小学奥数等差数列练习及答案
三年级下册数学试题-奥数练习:等差数列(含答案)全国通用
等差数列初步(求公差与某一项、求项数)1.等差数列中,第9 项和第17 项相隔__________个公差.2.等差数列中,第6 项和第20 项相隔__________个公差.3.一个等差数列共有15 项.每一项都比它的前一项大2,并且首项为30,那么末项是__________.4.一个等差数列,每一项都比它的前一项大2,第3 项为33,那么第10 项是__________.5.一个等差数列第4 项为25,第15 项为113,那么这个等差数列的公差是__________.6.一个等差数列第7 项为50,第12 项为75,那么这个等差数列的公差是__________.7.一个等差数列首项为5,末项为101,公差为8,那么首项和末项之间相隔了__________个公差.8.一个等差数列首项为20,末项为116,公差为6,那么首项和末项之间相隔了__________个公差.9.已知等差数列2,9,16,23,30,…,那么86 是这个等差数列的第__________项.10.已知等差数列3,9,15,21,27,…,那么93 是这个等差数列的第__________项.11.一个等差数列的首项为7,第8 项为91,127 是第__________项.12.一个等差数列的首项为12,第7 项为90,129 是第__________项.答案:1.(8) 2.(14) 3.(58)4.(47)5.(8) 6.(5)7.(12)8.(16)9.(13)10.(16)11.(11)12.(10)等差数列求和(配对求和、利用中间数求和)1.计算:13+17+21+25+29+33+37+41=__________.2.计算:32+34+36+38+40+42+44+46+48+50= __________.3.3+7+11+15+……,等差数列共12 项,那么这12 项的和是__________.4.4+7+10+13+……,等差数列共20 项,那么这20 项的和是__________.5.计算:5+7+9+……+53+55=__________.6.计算:13+19+25+……+67+73=_________.7.文雯为了增肥,计划每天吃包子,第一天她吃了5 个包子,以后每天都比前一天多吃 3 个包子,最后一天吃了32 个包子.那么文雯一共吃了________ 天包子,共吃8.一个等差数列共15 项,那么这个等差数列的中间数是第__________项.9.一个等差数列共9 项,那么这个等差数列的中间数是第__________项.10.馋嘴猴特别爱吃香蕉,它每周吃的香蕉数量成等差数列,已知它第5 周吃了20 根香蕉.馋嘴猴前9周一共吃了_________根香蕉.11.旦旦很喜欢吃包子,她每天吃的包子数成等差数列,已知她第6 天吃了30 个包子,那么旦旦前11天一共吃了__________个包子.12.已知一个等差数列的下列条件:① 第1 项是7;② 第7 项是25;③ 第8 项是28;④ 第13 项是43;⑤ 公差是3;⑥ 共13 项.以下选项中不能求出这个等差数列和的是__________.• A. ①、④和⑥• B. ③、⑤和⑥• C. ②和⑥• D. ③和⑥答案:1.(216) 2.(410) 3.(300)4.(650)5.(780)6.(473)7.(10,185)8.(8)9.(5)10.(180)11.(330)12.(D)等差数列应用(求中间数、中间数的应用)1. 9 个连续自然数之和为126,其中第5 个数是__________.2. 7 个连续自然数之和为105,其中第4 个数是__________.3.9 个连续自然数之和为135,其中最小的数是__________.4.9 个连续自然数之和为153,其中最大的数是_________.5.把248 表示成8 个连续偶数的和,其中最大的偶数是__________.6.等差数列中,第5 项到第13 项共有______ 项,第5 项到第13 项的中间项是第_______ 项.7.等差数列中,第3 项到第9 项共有________ 项,第3 项到第9 项的中间项是第_________ 项.答案:1.(14) 2.(15) 3.(11)4.(21)5.(38)6.(9,9)7.(7, 6)割圆术数学意义:“割圆术”,则是以“圆内接正多边形的面积”,来无限逼近“圆面积”。
小学奥数1-2-1-3 等差数列应用题.专项练习及答案解析
【例 1】 100以内的自然数中。
所有是3的倍数的数的平均数是 。
【考点】等差数列应用题 【难度】1星 【题型】填空 【关键词】希望杯,五年级,复赛,第3题,5分 【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。
【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
【考点】等差数列应用题 【难度】2星 【题型】填空 【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴. 【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空 【关键词】学而思杯,1年级【解析】 因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题 【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依例题精讲等差数列应用题次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】(方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++=2+10025=10325=2550()⨯⨯(方法二)根据12398991005050+++++的++++++=,从这个和中减去1357 (99)和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题【难度】2星【题型】解答【解析】也就是已知一个数列:3、5、7、9、11、13、15、……,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n项=首项+公差(),⨯-n1所以,第102项321021205(-);由“项数=(末项-首项)÷公差1=+⨯=+”,999所处的项数是:()-÷+=÷+=+=999321996214981499【答案】499【例 7】如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
