第五版物理化学第三章习题答案汇总
第五版物理化学课后习题答案
第五版物理化学课后习题答案第五版物理化学课后习题答案物理化学是一门综合性的学科,涉及到物理学和化学的交叉领域,对于学习者来说,掌握习题的解答方法是非常重要的。
本文将为大家提供第五版物理化学课后习题的答案,帮助大家更好地理解和掌握物理化学知识。
第一章:热力学1. 根据热力学第一定律,ΔU = q + w,其中ΔU表示系统内能的变化,q表示系统吸收的热量,w表示系统对外界做的功。
2. 热容量C = q/ΔT,其中C表示热容量,q表示系统吸收的热量,ΔT表示温度变化。
3. 热力学第二定律表明,热量不会自发地从低温物体传递到高温物体,热量的传递总是从高温物体向低温物体传递。
4. 熵的变化ΔS = q/T,其中ΔS表示熵的变化,q表示吸收的热量,T表示温度。
5. 熵是一个系统无序程度的度量,熵的增加意味着系统的无序程度增加。
第二章:量子力学1. 波粒二象性是指粒子既可以表现出波动性质,也可以表现出粒子性质。
2. 波函数描述了量子力学系统的状态,波函数的平方表示在某个位置上找到粒子的概率。
3. 薛定谔方程描述了量子力学系统的演化。
4. 波函数的归一化要求波函数的平方在整个空间上的积分等于1。
5. 量子力学中的不确定性原理表明,无法同时精确测量粒子的位置和动量,精确测量其中一个属性,另一个属性的测量结果就会变得模糊。
第三章:电化学1. 电化学反应可以分为两类:氧化还原反应和非氧化还原反应。
2. 氧化还原反应中,氧化剂接受电子,被还原,而还原剂失去电子,被氧化。
3. 电解质溶液中的电解质会在电解过程中分解成离子。
4. 电解过程中,阳极是发生氧化反应的电极,阴极是发生还原反应的电极。
5. 电解质溶液中的电导率与电解质浓度成正比,与温度成反比。
第四章:动力学1. 反应速率可以通过反应物浓度的变化率来表示。
2. 反应速率与反应物浓度的关系可以由速率方程来描述。
3. 反应级数表示反应速率与反应物浓度的关系,可以是零级、一级或二级反应。
物理化学(天大第五版全册)课后习题答案
物理化学(天⼤第五版全册)课后习题答案第⼀章⽓体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V-=??? =κα试导出理想⽓体的V α、T κ与压⼒、温度的关系解:对于理想⽓体,pV=nRT111 )/(11-=?=?==??? =T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=?=?=???? ????-=???? ????-=p p V V pnRT V p p nRT V p V V T T T κ 1-5 两个体积均为V 的玻璃球泡之间⽤细管连接,泡内密封着标准状况条件下的空⽓。
若将其中⼀个球加热到100℃,另⼀个球则维持0℃,忽略连接管中⽓体体积,试求该容器内空⽓的压⼒。
解:⽅法⼀:在题⽬所给出的条件下,⽓体的量不变。
并且设玻璃泡的体积不随温度⽽变化,则始态为 )/(2,2,1i i i i RT V p n n n =+=终态(f )时+=?+=+=ff ff f ff f f fT T T T R Vp T V T V R p n n n ,2,1,1,2,2,1,2,1 kPaT T T T T p T T T T VR n p f f f f i i ff f f f 00.117)15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+=???+=? ??+=(1)保持容器内温度恒定时抽去隔板,且隔板本⾝的体积可忽略不计,试求两种⽓体混合后的压⼒。
(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同(3)隔板抽去后,混合⽓体中H 2及N 2的分压⼒之⽐以及它们的分体积各为若⼲解:(1)抽隔板前两侧压⼒均为p ,温度均为T 。
p dmRT n p dmRT n p N N H H ====33132222 (1)得:223N Hn n =⽽抽去隔板后,体积为4dm 3,温度为,所以压⼒为3331444)3(2222dm RT n dm RT n dm RT n n V nRT p N N N N ==+== (2)⽐较式(1)、(2),可见抽去隔板后两种⽓体混合后的压⼒仍为p 。
第五版物理化学第三章习题答案-图文
第五版物理化学第三章习题答案-图文以下是为大家整理的第五版物理化学第三章习题答案-图文的相关范文,本文关键词为第五,物理化学,第三章,习题,答案,图文,第三章,热力学,第,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
第三章热力学第二定律3.1卡诺热机在(1)热机效率;(2)当向环境作功。
解:卡诺热机的效率为时,系统从高温热源吸收的热及向低温热源放出的热的高温热源和的低温热源间工作。
求根据定义3.2卡诺热机在(1)热机效率;(2)当从高温热源吸热解:(1)由卡诺循环的热机效率得出时,系统对环境作的功的高温热源和的低温热源间工作,求:及向低温热源放出的热(2)3.3卡诺热机在(1)热机效率;(2)当向低温热源放热解:(1)时,系统从高温热源吸热及对环境所作的功。
