材料的烧结----液相烧结
液相烧结
液相烧结粉末压坯仅通过固相烧结难以获得很高的密度,如果在烧结温度下,低熔组元熔化或形成低熔共晶物,那么由液相引起的物质迁移比固相扩散快,而且最终液相将填满烧结体内的孔隙,因此可获得密度高、性能好的烧结产品。
液相烧结的应用极为广泛,如制造各种烧结合金零件、电触头材料、硬质合金及金属陶瓷材料等。
液相烧结可得到具有多相组织的合金或复合材料,即由烧结过程中一直保持固相的难熔组分的颗粒和提供液相(一般体积占13%一35%)的粘结相所构成。
固相在液相中不溶解或溶解度很小时,称为互不溶系液相烧结,如假合金、氧化物—金属陶瓷材料。
另一类是固相在液相有一定溶解度,如Cu —Pb 、W —Cu —Ni 、WC —Co 、TiC —Ni 等,但烧结过程仍自始至终有液相存在。
特殊情况下,通过液相烧结也可获得单相合金,这时,液相量有限,又大量溶解于固相形成固溶体或化合物,因而烧结保温的后期液相消失,如Fe —Cu(Cu <8%)、Fe —Ni —A1、Ag —Ni 、Cu —Sn 等合金,称瞬时液相烧结。
一、液相烧结肋条件液相烧结能否顺利完成(致密化进行彻底),取决于同液相性质有关的三个基本条件。
1.润湿性液相对固相颗粒的表面润湿性好是液相烧结的重要条件之一,对致密化、合金组织与性能的影响极大。
润湿性由固相、液相的表面张力(比表面能)S γ、L γ以及两相的界面张力(界面能) SL γ所决定。
如图5—47所示:当液相润湿固相时,在接触点A 用杨氏方程表示平衡的热力学条件为cos S SL L γγγθ=+式中θ——湿润角或接触角。
完全润湿时,0θ=,cos S SL L γγγθ=+式变为S SL L γγγ=+;完全不润湿时,θ>90,则SL L S γγγ≥+。
图5—47表示介于前两者之间部分润湿的状态,0<θ<90。
液相烧结需满足的润湿条件就是润湿角θ<90;如果θ>90,烧结开始时液相即使生成,也会很快跑出烧结体外,称为渗出。
无机材料科学基础答案第十章
10-1 名词解释:烧结烧结温度泰曼温度液相烧结固相烧结初次再结晶晶粒长大二次再结晶(1)烧结:粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。
(2)烧结温度:坯体在高温作用下,发生一系列物理化学反应,最后显气孔率接近于零,达到致密程度最大值时,工艺上称此种状态为"烧结",达到烧结时相应的温度,称为"烧结温度"。
(3)泰曼温度:固体晶格开始明显流动的温度,一般在固体熔点(绝对温度)的2/3处的温度。
在煅烧时,固体粒子在塔曼温度之前主要是离子或分子沿晶体表面迁移,在晶格内部空间扩散(容积扩散)和再结晶。
而在塔曼温度以上,主要为烧结,结晶黏结长大。
(4)液相烧结:烧结温度高于被烧结体中熔点低的组分从而有液相出现的烧结。
(5)固相烧结:在固态状态下进行的烧结。
(6)初次再结晶:初次再结晶是在已发生塑性变形的基质中出现新生的无应变晶粒的成核和长大过程。
(7)晶粒长大:是指多晶体材料在高温保温过程中系统平均晶粒尺寸逐步上升的现象.(8)二次再结晶:再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。
10-2 烧结推动力是什么?它可凭哪些方式推动物质的迁移,各适用于何种烧结机理?解:推动力有:(1)粉状物料的表面能与多晶烧结体的晶界能的差值,烧结推动力与相变和化学反应的能量相比很小,因而不能自发进行,必须加热!!(2)颗粒堆积后,有很多细小气孔弯曲表面由于表面张力而产生压力差,(3)表面能与颗粒之间形成的毛细管力。
传质方式:(1)扩散(表面扩散、界面扩散、体积扩散);(2)蒸发与凝聚;(3)溶解与沉淀;(4)黏滞流动和塑性流动等,一般烧结过程中各不同阶段有不同的传质机理,即烧结过程中往往有几种传质机理在起作用。
10-3 下列过程中,哪一个能使烧结体强度增大,而不产生坯体宏观上的收缩? 试说明理由。
(1)蒸发-冷凝;(2)体积扩散;(3)粘性流动;(4)晶界扩散;(5)表面扩散;(6)溶解-沉淀解:蒸发-凝聚机理(凝聚速率=颈部体积增加)烧结时颈部扩大,气孔形状改变,但双球之间中心距不变,因此坯体不发生收缩,密度不变。
材料科学基础--第九章-烧结
中心距L缩短 坯体收缩
适用: 蒸发-凝聚传质
扩散传质
球体-平板模型
扩散传质
烧结会引起体积的收缩和致密度增加,常用线收缩率或密度值来评
价烧结的程度。对模型(B),烧结收缩是因颈部长大,两球心距离 缩短所引起的。故可用球心距离的缩短率 L 来表示线收缩率(L0烧结前两球心距离,L-烧结后缩短值): L0
烧结后期:传质继续进行,粒子长大,气孔变成孤立闭气孔,密 度达到95%以上,制品强度提高。
(二)烧结推动力
能量差(具体表现为:压力差、空位浓度差、溶解度差)
1、能量差 粉状物料的表面能大于多晶烧结体的晶界能,即能量差是烧结的 推动力,但较小。烧结不能自发进行,必须对粉料加以高温,才 能促使粉末体转变为烧结体
2、颈部空位浓度分析