小学奥数教程-等差数列计算题1 (含答案)
本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。
一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小. ⑵通分子:分母小的分数大. ⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数) ⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大; ②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大. ⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果. (2)变换结构:将原来算式或问题变形为便于估算的形式.模块一、两个数的大小比较【例 1】 如果a =20052006,b = 20062007,那么a ,b 中较大的数是 【考点】两个数的大小比较 【难度】2星 【题型】填空 【关键词】希望杯,五年级,一试 【解析】 方法一:<与1相减比较法>1- 20052006= 12006;1- 20062007= 12007.因为12006> 12007,所以b 较大;方法二:<比倒数法>因为1120052006>,所以2006200720052006>,进而2005200620062007<,即a b <; 方法三:两个真分数,如果分子和分母相差相同的数,分子和分母都大的分数比较大,所以b 大【答案】b 例题精讲知识点拨教学目标比较与估算【巩固】试比较19951998和19461949的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】19951998>19461949【答案】19951998>19461949【巩固】比较444443444445和555554555556的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】因为44444321444445444445-=,55555421555556555556-=,显然22444445555556>,根据被减数一定,减数越大差越小的道理,有:444443555554 444445555556<【答案】444443555554 444445555556<【例 2】如果A=111111110222222221,B=444444443888888887,A与B中哪个数较大?【考点】两个数的大小比较【难度】3星【题型】填空【关键词】迎春杯,决赛【解析】方法一:观察可以发现A、B都很接近12,且比它小.我们不防与12比较.1 2-A12222222221=⨯,12-B=12888888887⨯,12-B<12-A,即B比A更接近12,换句话说B>A .方法二:11111111011111111044444444404444444432222222212222222214888888884888888887A B⨯===<=⨯,即A B<.方法三:112111111110A=,112444444443B=显然11A B>,则A B<【答案】B【巩固】如果222221333331,222223333334A B==,那么A和B中较大的数是.【考点】两个数的大小比较【难度】2星【题型】填空【关键词】祖冲之杯【解析】222221666663666662333331222223666669666668333334A B==>==,即A大【答案】A【巩固】试比较1111111和111111111的大小【考点】两个数的大小比较【难度】3星【题型】填空【解析】方法一:观察可知,这两个分数的分母都比分子的10倍多1.对于这样的分数,可以利用它们的倒数比较大小.1111111的倒数是1÷1111111=110111,111111111的倒数是1÷11111111110=11111,我们很容易看出101111>1011111,所以1111111<111111111;方法二:111111101110111111*********⨯==⨯,两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大,所以11101111,1111011111<即1111111.111111111< 【答案】1111111.111111111<【例 3】 在 a =20032003×2002和 b =20022003×2003中,较大的数是______ ,比较小的数大______ 。
小学等差数列练习题及答案
小学等差数列练习题及答案精品文档小学等差数列练习题及答案四年级奥数上册:第四讲等差数列及其应用习题解答四年级等差数列练习题1(找出规律后填出下面数列中括号里的数:1,,,,, 11, 13,,…1,,, 10,, 16, 19,…1,,, 10, 15,,8,…l,,,,,,,,…,, 11, 19,5,, 131;59,…2.已知等差数列5,9,13,17,…,它的第15项为_______.3.已知等差数列2,7,12,…,122,这个等差数列共有_____项。
4(从25往后数18个连续的奇数,最后一个奇数是______.5(被4除余1的两位数共有____个。
6(等差数列2,5,8,11,…,共有80项,其中所有奇数的和为_____.7(一个等差数列的第2项是2.8,第3项是3.1,则这个数列的第10项是_____.8(有10个同学聚会,见面时如果每人都和其余的每个人握一次手,那么共握手____次。
1 / 5精品文档9(在1949,1950,1951,……,1999,2000这52个自然数中,所有偶数之和比所有奇数之和多_____。
10(某市举行数学竞赛,比赛前规定,前15名可以获奖,比赛结果第一名1人,每2名并列2人,每三名并列3人,……,每十五名并列15人,用最简便的方法计算出得奖的一共有______人。
11(已知等差数列5,8,11,…,它的第21项为______。
12(自1开始,每隔三个自然数写出一个自然数来,得到一个数列,这个数列的前五项是 __________________,这个数列的前50项的和是_____________。
13(所有被7除余数是1的二位数的和是_________。
14(在13和29之间插入三个数,使这五个数成等差数插入的三个数依次是_______.15(有一批铁管,最低下一层是10根,倒数第二层是9根,以后每往上一层,铁管少一根,那么十层铁管一共有______根。
小学奥数等差数列练习及答案【三篇】
