核酮糖1,5-二磷酸羧化酶羧化活性的测定

合集下载

生理生化指标的作用和意义简述

生理生化指标的作用和意义简述
然高分子,是取之不尽用之不竭的,人类最宝贵的 天然可再生资源。纤维素在预防大肠癌,调节血糖,预防高血压,心脑血管疾病等方面发挥 重要的作用。
含水量 植物组织的含水量是反映植物组织水分生理状况的重要指标,如水果、蔬菜含水量的多 少对其品质有影响,种子含水状况对安全贮藏更有重要意义。 根系活力 植物根系是活跃的吸收器官和合成器官, 根的生长情况和活力水平直接影响地上部的 生长和营养状况及产量水本。 元素含量 植物除了从土壤中吸收水分外,还要吸收各种矿质元素和氮素,以维持正常的生命活动, 这些元素有的作为植物体的组成部分,有的参与调解生命活动,有的两者兼具。矿质元素对 植物生长发育至关重要。 NR 硝酸还原酶广泛存在于植物中,是植物硝态氮转化为氨态氮的关键酶,也是诱导酶,对 作物的产量和品质有影响。
除体内羟自由基,预防癌症等作用 还原力 还原力是样品抗氧化能力的重要指标之一,在抗氧化类保健品和药品研究中得到广泛应
用。 FRAP 法 用于总抗氧化能力的检测,是一种采用 Ferric Reducing Ability of Plasma (FRAP)的方法,
对血浆、血清、唾液、尿液等各种体液,细胞或组织等裂解液、植物或中草药抽提液、或各 种抗氧化物(antioxidant)溶液的总抗氧化能力进行检测的方法,在抗氧化类保健品和药品研 究中得到广泛应用。
34. 根系活力 35. 元素含量 36. NR
生理指标的作用和意义: 叶绿素 光合作用是衡量植物合成功能的重要生理指标,而叶绿素是植物光合作用的基础。 类胡萝卜素 类胡萝卜素在植物的光合作用中具有非常重要的作用,功能为吸收和传递光能,保护叶
绿素。它即有助于敛光,也可防止破坏性的光氧化。如果没有类胡萝卜素,植物几乎不能够 在有氧的环境中进行光合作用。

《植物生理学》问答题

《植物生理学》问答题

《植物生理学》问答题1、试述植物光呼吸和暗呼吸的区别。

答:比较项目暗呼吸光呼吸底物葡萄糖乙醇酸代谢途径糖酵解、三羧酸循环等途径乙醇酸代谢途径发生部位胞质溶胶、线粒体叶绿体、过氧化物酶体、线粒体发生条件光、暗处都可以进行光照下进行对O2、CO2浓度的反应无反应高O2促进,高CO2抑制2、光呼吸有什么生理意义答:(1)光呼吸使叶片在强光、CO2不足的条件下,维持叶片内部一定的CO2水平,避免光合机构在无CO2时被光氧化破坏。

(2)光呼吸过程消耗大量O2,降低了叶绿体周围O2浓度和CO2浓度之间的比值,有利于提高RuBP氧化酶对CO2的亲和力,防止O2对光合碳同化的抑制作用。

综上,可以认为光呼吸是伴随光合作用进行的保护性反应。

3、试述植物细胞吸收溶质的方式和机制。

答:(1)扩散:①简单扩散:简单扩散是指溶质从高浓度区域跨膜移向临近低浓度区域的过程。

不需要细胞提供能量。

②易化扩散:又名协助扩散,是指在转运蛋白的协助下溶质顺浓度梯度或电化学梯度的跨膜转运过程。

不需要细胞提供能量。

(2)离子通道:离子通道是指在细胞膜上由通道蛋白构成的孔道,作用是控制离子通过细胞膜。

(3)载体:载体是跨膜转运的内在蛋白,在夸膜区域不形成明显的孔道结构。

①单向运输载体:单向运输载体能催化分子或离子顺电化学梯度单向跨膜转运。

②反向运输器:反向运输器与膜外的H+结合时,又与膜内的分子或离子结合,两者朝相反的方向运输。

③同向运输器:同向运输器与膜外的H+结合时,又与膜外的分子或离子结合,两两者朝相同的方向运输。

(4)离子泵:离子泵是膜上的ATP酶,作用是通过活化ATP推动离子逆化学势梯度进行跨膜转运。

(5)胞饮作用:胞饮作用是指细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。

4、试述压力流动学说的基本内容。

答:1930年明希提出了用于解释韧皮部光合同化物运输机制的“压力流动学说”,其基本观点是:(1)光合同化物在筛管内随液流流动,液流的流动是由输导系统两端的膨压差引起的。

第六章线粒体和叶绿体习题及答案

第六章线粒体和叶绿体习题及答案

细胞生物学章节习题-第六章一、选择题1、线粒体的细胞色素c是一种(A )。

A. 内膜固有蛋白B. 内膜外周蛋白C. 基质可溶性蛋白D. 外膜固有蛋白2、核酮糖二磷酸羧化酶大亚基和小亚基分别由(D )DNA上的基因编码。

A. 细胞核B. 叶绿体C. 细胞核和叶绿体D. 叶绿体和细胞核3、下列4种色素中,哪个(或哪些)具有吸收聚焦光能的作用而无光化学活性?(D )A. 细胞色素B. 质体蓝素C. 质体醌D. 聚光色素4、线粒体各部位都有其特异的标志酶,其中内膜的标志酶是(A )。

A. 细胞色素氧化酶B.单胺氧化酶C. 腺苷酸激酶D. 柠檬酸合成酶5、在叶绿体中,与光合作用的光反应正常进行相适应的结构是(C )。

A. 叶绿体外膜B. 叶绿体内膜C. 基粒中囊状结构的薄膜D. 基质6、呼吸链主要位于(B )。

A. 线粒体外膜B. 线粒体内膜C. 线粒体基粒D. 线粒体基质E. 线粒体嵴7、线粒体外膜的标志酶是( B )。

A. 细胞色素氧化酶B.单胺氧化酶C. 腺苷酸激酶D. 柠檬酸合成酶8、线粒体膜间隙的标志酶是(C )。

A. 细胞色素氧化酶B.单胺氧化酶C. 腺苷酸激酶D. 柠檬酸合成酶9、氧化磷酸化发生的主要场所位于线粒体(B )。

A. 外膜B. 内膜C. 膜间隙D.基质10、下列哪种细胞中线粒体数量较多(A )。

A. 肌肉细胞B. 血小板C. 红细胞D. 上皮细胞11、下列关于线粒体和叶绿体的描述中,正确的是(C )。

A. 都通过出芽方式繁殖B. 所有线粒体蛋白质合成时都含有导肽C. 它们的外膜比内膜从性质上更接近于内膜系统D. 存在于一切真核细胞当中12、关于线粒体DNA,正确的描述是(B )A. 编码自身必需的部分蛋白质B. 编码自身必需的RNA和蛋白质C. 可以被核基因组取代D. 借助核编码的酶系统进行转录13、关于线粒体和叶绿体中的ATP合酶,下列描述错误的是(B )。

A. 都依靠质子流作为ATP合成的动力B. 合酶的各亚基均由核基因编码C. 都属于质子泵D. 都具有催化ADP和Pi合成ATP的作用二、填空题1、线粒体内膜上电子传递链中的复合物I是由34条以上多肽链或者FMN和至少6个铁硫蛋白;催化NADH的2个电子传给辅酶Q,组成,它的主要功能是催化NADH的2个电子传给辅酶Q,同时发生质子的跨膜输送或者电子传递体和质子位移体。

核酮糖1,5-二磷酸羧化酶检测试剂盒(RuBP比色法)

核酮糖1,5-二磷酸羧化酶检测试剂盒(RuBP比色法)

核酮糖1,5-二磷酸羧化酶(Rubisco)检测试剂盒(RuBP比色法)简介:植物光合作用的中,C3途径是所有植物共有的光合碳同化途径,核酮糖1,5-二磷酸羧化酶(Ribulose-1,5-bisphosphate carboxylase,Rubisco或RuBPCo或RuBPCase)是一种酶(EC 4.1.1.39),又称1,5-二磷酸核酮糖羧化酶,分子量约为53kD,由8个大亚基和8个小亚基组成,是光合作用中决定碳同化速率的关键酶,该酶活力的大小反应了植物光合能力的强弱,RUBP羧化酶是光合作用碳代谢中的重要的调节酶,主要存在于叶绿体的可溶部分,总量占叶绿体可溶蛋白50-60%。

在植物叶片发育过程中,此酶活性呈规律性的变化。

Leagene核酮糖1,5-二磷酸羧化酶(Rubisco)检测试剂盒(RuBP比色法)检测原理是在Rubisco催化核酮糖1,5-二磷酸(RuBP),1分子后者与1分子的CO2结合,产生2分子的3-磷酸甘油酸(PGA),后者通过3-磷酸甘油酸激酶和甘油醛-3-磷酸脱氢酶的作用,产生甘油醛-1,3-二磷酸,并使NADH氧化。

因此1分子CO2被固定,伴随2分子NADH氧化,由NADH氧化的量就可计算Rubisco的活性,通过分光光度比色法(分光光度计)测定340处吸光度的变化,计算出NADH的消耗速率进一步推算出核酮糖1,5-二磷酸羧化酶活性水平。

该试剂盒主要用于检测植物样本、血清等中核酮糖1,5-二磷酸羧化酶活性,25T规格的试剂盒可检测23-24个样本。

组成:编号名称TE044925TStorage试剂(A): Rubisco Lysis buffer 250ml 4℃试剂(B): Rubisco Assay buffer15ml 4℃试剂(C): ATP Solution 3ml -20℃试剂(D): CP Solution 1.5ml -20℃试剂(E): CPK Solution 1ml -20℃试剂(F): PGK Solution 1ml -20℃试剂(G): GAPD Solution 1ml -20℃试剂(H): NADH 1支-20℃试剂(I): 碱性基液3ml RT 使用说明书1份自备材料:1、研钵或匀浆器2、离心管3、低温离心机4、恒温箱或水浴锅5、比色杯6、分光光度计操作步骤(仅供参考):1、准备样品:①植物样品:取植物组织清洗干净,切碎,按植物组织:Rubisco Lysis buffer按一定比例,加入预冷的Rubisco Lysis buffer,冰浴情况下充分匀浆或研磨。

生物化学名词解释..