1)无应力区(晶体内部)的空位浓度:
c0
n0 N
exp
EV kT
2)应力区的空位浓度:
受压应力时,形成体积为Ω空位所做的附加功为:
En
受张应力时,形成体积为Ω空位所做的附加功为:
Et
所以,在接触点或颈部区域形成一个空位所做的功为:
3)温度的影响
T↑,D*=D0exp(-Q/RT)↑↑, x/r、△L/L↑↑。
温度升高,加快烧结。温度在烧 结中往往起决定性作用。
在扩散为主的烧结中,除体积扩
散外,质点还可以沿表面、界面或
位错等处进行多种途径的扩散。库
津斯基综合各种烧结过程,得出烧
结动力学典型方程为:
( x)n r
F(T ) rm
多相反应和熔融、溶解、烧结等,其包括范围较宽。 烧结:仅是粉料经加热而致密化的简单过程,是烧成过程的一个
按照烧结时是否出现液相,可将烧结分为两类固相烧结和液
• 合金的收缩主要发生在液相出现之后。液相流动 引起WC颗粒重排与溶解和析出等过程使合金收缩 显著,并且导致WC颗粒长大。
• 保温时间愈长,WC晶粒愈粗并且愈不均匀。
• 烧结保温的后期,还发生WC的聚晶长大,它与通 过液相约重结晶长大不同,是发生在WC固架形成 之后的固相烧结长大。
当液相润湿固相时,在接触点A用杨氏 方程表示平衡的热力学条件为:
完全润湿时,θ=0o;完全不润湿时,θ>90o;部分润湿的状态, 0o<θ<90o
液相烧结需满足的润湿条件就是润湿角θ< ;如果θ>90,烧结开始 时液相即使生成,也会很快跑出烧结体外,称为渗出。发生渗出,烧结合金 中的低熔组分特大部分损失掉,使烧结致密化过程不能顺利完成。
WC—Co硬质合金的液相烧结
WC—Co硬质合金是液相烧结的典型例子: (1)Co对Wc完全润湿(θ→0); (2)WC在Co中部分溶解; (3)烧结温度超过Co的熔点,而液相在WC中不溶解,故保温阶段始终 存在液相。
工业合金含Co量为3%一25%(重 量),在过共晶相区。烧结温度随合金物 含量增高而降低,一般在1350~1480℃范 围内。
WC在Co中的溶解度随温度升高而增 大,在700~750℃,以Co为基的γ固溶体 中含Wc约1.5%(原子),1000℃时约4% (原子),共晶温度下约10%(原子)(~22 %重量)。Co在Wc中溶解度极低。
(1)预烧及升温阶段 为低于共晶温度的固相烧结。超过500℃之 后,在Co颗粒之间以及Co与Wc颗较之间开始发生烧结,压坯强度已有增 加;约1000℃时,Wc开始向Co中迅速扩散,并随温度继续升高而加快。
大,而两相的成分和比例都维持不变。
(4)保温完成后冷却 从液相中析出WC,液相数量减少,至共晶温 度时液相成分开始析出γ ,并同时结晶出共晶组织;低于共晶温度冷 却后,共晶中γ相不断析出二次WC晶体,有些附在原来的WC初晶颗粒上。 冷至室温后,合金组织应由原始末溶解的WC初晶和冷却过程中从液相或 γ相中析出的二次Wc晶体以及共晶(Wc十γ)所组成。
液相烧结的基本条件
液相烧结的基本条件一、液相烧结技术的原理液相烧结是一种常用的粉末冶金加工方法,通过加入适量的液相助熔剂,使粉末颗粒在高温下熔结成块状。
液相烧结的基本原理是:当热量作用于粉末堆体时,液相助熔剂在高温下熔化,填充在粉末颗粒之间,形成润湿层。
在润湿层的作用下,粉末颗粒之间发生了扩散和熔结,最终形成致密的块状产物。
二、液相烧结技术的应用液相烧结技术广泛应用于金属、陶瓷和复合材料等领域。
在金属材料方面,液相烧结可以用于制备高性能的工具钢、高速钢、不锈钢等。
在陶瓷材料方面,液相烧结可以制备高纯度的氧化铝、碳化硅、氮化硅等材料。
在复合材料方面,液相烧结可以用于制备金属基复合材料、陶瓷基复合材料等。
三、液相烧结技术的操作条件1. 温度:液相烧结的温度是影响烧结过程的重要参数。
温度过高会导致颗粒过度生长,烧结过程难以控制;温度过低则会影响烧结体的致密性。
不同材料的烧结温度有所差异,需要根据具体材料进行调控。
2. 压力:适当的压力可以促进粉末颗粒之间的扩散和熔结,提高烧结体的致密性。
压力过大可能导致烧结体变形或产生裂纹,压力过小则会影响烧结效果。
压力的选择应根据具体材料和烧结工艺进行调整。
3. 时间:烧结时间是影响烧结过程的重要因素。
时间过短会导致烧结体致密性不高,时间过长可能使烧结体结构粗化。
烧结时间的选择应综合考虑材料的烧结性能和工艺要求。
4. 液相助熔剂:液相助熔剂是液相烧结过程中的关键因素,它可以降低烧结温度,促进粉末颗粒的熔结。
常用的液相助熔剂有金属、氧化物、硼化物等。
液相助熔剂的选择应根据具体材料的烧结要求进行调整。
四、液相烧结技术的优缺点液相烧结技术具有以下优点:烧结体致密性高,性能稳定;可以制备复杂形状的零件;适用于高温材料和难熔材料。
然而,液相烧结技术也存在一些缺点:烧结过程中易产生气孔、裂纹等缺陷;烧结温度高,能耗较大;烧结过程中易产生气体污染。
总结液相烧结技术是一种重要的粉末冶金加工方法,具有广泛的应用前景。
液相烧结
目录摘要低熔点氧化物添加剂在烧结时形成液相,液相添加剂具有很强的渗透能力,并且在烧结过程中生成新生态的纳米尺寸的稳定固体粒子,故有很好的活性,分布均匀性,弥散性极强烈的阻碍晶粒长大的作用。