小学奥数等差数列练习及答案【三篇】【篇一】知识点:1、数列:按一定顺序排成的一列数叫做数列。
数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。
数列中共有的项的个数叫做项数。
2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。
3、常用公式等差数列的总和=(首项+末项)项数2项数=(末项-首项)公差+1末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项-首项)(项数-1)等差数列(奇数个数)的总和=中间项项数【篇二】典例剖析:例(1)在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+1,便可求出。
(2)根据公式:末项=首项+公差(项数-1)解:项数=(201-3)3+1=67末项=3+3(201-1)=603答:共有67个数,第201个数是603练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?答案:第48项是286,508是第85项例(2)全部三位数的和是多少?分析::所有的三位数就是从100~999共900个数,观察100、101、102、……、998、999这个数列,发现这是一个公差为1的等差数列。
要求和能够利用等差数列求和公式来解答。
解:(100+999)9002=10999002=494550答:全部三位数的和是494550。
练一练:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。
答案:1000例(3)求自然数中被10除余1的所有两位数的和。
分析一:在两位数中,被10除余1最小的是11,的是91。
从题意可知,本题是求等差数列11、21、31、……、91的和。
它的项数是9,我们能够根据求和公式来计算。
解一:11+21+31+……+91=(11+91)92=459【篇三】1、有10只金子,54个乒乓球,能不能把54个乒乓球放进盒子中去,使各盒子的乒乓球数不相等?2、小明家住在一条胡同里,胡同里的门牌号从1号开始摸着排下去。
小学奥数 等差数列应用题 精选练习例题 含答案解析(附知识点拨及考点)
【例 1】 100以内的自然数中。
所有是3的倍数的数的平均数是 。
【考点】等差数列应用题 【难度】1星 【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。
【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴.【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】学而思杯,1年级【解析】因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++=2+10025=10325=2550⨯⨯()例题精讲等差数列应用题(方法二)根据12398991005050++++++=,从这个和中减去1357...99+++++的和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是: 999321996214981499-÷+=÷+=+=()【答案】499【例 7】 如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
小学奥数 等差数列计算题 精选练习例题 含答案解析(附知识点拨及考点)
等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:知识点拨等差数列计算题23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.【例 1】 用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++= ⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题 【难度】2星 【题型】计算 【解析】 ⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078+++++++=+⨯÷=()⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:471013404346446152375+++++++=+⨯÷=()【答案】⑴3078 ⑵2500 ⑶375【巩固】 1+2+……+8+9+10+9+8+……+2+1=_____。
小学生奥数等差数列练习题及答案
小学生奥数等差数列练习题及答案1.小学生奥数等差数列练习题及答案1、下面是按规律排列的一串数,问其中的第1995项是多少?解答:2、5、8、11、14、……。
从规律看出:这是一个等差数列,且首项是2,公差是3,这样第1995项=2+3×(1995-1)=59842、在从1开始的自然数中,第100个不能被3除尽的数是多少?解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149。
3、把1988表示成28个连续偶数的和,那么其中的那个偶数是多少?。
解答:28个偶数成14组,对称的2个数是一组,即最小数和数是一组,每组和为:1988÷14=142,最小数与数相差28-1=27个公差,即相差2×27=54,这样转化为和差问题,数为(142+54)÷2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:34×29+29=35×2934×30+30=35×3034×31+31=35×3134×32+32=35×3234×33+33=35×33以上数的和为35×(29+30+31+32+33)=54255、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
小学奥数:等差数列应用题.专项练习及答案解析
【例 1】 100以内的自然数中。
所有是3的倍数的数的平均数是 。
【考点】等差数列应用题 【难度】1星 【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99L 共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。
