高中数学必修2第二单元知识点整理总结1

合集下载

高中数学必修二知识点梳理

高中数学必修二知识点梳理

高中数学必修二知识点梳理第一章空间几何体的表面积和体积公式总结1.表面积(1).棱柱S = 2 S底+ S侧(2).棱锥S = S底+ S侧(3).棱台S = S上底+ S下底+ S侧(4).圆柱S= 2 πr 2 +2πr l =2πr ( r + l )(5).圆锥S = S底+ S侧=πr 2 +πr l =πr ( r + l )(6).圆台S = S上底+ S下底+ S侧=π(r2 + r´2 + rl +r´l) (7).球 S= 4πR22.体积(1).柱体V = S h(2).锥体V = S h/3(3).台体V =( S + √S ´S + S´) h/3(4).球V = 4/3πR3第二章点直线平面之间位置关系的判定,性质及其推论1.直线与平面平行的判定平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行2.平面与平面平行的判定一个平面内的两条相交直线与另一个平面平行,则这两个平面平行推论如果一个平面内有两条相交直线与另一个平面内的两条相交直线平行,则这两个平面平行3.直线与平面平行的性质一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行4.平面与平面平行的性质如果两个平面平行,两个平面同时和第三个平面相交,那么它们的交线平行推论夹在两个平行平面间的平行线段相等5.直线与平面垂直的判定一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直6.平面与平面垂直的判定一个平面过另一平面的垂线,则这两个平面垂直7.直线与平面垂直的性质垂直与同一平面的两条直线平行8.平面与平面垂直的性质两个平面垂直,则一个平面内垂直与交线的直线与另外一个平面垂直推论如果两个平面相互垂直,那么经过第一个平面的一点且垂直于第二个平面的直线在第一个平面内一.直线方程(一).两条直线1.l1∥l2 => k1 = k2或k1 k2不存在2. k1 = k2 => l1∥l2或l1 l2重合3.A,B,C三点共线 k AB = k AC(k存在)4. l1⊥l2 => k1 · k2 = -1 或k1 k2有一不存在,有一为05. k1 · k2 = -1 => l1⊥l2(二).直线方程1.点斜式方程: y–y0 =k (x–x0)2.两点式方程:(y–y1)/(y2–y1)=(x–x1)/(x2–x1)3.截距式方程:x/a +y/b = 14 .斜截式方程:y= k x + b5.一般式方程: Ax + By + C = 0二.距离公式1.两点之间距离公式:d = √【(x2 –x1)2 + (y2–y1)2】2.点到直线的距离公式:d = ∣Ax0 + By0 + C∣/√(A2 + B2)3.两条平行线间的距离公式: d =∣C2– C1∣/√(A2 + B2)]一.圆的方程1.圆的标准方程(x - a)2 +(y - b)2 = r2 (圆心坐标(a ,b),半径为r)2.圆的一般方程x2 + y2 + Dx +Ey +F = 0 => (x+D/2)2+(y+E/2)2 = (D2+E2-4F)/4(1). D2+E2-4F > 0 ,圆心(-D/2 ,- E/2)半径√(D2+E2-4F)/2(2). D2+E2-4F = 0 表示一点(3). D2+E2-4F < 0 不表示任何图形二.直线,圆位置关系1.直线与圆的位置关系(1).直线与圆无公共点⇔ d > r ⇔相离⇔联立方程无解(2).直线与圆只有一个公共点⇔ d = r ⇔相切⇔联立方程有一解(3).直线与圆有两个公共点⇔ d < r ⇔相交⇔联立方程有两解2.圆与圆的位置关系(1).外离⇔ d>R+r(2).外切⇔ d = R+r(3).相交⇔∣R-r∣ < d < R+r(4).内切⇔ d =∣R-r∣(5).内含⇔ d<∣R-r∣。