低熔点氧化物形成的液相,通过添加低熔点添加剂在烧结阶段形成液相,在较大的程度上降低材料的烧结激活能,从而促进烧结中物质的传递以及产品的致密化。
促进铁氧体产品的致密化,提高磁体密度改善材料的磁性能,使铁氧体产品在较低的温度达到较高的体积密度,降低产品烧结温度。
关键词:液相烧结;铁氧体;磁性材料ABSTRACTLow melting point oxide compound chemical additive when agglutination forms the liquid phase, the liquid phase chemical additive has the very strong seepage ability, and produces the nascent state in the agglutination process the nanometer size stable solids, therefore has the very good activeness, distributed uniformity, dispersivity extremely intense hindrance crystal growth function. The low melting point oxide compound forms the liquid phase, through increases the low melting point chemical additive to form the liquid phase in the agglutination stage, reduces the material in the great degree the agglutination activation energy, thus in acceleration of sintering material transmission as well as product densific ation. The promotion ferrites product's densification, enhances the magnet density improvement material magnetism performance, enables the ferrites product to achieve the high bulk density in the low temperature, reduces the product agglutination temperature.key word: Liquid phase sintering; Ferrites; Magnetic material前言永磁铁氧体材料的矫顽力和抗腐蚀性都比较好,尤其是它的低成本更是其它磁钢所无法比拟的,尤其是M型Sr永磁铁氧体材料有良好的性能,是具有重要的商业意义的永磁材料,应用领域非常广泛。
陶瓷工艺学习题答案
一、绪论及陶瓷原料1、传统陶瓷和特陶的相同和不同之处?2、陶瓷的分类依据?陶瓷的分类?3、陶瓷发展史的四个阶段和三大飞跃?4、宋代五大名窑及其代表产品?5、在按陶瓷的基本物理性能分类法中,陶器、炻器和瓷器的吸水率和相对密度有何区别?6、陶瓷工艺学的内容是什么?7、陶瓷生产基本工艺过程包括哪些工序?8、列举建筑卫生陶瓷产品中属于陶器、炻器和瓷器的产品?9、陶瓷原料分哪几类?10、粘土的定义?评价粘土工艺性能的指标有哪些?11、粘土是如何形成的?高岭土的由来和化学组成;12、粘土按成因和耐火度可分为哪几类?13、粘土的化学组成和矿物组成是怎样的?14、什么是粘土的可塑性、塑性指数和塑性指标?15、粘土在陶瓷生产中有何作用?16、膨润土的特点;17、高铝质原料的特点和在高级耐火材料中的作用;18、简述石英的晶型转化在陶瓷生产中有何意义?19、石英在陶瓷生产中的作用是什么?20、各种石英类原料的共性和区别,指出它们不同的应用领域;21、长石类原料分为哪几类?在陶瓷生产中有何意义?22、钾长石和钠长石的性能比较;23、硅灰石、透辉石、叶腊石(比较说明)作为陶瓷快速烧成原料的特点;24、滑石原料的特点,为什么在使用前需要煅烧?25、氧化铝有哪些晶型?为什么要对工业氧化铝进行预烧?26、氧化锆有哪些晶型?各种晶型之间的相互转变有何特征?27、简述碳化硅原料的晶型及物理性28、简述氮化硅原料的晶型及物理性能。
二、粉体的制备与合成1、解释什么是粉体颗粒、一次颗粒、二次颗粒、团聚?并解释团聚的原因。
2、粉体颗粒粒度的表示方法有哪些?并加以说明。
3、粉体颗粒粒度分布的表示方法有哪些?并加以说明。
4、粉体颗粒粒度测定分析的方法有哪些?并说明原理。
5、粉体颗粒的化学表征方法有哪些?6、粉碎的定义及分类,并加以说明。
7、常用的粉碎方法有哪些?画出三种粉碎流程图。
8、机械法制粉的主要方法有哪些?并说明原理。