【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴.【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】学而思杯,1年级【解析】 因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++L =2+10025=10325=2550⨯⨯()(方法二)根据12398991005050++++++=L ,从这个和中减去1357...99+++++的和,例题精讲等差数列应用题就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是:999321996214981499-÷+=÷+=+=()【答案】499【例 7】 如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
小学奥数计算专题四 等差数列(飞跃篇)答案
求 99,89,88,79,77,69,……11 这个数列的和 【分析与解】 将该数列分解为两个等差数列:99,88,77……11;89,79,69……19 改变两个数列顺序并相加:(11+99)×9÷2=495
(19+89)×8÷2=432 495+432=928
【例 14】
在 289 和 715 之间插入 5 个数,使这个数列成为等差数列,求这 5 个数的和是多少? 【分析与解】 数列和=(289+715)×7÷2=3514 3515-289-715=25到大的顺序排列)的和是 8450,取出其中第 1 个,第 3 个…第 99 个,再把剩下的 50 个数相加,结果是多少? 【分析与解】 我们考虑这 100 个自然数分成的两个数列,这两个数列有相同的公差,相同的项数,且剩 下的数组成的数列比取走的数组成的数列的相应项总大 1,因此,剩下的数的总和比取走的 数的总和大 50,又因为它们相加的和为 8450.所以,剩下的数的总和为(8450+50)÷2=4250。
【例 20】
把所有奇数排列成下面的数表,根据规律,请指出: 197 排在第几行的第几个数? 1 357 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 43 45 47 49 …… 【分析与解】 197 是奇数中的第 99 个数. 数表中,第 1 行有 1 个数. 第 2 行有 3 个数. 第 3 行有 5 个数… 第几行有 2×行数-l 个数 因此,前 n 行中共有奇数的个数为: 1+3+5+7+…+(2×行数-1) =[1+(2×行数-1)〕×行数÷2 =行数×行数 因为 9×9<99<10×10.所以,第 99 个数位于数表的第 10 行的倒数第 2 个数,即第 18 个数, 即 197 位于第 10 行第 18 个数。
小学奥数计算专题之等差数列
小学奥数计算专题之等差数列习题一、下面一列数是按照下列规律排列的:3,12,21,30,39,48,...(1)第23个数是多少?(2)912是第几个数?二、数列3,6,9,12,15,18,...,300,303是一个等差数列,153是第几个数?这个等差数列中所有数的和是?三、1到100各数,所有不能被6整除的自然数的和是?四、求2+3+7+9+12+15+17+21+22+27+27+33+32+39+37+45为多少?五、一串数按下述规律排列:1,2,3,2,3,4,3,4,5,4,5,6,... 从左边第一个数起到第180个数,这180个数的和是多少?参考答案一、(1)3+(23-1)×9=201(2)(912-3)÷9+1=102二、(1)(153-3)÷3+1=51(2)项数:(303-3)÷3+1=151和:(3+303)×151 ÷2=23103三、1+2+3+...+100=(1+100)×100÷2=5050 能被6整除:6+12+...+96项数:(96-6)÷6+1=166+12+...+96=(6+96)×16÷2=816不能被6整除的:5050-816=4234四、分成两个数列:2+7+12+17+22+27+32+37=(2+37)×8÷2=156 3+9+15+21+27+33+39+45=(3+45)×8÷2=192 所以结果为156+192=348五、每三个数为一组,称为一个等差数列180÷3=60,所以最后一组三个数为:60,61,62 新的等差数列为:6,9,12,...,183和为:(6+183)×60÷2=5670。
小学三年级奥数练习题(等差数列)
小学三年级奥数练习题(等差数列)小学三年级奥数练习题(等差数列)篇一1、一个递增(后项比前项大)的等差数列公差是5, 第55项比第37项________(多或少)______。
2、一个递增(后项比前项大)的等差数列公差是6, 第55项比第83项________(多或少)______。
3、一个递增(后项比前项大)的等差数列公差是7, 第28项比第73项________(多或少)______。
4、一个递增(后项比前项大)的等差数列公差是8, 第90项比第73项________(多或少)______。
5、一个递增(后项比前项大)的等差数列公差是8, 首项比第73项________(多或少)______。
6、一个递增(后项比前项大)的等差数列公差是4, 首项比第26项________(多或少)______。
7、一个递减(后项比前项小)的等差数列公差是9, 第18项比第32项________(多或少)______。
8、一个递减(后项比前项小)的等差数列公差是4, 第32项比第18项________(多或少)______。
9、一个递减(后项比前项小)的等差数列公差是3, 第74项比第26项________(多或少)______。
10、一个递减(后项比前项小)的等差数列公差是7, 第74项比第91项________(多或少)______。
11、一个递减(后项比前项小)的等差数列公差是8, 第29项比第86项________(多或少)______。
12、一个递减(后项比前项小)的等差数列公差是9, 第123项比第86项________(多或少)______。
13、一个递减(后项比前项小)的等差数列公差是9, 第23项比首项________(多或少)______。
14、一个递减(后项比前项小)的等差数列公差是6, 第46项比首项________(多或少)______。
15、一个递增(后项比前项大)的等差数列公差是3, 有一项比第34项大57, 这一项比第34项________(多或少)________个公差, 这一项是第________项。
小学数学五年级《 等差数列》练习题(含答案)
