元素起阻碍扩
散和晶界迁移作用,使再结晶温度显著提高. • eg. C 加入到纯Fe中变成低C钢,再结晶温度变为540 ℃。
• 晶粒长大grain growth是指再结晶结束后晶粒的 长大过程,在晶界界面能的驱动下,新晶粒会发 生合并长大,最终达到一个相对稳定的尺寸。
7
冷变形金属在加热时的性能变化
A:强度、硬度和塑性 strength, hardness and ductility:
回复阶段变化非常小,再结晶时硬度降低,塑性升高,晶
5th
Plastic deformation
Residual stress
Recovery
Annealing
Recrystallization
Grain growth
加热温度 ℃
19
Recovery?
5th
去应力退火
回复退火产生的结果: ➢ 电阻率下降 ➢硬度、强度下降不多 ➢ 降低内应力
20
5.3 再结晶 recrystallization
• 工业上,常利用回复现象将 冷变形金属低温加热,既稳 定组织又保留加工硬化,这 种热处理方法称去应力退火 relief annealing。
17
回复阶段退火的作用: ➢ 提高扩散 ➢ 促进位错运动 ➢ 释放内应变能
回复退火产生的结果: ➢ 电阻率下降 ➢硬度、强度下降不多 ➢ 降低内应力
18
Work hardening √
➢ 固态相变倾向于晶界 成核,而再结晶以亚晶 为基础;
➢ 两者动力学过程相似。
转变率
再结晶
S—型曲线 转变率 ~ 时间
终了
固态相变
开始
孕育期
长大期
30
时间(对数形式)
再结晶温度 recrystallization temperature
定义1:冷变形金属开始进行再结晶的最低温度。 定义2:工业生产中,以经过大变形量(~70%以上)的变形 金属,经1h退火后完成再结晶(R95%)所对应的温度。
力 腐 蚀 裂 纹
钢力 管腐 道蚀 内奥 壁氏
奥氏体不锈钢易发生应力腐蚀。即在特定合金-环境体系 中,应力与腐蚀共同作用引起的破坏。应力腐蚀易在含 Clˉ的介质中发生,裂纹为树枝状。
2
消除的方法 —— 退火处理。 退火可使原子扩散能力增加,金属将依次发生 回复、再结晶和晶粒长大过程。
第五章 回复与再结晶
• 回复recovery是指新的无畸变晶粒出现前所产 生的亚结构和性能变化的阶段,在金相显微镜 中无明显变化,仍保持原有的变形晶粒形貌, 若通过TEM,则可观察到位错组态或亚结构已 开始发生变化。
5
冷变形金属在加热时的组织变化
recovery recrystallization grain growth
变形程度的影响:冷变形越大,储能越多,驱动力越大, 有利于再结晶形核和长大
原始晶粒尺寸:晶粒越细,变形抗力越大,变形后的 储能越高,形核率越高;
杂质原子: 易与位错交互作用,阻碍位错滑移和攀移,阻碍形核; 杂质原子因为强化因素,提高形变储能, 增加形核率
退火工艺:加热速度、加热温度、保温时间等工艺参数
退火温度与黄铜 强度、塑性和晶 粒大小的关系
退火温度愈高晶 粒长得愈大,拉 伸强度下降得愈 多,塑性则增加 得愈多。
晶粒大小
拉伸强度
拉伸强度 延展性
11
退火温度
5.2 回复recovery
• 回复是指在加热温度较低时,由于金属中的点缺陷及位 错近距离迁移而引起的晶内某些变化。如空位与其他缺 陷合并、同一滑移面上的异号位错相遇合并而使缺陷数 量减少等。
• 当变形金属被加热到较高温度时,由于原子活动能力增大, 晶粒的形状:破碎拉长的晶粒 等轴晶粒。
• 这种冷变形组织在加热时重新彻底改组的过程称再结晶。
• 再结晶是一个晶核形成和长大的过程,但不是相变过程, 再结晶前后新旧晶粒的晶格类型和成分完全相同。
21
再结晶的驱动力?
驱动力:变形金属经回复后未被 释放的储存能(相当于变形总储 能的90%)。
新晶粒长大通过短程扩散,再结晶程度依赖于 温度和时间。
• 由于再结晶后组织的复原,因而金属的强度、硬 度下降,塑性、韧性提高,加工硬化消失。
22
铁素体变形80% 650℃加热 670℃加热
23
新晶粒的形核
形核:是在现存的局部高能区域内,以多边化形成 的亚 晶为基础形核
形核机制
1. 晶界弓出形核(应变诱导晶界移动、凸出形核)
由于位错运动使其由冷塑性变 形时的无序状态变为垂直分布, 形成亚晶界,这一过程称多边 形化 polygonization。
12
回复机理 recovery mechanism
1 低温回复机制 点缺陷的运动!
移至晶界、位错处 点缺陷运动 空位+间隙原子 消失 缺陷密度降低
空位聚集(空位群、对)
13
Recovery and recrystallization
3
5.1 冷变形金属在加热时的组织和性能变化
黄 铜
recovery
加热温度 ℃
recrystallization
grain growth
冷变形金属在加热时的组织变化 4
冷变形金属在加热时的组织变化
recovery recrystallization grain growth