数学必修二第二章知识点总结

数学必修二第二章知识点总结

数学必修二第二章知识点总结第二章是数学必修二课程中的重要章节,主要涵盖了函数的概念、函数图像与性质、函数的运算以及反函数等内容。

本文将对这一章节的知识点进行总结,以帮助读者更好地掌握相关知识。

1. 函数的概念函数是数学中的一个重要概念,它描述了两个集合之间的一种特殊关系,即每个自变量对应唯一的因变量。

函数可用符号表示为 y = f(x),其中 x 为自变量,y 为因变量,f 表示函数。

2. 函数的图像与性质函数的图像是函数在坐标系中的几何表示,通常是曲线或直线。

函数的性质包括定义域、值域、单调性、奇偶性等。

定义域是函数能够取值的自变量的范围,值域是函数实际取到的因变量的范围。

函数的单调性描述了函数在定义域上的增减情况,可以是增函数、减函数或常函数。

奇偶性是函数的一种对称性质,一个函数可分为奇函数或偶函数,或者既不是奇函数也不是偶函数。

3. 函数的运算函数的运算主要包括四则运算、复合函数与反函数。

四则运算即加减乘除运算,可以对函数进行加减乘除操作。

复合函数指的是将一个函数的结果作为另一个函数的输入,也就是将两个函数逐步嵌套使用。

反函数是指与原函数具有互逆关系的函数,即输入和输出对换的函数。

4. 一次函数与二次函数一次函数是指次数为一的多项式函数,它的图像是一条直线。

一次函数的一般式为 y = kx + b,其中 k 表示斜率,b 表示与 y 轴交点。

二次函数是指次数为二的多项式函数,它的图像是一个抛物线。

二次函数的一般式为 y = ax^2 + bx + c,其中 a 表示开口方向和抛物线开口的大小,b 表示抛物线位置的水平偏移量,c 表示抛物线位置的垂直偏移量。