《 等差数列》练习题(含答案)内容概述许多同学都知道这样一个故事:大数学家高斯在很小的时候,就利用巧妙的算法迅速计算出从1到100这100个自然数的总和.大家在佩服赞叹之余,有没有仔细想一想,高斯为什么算得这么快呢?当然,小高斯的聪明和善于观察是不必说了,往深处想,最基本的原因却是这100个数及其排列的方法本身具有极强的规律性——每项都比它前面的一项大1,即它们构成了差相等的数列,而这种数列有极简便的求和方法.通过这一讲的学习,我们回顾加强有关等差数列求和的方法,而且学会利用这种数列来解决许多有趣的问题.【复习1】你能给大家说一说有关等差数列的性质、结论以及相关公式吗?分析:以下答案仅供参考!(1) 先介绍一下一些定义和表示方法:定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、…… 从第二项起,每一项比前一项大3 ,递增数列 100、95、90、85、80、…… 从第二项起,每一项比前一项小5 ,递减数列(2) 首项:一个数列的第一项,通常用a 1表示;末项:一个数列的最后一项,通常用a n 表示,它也可表示数列的第n 项. 每个数列都有最后一项吗?数列分有限数列和无限数列;项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变得差,通常用d 来表示;和 :一个数列的某些项的和,常用S n 来表示 .(3) 三个重要的公式:① 通项公式:末项=首项+(项数-1)×公差1(1)n a a n d =+-⨯回忆讲解这个公式的时候我们可以结合具体数列或者原来学的植树问题的思想,让同学明白末项其实就是首项加上(末项与首项的)间隔的公差个数,或者从找规律的情况入手.同时我们还可延伸出来这样一个有用的公式:(),()n m a a n m d n m -=-⨯② 项数公式:项数=(末项-首项)÷公差+1 (其实此公式是由①推导出来的,教师也可以帮助同学推导,可以为以后的解方程做好铺垫)由通项公式可以得到: 1()1n n a a d =-÷+ (1na a 若);1n ()1n a a d =-÷+(1n a a 若).找项数还有一种配组的方法,其中运用的思想我们是常常用到的!譬如:找找下面数列的项数:4、7、10、13、……、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是 3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组. 当然,我们还可以有其他的配组方法.③ 求和公式:和=(首项+末项)×项数÷21()2n n s a a n =+⨯÷对于这个公式的得到我们可以从两个方面入手:(思路1)1+2+3+…+98+99+100=101×50=5050(思路2)这道题目,我们还可以这样理解:即,和= (100+1)×100÷2=101×50=5050(4)中项定理对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首相与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:(1)4+8+12+…+32+36=(4+36)×9÷2=20×9=180,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于20×9 ;(2)65+63+61+…+5+3+1=(1+65)×33÷2=33×33=1089 ,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于33×33 .如果是一个项数为偶数的等差数列,我们该如何运用这个公式呢?其实我们可以将其去掉一项,变成奇数项,求和之后再加上去掉的那一项 .中项定理也可用在速算与巧算中. 譬如:计算:124.68+324.68+524.68+724.68+924.68分析:这是一列等差数列,项数是奇数,中间数是524.68,所以可以用5×524.68=2623.4 .等差数列是小学奥数的一个重要知识,无论是竞赛还是小升初都是一个考核的重点.一部分题目是直接考数列,但更多的是结合到找规律、周期等问题进行考核.复习题目的重点就是让学生熟练掌握等差数列的求和、末项和项数的求解.不能让学生去单纯的背公式,而应该把原理讲透.【复习2】(1)3、5、7、9、11、13、15、……,这个数列有多少项?它的第102项是多少?(2)已知等差数列2、5、8、11、14 …,问47是其中第几项?(3)如果一等差数列的第4项为21,第6项为33,求它的第8项.分析:(1)它是一个无限数列,所以项数有无限多项.第n项=首项+公差×(n-1),所以,第102项=3+2×(102-1)= 205 ;(2)首项=2 ,公差=3 ,我们可以这样看:2、5、8、11、14 …、47 ,那么这个数列有:n=(47-2)÷3+1=16 ,(熟练后,此步可省略),即47是第16项;(3)要求第8项,必须知道首项和公差.第6项-第4项=(6-4)×公差,所以,公差= 6 ;第4项=首项+3×公差,21=首项+3×6 ,所以,首项=3 ;第8项=首项+7×公差=45 ;【复习3】某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位.问:这个剧一共有多少个座位?分析:首项:70-(25-1)×2=22 ,座位总数:(22+70)×25÷2=1150.【复习4】小明从1月1日开始写大字。
小学等差数列练习题及答案
小学等差数列练习题及答案精品文档小学等差数列练习题及答案四年级奥数上册:第四讲等差数列及其应用习题解答四年级等差数列练习题1(找出规律后填出下面数列中括号里的数:1,,,,, 11, 13,,…1,,, 10,, 16, 19,…1,,, 10, 15,,8,…l,,,,,,,,…,, 11, 19,5,, 131;59,…2.已知等差数列5,9,13,17,…,它的第15项为_______.3.已知等差数列2,7,12,…,122,这个等差数列共有_____项。
4(从25往后数18个连续的奇数,最后一个奇数是______.5(被4除余1的两位数共有____个。
6(等差数列2,5,8,11,…,共有80项,其中所有奇数的和为_____.7(一个等差数列的第2项是2.8,第3项是3.1,则这个数列的第10项是_____.8(有10个同学聚会,见面时如果每人都和其余的每个人握一次手,那么共握手____次。
1 / 5精品文档9(在1949,1950,1951,……,1999,2000这52个自然数中,所有偶数之和比所有奇数之和多_____。
10(某市举行数学竞赛,比赛前规定,前15名可以获奖,比赛结果第一名1人,每2名并列2人,每三名并列3人,……,每十五名并列15人,用最简便的方法计算出得奖的一共有______人。