的高温热源和的低温热源间工作,求1(2)3.4试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功wr等于不可逆热机作出的功-w。
假设不可逆热机的热机效率大于卡诺热机效率证:(反证法)设ηir>ηr不可逆热机从高温热源吸热则,向低温热源放热,对环境作功,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
逆向卡诺热机从环境得功则从低温热源吸热向高温热源放热若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
23.5高温热源温度低温热源,求此过程。
,低温热源温度,今有120KJ的热直接从高温热源传给解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于情况下,当热机从高温热源吸热(1)可逆热机效率(2)不可逆热机效率(3)不可逆热机效率解:设热机向低温热源放热。
物理化学第三章课后答案完整版
第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解: (1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
物理化学第三章课后答案完整版
第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解: (1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
物理化学第五版第三章答案
物理化学第五版第三章答案3.22 绝热恒容容器中有一绝热耐压隔板,隔板两侧均为N2(g)。
一侧容积50 dm3,内有200 K的N2(g) 2 mol;另一侧容积为75 dm3, 内有500 K的N2(g) 4 mol;N2(g)可认为理想气体。
今将容器中的绝热隔板撤去,使系统达到平衡态。
求过程的。
解:过程图示如下同上题,末态温度T确定如下经过第一步变化,两部分的体积和为即,除了隔板外,状态2与末态相同,因此注意21与22题的比较。
3.23 甲醇()在101.325KPa下的沸点(正常沸点)为,在此条件下的摩尔蒸发焓,求在上述温度、压力条件下,1Kg液态甲醇全部成为甲醇蒸汽时。
解:3.24 常压下冰的熔点为0℃,比熔化焓,水的比定压热熔。
在一绝热容器中有1 kg,25℃的水,现向容器中加入0.5 kg,0℃的冰,这是系统的始态。
求系统达到平衡后,过程的。
解:过程图示如下将过程看作恒压绝热过程。
由于1 kg,25℃的水降温至0℃为只能导致克冰融化,因此3.27 已知常压下冰的熔点为0℃,摩尔熔化焓,苯的熔点为5.5 1℃,摩尔熔化焓。
液态水和固态苯的摩尔定压热容分别为及。
今有两个用绝热层包围的容器,一容器中为0℃的8 mol H2O(s)与2 mol H2O(l)成平衡,另一容器中为5.510℃的5 mol C6H6(l)与5 mol C6H6(s)成平衡。
现将两容器接触,去掉两容器间的绝热层,使两容器达到新的平衡态。
求过程的。
解:粗略估算表明,5 mol C6H6(l) 完全凝固将使8 mol H2O(s)完全熔化,因此,过程图示如下总的过程为恒压绝热过程,,忽略液态乙醚的体积3.30. 容积为20 dm3的密闭容器中共有2 mol H2O成气液平衡。
已知80℃,100℃下水的饱和蒸气压分别为及,25 ℃水的摩尔蒸发焓;水和水蒸气在25 ~ 100 ℃间的平均定压摩尔热容分别为和。
今将系统从80℃的平衡态恒容加热到100℃。
第五版物理化学第三章习题答案完整版.doc
第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη> 不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ 的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
物理化学第五版第三章答案
第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率 ; (2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解: (1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
物理化学第三章习题答案精品PPT课件
H 2 n fus H m (273.15K ) 60.12kJ
H 56.21kJ
S S1 S2 S3
S1
nC p,m
(l )
ln
T2 T1
28.45J K 1
S3
nC
p,m
(
s)
ln
T1 T2
13.87 J
K 1
S2
n fus H m T2
220.10J K 1
S 205.52J K 1
nR ln
p1 p2
?
