高中数学-圆锥曲线有关焦点弦的几个公式及应用.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线有关焦点弦的几个公式及应用

如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。

定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。

证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。由圆锥曲线的统一定义得,,又,所以。

(1)当焦点内分弦时。

如图1,,所以。

图1

(2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以

图2

评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。

例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为()

解这里,所以,又,代入公式得,所

以,故选。

例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心

率为。过右焦点且斜率为的直线于相交于两点,若,则()

解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为

的直线,与抛物线交于两点(点在轴左侧),则有____

图3

解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。

例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___

解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。

例5(自编题)已知双曲线的离心率为,过左焦点

且斜率为的直线交的两支于两点。若,则___

解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。

定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准距(焦点到对应准线的距离)为。过点的弦与曲线的焦点所在的轴的夹角为,则有。

证明设点在准线上的射影分别为,过点作轴的垂线交直线于点,交直线于点。由圆锥曲线的统一定义得,,所以

图4

(1)当焦点内分弦时。如图4,,

。,所以较长焦半径,较短焦半径。

所以。

(2)当焦点外分弦时(此时曲线为双曲线)。

图5

如图5,,。所以,

所以较长焦半径,较短焦半径。

所以。

综合(1)(2)知,较长焦半径,较短焦半径。焦点弦的弦长公式为。

特别地,当曲线为无心曲线即为抛物线时,焦准距就是径之半,较长焦半径,较短焦半径,焦点弦的弦长公式为。当曲线为有心曲线即为椭圆或双曲线时,焦准距为。

注由上可得,当焦点内分弦时,有。当焦点外分弦时,有。

例6 (2009年高考福建卷理科第13题)过抛物线的焦点作倾斜角为的直线,交抛物线于两点,若线段的长为8,则___

解由抛物线焦点弦的弦长公式为得,,解得。

例7(2010年高考辽宁卷理科第20题)已知椭圆的右焦点为,经过且倾斜角为的直线与椭圆相交于不同两点,已知。

(1)求椭圆的离心率;(2)若,求椭圆方程。

解(1)这里,,由定理1的公式得,解得。

(2)将,代入焦点弦的弦长公式得,,解得,即,所以①,又,设,代入①得,所以,所以,故所求椭圆方程为。

例8(2007年重庆卷第16题)过双曲线的右焦点作倾斜角为的直

线,交双曲线于两点,则的值为___

解易知均在右支上,因为,离心率,点准距,因倾斜角为,所以。由焦半径公式得,

例9(由2007年重庆卷第16题改编)过双曲线的右焦点作倾斜角为

的直线,交双曲线于两点,则的值为___

解因为,离心率,点准距,因倾斜角为,所以。注意到分别在双曲线的两支上,由焦半径公式得,

例10 (2007年高考全国卷Ⅰ)如图6,已知椭圆的左、右焦点分别为,

过的直线交椭圆于两点,过的直线交椭圆于两点,且。求四边形面积的最小值。

图6

解由方程可知,,则。

设直线与轴的夹角为,因为,所以直线与轴

的夹角为。代入弦长公式得,

,。故四边形的面积为,。

所以四边形面积的最小值为。

参考文献:

①郑丽兵。一道解析几何调研题的解答、拓广与应用。数学通讯。2010(11、12)(上半月)。

②玉邴图。两道高考题的统一推广。数学通讯。2010(11、12)(上半月)。

③万尔遐。曲线何必与方程捆绑。数学通讯。2010(6)(下半月)。

相关文档
最新文档