11(已知等差数列5,8,11,…,它的第21项为______。
12(自1开始,每隔三个自然数写出一个自然数来,得到一个数列,这个数列的前五项是 __________________,这个数列的前50项的和是_____________。
13(所有被7除余数是1的二位数的和是_________。
14(在13和29之间插入三个数,使这五个数成等差数插入的三个数依次是_______.15(有一批铁管,最低下一层是10根,倒数第二层是9根,以后每往上一层,铁管少一根,那么十层铁管一共有______根。
小学奥数教程-等差数列计算题.教师版(11)全国通用(含答案)
2a ba 22ab b 2.为便于记忆,可形象的叙述为:首平方,尾平方,2倍乘积在中央、常用技巧1. abcabc abc 1001 ;2. ababab ab 10101 ;3. 1 0.142857 , 2 0.285714 , 30.428571 ,7 7 7 4 1 5 1 6—0.571428 , — 0.714285 , — 0.857142 ; 7 7 7 4. %驰 %邨 123|||n||(321 ,其中 n 9.n 个1n 个1且隹例题精讲一'、前n 项和 【例 1】12 32 52"192【考点】公式法之求和公式 【解析】12 32 52 "I 192(12 22 32 ||| 192) (221 /2 2 —19 20 39 4 (1 2 6自tut/、常用公式1.2 3III2. 12 22 323. 13 23 334.5.6. 7.知识点拨IIIIll 10 n (n 1) 2n 等比数列求和公式: 平方差公式: b2n (n 1) (2n 1)S n II IIl la〔q1a 〔q公式法计算22n (n 1) a 〔qn n 1III a 1(q n1)(q 3 2 1 n2;1);完全平方公式: 用文字表述为:2ab b 2,2 一2a 2ab b两数和(或差)的平方,等于这两个数的平方和, 加上(或者减去)这两个数的积的2倍,两条公式也可以合写在一起:【难度】2星42 || 182)III 92) 【题型】计算57600 门平 c2 ---- 2 7 8 4 8128【答案】81281 2 23333-100 101 21 2 501 2 2 3 1 2 2 —100 101 2 50 51 4 42470 2470【答案】21851—9 10 19 6285 2185 222222【巩固】124 5 7 8 【考点】公式法之求和公式【解析】原式(12 22 I0 162) (12 22 ||| 162) 2222210 11 13 14 16【难度】3星 (32 62 92 122 152)32 (12 2232 4252) 【题型】计算16 17 33 5 6 11--------- 9 ---------6 61496 495 1001【答案】1001[例 2 ] 计算:36 49 64 81 III 400 【考点】公式法之求和公式 【难度】3星【解析】原式62 72 82 H 2021222 32 ” 20212 2 2 32 42 521 120 21 41 5 6 11 6 6 2870 55 2815【答案】2815【题型】计算【例3】 计算:13 33 53 73 【考点】公式法之求和公式 33339 11 13 15【难度】3星【题型】计算【解析】原式13 23 33 432215 15 1 ---------- 8 III 143 13 23 153 III 23 73 43 III314【巩固】计算:13 33 53 \\\ 【考点】公式法之求和公式 【解析】 与公式13 23\\\ n 3先补上偶数项. 3991 2【难度】3星212n n m -------- 相比,4【题型】填空13 33 53”993缺少偶数项,所以可以原式 13 23 33 \\\ 100323 43 \\\ 1003_2 _2_ 2502 1012 2 512 12497500 【答案】124975001 23 33 20063【例4 ] 计算:------------------------------ 11 2 3 2006【关键词】西城实验 2003 2 2001 22 13 5 I]) 2001 2 1 2003 1002 2 2008008其中也可以直接根据公式 1 3 5 7 “ 2n 1 n 2得出1 3 5 ” 2001 2003 10022【答案】2008008 【例 6】计算:1 22 2 32 3 42 \[[ 18 192 19 202 【考点】公式法之求和公式 【难度】3星【题型】计算【解析】 分拆(21) 22 23 22 (3 1 ) 32 33321HHi 再用公式4 川丁( I( (J (II ( ( ( ( ( ( \J I ) 。
三年级奥数 等差数列 习题
等差数列习题1、求出下列各式之和:①9+13+17+21+25+29②1+3+5+7+……+95+97+992、小红读一本长篇小说,第一天读了30页,第二天起,每天读的页数都比前一天多4页,最后一天读了70页,刚好读完,请问这本小说共有多少页?3、求出从0到100之内所有3的倍数的和?4、三个连续自然数的和是31,这三个数中最大的一个是多少?5、有4个数,他们的平均数是32,其中前3个数的平均数是29,后2个的平均数是35,第三个数是多少?答案(附后)1、①可看成首项9,末项29,项数6的等差数列,所以有:(9+29)×6÷2=114②可看成首项1、末项99、公差是2的等差数列。
这个数列的第2项比第1项多2,第3项比第1项多2×2=4,第4项比第1项多3×3=6,……从而我们可以知道:项数=(末项-首项)÷公差+1=(99-1)÷2+1=50所以该式子的和是(1+99)×50÷2=25002、天数(项数)=(末项-首项)÷公差+1=(70-30)÷4+1=11 总页数=(30+70)×11÷2=550页3、100内3的倍数有0,3,6,9,12,……,96,99。
这是首项为0,末项为99,公差为3的等差数列,可以求出它的项数为(99-0)÷3+1=34,所以等差数列的和为:(0+99)×34÷2=99×17=16834、三个连续自然数的平均数就是中间那个数。
先求中间数,在求最大数。
中间数:231÷3=77;最大数:77+1=785、29×3+35×2-32×4=29,第三个数是29。
解此题的关键是发现第三个数是被重复计算的数。
五年级奥数测试卷-等差数列-答案
测试卷三A1、在下面数列中,第15项是( ),共有( )项。
17、22、27、…、147、152。