S1 nSm 0.04 205.14 8.21J K 1
S2 S1 S ?
H nC p,m (T2 T1) ? G H (T2S2 T1S1) ?
6.1mol某双原子理想气体,从300K、pθ等温可逆压缩到10pθ, 计算该过程的Q、W、∆U、∆H、∆S、∆A和∆G。
可逆地压缩到100 kPa,计算该过程的Q、W、∆U、∆H、
∆S、∆A和∆G 。S巳m 知 (298.15K) = 130.59 J·K-
1解·m:o1l-01m。ol理想气体 绝 热 可逆10mol理想气体
298.15K,50 kPa
T2,100kPa
T2
(
p2
)
R C p ,m
T2 363.27K
T1
p1
Q0
W U nCV ,m (T2 T1) 13.57kJ
H nCp,m (T 2T1) 18.99kJ
G H (T2S2 T1S1) H S(T2 T1)
10mol理想气体 S10mol理想气体 298.15K,100kPa 298.15K,50 kPa
S nR ln 100 57.63J K 1 50
物理化学上册第五版天津大学出版社第三章热力学第二定律习题答案
物理化学上册第五版天津大学出版社第三章热力学第二定律习题答案3-1 卡诺热机在 T 1=600K 的高温热源和T 2=300K 的低温热源间工作,求:(1) 热机的效率;(2)当环境作功 –W=100kJ 时,系统从高温热源Q 1及向低温热源放出的 –Q 2。
解:(1)5.0600/)300600(/)(/1211=-=-=-=T T T Q W η (2)5.0/100/11==-Q kJ Q W ,得kJ Q 2001=kJ W Q Q 10021=-=+;kJ Q W Q 100)(21=-=--3-2卡诺热机在T 1=795K 的高温热源和T 2=300K 的低温热源间工作,求:(1)热机的效率;(2)当从高温热源吸热Q 1=250 kJ 时,系统对环境作的功 -W 及向低温热源放出的 –Q 2。
解:(1)6.0750/)300750(/)(/1211=-=-=-=T T T Q W η (2)kJ kJ Q W 1502506.01=⨯==-ηkJ W Q Q 15021=-=+;kJ Q W Q 100)(21=-=--3-3 卡诺热机在T 1=900K 的高温热源和T 2=300K 的低温热源间工作,求:(1)热机的效率;(2)当向低温热源放出的 –Q 2=100kJ 时,从高温热源吸热Q 1及对环境作的功 -W 。
解:(1)6667.0900/)300900(/)(/1211=-=-=-=T T T Q W η (2)6667.0/1=-Q W (a )W kJ Q -=-1001(b )联立求解得:Q 1=300 kJ ;-W=200kJ3-4 试证明:在高温热源和低温热源间工作的不可逆热机与卡诺热机联合操作时,若令卡诺热机得到的功W r 等于不可逆热机作出的功 – W ,假设不可逆热机的热机效率η大于卡诺热机的热机效率ηr ,其结果必然有热量从低温热源流向高温热源,而违反热力学第二定律的克劳修斯说法。
物理化学第三章习题答案
373.15K, p2 101.325kPa
373.15K ,101.325kPa
H1 nCp,m (g)(T2 T1) H3 nCp,m (l)(T1 T2 ) H 2 nvap H m (373.15K )
S
H
146.79J K 1
T
G H TS 0
1解。:10mol理想气体 绝 热 可逆10mol理想气体
298.15K,50 kPa
T2,100kPa
T2
(
p2
)
R C p ,m
T2 363.27K
T1
p1
Q0
W U nCV ,m (T2 T1) 13.57kJ
H nCp,m (T 2T1) 18.99kJ
第四页,编辑于星期五:点 十分。
(1)计算该过程W、Q、∆U、∆S和∆G。 (2)S、G 两个判据中,
何者可以作为上述过程是否自发进行的判据。 请计算出具体数值来说明。
C6H6 (l) 不可逆C6H6 (g) H
353.25K,101.325kPa 353.25K,101.325kPa
可逆
第十九页,编辑于星期五:点 十分。
H nvap H m 30.77kJ
S2 S1 S ?