5. 绝对值函数与倒数函数绝对值函数是指函数的结果取绝对值的函数,它的图像是一个 V 字形曲线。

绝对值函数的一般式为 y = |x|,其中 x 为自变量,y 为因变量。

倒数函数是指与原函数相乘等于 1 的函数,也就是结果取其倒数的函数。

6. 对数函数与指数函数对数函数是指函数的结果通过指数变换得到的函数,常见的对数函数有自然对数函数和常用对数函数。

数学书必修二第二章知识点

数学书必修二第二章知识点

数学书必修二第二章知识点第二章:函数与方程1. 函数的定义及表示法- 函数是指一种具有特定性质的对应关系,将一个自变量的值映射到一个因变量的值上。

- 函数通常用 f(x) 或 y 表示,其中 x 是自变量,f(x) 或 y 是因变量。

- 函数也可以用图像、表格或公式表示。

2. 基本初等函数- 常数函数:f(x) = a,其中 a 是常数。

- 一次函数:f(x) = kx + b,其中 k 和 b 是常数,且 k ≠ 0。

- 幂函数:f(x) = x^n,其中 n 是常数,且 n ≠ 0。

- 指数函数:f(x) = a^x,其中 a 是常数且 a > 0,且 a ≠ 1。

- 对数函数:f(x) = log_a(x),其中 a 是正常数且 a ≠ 1。

3. 函数的性质- 定义域:函数的自变量的取值范围。

- 值域:函数的因变量的取值范围。

- 奇偶性:f(x) = f(-x) 时,函数为偶函数;f(x) = -f(-x) 时,函数为奇函数。

- 单调性:函数在定义域上递增或递减。

- 有界性:函数在某个区间上有上界或下界。

4. 复合函数- 复合函数是由一个函数作为另一个函数的自变量而得到的函数。

- 复合函数的表示法为 (f ∘ g)(x) = f(g(x))。

5. 反函数- 若函数 f 和 g 是互逆的,则 f(g(x)) = x,g(f(x)) = x。

- 如果函数 f 的反函数存在,记为 f^(-1)(x),则有 f(f^(-1)(x)) = x。

6. 方程的根与解集- 方程是含有未知数的等式。

- 方程的根是使方程成立的值。

- 解集是使方程成立的所有值的集合。

7. 一元一次方程- 一元一次方程是形如 ax + b = 0 的方程。

- 一元一次方程的解为 x = -b/a。

8. 一元二次方程- 一元二次方程是形如 ax^2 + bx + c = 0 的方程,其中 a ≠ 0。

- 一元二次方程的解可以通过公式 x = (-b ±√(b^2 - 4ac))/(2a) 求得。

新课标人教A版高中数学必修2知识点总结

新课标人教A版高中数学必修2知识点总结

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高中数学必修2知识点总结

高中数学必修2知识点总结

高中数学必修2知识点总结高中数学必修二知识点总结1. 一元二次方程一元二次方程的标准形式为ax^2+bx+c=0,并且a≠0。

求解一元二次方程的方法是配方法、公式法和因式分解法。

2. 三角函数常用的三角函数有正弦函数、余弦函数、正切函数和余切函数。

三角函数的定义域和值域以及其性质和图像都是必须掌握的。

3. 三角恒等式包括正弦、余弦和正切等三角函数的恒等式,例如正弦函数的和差公式、倍角公式、半角公式等。

三角恒等式是解决三角函数问题的重要工具。

4. 二次函数的图像和性质二次函数的标准形式为y=ax^2+bx+c,其中a≠0。

二次函数的图像是一个开口朝上或开口朝下的抛物线,其对称轴为x=-b/2a。

必须掌握二次函数的顶点、零点、对称轴等性质,这些性质是判断图像和求解问题的重要方法。

5. 平面向量平面向量包括向量的定义、向量之间的运算、向量的坐标表示等。

向量的运算包括向量的加法、减法、数量积和向量积。

向量的坐标表示是将向量投影在坐标轴上来表示的。

6. 点、直线、平面和空间几何点、直线、平面和空间几何的基本概念和性质是必须掌握的,例如点的坐标、直线的一般式方程、平面的法向量等。

此外,必须掌握两条直线和两个平面之间的位置关系、垂直平分线以及中垂线等概念。

7. 三视图和轴测图三视图是立体图形的三个视图,包括正视图、左视图和俯视图。

轴测图是用于三维图形表示的一种图形表示方法,包括斜二测和等轴测。

8. 四边形和圆的性质四边形和圆的主要性质包括四边形内角和定理、对角线定理、圆的周长和面积计算公式、圆内部和圆外部点与圆的位置关系等。

9. 三角形和圆的性质三角形和圆的主要性质包括三角形内角和、三角形的面积计算公式、圆心角和圆弧、圆的切线和切点等。

10. 函数及其应用函数的概念和图像、定义域和值域、单调性等性质必须掌握。

函数的应用包括函数的极值、最大值和最小值等问题。

以上是高中数学必修二知识点的总结,这些知识点是高中数学教育的重点和难点,学好这些知识点对于提高数学成绩和发展数学思维能力都具有重要的意义。

必修二数学知识点归纳

必修二数学知识点归纳

必修二数学知识点归纳第一章空间几何1. 直线和平面的方程2. 直线与平面的位置关系3. 直线与平面的交点4. 直线与平面的夹角和距离5. 空间中的平行和垂直关系6. 直线与空间中的曲面的位置关系7. 空间中的投影和距离第二章解析几何1. 平面直角坐标系2. 点、直线和曲线的坐标表示3. 点、直线和曲线的性质4. 直线的斜率和截距5. 直线的倾斜角和斜率的关系6. 直线与圆的位置关系7. 圆的标准方程和一般方程8. 曲线的一般方程和特殊方程第三章函数与导数1. 函数的概念和表示方法2. 函数的性质和分类3. 函数的图像与性质4. 极坐标系和参数方程5. 函数的单调性和极值点6. 幂函数、指数函数与对数函数7. 三角函数及其性质8. 函数的复合与反函数9. 导数的定义和性质10. 导数的计算和应用第四章导数的应用1. 函数的极值与最值2. 函数的单调性与凹凸性3. 高阶导数与函数的泰勒展开式4. 函数的图形与导数5. 函数的极限和连续性6. 驻点和拐点的判断7. 函数的应用问题:最优化问题,曲线的切线与法线,函数的估值与逼近第五章不等式与函数图像1. 代数不等式的基本性质2. 一元二次不等式的解法3. 高次多项式不等式的解法4. 绝对值不等式的解法5. 不等式的证明方法6. 函数图像的性质与变化趋势7. 函数的奇偶性与对称性8. 根据函数的图像作函数不等式的解第六章概率与统计1. 随机事件与样本空间2. 概率的基本概念和性质3. 条件概率与乘法定理4. 全概率公式与贝叶斯公式5. 随机变量的概念和性质6. 随机变量的分布函数与概率密度函数7. 期望值与方差的概念和计算8. 典型离散分布和连续分布9. 抽样分布与统计推断10. 统计图表和统计量的应用。