生物化学名词解释..

1.遗传学中心法则:描述从一个基因到相应蛋白质的信息流的途径。

遗传信息贮存在DNA中,DNA被复制传给子代细胞,信息被拷贝或由DNA转录成RNA,然后RNA翻译成多肽。

不过,由于逆转录酶的反应,也可以以RNA为模板合成DNA。

2.模板链:可作为模板转录为RNA的那条链该链与转录的RNA碱基互补(A-U,G-C)。

在转录过程中,RNA聚合酶与模板链结合,并沿着模板链的3′→5′方向移动,按照5′→3′方向催化RNA的合成。

3.编码链:双链DNA中,不能进行转录的那一条DNA链,该链的核苷酸序列与转录生成的RNA的序列一致(在RNA中是以U取代了DNA中的T)。

4.核心酶:大肠杆菌的RNA聚合酶全酶由5个亚基组成(α2β,βδ),没有δ基的酶叫核心酶。

核心酶只能使已开始合成的RNA链延长,但不具有起始合成RNA的能力,必须加入δ基才表现出全部聚合酶的活性。

5.RNA聚合酶:以一条DNA链或RNA为模板催化由核苷-5′-三磷酸合成RNA的酶。

6.启动子:在DNA分子中,RNA聚合酶能够结合并导致转录起始的序列。

7.终止因子:协助RNA聚合酶识别终止信号的的辅助因子(蛋白质)。

8.核酶:具有像酶那样催化功能的RNA分子。

9.剪接体:大的蛋白质—RNA复合体,它催化内含子从mRNA前体中除去的反应。

10.RNA加工过程:将一个RNA原初转录产物转换成成熟RNA分子的反应过程。

加工包括从原初产物中删除一些核苷酸,添加一些基因没有编码的核苷酸和对那些碱基进行共介修饰。

11.RNA剪接:从DNA模板链转录出的最初转录产物中除去内含子,并将外显子连接起来形成一个连续的RNA分子的过程。

12.起始密码子:指定蛋白质合成起始位点的密码子。

最常见的起始密码子是蛋氨酸密码:AUG13.终止密码子:任何tRNA分子都不能正常识别的,但可被特殊的蛋白结合并引起新合成的肽链从翻译机器上释放的密码子。

存在三个终止密码子:UAG,UAA 和UGA。

核酮糖1,5-二磷酸羧化酶(RuBPCase)检测试剂盒(RuBP比色法)

核酮糖1,5-二磷酸羧化酶(RuBPCase)检测试剂盒(RuBP比色法)

核酮糖1,5-二磷酸羧化酶(Rubisco)检测试剂盒(RuBP比色法)简介:植物光合作用的中,C3途径是所有植物共有的光合碳同化途径,核酮糖1,5-二磷酸羧化酶(Ribulose-1,5-bisphosphate carboxylase,Rubisco或RuBPCo或RuBPCase)是一种酶(EC4.1.1.39),又称1,5-二磷酸核酮糖羧化酶,分子量约为53kD,由8个大亚基和8个小亚基组成,是光合作用中决定碳同化速率的关键酶,该酶活力的大小反应了植物光合能力的强弱,RUBP羧化酶是光合作用碳代谢中的重要的调节酶,主要存在于叶绿体的可溶部分,总量占叶绿体可溶蛋白50-60%。

在植物叶片发育过程中,此酶活性呈规律性的变化。

Leagene核酮糖1,5-二磷酸羧化酶(Rubisco)检测试剂盒(RuBP比色法)检测原理是在Rubisco催化核酮糖1,5-二磷酸(RuBP),1分子后者与1分子的CO2结合,产生2分子的3-磷酸甘油酸(PGA),后者通过3-磷酸甘油酸激酶和甘油醛-3-磷酸脱氢酶的作用,产生甘油醛-1,3-二磷酸,并使NADH氧化。

因此1分子CO2被固定,伴随2分子NADH氧化,由NADH氧化的量就可计算Rubisco的活性,通过分光光度比色法(分光光度计)测定340处吸光度的变化,计算出NADH的消耗速率进一步推算出核酮糖1,5-二磷酸羧化酶活性水平。

该试剂盒主要用于检测植物样本、血清等中核酮糖1,5-二磷酸羧化酶活性,25T规格的试剂盒可检测23-24个样本。

组成:编号名称TE044925TStorage试剂(A):Rubisco Lysis buffer250ml4℃试剂(B):Rubisco Assay buffer15ml4℃试剂(C):ATP Solution3ml-20℃试剂(D):CP Solution 1.5ml-20℃试剂(E):CPK Solution1ml-20℃试剂(F):PGK Solution1ml-20℃试剂(G):GAPD Solution1ml-20℃试剂(H):NADH1支-20℃试剂(I):碱性基液3ml RT 使用说明书1份自备材料:1、研钵或匀浆器2、离心管3、低温离心机4、恒温箱或水浴锅5、比色杯6、分光光度计操作步骤(仅供参考):1、准备样品:①植物样品:取植物组织清洗干净,切碎,按植物组织:Rubisco Lysis buffer按一定比例,加入预冷的Rubisco Lysis buffer,冰浴情况下充分匀浆或研磨。

研究生考试考研植物生理学与生物化学(414)试题及解答参考

研究生考试考研植物生理学与生物化学(414)试题及解答参考

研究生考试考研植物生理学与生物化学(414)自测试题(答案在后面)一、选择题(植物生理学部分,10题,每题2分,总分20分)1、下列哪项不是植物激素的基本特征?A、生物合成途径独特B、作用微量高效C、具有明显的生理效应D、合成后迅速降解2、在植物光合作用中,光反应和暗反应之间的联系主要通过以下哪项物质进行?A、ATPB、NADPHC、CO2D、H2O3、以下哪项不是植物细胞壁的主要成分?A、纤维素B、果胶C、蛋白质D、脂质4、下列哪项不是植物光合作用中的光合产物?A. 葡萄糖B. 氧气C. 脂肪D. 蛋白质5、关于植物激素乙烯,以下哪项描述是错误的?A. 乙烯是一种气体植物激素B. 乙烯主要在植物成熟过程中发挥作用C. 乙烯能促进果实成熟D. 乙烯能抑制植物生长6、在植物生物化学中,以下哪项不是蛋白质合成的关键步骤?A. 转录B. 翻译C. 激活D. 沉淀7、下列哪个物质是光合作用中的电子受体?A. NADP+B. NADPHC. O2D. ADP8、下列哪个酶在生物体内具有催化蛋白质合成的功能?A. RNA聚合酶B. DNA聚合酶C. 转录酶D. 蛋白质合成酶9、在细胞呼吸过程中,哪个步骤释放的能量最多?A. 糖酵解B. 三羧酸循环C. 细胞色素氧化酶复合体D. 线粒体ATP合酶10、以下哪种物质是植物细胞中能量转换的关键分子?A. 脂肪酸B. 糖类C. 蛋白质D. 核酸二、实验题(植物生理学部分,总分13分)题目:探究植物叶片光合作用过程中光合产物积累的影响因素一、实验目的:1.研究不同光照强度对植物叶片光合作用的影响;2.探究不同CO2浓度对植物叶片光合作用的影响;3.了解植物叶片光合作用过程中光合产物的积累情况。

二、实验材料与仪器:1.实验材料:大豆幼苗、CO2气体发生器、NaHCO3溶液、蒸馏水、黑暗培养箱、光照培养箱、光合测定仪等。

2.实验仪器:显微镜、电子天平、酸碱滴定仪、PH计、电子分析天平等。

1,5-二磷酸羧化酶/加氧酶(Rubisco)

1,5-二磷酸羧化酶/加氧酶(Rubisco)