9、影响球磨机粉碎效率的主要因素有哪些?10、化学法合成粉体的主要方法有哪些?并说明原理。
材料科学基础 第十四章烧结
清洁的Si3N4粉末γSV为1.8J/m2,但它极易在空 气中被氧污染而使γSV降低,同时由于共价键材料原 子之间强烈的方向性而使γGB增高。固体表面一般不 等于表面张力,但当界面上原子排列是无序的,或 在高温下烧结时,这两者仍可当作数值相同来对待 。
2、压力差:颗粒弯曲的表面上存在压力差。 粉末体紧密堆积后,颗粒间仍有很多细小气孔 通过,在这些弯曲的表面上由于张力的作用而造成 的压力差为: △P=2γ/r 式中:γ为粉末体表面张力;r为粉末球型半径。
(2)温度继续升高,传质过程开始进行,颗粒间 接触状态由点接触逐渐扩大为面接触,接触面积 增加,固-气表面积相应减少。 (3)随着温度不断升高,传质过程继续进行,颗 粒界面不断发育长大,气孔相应地缩小和变形 ,而形成孤立的闭气孔。同时,颗粒界面开始移 动,粒子长大,气孔迁移到颗粒界面上消失,致 密度提高。 根据上面讨论,烧结过程可以分为三个阶段 :烧结初期、中期和后期。
第二节 烧结过程及机理
烧结过程
烧结推动力
烧结机理
一、烧结过程
首先从烧结体的宏观性质随温度的变化上 来认识烧结过程。
(一)烧结温度对烧结体性质的影响 图1是新鲜的电解铜粉(用氢还原的),经高 压成型后,在氢气气氛中于不同温度下烧结2 小时然后测其宏观性质:密度、比电导、抗拉 强度,并对温度作图,以考察温度对烧结进程 的影响。
比电导(Ω-1· cm-3)
密度(g/cm2)
温度(°C)
图1 烧结温度对烧结体性质的影响 l一比电导 2一拉力 3一密度
结果与讨论: 随烧结温度的升高,比电导和抗拉强度增加。 曲线表明,在颗粒空隙被填充之前(即气孔率 显著下降以前),颗粒接触处就已产生某种键 合,使得电子可以沿着键合的地方传递,故比 电导和抗拉强度增大。 温度继续升高,物质开始向空隙传递,密度 增大。当密度达到理论密度的90~95%后,其 增加速度显著减小,且常规条件下很难达到完 全致密。说明坯体中的空隙(气孔)完全排除是 很难的。
按照烧结时是否出现液相,可将烧结分为两类固相烧结和液
• 合金的收缩主要发生在液相出现之后。液相流动 引起WC颗粒重排与溶解和析出等过程使合金收缩 显著,并且导致WC颗粒长大。
• 保温时间愈长,WC晶粒愈粗并且愈不均匀。
• 烧结保温的后期,还发生WC的聚晶长大,它与通 过液相约重结晶长大不同,是发生在WC固架形成 之后的固相烧结长大。
液相烧结过程
液相烧结不同阶段的示意图(O:熔化;Ⅰ:重排;Ⅱ:溶解-沉淀;及Ⅲ:固相烧结)
(1)颗粒重排(Particles Re-arrangement) 在液相烧结过程中,颗粒间的液相膜起润滑作用。颗粒重 排向减少气孔的方向进行,同时减小系统的表面自由能。 当坯体的密度增加时,由于周围颗粒的紧密接触,颗粒进 一步重排的阻力增加,直至形成紧密堆积结构。
优点: 1)提高烧结驱动力。 2)可制备具有控制的微观结构和优化性能的陶瓷及金属复合材料;
液相烧结能否顺利完成(致密化进行彻底),取决于同 液相性质有关的三个基本条件: 1.润湿性
当液相润湿固相时,在接触点A用杨氏 方程表示平衡的热力学条件为:
完全润湿时,θ=0o;完全不润湿时,θ>90o;部分润湿的状态, 0o<θ<90o
液相烧结是指有液相参与下的烧结,如多组分物 系在烧结温度下常有液相出现。
一、液相烧结
粉末压坯仅通过固相烧结难以获得很高的密度,如果在烧结温 度下,低熔组元熔化或形成低熔共晶物,那么由液相引起的物质迁 移比固相扩散快,而且最终液相将填满烧结体内的孔隙,因此可提 高得密度、增强烧结产品机械性能。
液相烧结(Liquid Phase Sintering,简写为LPS)是指在烧结 包含多种粉末的坯体中,烧结温度至少高于其中的一种粉末的熔融 温度,从而在烧结过程中而出现液相的烧结过程。
无机材料科学基础《烧结》知识点
(1)常压烧结:又称无压烧结。
属于在大气压条件下坯体自由烧结的过程。
在无外加动力下材料开始烧结,温度一般达到材料的熔点0.5-0.8即可。
在此温度下固相烧结能引起足够原子扩散,液相烧结可促使液相形成或由化学反应产生液相促进扩散和粘滞流动的发生。
常压烧结中准确制定烧成曲线至关重要。
合适的升温制度方能保证制品减少开裂与结构缺陷现象,提高成品率。
(2)热压烧结与热等静压烧结:热压烧结指在烧成过程中施加一定的压力(在10~40MPa),促使材料加速流动、重排与致密化。
采用热压烧结方法一般比常压烧结温度低100ºC左右,主要根据不同制品及有无液相生成而异。
热压烧结采用预成型或将粉料直接装在模内,工艺方法较简单。
该烧结法制品密度高,理论密度可达99%,制品性能优良。
不过此烧结法不易生产形状复杂制品,烧结生产规模较小,成本高。
作为陶瓷烧结手段,利用来自于表面能的表面应力而达到致密化的常压烧结法虽是一般常用的方法,但是,不依赖于表面应力,而在高温下借助于外压的方法,也是可以采用的。