高一数学必修2第二单元知识点:减数分裂和受精作用

高一数学必修2第二单元知识点:减数分裂和受精作用

高一数学必修2第二单元知识点:减数分裂和受精作用(一)基本概念减数分裂、减数分裂第一次分裂、减数分裂第二次分裂;有性生殖器官、卵巢、睾丸、精巢;原始的生殖细胞、精原细胞、卵原细胞、初级精(卵)母细胞、次级精(卵)母细胞、精(卵)细胞、精子、极体;联会、四分体;染色体、同源染色体、姐妹染色单体;受精作用(二)知识网络(三)疑难解析减数分裂只有实行有性生殖的生物体内才有实行减数分裂的原始生殖细胞。

具有原始生殖细胞(性原细胞)的器官称为生殖腺,雌性动物是卵巢,雄性动物是睾丸。

减数分裂是一种染色体只复制一次,而细胞却连续分裂2次的分裂方式,分裂的结果是子细胞中的染色体数目比性原细胞(或体细胞)减少了一半。

对于减数分裂过程的理解要注意以下几点:一是染色体的复制时间在性原细胞发育成性母细胞的过程中,即在同源染色体联会之前早就已经复制完成了;二是联会发生在染色体缩短变粗的早期,发生联会的过程在光学显微镜下是看不到的,所以教材中的减数分裂图解表示联会的图中一个染色体中未画出2条染色单体;三是减数分裂第一次分裂的目的是同源染色体彼此分开实现染色体数目减半,在同源染色体彼此分开时非同源染色体之间要自由组合,同源染色体的染色单体之间还要发生交叉互换,这是三大遗传规律的细胞学基础;四是减数分裂第二次分裂的主要特征是着丝点分裂,实现染色单体彼此分开,所以分裂的结果是染色体数目未变,但DNA分子数减少一半;五是第二次分裂程的次级性母细胞的分裂类似有丝分裂过程,但与有丝分裂过程不同的是一般已不存有同源染色体。

关于减数分裂和有丝分裂的比较,重点是减数分裂第二次分裂过程与有丝分裂过程的比较。

①有丝分裂中期和减数分裂第二次分裂中期的比较:在有丝分裂过程中自始至终存有着同源染色体,而在减数分裂第二次分裂过程中不存有同源染色体。

区分同源染色体的依据在高中生物阶段有两点:一是染色体的大小,同源染色体一般形成和大小相似或相同;二是着丝点位置,着丝点的位置有端着丝点,也有中间着丝点的,同源染色体的着丝点位置应是相同的。