H nC p,m (T2 T1) ? G H (T2S2 T1S1) ?
第六页,编辑于星期五:点 十分。
6.1mol某双原子理想气体,从300K、pθ等温可逆压缩到10pθ, 计算该过程的Q、W、∆U、∆H、∆S、∆A和∆G。
1mol理想气体 恒 温 可逆1mol理想气体
S(环) 0
S(隔) S
第二页,编辑于星期五:点 十分。
3. 1mol O2,始态为300K 和 1013.25kPa,经过恒温可 逆膨胀至终态压力为101.325 kPa。试计算该过程的W、
物理化学第三章习题答案
S
H
146.79J K 1
T
G H TS 0
H 43.77kJ
10. 298.15K和pθ下进行的相变:H2O(l)→ H2O(g) 计算相变的ΔG,并判断能否自动进行。
已知H2O(l)在298.15K时饱和蒸气压为3.168kPa, H2O(l)的摩尔体积为 18.02 mL/mol 。
S1
H1
H 3
S3
Qp H
S2
T2 273 .15KH,1021O.32(5lk)P aH 2 2H73.21O5K(,1s0)1.325kPa
H1 nCp,m (l)(T2 T1) 10 76.28 (273 .15 - 263 .15) 7.63kJ
∆S、∆A和∆G 。S巳m 知 (298.15K) = 130.59 J·K-
1解·m:o1l-01m。ol理想气体 绝 热 可逆10mol理想气体
298.15K,50 kPa
T2,100kPa
T2
(
p2
)
R C p ,m
T2 363 .27 K
T1
p1
Q0
W U nCV ,m (T2 T1) 13.57kJ
根据吉布斯函数判据,过程不可自发进行。
9. 通过设计过程求1mol H2O(g)在25℃平衡压力下凝结为
液态水的过程的∆H、∆S 和∆G。已知25℃下,水的饱和蒸
气压为3.167kPa;在100℃下水的ΔvapHm = 40.63
kJ·mol-1,
1C·mp,mo⑴l-1=。75H.302OJ·K( g-1·)mol- 1H,CpH,m(2Og)(l=) 33.50 J·K-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
(3)系统先与40℃,70℃的热源接触至热平衡,再与100℃的热源接触。
解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此3.8 已知氮(N2, g)的摩尔定压热容与温度的函数关系为将始态为300 K,100 kPa下1 mol的N2(g)置于1000 K的热源中,求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的。
解:(1)在恒压的情况下(2)在恒容情况下,将氮(N2, g)看作理想气体将代替上面各式中的,即可求得所需各量3.9 始态为,的某双原子理想气体1 mol,经下列不同途径变化到,的末态。
求各步骤及途径的。
(1)恒温可逆膨胀;(2)先恒容冷却至使压力降至100 kPa,再恒压加热至;(3)先绝热可逆膨胀到使压力降至100 kPa,再恒压加热至。
解:(1)对理想气体恒温可逆膨胀,△U= 0,因此(2)先计算恒容冷却至使压力降至100 kPa,系统的温度T:(3)同理,先绝热可逆膨胀到使压力降至100 kPa时系统的温度T:根据理想气体绝热过程状态方程,各热力学量计算如下3.10 1mol理想气体在T=300K下,从始态100KPa 到下列各过程,求及。