1,5-二磷酸羧化酶/加氧酶(Rubisco)植物生理学通讯第43卷第2期,2007年4月363核酮糖.1,5.二磷酸羧化酶/加氧酶(Rubisco)梅杨,李海蓝,谢晋,罗红艺华中师范大学生命科学学院,武汉430079Ribulose-I,5-bisphosphateCarboxylase/oxygenase(Rubisco)MEIY ang,LIHai—Lan,XIEJin,LUOHong—YiCollegeofLifeSciences,CentralChinaNormaliVPl魄Wuhan430079,China提要:文章就核酮糖一1,5.二磷酸羧化酶,加氧酶(Rubisco)的分布,结构,性质,分类与功能的研究进展作了介绍.关键词:核酮糖一1,5一二磷酸羧化酶/加氧酶(Rubisco);Rubisco类似蛋白(RLP);羧化/氧化值;热稳定性;分类核酮糖一1,5一二磷酸羧化酶/加氧酶(ribulose一1,5一bisphosphatecarboxylase/oxygenase,Rubisco)是植物光合作用过程中固定CO,的关键酶,同时也参与植物的光呼吸代谢途径,消耗植物光合作用合成的有机物,由此造成的净光合效率损失高达50%(Lundqvist和Schneider1991;熊晓然等2003;Ashida等2005).因此,研究Rubisco对提高植物的光合作用效率有重要意义.自从1953年Calvin等在研究光合碳循环过程中证实其存在至今,有关Rubisco的一系列问题不断得到阐明,人们对其性质,结构,类型和功能等诸多方面有了更深入的了解,这方面的研究己取得了较大进展,本文就此作介绍.1Rubisco的分布与定位Rubisco广泛分布于具光合功能的细胞器中.它是一个含量很丰富的酶,据估计全世界Rubisco 的量约有4×10吨.Rubisco在C植物中主要定位于叶肉细胞叶绿体问质中,在基粒片层上也有少量分布;在C植物中则定位于维管束鞘细胞中的叶绿体问质内.低等藻类的Rubisco主要定位在淀粉核上.许多化能自养细菌和蓝藻中存在多角形细胞内含物,其中含有大量的羧化酶,称之为羧基化小体.羧基化小体最初是从氧化硫细菌中分离出来的,并且含有大量的Rubisco.有研究表明,羧基化小体是原核生物体内储存Rubisco的重要场所,能够协助Rubisco在低浓度的CO,条件下完成羧化.那不勒斯硫杆菌(Thi0baci,,U neapolitanus)的Rubisco缺陷菌株无羧基化小体的形成,且必须在高浓度的CO,下才能生长(Baker等1998).海洋氢弧菌(Hydrogenovibriomarinus)MH一110在CO,浓度低于0.15%时就会形成羧基化小体(Y oshizawa等2004).2Rubisco的结构采用x射线晶体衍射技术,人们解析了不同来源的Rubisco的晶体结构,包括烟草(Nicotiana tabacum),菠菜(Spinaciaoleracea),深红红螺菌(Rhodospirillumrubrum),莱茵衣藻(Chlamydomonas reinhardtii),蓝藻聚球藻(y,zcDcDcc"PCC 6301),喜温红藻(Galdieriapartite),绿色硫细菌(chlorobiumtepidum),超耐热原始菌(菌, ThermococcuskodakaraensisKOD1)等(Kitano等2001;Parry等2003;Li等2005).Rubisco一般由多个大亚基(LSU)和小亚基(ssu)组成,其中大亚基的分子量为50~55kDa,小亚基为1218kDa(Ashida等2005).大亚基具有催化功能,小亚基仅具有调节作用.迄今的研究认为,Rubisco的大亚基由N,C两个结构域组成.N结构域从N末端开始,包括137个氨基酸,其中含有5股D折叠.C结构域中含有丰富的0c螺旋,其中以0c/D桶状结构域(al Dbarreldomain)最引人注目.它包括8个0c螺旋和8个D折叠,彼此连接成8个环.一个大亚基收稿2006.11—20修定2007—03一l2资助华中师范大学精品课程建设项目.通讯作者(E—mail:******************.ca:Tel:************).364植物生理学通讯第43卷第2期,2007年4月的羧基末端为另一个大亚基氨基末端部分覆盖,形成漏滴状的活性中心,Mg参与其中.Mg与亚基中的3个氨基酸残基所含有的氧原子发生作用,它们分别是氨甲酰化的Lys,侧链Asp3和Glulq4(Lundqvist和Schneider1991).C端结构域同时含有一个特征性的突环(Lo0p6).Loop6影响酶与气体分子(包括CO和O)的亲和性,一系列发生在环内的突变均能影响酶的羧化/氧化值(Q 值);在形成烯醇化中间产物的过程中,Loop6也起关键性的作用(Parry等2003).Loop6同时还影响酶活性状态的形成与维持.活性中心的模拟分析表明,Rubisco是否处于活性状态与活性中心(Lysl75,Lys201)和Loop6(Lys334)的3个Lys残基密切相关(熊晓然等2003).小亚基远离活性中心,其含有4个反向平行的p折叠和2个0c螺旋,p折叠和0c螺旋的核心含有疏水的氨基酸残基及与大小亚基相互作用有关的保守氨基酸残基.小亚基能促进CO,与Mg对酶的活化,维持和稳定酶的活化构象.Spreitzer (2003)认为,小亚基可能在进化过程中扮演聚集大亚基活性位点的角色,小亚基可能有更多特异性功能.3Rubisco的类型根据Rubisco大亚基氨基酸序列同源性及空间结构的相似性,可以将其分为4类,即I,II,III,IV型(表1).I型主宴存在于能够进行光合作用的有机体内,如高等植物,真核藻类,蓝藻,光能及化能自养细菌及其它一些原核生物,它由8个大亚基和8个小亚基组成,呈LS的结构.Tabita(1995)分析不同的I型Rubisco结构后,又将其分为"Green—like"和"Red—like"2类,并进一步将其划分为A,B,C及D4个亚类.II型Rubisco由2罐个大亚基组成,呈L的结构,其分子量为110-450kDa,主要存在于一些光能及化能合成细菌,海产甲藻如共生甲藻(SymbiodiniumSpp.),膝钩藻(Gonyaulaxpolyedra)等中(Rowan等1996;Nassoury等2001).尽管I型与II型Rubisco在活性位点上的氨基酸残基高度保守,但II型与I型的大亚基的同源性仍很低,仅为28%(Kitano等2001;Liao等2004).III型也仅由大亚基组成,呈L结构,存在于某些嗜热古生菌如菌,詹氏甲烷球菌等中(Klenk等1997;Watson和Tabita1999;Kitano等2001).有人研究Tk-Rubisco的结果表明,它是由大亚基组表1不同来源的Rubisco及其羧化/氧化值,结构和功能代表植物;一表示暂无相关数据.好热性硫磺细菌含有2类Rubisco:rbcL—l和rbcL.2(Karlin和Mrazek2000):超耐热原始菌先前报道称为PyrococcuskodakaraensisKODI(Kitano等2001).植物生理学通讯第43卷第2期,2007年4月365成的(L)的十聚体,与菠菜中的I型Rubisco有36%的同源性,与深红红螺菌中的Ⅱ型Rubisco有30%的同源性(Kitano等2001);分析詹氏甲烷球菌Rubisco的序列表明,它与蓝藻中的聚球藻I型Rubisco有41%的同源性,与深红红螺菌中的II型Rubisco有33%的同源性(Watson和Tabita1999).尽管以上三类Rubisco相互之间的同源性较低,但已知的Rubisco参与羧化或氧化核酮糖一1,5一二磷酸(ribulose一1,5一bisphosphate,RuBP)过程的所有保守氨基酸残基在I,II和III型中都存在,除了Ⅲ型中Phe.∞被其它氨基酸所取代(Ashida等2005).IV型又称为Rubisco类似蛋白(rubisco—like—protein,RLP),存在于非光合细菌,部分不依赖卡尔文循环的光合细菌和古生菌如绿色硫细菌,好热性硫磺细菌rbcL.,泥生绿菌,枯草芽孢杆菌等中(Klenk等1997;Watson和Tabita1999;Hanson和Tabita2001,2003Ashida等2003).它与I,II,III相比,许多活性位点保守氨基酸残基缺失,同源性甚低.如泥生绿菌,好热性硫磺细菌cL.,枯草芽孢杆菌中分别有11,5,9个活性位点的保守氨基酸残基被其它氨基酸所取代;枯草芽孢杆菌RLP与I,II,III型仅有23%,23%,30%的序列同源性(Ashida等2005).实际上,在许多细菌中同时存在编码I型和Ⅱ型Rubisco的结构基因,但在正常情况下两者并不同时表达(English等1992;Karlin和Mrazek 2000).那不勒斯硫杆菌在rbcL,突变的情况下, rbcL,,可表达生成II型Rubisco,但菌体必须在高浓度的CO,下才能生长良好(Baker等1998).海洋氢弧菌MH一110含有3个拷贝的Rubisco基因(CbbLS—和CbbLS-2属于I型,CbbM属于II型).Y oshizawa等(2004)研究证实海洋氢弧菌MH一110在不同浓度的CO,条件下,三者以不同的组合形式进行表达.脱氮硫杆菌在厌氧条件下以硝酸盐作为电子受体能同时表达生成I,II2种类型Rubisco.最近,Carr~一Mlouka等(2006)报道,在世界范围内广泛引起水华的铜绿微囊藻PCC7806 (MicrocystisaeruginosaPCC7806)细胞内同时存在I,IV型Rubisco.沼泽红假单胞菌(Rhodopseudo. monaspalustris)除了含有I,II型Rubisco,还同时存在2类不同的RLP(Larimer等2004).这些发现导致不同类型Rubisco的共存问题变得更加复杂,这对研究Rubisco的进化可能有意义.4Rubisco的性质与一般的酶相比,Rubisco具有2个显着的特征.一是非专一性,即Rubisco既能催化羧化反应,也能催化加氧反应,具有双功能性;二是低效性,即Rubisco的催化效率较一般酶低,是由于Rubisco酶转换数低(真核生物的Rubiscok约为3~5S~,来源于不同生长温度的植物Rubiscok略有不同),催化效率有限(Watson和Tabita1999;Sage2002~Ashida等2005).4.1热稳定性Rubisco有一定的热稳定性,但不同来源的Rubisco的热稳定性存在较大差异.水稻Rubisco在50℃保温7min达到最大活力,随后迅速下降,30min后酶活性下降至40%;烟草Rubisco在50℃保温20min达最大活力,30min后活力还维持在98%左右;菠菜Rubisco氨甲酰化后经60℃的10mmo1.LDTr处理1h活力还维持50%(陈为钧等1999).