【最新】高一数学必修二各章知识点总结

【最新】高一数学必修二各章知识点总结

【最新】高一数学必修二各章知识点总结高一数学必修二各章知识点总结如下:第一章:函数与二次函数1. 函数的概念及性质:定义域、值域、奇偶性、单调性等。

2. 二次函数的基本性质:顶点、对称轴、单调性、零点、图像的开口方向。

3. 一次函数与二次函数的比较与关系:求解一次函数与二次函数的交点等。

4. 二次函数的图像与方程:画出给定二次函数的图像,根据图像确定二次函数的方程等。

5. 二次函数与根式、指数、对数的应用。

第二章:三角函数1. 角度制与弧度制的转换。

2. 弧度制下的任意角的三角函数值的计算。

3. 三角函数的简单性质及其关系:同角三角函数的相互关系、倒数三角函数的相互关系等。

4. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质等。

5. 三角函数的应用:三角函数在几何、物理、工程等领域的应用。

第三章:指数与对数函数1. 指数的定义、性质及运算规律:指数与乘法、除法、乘方运算规律等。

2. 对数的定义、性质及运算规律:对数与指数的关系、对数运算法则等。

3. 指数函数与对数函数的简单性质与图像:指数函数与对数函数的基本性质、图像和性质等。

4. 指数函数与对数函数的应用:指数与对数在增长与衰减、微积分、金融等领域的应用。

第四章:数列1. 数列的概念与性质:等差数列、等比数列、通项公式、前n 项和等。

2. 数列的运算:数列的加减乘除等。

3. 等差数列与等差中项:等差数列的通项公式、等差数列的求和公式、等差数列的奇数项和、以及奇数和与偶数和等。

4. 等比数列与等比中项:等比数列的通项公式、等比数列的求和公式、等比数列的前n项和、无穷等比级数等。

5. 等差数列与等差中项的应用:等差数列在等价代换、简化形式、利润计算等方面的应用。

第五章:排列与组合1. 排列与组合的基本概念:排列、组合的定义与计算方法等。

2. 排列与组合的计算:排列与组合的计算公式、乘法原理、加法原理等。

3. 排列与组合的应用:排列与组合在概率、几何、数学问题解法等领域的应用。

高一数学必修二第二章知识点归纳

高一数学必修二第二章知识点归纳

高一数学必修二第二章知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高一数学必修二第二章知识点归纳每学完一个单元,要建立本单元的知识框架,将本章的主要思路、推理方法及运用技巧等转变成自己的实际技能,也要善于归纳总结知识间的联系。

高中数学必修2知识点

高中数学必修2知识点

高 中 数学 必 修 2知识点第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π= (二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第二章 直线与平面的位置关系222r rl S ππ+=2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。

高一必修二每章知识点公式总结

高一必修二每章知识点公式总结

高一必修二每章知识点公式总结第一章:函数与导数1. 函数概念函数是一种特殊的关系,将自变量的值映射到因变量的值上,通常表示为y=f(x),其中x为自变量,y为因变量。