(1)可逆膨胀到压力50Kpa;(2)反抗恒定外压50Kpa,不可逆膨胀至平衡态;(3)向真空自由膨胀至原体积的2倍3.11 某双原子理想气体从始态,经不同过程变化到下述状态,求各过程的解:(1)过程(1)为PVT变化过程(2)(3)2.12 2 mol双原子理想气体从始态300 K,50 dm3,先恒容加热至400 K,再恒压加热至体积增大到100 dm3,求整个过程的。
解:过程图示如下先求出末态的温度因此,3.13 4mol单原子理想气体从始态750K,150KPa,先恒容冷却使压力降至50KPa,再恒温可逆压缩至100KPa,求整个过程的解:(a)(b)3.14 3mol双原子理想气体从始态,先恒温可逆压缩使体积缩小至,再恒压加热至,求整个过程的及。
解:(a)(b)3.15 5 mol单原子理想气体,从始态300 K,50 kPa先绝热可逆压缩至100 kPa,再恒压冷却至体积为85dm3的末态。
求整个过程的Q,W,△U,△H及△S。
3.16 始态300K,1MPa的单原子理想气体2mol,反抗0.2MPa的恒定外压绝热不可逆膨胀至平衡态。
求过程的解:3.17 组成为的单原子气体A与双原子气体B的理想气体混合物共10 mol,从始态,绝热可逆压缩至的平衡态。
求过程的。
解:过程图示如下混合理想气体的绝热可逆状态方程推导如下容易得到3.18 单原子气体A与双原子气体B的理想气体混合物共8 mol,组成为,始态。
今绝热反抗恒定外压不可逆膨胀至末态体积的平衡态。
求过程的。
解:过程图示如下先确定末态温度,绝热过程,因此3.19 常压下将100 g,27℃的水与200 g,72℃的水在绝热容器中混合,求最终水温t及过程的熵变。
已知水的比定压热容。
解:3.20 将温度均为300K,压力均为100KPa的100的的恒温恒压混合。
求过程,假设和均可认为是理想气体。
解:3.21 绝热恒容容器中有一绝热耐压隔板,隔板一侧为2mol 的200K,的单原子理想气体A ,另一侧为3mol 的400K ,100的双原子理想气体B 。
今将容器中的绝热隔板撤去,气体A 与气体B混合达到平衡态,求过程的。
解:V=V=V=∵绝热恒容 混合过程,Q = 0, W = 0 ∴△U = 00=40025×320023×20=4002002222)-)+-)-)+-T R T R T C n T C n B m ,V B A m ,V A((((T 2 = 342.86K注:对理想气体,一种组分的存在不影响另外组分。
即A 和B 的末态体积均为容器的体积。
3.22 绝热恒容容器中有一绝热耐压隔板,隔板两侧均为N 2(g)。
一侧容积50 dm 3,内有200 K 的N 2(g) 2 mol ;另一侧容积为75 dm 3, 内有500 K 的N 2(g) 4 mol ;N 2(g)可认为理想气体。
今将容器中的绝热隔板撤去,使系统达到平衡态。
求过程的。
解:过程图示如下同上题,末态温度T确定如下经过第一步变化,两部分的体积和为即,除了隔板外,状态2与末态相同,因此注意21与22题的比较。
3.23 甲醇()在101.325KPa下的沸点(正常沸点)为,在此条件下的摩尔蒸发焓,求在上述温度、压力条件下,1Kg液态甲醇全部成为甲醇蒸汽时。
解:3.24 常压下冰的熔点为0℃,比熔化焓,水的比定压热熔。
在一绝热容器中有1 kg,25℃的水,现向容器中加入0.5 kg,0℃的冰,这是系统的始态。
求系统达到平衡后,过程的。
解:过程图示如下将过程看作恒压绝热过程。
由于1 kg,25℃的水降温至0℃为只能导致克冰融化,因此3.25 常压下冰的熔点是,比熔化焓,水的比定压热熔,系统的始态为一绝热容器中1kg,的水及0.5kg 的冰,求系统达到平衡态后,过程的熵。