这就是称为热压法的烧结方法。
广义来说,在加压下进行烧结的方法包括所有这类方法,超高压烧结和热等静压(HIP)烧结也属于这类方法。
不过,一般都作为在高温下施加单轴压力进行烧结的方法来理解。
其基本结构示于图1。
首先,制备粉体试料,置于模型中,在规定温度下加热、加压,获得烧结体。
由于下述原因而采用这种方法:(1)烧结温度降低;(2)烧结速度提高;(3)使难烧结物质达到致密化。
因为能够在颗粒成长或重新结晶不大可能进行的温度范围达到致密化,所以,可获得由微小晶粒构成的高强度、高密度烧结体。
图2所示,是热压对陶瓷致密化影响效果之一例。
将热压作为制造制品的手段而加以利用的实例有:氧化铝、铁氧体、碳化硼、氮化硼等工程陶瓷。
连续热压烧结生产效率高,但设备与模具费用较高,又不利于过高过厚制品的烧制。
热等静压烧结可克服上述弊缺,适合形状复杂制品生产。
10 烧结-2
1 )2
r
1 1 2t 2
由颗粒中心距逼近而引起的收缩:
适 用 初 期
V L 9 3 t V L 4r
麦肯基粘性流动坯体内的收缩方程:(近似法)
孤 立 气 孔
2 r
d 3 (1 ) dt 2 r
适用全过程
r
总结:影响粘性流动传质的三参数
(T )
实线:表示由式 d 3 (1 ) 计算结果。
另外,当烧结体内出现液相时,由于 液相扩散系数比结晶体大几个数量级, 整排原子的移动甚至整个颗粒形变也 有可能
(2)粘性蠕变速率
=/
8D / KTd
* 2
烧结宏观粘度系数 KTd 2 / 8 D* 因为一般无机材料烧结时, 宏观粘度系数的数量级为108~109dpa.S
对比:
顿 型
汉 型
塑 流 型
剪应力 f
剪应力 f
相同点 粘性蠕变 扩散传质 在应力作用下,由 空位的定向流动而 引起。
区别点
整排原子沿应力方向质在路程为0.01-0.1μm数 量级的扩散范围内起决定性作用,即: 通常限于晶界区或位错区;尤其在无 外力作用下,烧结晶态物质形变只局 限于局部区域
(%)
烧结时液相体积(%)
其它影响因素:固-液二面角 固-液润湿性 ,润湿性愈差,对致密化愈不利。
溶解-沉淀传质
根据液相数量多少 Kingery模型:颗粒在接触点溶解到自由 表面沉积。 L S W 模型:小晶粒溶解到大晶粒处沉淀。 原理: 接触点处和小晶粒的溶解度 > 自由表面或大颗粒 两个部位产生化学位梯度 物质迁移。
塑 流 型 剪应力 f
fr 1 ln( )] 2 1
液相烧结机制
液相烧结机制一、液相烧结的定义及其分类定义:凡有液相参加的烧结过程称为液相烧结。
由于粉末中总含有少量杂质,因而大多数材料在烧结中都会或多或少地出现液相,即使在没有杂质的纯固相系统中,高温下还会出现“接触"熔融现象因而纯粹的固态烧结实际上不易实现,在无机材料制造过程中,液相烧结的应用范围很广泛,如长石质瓷,水泥熟料、高温材料(如氮化物,碳化物等都采用液相烧结原理。
液相烧结与固态烧结的共同之点是烧结的推动力都是表面能,烧结过程也是由颗粒重排、气孔充填和晶粒生长等阶段组成。
不同点是由于流动传质速率比扩散传质快,因而液相烧结致密化速率高,可使坯体在比固相烧结温度低得多的情况下获得致密的烧结体,此外液相烧:结过程的速率与液相数量.液相性质(粘度和表面张力等)液相与固相润湿情况,固相在液相中的溶解度等等有密切的关系,因此影响液相烧结的因素比固相烧结更为复杂,为定量研究带来困难。
分类:1.瞬时液相烧结(transient liquid phase sintering) 在烧结中、初期存在液相,后期液相消失的烧结过程特点:烧结中初期为液相烧结,后期为固相烧结。
液相数量取决于成分(低熔点组分的含量)、升温速度、粉末颗粒的粒度。
提高瞬时液相烧结过程中的液相数量可采用提高低熔点组分含量升温速度快,高熔点组分颗(与液相接触面积小,减小扩散面积)。
3 熔浸(infiltration) 多孔骨架的固相烧结和低熔点金属渗入骨架后的液相烧结过程前期为固相烧结,后期为液相烧结。
4.超固相线液相烧结:液相在粉末颗粒内形成,是一种在微区范围内较普通液相烧结更为均匀的烧结过程。
二、液相烧结技术的优缺点优点:1)加快烧结速度:a 液相的形成加快了原子迁移速度。
b 在无外压的情况下,毛细管力的作用加快坯体的收缩c 液相的存在降低颗粒间的摩擦有利于颗粒重排列。
2) 晶粒尺寸可以通过调节液相烧结工艺参数加以控制,便于优化显微结构和性能 3) 可制得全致密的P/M材料或制品,延伸率高。
陶瓷的生产工艺原理与加工技术
陶瓷的生产工艺原理与加工技术引言陶瓷是一种古老而重要的材料,广泛应用于制造业、建筑业、电子工业和医疗领域等各个行业。
陶瓷材料的生产工艺原理和加工技术对于提高产品质量和性能具有重要意义。
本文将介绍陶瓷的生产工艺原理和加工技术,以帮助读者更好地了解陶瓷材料的制作过程和相关知识。
陶瓷的生产工艺原理高温烧结原理陶瓷是通过高温烧结来制造的,烧结是指将陶瓷粉体在高温条件下进行加热,使其颗粒之间发生结合,形成致密的材料结构。