2. 定义域和值域定义域是自变量可能取值的范围,对于有理函数而言,需要考虑分母为零的情况。

值域是函数在定义域上取到的所有可能值。

3. 函数的基本性质a) 奇偶性:f(-x) = f(x)为偶函数,f(-x) = -f(x)为奇函数。

b) 单调性:f'(x)>0,函数递增;f'(x)<0,函数递减。

c) 最值:通过求导或者化简函数表达式,可以得到函数的最值。

d) 零点:函数取零值的点叫做零点,通过解方程f(x)=0,可以求得函数的零点。

4. 极值和最值a) 极值:函数在一定区间内取得的最大值或最小值。

通过求导,可以找到函数的驻点,再通过二阶导数判定其为极大值、极小值还是无极值。

b) 最值:函数在定义域上取得的最大值或最小值。

第二章:三角函数1. 基本概念a) 正弦函数sin(x):对于任意实数x,都可以通过单位圆上的一个点,该点与原点的连线与x轴正半轴之间的夹角所确定。

b) 余弦函数cos(x):对于任意实数x,都可以通过单位圆上的一个点,该点与原点的连线与x轴正半轴之间的夹角的余弦值。

c) 正切函数tan(x):tan(x) = sin(x)/cos(x),在直角三角形中,tan(x)表示斜边与对边之比。

2. 基本性质a) 周期性:sin(x)和cos(x)的周期均为2π,tan(x)的周期为π。

b) 奇偶性:sin(-x) = -sin(x),cos(-x) = cos(x),tan(-x) = -tan(x)。

c) 值域:-1 ≤ sin(x) ≤ 1,-1 ≤ cos(x) ≤ 1,tan(x)的值域为全体实数。

3. 三角函数的图像与性质a) 正弦函数的图像:周期为2π,对称于x轴。

当x=0时,取得最小值-1;当x=π/2时,取得最大值1。

数学必修二第二章知识点总结

数学必修二第二章知识点总结

数学必修二第二章知识点总结一、函数的概念与表示方法1. 函数定义:一个从集合A到集合B的映射,记为$f: A\rightarrow B$。

2. 函数的表示方法:- 公式法:$y = f(x)$- 图像法:通过坐标平面上的点集表示函数- 表格法:列出一系列的$(x, f(x))$值对二、函数的性质1. 单调性:- 单调递增:对于任意$x_1 < x_2$,有$f(x_1) \leq f(x_2)$ - 单调递减:对于任意$x_1 < x_2$,有$f(x_1) \geq f(x_2)$ 2. 奇偶性:- 奇函数:满足$f(-x) = -f(x)$- 偶函数:满足$f(-x) = f(x)$3. 周期性:存在正数T,使得对于任意x,有$f(x + T) = f(x)$三、函数的基本类型1. 一次函数:$y = ax + b$,其中a和b为常数2. 二次函数:$y = ax^2 + bx + c$,其中a、b和c为常数3. 指数函数:$y = a^x$,其中a>0且a≠14. 对数函数:$y = \log_a(x)$,其中a>0且a≠15. 三角函数:- 正弦函数:$y = \sin(x)$- 余弦函数:$y = \cos(x)$- 正切函数:$y = \tan(x)$四、函数的运算1. 函数的加法、减法、乘法和除法:- $(f + g)(x) = f(x) + g(x)$- $(f - g)(x) = f(x) - g(x)$- $(f \cdot g)(x) = f(x) \cdot g(x)$- $(f / g)(x) = \frac{f(x)}{g(x)}$,要求$g(x) \neq 0$ 2. 复合函数:$(f \circ g)(x) = f(g(x))$五、函数的图像1. 一次函数图像:直线2. 二次函数图像:抛物线3. 指数函数图像:指数曲线4. 对数函数图像:对数曲线5. 三角函数图像:- 正弦函数:波形曲线- 余弦函数:波形曲线- 正切函数:周期性波动曲线六、函数的应用1. 实际问题的建模与解决2. 优化问题中的最值求解3. 物理和工程问题中的应用请将以上内容复制到Word文档中,并根据实际需要进行格式设置,如标题加粗、分点符号的使用、段落缩进等,以确保文档的专业性。

高中数学必修2知识点总结归纳

高中数学必修2知识点总结归纳

高中数学必修2知识点总结归纳
1、二次函数及其图像的性质:二次函数的定义,形式,及其未知量的解析解,二次
函数图像的性质,凹凸性和极值点位置,及其判定方法。

2、三角函数及其图形:正弦函数、余弦函数、正切函数的定义,平面直角坐标系下
的正弦余弦正切函数图像的性质及其判定方法,正弦定理,余弦定理,根据图形求三角函
数值,及其应用。