在嗜热古生菌如菌中,Rubisco的热稳定性极高.Tk.Rubisco在30—110℃范围内均能有效完成十聚体结构的组装(Maeda等2002);在40~100℃范围内能够保持有效的羧化酶活性,且活性随温度(40-90℃)的升高而上升;在80℃保温15h活力仍维持50%(Ezaki等1999).Maeda等(2002)采用定点突变(E63S,R66S,D69S)的方法,进一步研究证实Tk—RubiSCO耐热性依赖于特殊的五角形晶体结构(pentagonalstructure),此种结构的特点是二聚体相互接触紧密,接触面上的氨基酸残基之间存在离子间的相互作用,并形成8对离子键.同时,低聚状态对耐热性的维持也有影响.Tk.Rubisco的十聚体结构提高了蛋白质的变性温度,从而进一步提高了Tk菌适应高温的能力.4.2酶促反应动力学参数一般而言,C植物及景天科酸代谢植物Rubisco的Kin(CO)在12~26 ~tmol?L~,C4植物Rubisco的Kin(CO2)为28~63 ∞1.L-(Chen等2002).但不同类型植物Rubisco Kin(CO2)仍存在差异,如水稻RubiscoKin(CO2)一般为12lxmo1.L~,而喜温红藻(Galdieriapartita)的K(co2)仅为6.6~tmol?L一,这种喜温红藻366植物生理学通讯第43卷第2期,2007年4月RubiscoK~(CO)值在当时被认为是所有Rubisco中最小的(Uemura等1997).Ezaki等(1999)研究菌的结果表明,Tk—RubiSCO具有更强的羧化能力,在CO,饱和,90℃高温条件下,Tk.Rubisco同化CO,的速率可达19.8x10.nmo1.mg(酶蛋白)? min~.Rubisco羧化与氧化反应的活力比按/V o=()/(V oKc)([CO:】/【O2】)计算.其中,,分别表示羧化和氧化反应的最大反应速率;&,K. 分别代表羧化和氧化反应的米氏常数;【CO】和【O】为气体浓度;(c.)/(.c)称特性因子(specificityfactor),即羧化/氧化值(Q值)(Uemura等1997;Parry等2003).一定种类Rubisco的Q值为一常数,但不同来源的RubiscoQ值有较大差异(表1).绿色高等植物Rubisco的Q值一般在90~95之间;蓝藻的Q值也有35~40;细菌的Q值一般在9~45之间.从喜温红藻中发现的I型RubiscoQ值高达238(25℃),是高等植物Q值的2.5倍,说明其具有极强的固定CO:的能力(Uemura等1997).更为重要的是喜温红藻本身就属于植物,这对从亚基水平上改变Rubisco动力学性质及Q值,提高植物光合效率有重大意义. Tk—Rubisco存在更高的Q值且随温度的升高而上升,在50℃时为70,70℃时上升至250,90℃时则达到最大值310(Ezaki等1999).与此相反,喜温红藻的RubiscoQ值随着温度的升高反而降低(Uemura等1997).Watson和Tabita(1999)测定詹氏甲烷球菌Q值的结果表明,其羧化能力极差,Q值只有0.5,是所有Rubisco中Q值最低的.5Rubisco的功能已经证实,O是羧化酶反应的竞争性抑制剂;同样CO是加氧酶反应的竞争性抑制剂.因此,Rubisco处于光合碳还原(光合作用)和光合碳氧化(光呼吸)2个方向相反但又相互连锁的循环反应的交叉点上.当co#o:的浓度比值较高时,促进Rubisco催化的羧化反应.羧化反应一般分为烯醇化,羧化,水合,C—C键断裂,质子化5个阶段(Lundqvist和Schneider1991;Li等2005). Rubisco催化游离的CO,共价结合到底物RuBP上,进而生成两分子的3一磷酸甘油酸(3一phosphoglyc—ericacid,PGA),推动C3-PCR循环.当CO2/O2的浓度比值较低时,促进Rubisco催化的加氧反应,RuBP即裂解产生一分子的磷酸乙醇酸和一分子的PGA,前者进一步分解成乙醇酸和磷酸,参与绿色植物的光呼吸循环.研究初期,人们认为Rubisco的功能主要集中在光合碳同化及光呼吸过程中.然而随着各种不同类型RubiSCO的陆续发现和研究的深入, Rubisco的功能呈现出多样化(表1).詹氏甲烷球菌及其它产甲烷古生菌中的III型RubiSCO参与PRPP—RuBP—PGA途径(Ashida等称之为RuPP通路) (Finn和Tabita2004;Ashida等2005).在这一途径中RuBP的合成前体是1一焦磷酸.5一磷酸.核糖(5一phospho—D—ribose一1一pyrophosphate,PRPP),脱磷酸后经NAD氧化生成RuBP,接着在Rubisco的催化下与CO,结合生成PGA.RLP一般无羧化酶活性,但它能催化2,3一二酮基一5一甲硫戊基.1一磷酸(2,3一diketo一5一methythio—pentyl一1一phosphate,DK—MTP.1一P)的烯醇化反应,与硫代谢密切相关(Ashida等2003;Li等2005;Carr6一Mlouka等2006).枯草芽孢杆菌RLP在腺苷蛋氨酸补救合成途径中作为DK—MTP一1一P烯醇化酶发挥作用(Ashida等2003,2005).在其r/p突变株中导入深红红螺菌的II型Rubisco后,该菌株竟然可恢复生长,说明光合类型的Rubisco可能仍然保持着作为一腺苷蛋氨酸补救合成途径中DK—MTP.1一P烯醇化酶的功能.也有人认为是由于RubiSCO对底物存在一定范围的适应(Li等2005).绿色硫细菌RLP与硫代谢和氧化应激(oxidativestress)有关(Hanson和Tabita2001).铜绿微囊藻PCC7806RLP在硫代谢过程中也起一定作用.半定量RT—PCR的结果显示,在硫缺乏的情况下,吐Ⅳ的转录是正常状况(硫充足)下的22倍(Carte—Mlouka等2006).Rubisco作为植物叶中的主要含氮有机物之一,必然与植物对氮的吸收,利用及循环有关.研究不同种类C植物氮利用的情况表明,较高的Rubisco,是NADP苹果酸酶类型比NAD苹果酸酶类型具有更高的氮利用率的主要原因(Ghannoum等2005).Rubisco与植物雄性不育也有一定的联系.刘祚昌等(1983)研究玉米,高粱,水稻,小植物生理学通讯第43卷第2期,2007年4月367 麦和烟草等作物的细胞质雄性不育系Rubisco的结果表明,其活性均高于相应的保持系.水稻光周期敏感核不育农垦58S经长光照及红光间断暗周期处理表现为雄性不育,其Rubisco的活性明显低于可育状态(夏凯等1989).Schwender等(2004)最新发现甘蓝型油菜(Brassicanapus)中Rubisco参与植物中碳转化为油的代谢通道,此通道可导致碳作为油贮存的效率达到最大.6结语有人曾将红藻中高效率Rubisco酶的小亚基基因转入植物叶绿体中并得到表达,但表达出的小亚基却不能与植物本身的大亚基组装成全酶(Whitney和Andrews2001).这可能是由于小亚基存在特异性的修饰,或者协助组装的分子伴侣无法识别异源亚基.要解决上述问题尚待深入研究Rubisco的组装机制.众多的研究表明,低等藻类和古生菌体内存在不同类型Rubisco.Lonsdale等(1983)从玉米(Zeamays)线粒体中分离到一个与Rubisco大亚基同源的基因,此基因在大肠杆菌中表达合成的分子量为2lkDa的蛋白能与小麦的Rubisco抗体反应.如何科学地解释Rubisco的共存现象,共存现象与Rubisco的分子进化是否存在某种内在联系,植物体内是否也存在多拷贝的Rubisco基因,均待进一步研究.微生物Rubisco的研究大大扩展了人们对Rubisco类型及功能的认识.序列同源性比较分析的结果显示,III型和Ⅳ型Rubisco比I型及II型更原始;枯草芽孢杆菌及铜绿微囊藻PCC7806RLP功能及突变株的研究结果表明,m型与Ⅳ型Rubisco中可能存在Rubisco的原始形式,或者说它们与Rubisco的原始形式在结构及功能上有更多的相似性.根据研究枯草芽孢杆菌RLP的结果,Ashida等(2003,2005)提出一条Rubisco可能的进化路线,认为光合类型Rubisco正是由枯草芽孢杆菌RLP演变而来的.以上研究和发现并未完全解决Rubisco的分子进化问题,但却为人们指明了方向,即通过研究和分析微生物Rubisco的结构和功能有可能部分或完全揭示Rubisco的分子进化历程.参考文献陈为钧,赵贵文,顾月华(1999).RubisCO的研究进展.生物化学与生物物理进展,26(5):433-.-436刘祚昌,李继耕,罗会馨,陈福太(1983).二磷酸核酮糖羧化酶与细胞质雄性不育性的研究.遗传,10(1):362吕红,周集体,王竞,安利佳(2003).原核生物Rubisco的研究进展.微生物学通报,30(2):82—85夏凯,肖翊华,刘文芳(1989).湖北光敏感核不育水稻光敏感期叶片中ATP含量与RuBPcase活力的分析.杂交水稻,(4): 412.30熊晓然,陈蔚梅,冯胜彦,郭明雄,艾建宇,吴斌(2003).植物Rubisco 活性中心的模拟分析.中国生物化学与分子生物,19(4):493--498AshidaH,DanchinA,Y okotaA(2005).Wasphotosynthetic RuBisCOrecruitedbyacquisitiveevolutionfromRuBisCO—likeproteinsinvolvedinsulfurmetabolism?ResMicrobiol,l56:6lll8AshidaH,SaitoY,KojimaC,KobayashiK,OgasawaraN,Y okotaA(2003).AfunctionallinkbetweenRuBisCO—likeproton ofBacillusandphot0syntheticRuBisCo.Science,302:286~290BakerSH,JinS,AldrichHC,HowardGT,ShivelyJM(1998). InsertionmutationoftheformIcbbLgeneencodingribulose bisphosphatecarboxylase,oxygenase(RuBisCO)in ThiobacillusneapolitanusresultsinexpressionofformII RuBisCO,lossofcarboxysomes,andanincreasedCO2re—quirementforgrowth.JBacteriol,l80(16):4133—4l39Carr6一MloukaA,M6jeanA,QuillardetP,AshidaH,SaitoY, Y okotaA,CallebautI,SekowskaA,DittmannE,BouchierC etal(2006).AnewRubisco—likeproteincoexistswithaphot0syntheticRubiscointheplanktoniccyanobacteria