高温烧结的原理主要包括以下几个方面:1.粒子结合原理:在高温下,陶瓷粉体中的颗粒发生熔融、扩散和结晶过程,颗粒之间的结合力增强,形成坚固的烧结体。
2.液相烧结原理:一些陶瓷粉体具有液相烧结性能,即在高温下形成液相,促进颗粒结合。
3.固相烧结原理:某些陶瓷粉体的烧结是通过固相反应实现的,固相在颗粒间发生反应,形成高密度的陶瓷材料。
烧结工艺陶瓷的烧结工艺包括原料制备、成型、烧结和后处理等环节。
1.原料制备:陶瓷的制作原料包括陶瓷粉体、添加剂和溶液等。
原料的选择和配比对于陶瓷的性能和品质具有重要影响。
2.成型:陶瓷的成型方式主要有压制、注塑、挤出和注浆等。
成型是将陶瓷粉体制成所需形状的过程,为后续的烧结做好准备。
3.烧结:烧结是将成型后的陶瓷制品放入高温炉中进行加热,使其发生烧结反应。
烧结的参数包括温度、时间和气氛等,对于陶瓷的质量具有重要影响。
4.后处理:陶瓷的后处理包括抛光、涂层、包装等环节,使陶瓷产品更加美观和实用。
陶瓷材料分类陶瓷材料可以按照它们的化学成分和物理性质进行分类。
1.按化学成分分类:陶瓷材料可分为氧化物陶瓷、非氧化物陶瓷和复合陶瓷等。
其中,氧化物陶瓷的主要成分是氧化物,如氧化铝、氧化硅等;非氧化物陶瓷的主要成分是非氧化物,如碳化硅、氮化硅等。
2.按物理性质分类:陶瓷材料可分为结构陶瓷、功能陶瓷和生物陶瓷等。
其中,结构陶瓷主要用于承受机械应力的部件,如陶瓷刀具、陶瓷瓶等;功能陶瓷主要具有特殊的物理和化学性能,如陶瓷陶瓷磁体、陶瓷电容器等;生物陶瓷主要用于医疗领域,如人工关节、牙科陶瓷等。
材料科学基础最全名词解释
材料科学基础最全名词解释固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。
液相烧结:有液相参加的烧结过程。
金属键:自由电子与原子核之间静电作用产生的键合力。
离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。
共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。
氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。
弗兰克缺陷:间隙空位对缺陷肖脱基缺陷:正负离子空位对的奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。
布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。
不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。
玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。
这个临界温度称为玻璃化温度Tg。
表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。
半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。
柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。
柏氏矢量物理意义:①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。
②从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。
部分位错:柏氏矢量小于点阵矢量的位错包晶转变:在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。
液相烧结
目录1摘要低熔点氧化物添加剂在烧结时形成液相,液相添加剂具有很强的渗透能力,并且在烧结过程中生成新生态的纳米尺寸的稳定固体粒子,故有很好的活性,分布均匀性,弥散性极强烈的阻碍晶粒长大的作用。
低熔点氧化物形成的液相,通过添加低熔点添加剂在烧结阶段形成液相,在较大的程度上降低材料的烧结激活能,从而促进烧结中物质的传递以及产品的致密化。
促进铁氧体产品的致密化,提高磁体密度改善材料的磁性能,使铁氧体产品在较低的温度达到较高的体积密度,降低产品烧结温度。
关键词:液相烧结;铁氧体;磁性材料23ABSTRACTLow melting point oxide compound chemical additive when agglutination forms the liquid phase, the liquid phase chemical additive has the very strong seepage ability, and produces the nascent state in the agglutination process the nanometer size stable solids, therefore has the very good activeness, distributed