3、小数和分数的运算:常用的小数转分数的方法,小数和分数的加减乘除运算,及
其规律性的分析。

4、指数及对数:指数的定义,特殊指数的运算及其规律性,指数函数的图像及性质,对数的定义及其特殊性质,对数函数及其图形性质,及其一元二次多项式的变换。

5、多项式及其因子分解:多项式的基本定义,及其分母和分子的几何概念,多项式
的因子分解,及其唯一性的判断。

6、不定积分及其应用:不定积分的定义及其特殊性,常用的不定积分计算方法,及
其实际应用,求积分近似值的方法,以及实际的应用案例。

7、应用题中的数字变换:应用题中常见的实数变化,及其最高次数的判定,同时变
化的最小公倍数及其关系,求解应用题中特殊方程组的方法,及其实际案例。

8、圆的参数方程及极坐标方程:圆的定义,参数方程与极坐标方程的转换,园的性质,及其圆上点的定位方法,过定点且与圆的关系及应用。

9、高等函数及应用:高次函数的定义,及其图像的特点,高次函数的求解及其实际
应用,对数及指数函数的求解及应用,以及多项式、二次曲线等拟合应用。

10、三角型函数与几何图形的关系:三角型函数的定义及其特殊性质,三角型函数的
变换及其图形改变,及其三角函数与几何图形联系的应用。

数学必修二第二章知识点

数学必修二第二章知识点

数学必修二第二章知识点第二章是数学必修二中的一个重要章节,主要涉及到函数及其运算。

函数是数学中一个非常重要的概念,它描述了一种输入和输出之间的关系。

在本章中,我们将学习函数的定义、图像、性质以及函数的运算。

1. 函数的定义函数是一种将每个输入值映射到唯一的输出值的关系。

我们通常用字母表示函数,例如 f(x)、g(x)。

在函数中,x被称为自变量(输入值),f(x)被称为因变量(输出值)。

函数可以通过几何图形(如曲线)或表格来表示。

2. 函数的图像函数的图像是函数在平面坐标系上的表示,横轴表示自变量,纵轴表示因变量。

函数的图像可以帮助我们直观地了解函数的特征,如增减性、奇偶性、周期性等。

我们可以通过观察函数的图像来获取函数的一些主要信息。

3. 函数的性质函数有很多重要的性质,包括定义域、值域、单调性、奇偶性等。

- 定义域:函数的定义域是自变量的取值范围,也就是使函数有意义的自变量的集合。

- 值域:函数的值域是因变量的取值范围,也就是函数所有可能的输出值的集合。

- 单调性:如果函数在定义域内的任意两个点x1、x2满足x1<x2时,f(x1)<f(x2),则函数是递增的;如果f(x1)>f(x2),则函数是递减的。

- 奇偶性:如果对于任意x,有f(-x)=f(x),则函数是偶函数;如果对于任意x,有f(-x)=-f(x),则函数是奇函数。

4. 函数的运算函数之间可以进行运算,主要包括加法、减法、乘法和除法。

这些函数的运算可以通过图像或公式来表达。

- 加法:设f(x)和g(x)是两个函数,则它们的和是h(x)=f(x)+g(x)。

函数h(x)的图像是函数f(x)和g(x)图像之间对应点的纵坐标相加。

- 减法:设f(x)和g(x)是两个函数,则它们的差是h(x)=f(x)-g(x)。

函数h(x)的图像是函数f(x)和g(x)图像之间对应点的纵坐标相减。

- 乘法:设f(x)和g(x)是两个函数,则它们的积是h(x)=f(x)g(x)。

高中数学必修二知识点总结

高中数学必修二知识点总结

高中数学必修二知识点总结高中数学必修二知识点11、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图——斜二测画法斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高中数学必修二知识点2直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.斜截式:,直线斜率为k,直线在y轴上的截距为b两点式:()直线两点,截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系()斜率为k的直线系:,直线过定点;()过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高中数学必修二知识点3圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:它是判定两个平面相交的方法.它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高中数学必修二知识点4空间直线与直线之间的位置关系异面直线定义:不同在任何一个平面内的两条直线异面直线性质:既不平行,又不相交.异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aαa∩α=Aaα(9)平面与平面之间的位置关系:平行——没有公共点;αβ相交——有一条公共直线.α∩β=b2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)3、空间中的垂直问题(1)线线、面面、线面垂直的定义两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.4、空间角问题(1)直线与直线所成的角两平行直线所成的角:规定为.两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角平面的平行线与平面所成的角:规定为.平面的垂线与平面所成的角:规定为.平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.(3)二面角和二面角的平面角二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高中数学必修二知识点5解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.高中数学必修二知识点6数列(1)数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图象、通项公式).了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列理解等差数列、等比数列的概念.掌握等差数列、等比数列的通项公式与前项和公式.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.了解等差数列与一次函数、等比数列与指数函数的关系.。

(完整版)高中数学必修2第二章知识点总结

(完整版)高中数学必修2第二章知识点总结

高中数学必修2知识点总结立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)chS =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积rhS π2=圆柱侧()l r r S +=π2圆柱表rlS π=圆锥侧面积()l r r S +=π圆锥表lR r S π)(+=圆台侧面积()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式V Sh=柱 13V Sh =锥 ''1()3V S S S S h =++台2V Sh r h π==圆柱 h r V 231π=圆锥 ''2211()()33V S S S S h r rR R hπ=++=++圆台(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 1 平面含义:平面是无限延展的 2 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据. 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