Microcystis.JBiolChem,281:24462~24471ChenZH.WalkerRP,AchesonRM,LeegoodRC(2002). Phosphoenolpyruvatecarboxykinaseassayedatphysiologi—calconcentrationsofmetalionshasahighaffinityforCO2. PlantPhysio1.128:l60~164EnglishRS,WilliamsCA,LorbachSC.ShivelyJM(1992).Two formsofribulose—l.5-bisphosphatecarb0xylase,oxygenase fromthiobacillusdenitrificans.FEMSMicrobiolLett,94: lll—ll9EzakiS,MaedaN,KishimotoT,AtomiH.ImanakaT(1999). Presenceofastructurallynoveltyperibulose—bisphosphate carboxylase,0xygenaseinthehyperthermophilicarchaeon, Pyrococcus七Dd口七口r口P,lfK0D1.JBiolChem.274: 5078~5082FinnMW,TabitaFR(2004).ModifiedpathwaytOsynthesize ribulosel,5-bisphosphateinmethanogenicarchaea.J Bacteriol,186"6360,45366Ghannoum0,EvansJR,ChowWS,AndrewsTJ,ConroyJP.yon CaemmererS(2005).FasterRubiscoisthekeytosuperior nitrogen?-useefficiencyinNADP?-malicenzymerelativetO NAD—malicenzymeC4grasses.PlantPhysiol,l37:638,650 HansonTE,TabitaFR(2001).Adbulose—l,5-bisphosphatecar—368植物生理学通讯第43卷第2期,2007年4月boxylase,oxygenase(RubisCO)-likeproteinfromchlorobium tepidumthatisinvolvedwithsulfurmetabolismandthe responsetooxidativestress.ProcNatlAcadSciUSA,98:4397-4402HansonTE,TabitaFR(2003).Insightsintothestressresponseand sulfurmetabolismrevealedbyproteomeanalysisofa chlorobiumtepidummutantlackingtheRubisco-likeprotein. PhotosynthRes,78:23l-248KarlinS,MrazekJ(2000).Predictedhighlyexpressedgenesof diverseprokaryoticgenomes.JBacteriol,l82:5238-5250 KitanoK,MaedaN,FukuiT,AtomiH,ImanakaT,MildK(2001). Crystalstructureofanovel??typearchaealRubiscowithpen-- tagonalsymmetry.Structure.9:473,48lKlenkHP,ClaytonRA,TombJF,WhiteO,NelsonKE,Ketchum KA,DodsonRJ,GwinnM,HickeyEK,PetersonJDetal (1997).Thecompletegenomesequenceofthehyperthermop- hilic,sulphfate-reducingarchaeonArchaeoglobuslgidus. Nature.390:364—370LarimerFW,ChainP,HauserL,LamerdinJ,MalfhttiS,DoL,Land ML,PelletierDA,BeattyJT,LangASetal(2004).Corn—pletegenomesequenceofthemetabolicallyversatilephoto—syntheticbacteriumRhodopseudomonaspalustris.Nat Biotechno1.22:55lLiH,SawayaMR,TabitaFR,EisenbergD(2005).Crystalstructure ofaRuBisCO—likeproteinfromthegreensulfurbacterium Chlorobiumtepidum.Structure.13:779-789LiaoH,ZhouJY,DuLF,ZhangNH,WuL(2004).Ribulosel,5一bisphosphatecarboxylase,oxygenaseinArchaea.Natural ProductResDevelop,16:569-574LonsdaleDM,HodgeTP,HoweCJ,StemDB(1983).Maize mitochondrialDNAcontainsasequencehomologoustothe ribulose—l,5-bisphosphatecarboxylaselargesubunitgeneof chloroplastDNA.Cel1.34:l007-10l4LundqvistT,SchneiderG(1991).Crystalstructureofactivated ribulose—l,5-bisphosphatecarboxylasecomplexedwithits substrate,ribulose—l,5-bisphosphate.JBiolChem.266:l2604-l26llMaedaN,KanaiT,AtomiH,ImanakaT(2002).Theunique pentagonalstructureofanarchaealRubiscoisessentialfor itshighthermostability.JBiolChem.277:3l656-3l662 NassouryN,FritzL,MorseD(2001).Circadianchangesin ribulose-l,5-bisphosphatecarboxylase,oxygenasedistribu—tioninsideindividualchloroplastscanaccountfortherhythm indinoflagellatecarbonfixation.PlantCell,13:923-934ParryMAJ,AndralojcPJ,MitchellRAC,MadgwickPJ,KeysAJ (2003).ManipulationofRubisco:theamount,activity,func—tionandregulation.JExpBut,54:1321-1333RowanR,WhitneySM,FowlerA,Y ellowleesD(1996).Rubisco inmarinesymbioticdinonagellates:formIIenzymesineu- karyoticoxygenicphototrophsencodedbyanuclear multigenefamily.PlantCell,8:539-553SageRF(2002).V ariationinthetofRubiscoinC3andC4plantsandsomeimplicationsforphotosyntheticperformanceat highandlowtemperature.JExpBut,53:609-620 SchwenderJ,GoffmanF,OhlroggeJB,Shachar-HillY(2004). RubiscowithouttheCalvincycleimprovesthecarboneffi- ciencyofdevelopinggreenseeds.Nature,432:779-782 SpreitzerRJ(2003).Roleofthesmallsubunitofribulose—l,5- bisphosphatecarboxylaseloxygenase.ArchBiochemBiophys, 4l4:l4l~l49TabitaFR(1995).Thebiochemistryandmetabolicregulationof carbonmetabolismandCO2fixationinpurplebacteria.In: BlankenshipRE,MadiganMT,BauerCE(eds).Anoxygenic PhotosyntheticBacteria.Amsterdam:KluwerAcademic Publishers,885--914UemuraK,Anwaruzzaman,MiyachiS,Y okotaA(1997).Ribu—lose一1,5-bisphosphatecarboxylase/oxygenasefromthermo- philicredalgaewithastrongspecificityforCO2fixation. BiochemBiophysResCommun,232:568-571 WatsonGMF,YuJP,TabitaFR(1999).Unusualribulose1.5一bisphosphatecarboxylase,oxygenaseofanoxicArchaea.J Bacterio1.18l:l569-l575WhitneySM,AndrewsTJ(2001).Thegenefortheribulose一1,5. bisphosphatecarboxylaseloxygenase(Rubisco)smallsubunit relocatedtotheplastidgenomeoftobaccodirectsthesyn—thesisofsmallsubunitsthatassembleintoRubisco.PlantCell,13:193-205Y oshizawaY,ToyodaK,AraiH,IshiiM,IgarashiY(2004).CO2一responsiveexpressionandgeneorganizationofthreeribu-lose-1,5-bisphosphatecarboxylase,oxygenaseenzymesand carboxysomesinhydrogenovibriomarinusstrainMH—ll0.JBacterio1.186:5685—,569l。