uniformity, dispersivity extremely intense hindrance crystal growth function. The low melting point oxide compound forms the liquid phase, through increases the low melting point chemical additive to form the liquid phase in the agglutination stage, reduces the material in the great degree the agglutination activation energy, thus in acceleration of sintering material transmission as well as product densification. The promotion ferrites product's densification, enhances the magnet density improvement material magnetism performance, enables the ferrites product to achieve the high bulk density in the low temperature, reduces the product agglutination temperature.key word: Liquid phase sintering; Ferrites; Magnetic material4前言永磁铁氧体材料的矫顽力和抗腐蚀性都比较好,尤其是它的低成本更是其它磁钢所无法比拟的,尤其是M型Sr永磁铁氧体材料有良好的性能,是具有重要的商业意义的永磁材料,应用领域非常广泛。
9-3液态烧结
2.塑性流动
当坯体中液相含量很少,高温下流动传质不能 看成是纯牛顿型流动,而是属于塑性流动型,只有 作用力超过屈服值(f)时,流动速度才与作用的剪 应力成正比,此时式(9.35)改为。
d 3 (1 )[1 dt 2r fr 1 ln( )] 1 2 (9.36 )
溶解沉淀传质的推动力仍是颗粒的表 面能。只是液相润湿固相,每个颗粒之间的 空腔都形成一系列的毛细管,表面张力以毛 细管力的方式使颗粒拉近,毛细管力数值为 △P=2γLV/r,其中r是毛细管半径。粉料粒度 在0.1-1µm时,如果其中充满液相,毛细管力 可达1.23-12.3Mpa,可见毛细管力所造成的烧 结推动力是很大的 。
在固态烧结中也存在塑性流动。选择较
小的r、,较大的可以促进烧结。在烧结早
期,表面张力较大,塑性流动可以靠位错的
运动来实现;而烧结后期,在低应力作用下
靠空位自扩散而形成粘性蠕变,高温下发生
的蠕变是以位错的滑移或攀移来完成的、塑 性流动机理目前应用在热压烧结的动力学过 程是很成功的。
三、溶解—沉淀传质 1、溶解-沉淀传质的条件 在有固-液两相的烧结中,当固相在液相 中有可溶性,这时烧结传质过程就由部分固 相溶解,而在另一部分固相上沉积.直至晶粒 长大和获得致密的烧结体。 研究表明发生溶解沉淀传质的条件有 : ①显著数量的液相, ②固相在液相内有显著的可溶性; ③液体润湿固相。
L 1 x ~t L
1+x的意义是该值约大于1,这是考虑在烧结进 行时,被包裹的小尺寸气孔减小,作为烧结推 动力的毛细管压力增大,所以略大于1。
颗粒重排对坯体致密度的影响取决于液相 的数量。 1).液相量少 如果液相数量不足,则液体既不能完 全包裹颗粒,也不能充填颗粒间的空隙,当 熔体从甲处流向乙处后,在乙处发生颗粒的 重排,同时在甲处产生空腔,这时能产生颗 粒的重排但不足以消除气孔。
液相烧结SIC陶瓷的研究进展
液相烧结Si C陶瓷的研究进展毛小东,沈卫平,白玲(北京科技大学特种陶瓷与粉末冶金研究所,北京100083)摘要综述了液相烧结S i C陶瓷的烧结添加荆体系、烧结工艺、烧结机理,并简要介绍了几种新的烧结方法。
介绍了液相烧结s i C的微观结构和性能,讨论了Si C-Y A G及Si C-~一B C烧结体系的特点和烧结体性能,简述了利用SP S、微波烧结等新方法制备液相烧结Si C陶瓷的机理及研究进展。