解:3.27 已知常压下冰的熔点为0℃,摩尔熔化焓,苯的熔点为5.51℃,摩尔熔化焓。
液态水和固态苯的摩尔定压热容分别为及。
今有两个用绝热层包围的容器,一容器中为0℃的8 mol H2O(s)与2 mol H2O(l)成平衡,另一容器中为5.510℃的5 mol C6H6(l)与5 mol C6H6(s)成平衡。
现将两容器接触,去掉两容器间的绝热层,使两容器达到新的平衡态。
求过程的。
解:粗略估算表明,5 mol C6H6(l) 完全凝固将使8 mol H2O(s)完全熔化,因此,过程图示如下总的过程为恒压绝热过程,,3.28 将装有0.1 mol乙醚(C2H5)2O(l)的小玻璃瓶放入容积为10 dm3的恒容密闭的真空容器中,并在35.51℃的恒温槽中恒温。
35.51℃为在101.325 kPa下乙醚的沸点。
已知在此条件下乙醚的摩尔蒸发焓。
今将小玻璃瓶打破,乙醚蒸发至平衡态。
求(1)乙醚蒸气的压力;(2)过程的。
解:将乙醚蒸气看作理想气体,由于恒温各状态函数的变化计算如下△H=△H1+△H2△S=△S1+△S2忽略液态乙醚的体积3.30. 容积为20 dm 3的密闭容器中共有2 mol H 2O 成气液平衡。
已知80℃,100℃下水的饱和蒸气压分别为及,25 ℃水的摩尔蒸发焓;水和水蒸气在25 ~ 100 ℃间的平均定压摩尔热容分别为和。
今将系统从80℃的平衡态恒容加热到100℃。
求过程的。
解:先估算100 ℃时,系统中是否存在液态水。
设终态只存在水蒸气,其物质量为n , 则显然,只有一部分水蒸发,末态仍为气液平衡。
因此有以下过程:设立如下途径第一步和第四步为可逆相变,第二步为液态水的恒温变压,第三步为液态水的恒压变温。
先求80℃和100℃时水的摩尔蒸发热:3.31. O2(g)的摩尔定压热容与温度的函数关系为已知25 ℃下O2(g)的标准摩尔熵。
求O2(g) 在100℃,50 kPa 下的摩尔规定熵值。
解:由公式3.32. 若参加化学反应的各物质的摩尔定压热容可表示为试推导化学反应的标准摩尔反应熵与温度T的函数关系式,并说明积分常数如何确定。
解:对于标准摩尔反应熵,有式中3.33. 已知25℃时液态水的标准摩尔生成吉布斯函,水在25℃时的饱和蒸气压。
求25℃时水蒸气的标准摩尔生成吉布斯函数。
解:恒温下3.34. 100℃的恒温槽中有一带有活塞的导热圆筒,筒中为2 mol N2(g)及装与小玻璃瓶中的3 mol H2O(l)。
环境的压力即系统的压力维持120 kPa不变。
今将小玻璃瓶打碎,液态水蒸发至平衡态。
求过程的。
已知:水在100℃时的饱和蒸气压为,在此条件下水的摩尔蒸发焓。
3.35. 已知100℃水的饱和蒸气压为101.325 kPa ,此条件下水的摩尔蒸发焓。
在置于100℃恒温槽中的容积为100 dm 3的密闭容器中,有压力120 kPa 的过饱和蒸气。
此状态为亚稳态。
今过饱和蒸气失稳,部分凝结成液态水达到热力学稳定的平衡态。
求过程的。
解:凝结蒸气的物质量为热力学各量计算如下3.36 已知在101.325 kPa下,水的沸点为100℃,其比蒸发焓。
已知液态水和水蒸气在100~120℃范围内的平均比定压热容分别为:及。
今有101.325 kPa下120℃的1 kg过热水变成同样温度、压力下的水蒸气。
设计可逆途径,并按可逆途径分别求过程的及。
解:设计可逆途径如下3.37 已知在100 kPa下水的凝固点为0℃,在-5 ℃,过冷水的比凝固焓,过冷水和冰的饱和蒸气压分别为,。
今在100 kPa 下,有-5℃ 1 kg的过冷水变为同样温度、压力下的冰,设计可逆途径,分别按可逆途径计算过程的及。