植物类研究课题案例(高中组)

植物类研究课题案例(高中组)

植物类研究课题案例(高中组)1.标题:地木耳和泥炭藓对入侵植物加拿大一枝黄花种子萌发的影响摘要:加拿大一枝黄花是原产北美,1935年作为观赏花卉引种到我国上海,但2O世纪8O年代迅速扩散蔓延成杂草,最近几年特别在上海一些新的抛荒地疯长,对其所处的生态环境具有很大的影响。

随着全球气候变化,空气污染以及都市化的发展,蓝藻和苔藓植物这些先锋植物也快速远离上海,特别在上海大多数新的抛荒地极其贫乏。

为了探讨加拿大一枝黄花在新的抛荒地泛滥是否与缺乏蓝藻、苔藓这些先锋植物有关,作者选取苔藓植物的泥炭藓与蓝藻的地木耳等为研究材料,通过不同浓度提取液测试对一枝黄花种子萌发的影响。

研究结果表明地木耳对一枝黄花种子萌发具有促进作用,泥炭藓对一枝黄花种子萌发则具有明显的抑制作用。

通过形态学观察和野外调查作者也发现加拿大一枝黄花的种子质量轻且有细丝状冠毛,极易随风飘扬,容易在疏松的新抛荒地表面(因为缺乏苔藓层)着落,并通过雨水植入土中。

除了特殊的土壤条件和加拿大一枝黄花种子特点外,作者认为新抛荒地苔藓植物的贫乏也是导致加拿大一枝黄花在上海新抛荒地疯长的原因之一。

因此,改善生态环境,增加都市苔藓植物多样性是控制加拿大一枝黄花泛滥的有效途径之一。

关键词:地木耳,泥炭藓,加拿大一枝黄花,种子萌发,治理2.标题:能吸收和监测室内甲醛的转基因植物构建摘要:甲醛是室内空气污染的主要成份之一,可与蛋白质及核酸相互作用,引发疾病。

利用观赏植物净化室内甲醛已开展了很多研究,但绝大多数是比较自然状态下不同类型植物净化能力的差异。

在本项研究中,我们尝试运用DNA重组技术构建携带外源甲醛脱氢酶基因(FALDH)的转基因植物,在有较高浓度甲醛存在的情况下,通过该基因的过量表达提高植物对甲醛的吸收和分解能力;与此同时,我们把控制叶片“卷叶”性状的IAMT1基因与甲醛诱导型启动子连接在一起,并用于构建转基因植株,目的是在提高植物对甲醛吸收和分解能力的同时,使植物表现一定的异常形态特征(卷叶),引起人们的警觉,从而起到吸收和监测的双重作用,为开发既具有观赏价值又具有较强的监测和净化甲醛能力的园艺植物提供依据。

生物化学 第八章 糖代谢习题含答案

生物化学 第八章 糖代谢习题含答案

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 生物化学第八章糖代谢习题含答案第八章糖代谢习题一、是非题 1.判断下列关于戊糖磷酸途径的论述对或错:① 在这一代谢途径中可生成 5-磷酸核糖。

② 转醛酶的辅酶是 TPP,催化 -酮糖上的二碳单位转移到另一个醛糖上去。

③ 葡萄糖通过这一代谢途径可直接生成 ATP。

④ 这一代谢途径的中间物 4-磷酸赤藓糖,是合成芳香族氨基酸的起始物之一。

2.判断下列关于柠檬酸循环的论述对或错:① 此循环的第一个反应是乙酰 CoA 和草酰乙酸缩合生成柠檬酸② 此循环在细胞质中进行。

③ 琥珀酸脱氢酶的辅酶是 NAD+。

④ 该循环中有 GTP 生成。

3.判断下列关于光合作用的叙述对或错:① 光反应为暗反应提供 NADPH 和 ATP。

② 暗反应只能在无光的条件下进行。

③ 循环式光合磷酸化需要两个光反应系统参加。

④ 在三碳(Calvin)循环过程中, CO2 最初受体是 5-磷酸核酮糖。

4.判断下列关于己糖激酶和葡萄糖激酶的叙述对或错:1 / 16① 己糖激酶对葡萄糖的亲和力比葡萄糖激酶高 100 倍。

② 己糖激酶对底物的专一性比葡萄糖激酶差。

③ 6-磷酸葡萄糖对己糖激酶和葡萄糖激酶都有抑制作用。

④ 在肝和脑组织中既有己糖激酶也有葡萄糖激酶。

5.判断下列关于糖异生的叙述对或错:① 糖异生是酵解的逆转。

② 糖异生只在动物组织中发生。

③ 丙酮酸羧化酶激酶是糖异生的关键酶之一。

④ 凡能转变为丙酮酸的物质都是糖异生的前体。

6.判断下列关于乙醛酸循环的叙述对或错:① 异柠檬酸裂解酶和苹果酸合成酶是乙醛酸循环中的两个关键酶。

② 许多植物和微生物能在乙酸环境中生活是因为它们细胞中有乙醛酸循环。

细胞生物学简答题及答案

细胞生物学简答题及答案

细胞生物学简答题及答案1.请说明内膜系统的形成对于细胞的生命活动具有哪些重要的意义?答:至少有六方面的意义:①首先是内膜系统中各细胞器膜结构的合成和装配是统一进行的,这不仅提高了合成的效率,更重要的是保证了膜结构的一致性,特别是保证了膜蛋白在这些膜结构中方向的一致性。

②内膜系统在细胞内形成了一些特定的功能区域和微环境,如酶系统的隔离与衔接,细胞内不同区域形成pH值差异,离子浓度的维持,扩散屏障和膜电位的建立等等,以便在蛋白质、脂类、糖类的合成代谢、加工修饰、浓缩过程中完成其特定的功能。

③内膜系统通过小泡分泌的方式完成膜的流动和特定功能蛋白的定向运输,这不仅保证了内膜系统中各细胞器的膜结构的更新,更重要的是保证了一些具有杀伤性的酶类在运输过程中的安全,并能准确迅速到达作用部位。

④细胞内的许多酶反应是在膜上进行的,内膜系统的形成,使这些酶反应互不干扰。

⑤扩大了表面积,提高了表面积与体积的比值。

⑥区室的形成,相对提高了重要分子的浓度,提高了反应效率。

2.纤维切割蛋白(filament-severing protein)是微丝的结合蛋白,它的主要作用是什么?这类蛋白能够同已经存在的肌动蛋白纤维结合并将它一分为二。

由于这种蛋白能够控制肌动蛋白丝的长度,因此大大降低细胞中的粘度。

经这类蛋白作用产生的新末端能够作为生长点,促使G-肌动蛋白的装配。

另外,切割蛋白可作为加帽蛋白封住肌动蛋白纤维的末端。

加帽和切割蛋白的作用也是受信号调节的。

5.请简述脂锚定蛋白的来源与形成。

新合成的蛋白质除了成为跨膜蛋白或ER腔中的游离蛋白外,还会通过酰基化同ER膜上的糖脂结合,将自己锚定在ER膜上。

新合成的ER蛋白被信号肽酶从ER 上切割之后,立即通过羧基端与已存在于ER膜上的糖基磷脂酰肌醇共价结合,形成脂锚定蛋白的简化过程。

形成的脂锚定糖蛋白通过进一步的运输成为质膜外侧的膜蛋白。

1.肝细胞中除线粒体合成少量蛋白质外,绝大多数的蛋白质都是在细胞质的游离核糖体和膜结合核糖体上合成的。

2024届高考一轮复习生物练习(人教版)第三单元细胞的能量供应和应用解惑练2光呼吸和光抑制

2024届高考一轮复习生物练习(人教版)第三单元细胞的能量供应和应用解惑练2光呼吸和光抑制

解惑练2光呼吸和光抑制1.光呼吸光呼吸是进行光合作用的细胞在光照和高氧低二氧化碳情况下发生的一个生化过程。

该过程以光合作用的中间产物为底物,吸收氧、释放二氧化碳。

其生化途径和在细胞中的发生部位也与一般呼吸(也称暗呼吸)不同。

(1)光呼吸的起因Ⅰ.植物体为什么会发生光呼吸呢?主要原因是在生物体的进化过程中产生了一种具有双功能的酶,这个酶的名字叫作RuBP羧化/加氧酶,就是核酮糖-1,5-二磷酸羧化/加氧酶,这个酶可以缩写为Rubisco。