2、已知一个等差数列首项是78,尾项是228,共有51项,公差是( ),第36项是( )。
3、1+3+5+…+197+199=( )。
4、从15开始的10个连续奇数的和是( )。
5、如果8个连续偶数的和是152,那么接下去8个连续偶数的和是( )。
6、所有两位数的和是( )。
7、从100到200的自然数中,所有被6除余5的数的和是( )。
8、20+21+23+24+26+27+…+50+51+53+54=( )。
9、(78+82+86+…+178+182+186)-(67+71+75+…+167+171+175)=( )。
10、0.2+0.4+0.6+0.8+0.10+0.12+0.14+…0.46+0.48+0.50=( )。
11、有9个连续数,其中的奇数之和是625,那么其中的偶数之和是( )。
12、将2005写成若干个连续自然数的和,有多种写法。
请写出其中的2种(只要写出这串连续自然数中的第一个和最后一个)(1)2005=( )+ …+( )。
(2)2005=( )+ …+( )。
测试卷三B1、在210与350之间插入6个数,使这8个数构成一个等差数列。
插入的6个数依次是( )。
2、205+203-201-199+197+195―193―191+…+101+99―97―95=( )。
3、在100与300之间所有个位上是3的自然数的和是( )。
4、(2+5+8+……+2000+2003)-(3+6+9+……+1998+2001)=( )5、一个10层的货架,放了2300件同样的物品,上边一层比下边一层少4件,最下面一层放了()件物品。
6、100个连续自然数(按从小到大的顺序排列)的和是8450,取其中第1个,第3个,……第99个,再把剩下的50个数相加,和得( )。
7、有一个数:1、100、99、1、98、97、1、…,从第3个数起,每个数都是它前面2个数中大数减小数的差。
小学奥数:等差数列计算题.专项练习及答案解析
等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078()+++++++=+⨯÷=⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
四年级奥数等差数列
四年级奥数等差数列专项练习(1)通项公式:第几项=首项+(项数-1)×公差(2)项数公式:项数=(末项-首项)÷公差+1(3)求和公式:总和=(首项+末项)×项数÷21、求等差数列3,8,13,18,……的第30项是多少?2、求等差数列8,14,20,26,……302的末项是第几项?3、一个剧院的剧场有20排座位,第一排有38个座位,往后每排比前一排多2个座位,这个剧院一共有多少个座位?4、计算11+12+13……+998+999+1000 2+6+3+12+4+18+5+24+6+305、求等差数列6,9,12,15,……中第99项是几?6、求等差数列46,52,58……172共有多少项?7、求等差数列245,238,231,224,……中,105是第几项?8、求等差数列0,4,8,12,……中,第31项是几?在这个数列中,2000是第几项?9、从35开始往后面数18个奇数,最后一个奇数是多少?10、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少?11、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次?12、请用被4除余数是1的所有两位数组成一个等差数列。
并求出这个等差数列的和。
13、在13和29之间插三个数,使这个五个数构成一个等差数列,那么插入的三个数分别是多少?14、如果要在30和70之间插入若干个数,使他们组成一个公差是5的等差数列,那么一共要插入多少个数?15、学校举行乒乓球赛,每个参赛选手要和其他选手进行一场比赛,一共进行了78场,计算出一共有多少个参赛选手?16、一把钥匙和一把锁配着,现在有10把钥匙和10把锁混着了,最多要打多少次才能把钥匙和锁都配好?17、40个连续奇数的和是1920,其中最大的一个是多少?18、小明读一本600页的书,他每天比前一天多读1页。
16天读完,那么他最后一天读了多少页?19、有一个数列:2,6,10,14,…,106,这个数列共有多少项?20、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项?21、求1,5,9,13,…,这个等差数列的第3O项。
小学数学《等差数列》练习题(含答案)
小学数学《等差数列》练习题(含答案)你还记得吗【复习1】你能给大家说一说有关等差数列的性质、结论以及相关公式吗?呵呵!快快举手, 多多贏得小印章!分析:以下答案仅供参考!(1)先介绍一下一些定义和表示方法:定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、……从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、••••••从第二项起,每一项比前一项小5 ,递减数列(2)首项:一个数列的第一项,通常用型表示;末项:一个数列的最后一项,通常用爲表示,它也可表示数列的第n项.每个数列都有最后一项吗?数列分有限数列和无限数列;项数:一个数列全部项的个数,通常用n来表示;公差:等差数列每两项之间固定不变得差,通常用d来表示;和:一个数列的某些项的和,常用Sn来表示・(3)三个重要的公式:①通项公式:末项二首项+(项数-DX公差a n =a i+ (n _ 1) Xd回忆讲解这个公式的时候我们可以结合具体数列或者原来学的植树问题的思想,让同学明白末项其实就是首项加上(末项与首项的)间隔的公差个数,或者从找规律的情况入手.同时我们还可延伸出来这样一个有用的公式:aιl-aιlt=(n-m)×cl,②项数公式:项数二(末项-首项)一公差+1 (其实此公式是由①推导出来的,教师也可以帮助同学推导,可以为以后的解方程做好铺垫)由通项公式可以得到:n = (a lt-a l)÷d + \(若U ll);n = (a l-a n)÷d + \(若A a”).找项数还有一种配组的方法,其中运用的思想我们是常常用到的!譬如:找找下面数列的项数:4、7、10、13、•・••••、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是 3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48 有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组.