数学必修二第二章知识点总结

数学必修二第二章知识点总结

数学必修二第二章知识点总结数学必修二第二章知识点总结总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可以促使我们思考,不如立即行动起来写一份总结吧。

那么总结要注意有什么内容呢?下面是小编为大家整理的数学必修二第二章知识点总结,仅供参考,大家一起来看看吧。

直线与平面有几种位置关系直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。

其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。

直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。

直线与平面相交和平行统称为直线在平面外。

直线与平面垂直的判定:如果直线L与平面α内的任意一直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。

直线与平面的夹角范围[0,90°]或者说是[0,π/2]这个范围。

当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。

两个锐角,两个钝角。

按照规定,选择锐角的那一对对顶角作为直线和直线的夹角。

直线的方向向量m=(2,0,1),平面的法向量为n=(-1,1,2),m,n 夹角为θ,cosθ=(m_n)/|m||n|,结果等于0.也就是说,l和平面法向量垂直,那么l平行于平面。

l和平面夹角就为0°提高数学成绩的技巧是什么课内重视听讲,课后及时复习接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。

下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。

尽量自己思考,不要急于翻看答案。

高中数学必修2知识点总结归纳

高中数学必修2知识点总结归纳

高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1xy a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间点、直线、平面之间的位置关系(必修二第二章)
2.1空间点、直线、平面之间的位置关系
①平面
判定直线在平面内:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

确定一个平面:过不在一条直线上的三个点,有且只有一个平面
推论1:一个直线外的点与这条直线确定一个平面
推论2:两条相交直线确定一个平面
推论3:两条平行直线确定一个平面
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

②空间中直线与直线的位置关系
判断直线与直线平行:平行于同一条直线的两直线互相平行(平行的传递性)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

异面直线垂直:如果两条异面直线所成角是直角,那么这两条线互相垂直。

·异面直线所成角不大于90度!
③空间中直线与平面之间的位置关系
·直线与平面的位置关系:在平面内,与平面相交,与平面平行。

④平面与平面之间的位置关系
·平面与平面的位置关系有且只有两种:相交于平行
2.2 直线、平面平行的判定及其性质
①直线与平面平行的判定
定理1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

定理2:若两个平面平行,则其中一个面的任意一条直线与另一个面平行。

②平面与平面平行的判定
定理1:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行
定理2,:若两条相交直线与另外两条相交直线分别平行,则这两个平面平行
③直线与平面平行的性质
定理1:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

(·作用:证明线线平行·做法:经已知直线做一个平面与已知平面相交)
④平面与平面平行的性质
定理:如果两个平行平面同时和第三个平面相交,那么他们的交线平行。

补充:证明线线平行的方法:
1.平行的传递性
2.线面平行的性质定理(·关键:寻找面面的交线)
3.证明为第三个平面与两个平行平面的交线
2.3 直线、平面垂直的判定及其性质
①1直线与平面垂直的判定
定义:若直线与平面内的任意一条直线都垂直,我们就说直线与平面互相垂直。

定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

线面角:平面的一条斜线与它的射影所成的角叫做这条直线与这个平面所成的角。

·线面角不超过90度!
补充知识:
1.证明线线垂直的方法:
法一:a∥b,c⊥b,→a⊥b
法二:一条直线垂直于一个平面,则垂直于这个平面中的任意一条线。

2.三垂线定理法:
1.平面内的一条直线,如果和这个平面的一条斜线的摄影垂直,那么也和这条斜线垂直。

2.逆定理:若平面内一条直线,和一条斜线垂直,那么也和斜线的摄影垂直。

②平面与平面垂直的判定
定理:一个平面过另一个平面的垂线,则这两个平面垂直。

特征:线面垂直,则面面垂直
定义法:两个平面的二面角是直角。

③直线与平面垂直的性质
定理:垂直于同一个平面的两条直线平行
④平面与平面垂直的性质
定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

相关文档
最新文档