核酮糖-1,5-二磷酸(RuBP)就是卡尔文循环中的C5。

Ⅱ.二氧化碳和氧气竞争性与Rubisco结合,当二氧化碳浓度高时,Rubisco催化RuBP与二氧化碳形成两分子3-磷酸甘油酸(PGA),就是卡尔文循环中的C3,进行卡尔文循环;当氧气浓度高时,Rubisco催化RuBP与氧气形成1分子PGA(C3)和1分子磷酸乙醇酸(C2),其中PGA 进入卡尔文循环,而磷酸乙醇酸脱去磷酸基团形成乙醇酸,乙醇酸就离开叶绿体,走上了光呼吸的征途,这条路艰难而曲折,有害也有利。

基本过程见下图。

(2)光呼吸的过程Ⅰ.发生光呼吸的细胞需要三个细胞器的协同作用才能将光呼吸起始阶段产生的“次品”修复,耗时耗能。

这也是早期光呼吸被人们称作“卡尔文循环中的漏逸”,“Rubisco的构造缺陷”的原因。

Ⅱ.下图展示了卡尔文循环和光呼吸的详细过程。

(3)光呼吸的危害如果在较强光下,光呼吸加强,使得C5氧化分解加强,一部分碳以CO2的形式散失,从而减少了光合产物的形成和积累。

其次,光呼吸过程中消耗了ATP和NADPH,即造成了能量的损耗。

(4)光呼吸的意义其实光呼吸和卡尔文循环是一种动态平衡,适当的光呼吸对植物体有一定积极意义,这也许是进化过程中形成光呼吸的原因。

光呼吸的主要生理意义如下:Ⅰ.回收碳元素。

就是2分子的C2形成1分子的C3和CO2,那1分子C3通过光呼吸过程又返回到卡尔文循环中,不至于全部流失掉。

槟榔黄化病叶片差异表达蛋白筛选与鉴定

槟榔黄化病叶片差异表达蛋白筛选与鉴定

槟榔黄化病叶片差异表达蛋白筛选与鉴定曾莉娟;李涛;王健华;张雨良;刘志昕【摘要】以相同品种,树龄、长势一致的黄化病槟榔和健康槟榔叶片为试材,采用TCA(三氯乙酸),丙酮法制备蛋白质样品,结合双向电泳-质谱结合技术,分析病原菌-槟榔互作后差异表达蛋白.结果表明.双向电泳SDSPAGE胶中黄化病槟榔叶片与健康叶片平均蛋白质点数分别为1 081个和960个,其中差异明显的点34个.选择5个差异蛋白点进行质谱(MALDI-TOF-MS)鉴定,并进行数据库查询,结果鉴定了2个蛋白质,分别为核酮糖-1,5-二磷酸羧化/加氧酶和蕈状支原体高同源蛋白,这些蛋白质可能参与了槟榔黄化病发生和发展过程.另外3个蛋白点在数据库中未检索到同源性和匹配率较高的蛋白质,认为是未知蛋白.【期刊名称】《热带作物学报》【年(卷),期】2010(031)008【总页数】5页(P1298-1302)【关键词】槟榔;槟榔黄化病;蛋白质;双向电泳【作者】曾莉娟;李涛;王健华;张雨良;刘志昕【作者单位】中国热带农业科学院热带生物技术研究所,海南,海口,571101;中国热带农业科学院科技信息研究所,海南,儋州,571737;海南大学环境与植物保护学院,海南,儋州,571737;中国热带农业科学院热带生物技术研究所,海南,海口,571101;中国热带农业科学院热带生物技术研究所,海南,海口,571101;中国热带农业科学院热带生物技术研究所,海南,海口,571101;中国热带农业科学院热带生物技术研究所,海南,海口,571101【正文语种】中文【中图分类】S792槟榔(Areca catechu Linnaeus)是一种典型的热带经济作物和观赏作物。

在海南和台湾,槟榔分别是仅次于橡胶和水稻的第二大经济作物[1,2]。

槟榔黄化病是一种慢性病且没有有效的防治措施,自1914年首次报道以来,现已遍及大部分槟榔生产国主产区,造成槟榔大面积减产[3]。

植物生理测定方法

植物生理测定方法

1 叶圆片放氧活性的测定原理:同光合速率一样,同光合速率一样,叶片光合放氧速率是反应光合能力的一项重要指标,叶片光合放氧速率是反应光合能力的一项重要指标,叶片光合放氧速率是反应光合能力的一项重要指标,其其大小本质上取决于PSII 活性的大小。

活性的大小。

称取2~3 cm 2 叶片约0.2g ,用打孔器2-3 mm 2的小圆片后放入含有200mmolTrincine Trincine--NaOH ,100 mmol NaHCO 3,pH7.0 的缓冲液中,并用注射器抽真空1min 左右,使缓冲液充分渗入到叶肉细胞里,最后将叶圆片连同缓冲液转移至极谱氧电极(Hansatech ,英国)的反应杯里测定放氧活性,测定在20℃及800μmol.m -2.s -1 光强下进行,每个样品测定3个重复。

个重复。

2 核酮糖-1,5-二磷酸羧化酶(RuBPCase )活性测定 原理:Rubiscase 是光合作用中最重要的关键酶,它既催化RuBP 羧化反应,又催化RuBP 加氧反应,对植物的光合作用具有重要的调控作用。

加氧反应,对植物的光合作用具有重要的调控作用。

参照李合生等[57]的方法,称取0.5g 叶片加入匀浆液6ml (100mmol/L Tris-HCl 缓冲液pH7.8,10 mmol/L MgCl 2,1.0 mmol/L EDTA ,20 mmol/L 2-巯基乙醇,2%聚乙烯吡咯烷酮)冰浴研磨匀浆,14000g 、4℃离心20min ,上清液作酶液活性分析。

反应液总体积为200µ200µLL ,内含反应介质100mmol/L Tris- HCI 缓冲液(pH7.8)、0.4mmol/L EDTA 、12 mmol/L MgCl 2)93.3µ93.3µL L 、50 mmol/L ATP 、50mmol/L 磷酸肌酸,200mmol/L NaHCO 3各13.3µ13.3µLL ,160 u/ml 磷酸肌酸激酶,160 u/ml 磷酸甘油酸激酶,160 u/ml 磷酸甘油醛脱氢酶各6.7µ6.7µLL ,5mM/L NADH ,蒸馏水各13.3µ13.3µL L ,RuBPCase 提取液6.7µ6.7µL 30L 30℃恒温水浴10 min, 最后加入9 mmol/L RuBP6.7µ6.7µL L 反应开始,用Theymo1500型 酶标仪96孔板测定340 nm 下光吸收的变化。

植物生理学题库-03 光合作用作业及答案

植物生理学题库-03 光合作用作业及答案

第三章光合作用一、名词解释1.光合色素:指植物体内含有的具有吸收光能并将其用于光合作用的色素,包括叶绿素、类胡萝卜素、藻胆素等。

2.原初反应:包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。

3.红降现象:当光波大于685nm时,虽然仍被叶绿素大量吸收,但量子效率急剧下降,这种现象被称为红降现象。

4. 爱默生效应:如果在长波红光(大于685nm)照射时,再加上波长较短的红光(650nm),则量子产额大增,比分别单独用两种波长的光照射时的总和还要高。

5.光合链:即光合作用中的电子传递。

它包括质体醌、细胞色素、质体蓝素、铁氧还蛋白等许多电子传递体,当然还包括光系统I和光系统II的作用中心。

其作用是水的光氧化所产生的电子依次传递,最后传递给NADP+。

光合链也称Z链。

6.光合作用单位:结合在类囊体膜上,能进行光合作用的最小结构单位。

7.作用中心色素:指具有光化学活性的少数特殊状态的叶绿素a分子。

8.聚光色素:指没有光化学活性,只能吸收光能并将其传递给作用中心色素的色素分子。

聚光色素又叫天线色素。

9.希尔反应:离体叶绿体在光下所进行的分解水并放出氧气的反应。

10.光合磷酸化:叶绿体(或载色体)在光下把无机磷和ADP转化为ATP,并形成高能磷酸键的过程。

11.光呼吸:植物的绿色细胞在光照下吸收氧气,放出CO2的过程。

光呼吸的主要代谢途径就是乙醇酸的氧化,乙醇酸来源于RuBP的氧化。

光呼吸之所以需要光就是因为RuBP的再生需要光。

12.光补偿点:同一叶子在同一时间内,光合过程中吸收的CO2和呼吸过程中放出的CO2等量时的光照强度。

13.CO2补偿点:当光合吸收的CO2量与呼吸释放的CO2量相等时,外界的CO2浓度。

14.光饱和点:增加光照强度,光合速率不再增加时的光照强度。

15.光能利用率:单位面积上的植物光合作用所累积的有机物所含的能量,占照射在相同面积地面上的日光能量的百分比。

16. 碳素同化作用:自氧植物吸收二氧化碳,将其转变成有机物的过程,称为植物的碳素同化作用。

现代生物科学导论名词解释

现代生物科学导论名词解释
预成论:

认为有机体的发育是预先存在于生殖细胞中的“小体”长大的结果,并没有什么新的 东西形成。
渐成论:
认为胚胎中并不存在预先形成的组织和器官,也无“小体”存在。发育永远是通过当
时8/31还/20不19 存在的新的部分的形成,从简单到复杂。
8
重演律(海克尔):
个体发生就是系统发生的短暂而迅速的重演。
当线粒体内膜上的呼吸链进行电子传递时,线粒体基质中的H+被转移到线粒体 内外膜之间,造成跨膜的质子梯度,质子顺梯度通过ATP合成酶返回到线粒体 的基质中时ATP合成酶利用释放的能量将ADP磷酸化成ATP的过程。
卡尔文循环:
即光合作用中的暗反应。是一种不断消耗光反应生成的ATP和NADPH并固定 CO2形成葡萄糖的循环反应。由美国科学家Calvin首次发现,故称Calvin循环。
•G1/S检查点:决定细胞是否分裂,也是细胞外环境影响细胞周期的关键检查点。
生长因子、营养、基因组完整调控,一旦开始,就不可逆;
•G2/M检查点:是否启动有丝分裂的检查点,主要监测DNA复制的完整性和准确
性;
•纺锤体检查点:确保在分裂后期所有染色体正确连接到纺锤体上,方便向两极
拉伸。
MPF(有丝分裂促进因子):
异养生物:
自身不能利用外界的太阳能或其它热能将CO2合成为有机化合物, 只能利用现成有机化合 物作为能量来源的生物, 包括所有动物和真菌, 绝大多数细菌和病毒。
新陈代谢:
生物体内物质与能量的转换过程统称为新陈代谢。涉及物质的同化与异化,合成与分解, 能量的捕获与释放。
涌现:
生物世界每出现一个较高层次的结构都会产生一些新的特征,这些特征产生于较低层次组 成元素之间的互作。涌现特征的特点是:它由部分组成,又不等于部分相加。

小麦Rubisco的纯化、鉴定及其活性测定

小麦Rubisco的纯化、鉴定及其活性测定

实验采用硫酸铵分段盐析(45% ~ 55%)方法除去了 酰胺凝胶电泳,呈 2 条带,1 条带为 Rubisco 的大亚基,分子
大量的杂蛋白,得到乳白色的沉淀,将沉淀用柱平衡缓冲 量 55 000 左右,另 1 条带为小亚基,分子量 14 800 左右(图
液复溶后,经 Sephadex G-25 柱脱盐,收集第一个峰的蛋白 质上 DEAE-TOYOPEARL-650 纤维素柱(该过程为纯化过
蛋白质 的 纯 度 鉴 定 多 采 用 聚 丙 烯 酰 胺 凝 胶 电 泳 方 法,但通过该 方 法,既 使 电 泳 谱 带 中 无 杂 蛋 白 带 出 现,也 只能判断其蛋白质纯度在 85% 以上[8],因为蛋白质中可 能会含有混杂的核酸。本实验在电泳检测基础上还同步 采用紫外(UV)光谱测定方法,根据在 280nm 和 260nm 的 吸收比值判断 Rubisco 的纯度,可排除核酸对其纯度的干 扰。该检测 方 法 不 消 耗 样 品,耗 时 短 且 方 法 简 便。 与 聚 丙烯酰胺凝胶电泳检测方法结合使用,提高了蛋白质纯 度检测的可靠性。 ! 参考文献 1 王忠 . 植物生理学[M],北京:中国农业出版社,2000 .
取生长良好、浓绿色的小麦叶片,洗净后擦去多余的 水分。定 量 称 取 100g,加 入 预 冷 的 200mI 样 品 提 取 液 (50mmoI / L pH 7 . 5、Tris-HCI,1mmoI / L EDTA,10mmoI / L MgCI2, 12 . 5%( V / V)甘 油, 10mmoI / L !-巯 基 乙 醇,1%
化后的 Rubisco 被纯化了 7 . 5 倍,回收率为 50%。
图 2 Rubisco 在 DEAE-TOYOPEARL-650M 上 0 ~ 0 . 5mol / L Nacl 梯度洗脱曲线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核酮糖1,5-二磷酸羧化酶羧化活性的测定
一、实验原理
核酮糖-1,5-二磷酸核酮糖羧化/加氧酶是光合作用中一个关键酶,它在Calvin 循环中催化中催化CO2的固定,生成2分子的3-磷酸甘油酸(3-PGA),同时它是一个双功能酶,又能催化将O2加在核桐糖-1,5-二磷酸(RuBP)上生成1分子的磷酸乙醇酸和1分子的PGA ,这两个反应的速率由O2和CO2的浓度调节[1]。

分光光度酶偶联法是根据RuBP 羧化酶催化RuBP 与CO2反应产生的磷酸甘油酸与NADH 的氧化作用相偶联的原理设计的。

当加入ATP 及NADH 后,NADH 在PGK 和GAPDH 的催化下氧化为NAD+,每羧化l mol RuBP 有2 mo1 NADH 被氧化,根据在波长340 nm 处光密度的变化,可测知NADH 的数量,从而算出同化CO2的值。

Rubisco 羧化活性的测定可用酶偶联法将3-PGA 的变化转换为NADH 的变化来测定。

RuBP+CO2+H2O −−−−→−+2
Mg RuBPC ,2(3-PGA)
3-PGA+ATP −−
−−−→−-磷酸甘油激酶
31,3-二磷酸甘油酸+ADP 1,3-二磷酸甘油酸+NADH −−−−−−→−-磷酸脱氢酶
甘油醛-33-磷酸甘油醛
+NAD++PO43+ 二、实验仪器及材料 2.1实验仪器
研钵、分光光度计、秒表、比色杯、冷冻离心机 2.2实验材料
小麦叶片 三、实验步骤
1.核酮糖-1,5-二磷酸核酮糖羧化/加氧酶活性额测定
1.1称取0.1 g 新鲜叶片,放于已经预冷的研钵中。

1.2加入1 mL ,4℃提取缓冲液(50 mM Tricine-NaOH pH 7.9, 0.1% PVP-40, 5 mM MgCl2)冰上研磨,(缓冲液分3次加入,第一次0.5ml ,剩下两次分别0.25ml 将研钵冲洗干净),将研好的样品装入1.5ml 的离心管中,放于冰盒中。

12000 g ,4℃,离心10 min 。

取上清液备用。

1.3 按下表顺序依次加入630 uL 反应液,然后再加10 mmol/L RuBP ,100 mmol/L ATP ,100 mmol/L 磷酸肌酸,40 U/ml 肌酸磷酸激酶,80 U/mL 3-磷酸甘油醛脱氢酶,80 U/mL 3-磷酸甘油酸激酶各50 uL ,将分光光度计波长调至340 nm 调零。

最后加20 uL 酶提取液,50 uL 4 mmol/L NADH 启动反应,立即每隔5s 测定吸光度。

1.4 酶活力计算公式
RuBPC



[umol
CO 2
min -1mg -1
Chl(a+b)]=Fw
)b a (Chl t V d 2V A ⨯+⨯∆⨯⨯ξ⨯⨯⨯∆反
ΔA 为1 min 内吸光度的变化值, V 反 为反应总体积1 mL , d 为光径cm ,
ξ为NADH 的消光系数 6.22, V 为加样体积0.02 mL , Δt 为时间1 min,
Chl(a+b)为叶绿素a 与b 的含量之和mg/g , Fw 为叶片鲜重g 。

2 叶绿素含量的测定
2.1 称取0.1g 新鲜叶片,加入少量纯的丙酮研磨,棕色容量瓶定容至10mL 。

2.2置于黑暗处过滤备用。

2.3以纯丙酮做参比,测定663/645nm 处的吸光值。

2.4叶绿素含量计算公式。

Ca=12.72A 663-2.59A 645 Cb=22.88A 645-4.67A 663
C T =Ca+Cb 叶绿素含量=
样品鲜重
提取液体积
)色素的浓度( T C (mg/g )
四、实验结果
1叶绿素吸光度测定结果
2.叶绿素含量测定结果
3.酶活力吸光度测定结果
2 酶活力测定结果
结果表明,小麦RuBPC酶活力比玉米RuBPC酶活力大,这是因为C4植物固定CO2的酶为磷酸烯醇式丙酮酸羧化酶(PEPCase),与C3作物中RuBPCase相比,PEPCase对CO2的亲和力高。

C4植物是从C3植物进化而来的一种高光效种类。

与C3植物相比,它具有在高光强,高温及低CO2浓度下,保持高光效的能力。

五、注意事项
1、RuBP很不稳定,特别是在碱性环境下,因而要使用不超过2~4周,在pH 5~6条件下,以10 mmol/L浓度保存于-20℃冰箱中。

2、反应液和比色杯保持温度在30℃左右,冬天可在分光光度计样品室内放入装有温水的瓶子,保温。

3、在比色杯内添加试剂和样液时,必须要匀速。

相关文档
最新文档