当然,我们还可以有其他的配组方法.③求和公式;和=(首项+末项)X项数÷2s l,=(a l+a n)×n÷2对于这个公式的得到我们可以从两个方面入手:(思路 1) 1+2+3+…+98+99+100=(1 + IOo) + (2 + 99) + (3 + 98) + …+ (50 +51)V ______________________ iz______________________ >50-MoL= 101x50=5050(思路2)这道题目,我们还可以这样理解:和=1 + 2 + 3+ 4+ ....+ 98+ 99+100 + 和二100+99 + 98+ 97+ ....+ 3+2+12 倍和=101 + 101+101+101+ .. + 101 + 101+101100 --------即,和=(IOO+l)xl00∙j∙2=101x50=5050(4)中项定理对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首相与末项和的一半;或者换句话说,各项和等于中间项乘以项数•譬如:(1) 4+8+12+...+32+36= (4+36) ×9÷2=20×9=180 ,题中的等差数列有 9 项, 中间一项即第5项的值是20,而和恰等于20X9 ;(2) 65+63+61 + ...+5+3+1= (1+65) ×33÷2=33X33= 1089 ,题中的等差数列有 33 项,中间一项即第17项的值是33,而和恰等于33X33.如果是一个项数为偶数的等差数列,我们该如何运用这个公式呢?其实我们可以将其去掉一项,变成奇数项,求和之后再加上去掉的那一项.中项定理也可用在速算与巧算中.譬如:计算:124. 68+324. 68+524. 68+724. 68+924. 68分析:这是一列等差数列,项数是奇数,中间数是524. 68,所以可以用5X524. 68=2623.4.等差数列是小学奥数的一个重要知识,无论是竞赛还是小升初都是一个考核的重点. 一部分题目是直接考数列,但更多的是结合到找规律、周期等问题进行考核.复习题目的重点就是让学生熟练掌握等差数列的求和、末项和项数的求解.不能让学生去单纯的背公式,而应该把原理讲透∙【复习2]某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位•问: 这个剧一共有多少个座位?分析:首项:70-(25-1)X2=22 ,座位总数:(22+70) × 25÷2=1150 .【复习3】小明从1月1日开始写大字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数等差数列练习及答案【三篇】
【篇一】
知识点:
1、数列:按一定顺序排成的一列数叫做数列。
数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。
数列中共有的项的个数叫做项数。
2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。
3、常用公式
等差数列的总和=(首项+末项)项数2 项数=(末项-首项)公差+1 末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项- 首项)(项数-1)等差数列(奇数个数)的总和=中间项项数
【篇二】
典例剖析:
例(1在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?
分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+ 1,便可求出
(2)根据公式:末项=首项+公差(项数-1 )
解:项数=(201-3)3+1=67
末项=3+3(201-1)=603
答:共有67 个数,第201 个数是603
练一练:
在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?
答案:第48项是286,508是第85项
例(2)全部三位数的和是多少?
分析::所有的三位数就是从1 00~999共900个数,观察100、101、102、……、998、999这一数列,发现这是一个公差为1的等差数列。
要求和可以利用等差数列求和公式来解答。
解:(100+999)9002
=10999002
=494550
答:全部三位数的和是494550。
练一练:
求从1 到2000 的自然数中,所有偶数之和与所有奇数之和的差。
答案:1000
例(3)求自然数中被10除余1 的所有两位数的和。
分析一:在两位数中,被1 0除余1最小的是1 1 ,的是91 。
从题意可知,本题是求等差数列11、21、31、……、91的和。
它的项数是9,我们可以根据求和公式来计算。
解一:11+21+31 + ••…+91
=(11+91)92
=459
篇三】
1、有10只金子,54个乒乓球,能不能把54个乒乓球放进盒子中去,使各盒子的乒乓球数不相等?
2、小明家住在一条胡同里,胡同里的门牌号从 1 号开始摸着排下去。
小明
将全胡同的门牌号数进行口算求和,结果误把1看成10,得到错误的结果为
114,那么实际上全胡同有多少家?
3、有一堆粗细均匀的圆木,堆成如下图的形状,最上面一层有7 根园木,
每面下层增加1 根,最下面一层有95 根,问:这堆圆木一共有多少根?
4、有一个六边形点阵,如下图,它的中心是一个点,算做第一层,第二层每边有两个点,第三层每边有三个点……这个六边形点阵共100层,问,这个
点阵共有多少个点?
Word是学生和职场人士最常用的一款办公软件之一,99.99% 的人知道它,但其实,这个软件背
后,还有一大批隐藏技能你不知道。
掌握他们,你将开启新世界的大门。
Tab+Enter,在编过号以后,会自动编号段落
Ctrl + D 调出字体栏,配合 Tab+Enter 全键盘操作吧
Ctrl + L 左对齐,Ctrl + R 右对齐,Ctrl + E 居中
Ctrl + F 查找,Ctrl + H 替换。
然后关于替换,里面又大有学问!
有时候Word文档中有许多多余的空行需要删除,这个时候我们可以完全可以用查找替换”来轻松解决。
打开编辑”菜单中的替换”对话框,把光标定位在查找内容”输入框中,单击高级”按钮,选择
特殊字符”中的段落标记”两次,在输入框中会显示“人卩人卩”,然后在替换为”输入框中用上面的方
法插入一个段落标记” 一个“AP”),再按下全部替换”按钮。
这样多余的空行就会被删除。
Ctrl + Z 是撤销,那还原呢?就是 Ctrl + Y ,撤销上一步撤销!
比如我输入abc,按一下F4,就会自动再输入一遍 abc。