关键词Si C液相烧结烧结助剂烧结方法R ese a r ch Pr ogr es s i n L i qui d—phas e Si nt er i ng of Si l i con C a r bi de C er am i csM A O X i a odong,SH E N W ei pi ng,B A I Li ng(Labor at or y of Speci al C e r am i c s a nd Pow d er M et al l u r gy,U ni v er si t y of Sci e nce and Technol ogy B ei j i ng,B ei j i ng100083)A bs t ract A br ief s um m er y i s gi ven o n t he r ese ar ch pr ogr es s i n l i qui d-phase s i nt e ri ng(L PS)of Si C a bout t hes i nt er i n g addi t i ves,s i nt er i ng t ec hni qu es and s i nt er i n g m ec hani sm.Som e ne w s i nt er i n g m et hods i nt r oduce d a nd t he m i cr os t r uct ur e a nd pr ope r t i es of LP孓s i C di scu sse d.si C—Y A G and Si C-A l—B—C s i nt er i n g s ys t e m s di scus sed f ocu-s i ng o n t hei r char act er i st i cs a nd com pos i t e pr op er t i es.T he s i nt er i n g m echani s ma nd devel opm e nt of SPS a nd m i c r ow a ve s i nt er i n g of Si C ce r a m i c s i ntr oduced.K ey w or ds Si C,l i qu i d-phase s i nt eri ng,s i nter i ng addi t i ves,s i nt er i ng m et hodsO前言1原料粉处理20世纪70年代中期,Pr oeh azka首先以少量的B、c为烧结助剂,在无任何外部压力的条件下烧结成功,并研究了Si C的烧结机理[1]。
液相烧结粉末冶金材料
液相烧结粉末冶金材料
液相烧结粉末冶金材料,英文名为Liquid Phase Sintered Powder Metallurgy Materials,也称为LP织构材料或LP复合材料。
液相烧结方法是一种将粉末冶金材料加热到一定温度,使其发生液相反应,再通过固
相烧结,最终制成一定形状的材料的方法。
在液相烧结法中,通常采用金属或有机物作为
液相,使粉末之间形成一定的接触和冶金反应,从而形成一定的结合和固化。
由于液相的
参与,使材料具有良好的烧结性能、高渗透性等优点。
液相烧结粉末冶金材料可应用于制造高性能透过率、高性能透后率、高渗透性、高耐
磨性、高耐腐蚀性、高强度、高强韧性等特性的复合材料,广泛应用于石油、化工、电力、电子等领域。
液相烧结粉末冶金材料的制造工艺包括粉末制备、液相制备、混合、成型、烧结、后
处理等多个步骤。
其制备流程如下:
1.粉末制备:选用高纯度的金属粉末和氧化物粉末,并对其进行筛选和过滤。
2.液相制备:选用适当的液相,用配比、搅拌等方式制备成液体状。
3.混合:将粉末和液相混合,得到湿混合物。
4.成型:将湿混合物挤压成所需形状的坯体。
5.烧结:将坯体放入烧结炉中,升高温度使液相发生反应,固化坯体。
6.后处理:对烧结后的材料进行抛光、清洗、检测等操作,得到最终产品。
液相烧结粉末冶金材料具有重要的应用价值。
在航空航天、汽车、机械制造等行业中,液相烧结材料的应用可大幅提高产品的性能和品质。
未来,随着技术的发展和应用的推广,液相烧结粉末冶金材料将有更广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
书山有路勤为径,学海无涯苦作舟
材料的烧结----液相烧结
液相烧结:凡是有液相参与的烧结过程称为液相烧结。
液相烧结的主要传质方式有:流动传质、溶解-沉淀传质等。
1、液相烧结的特点
液相烧结与固态烧结的共同之点是烧结的推动力都是表面能;烧结过程也是由颗粒重排、气孔填充和晶粒生长等阶段组成。
不同点是:由于流动传质速率比扩散快,因而液相烧结的致密化速率高,可使坯体在比固态烧结温度低得多的情况下获得致密的烧结体。
此外,液相烧结过程的速率与液相的数量、液相性质(粘度、表面张力等)、液相与固相的润湿情况、固相在液相中的溶解度等有密切的关系。
2、流动传质
粘性流动:在高温下依靠粘性液体流动而致密化是大多数硅酸盐材料烧结的主要传质过程。
在液相烧结时,由于高温下粘性液体(熔融体)出现牛顿型流动而产生的传质称为粘性流动传质(或粘性蠕变传质)。
粘性流动初期的传质动力学公式:
式中r 为颗粒半径;x 为颈部半径;η为液体粘度;γ为液-气表面张力,t 为烧结时间。
适合粘性流动传质全过程的烧结速率公式:
式中θ为相对密度。
塑性流动:当坯体中液相含量很少时,高温下流动传质不能看成是纯牛顿型流动,而是属于塑性流动类型。
也即只有作用力超过其屈服值(f)时,流动速率才与作用的剪切应力成正比。
此时传质动力学公式改变为:
式中η是作用力超过f 时液体的粘度;r 为颗粒原始半径。
3、溶解- 沉淀传质。