求二面角办法——3垂面法
求二面角方法——3垂面法
二面角——垂面法垂面法:作一与棱垂直的平面,该垂面与二面角两半平面相交,得到交线,交线所成的角为二面角的平面角.1.设P 是二面角α-l -β内一点,P 到面α、β的距离PA 、PB 分别为8和5,且AB =7,求这个二面角的大小。
解:作AC ⊥l 于c ,连结BC∵PA ⊥α,l ⊂α∴PA ⊥l又AC ⊥l ,AC∩PA =A∴l ⊥平面PAC ∴l ⊥PC∵PB ⊥β,l ⊂β∴PB ⊥l又PB∩PC =P ∴l ⊥平面PBC∴平面PAC 与平面PBC 重合,且l ⊥BC∴∠ACB 就是所求的二面角△PAB 中,PA =8,PB =5,AB =7∴∠P =600∴∠ACB =12001.如图三棱锥P -ABC 中,PC ⊥平面ABC ,PC =32,D 是BC 的中点,且△ADC 是边长为2的正三角形,求二面角P -AB -C 的大小。
DP C A B解:由已知条件,D 是BC 的中点∴CD =BD =2又△ADC 是正三角形∴AD =CD =BD =2∴D 是△ABC 之外心又在BC 上∴△ABC 是以∠BAC 为直角的三角形,∴AB ⊥AC ,又PC ⊥面ABC∴PA ⊥AB(三垂线定理)∴∠PAC 即为二面角P -AB -C 之平面角,易求∠PAC =30°2.如图, PA=BC=6,AB=8,PB=AC=10, 234PC =,F 是线段PB 上一点,173415=CF ,点E 在线段AB 上,且EF ⊥PB(I )求证:PB ⊥平面CEF(II )求二面角B —CE —F 的大小(I )证明:∵2221006436PC AC PA ==+=+∴△PAC 是以∠PAC 为直角的直角三角形,同理可证△PAB 是以∠PAB 为直角的直角三角形,△PCB 是以∠PCB 为直角的直角三角形。
故PA ⊥平面ABC又∵3061021||||21=⨯⨯==∆BC AC S PBC 而PBC S CF PB ∆==⨯⨯=3017341534221||||21 故CF ⊥PB,又已知EF ⊥PB∴PB ⊥平面CEF(II )由(I )知PB ⊥CE, PA ⊥平面ABC∴AB 是PB 在平面ABC 上的射影,故AB ⊥CE在平面PAB 内,过F 作FF1垂直AB 交AB 于F1,则FF1⊥平面ABC , EF1是EF 在平面ABC 上的射影,∴EF ⊥EC故∠FEB 是二面角B —CE —F 的平面角。
立体几何中二面角的求法
立体几何中二面角的求法
二面角的常见求法:(1)定义法(2)垂线法(3)垂面法(4)延伸法(5)射影法
一、定义法:
例1:如图1,设正方形ABCD-A 1B 1C 1D !中,E 为CC 1中点,求截面A 1BD 和EBD 所成二面角的度数。
二、垂线法
例2 如图3,设三棱锥V-ABC 中,VA⊥底面ABC ,AB⊥BC,DE 垂直平分VC ,且分别交AC 、VC 于D 、E ,又VA=AB ,VB=BC ,求二面角E-BD-C 的
度数。
三、垂面法:
例3 如图6,设正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是AB 、C 1D 1的中点。
(1)求证:A 1、E 、C 、F 四点共面; (2)求二面角A 1-EC-D 的大小。
四、延伸法
中点,
例4. 如图10,设正三棱柱ABC-A'B'C'各棱长均为α,D为CC
1
求平面A'BD与平面ABC所成二面角的度数。
五、射影法
例5如图12,设正方体ABCD-A1B1C1D1中,M为AA1上点,A1M:MA=3:1,求截面B1D1M与底面ABCD所成二面角。
用三垂线法求二面角的方法
直线a 平面 ,直线a 垂直;射影AB.••• BC CD • BD.BC 2 CD 22用三垂线法求二面角的方法垂线定理:平面内的一条直线,如果和这个平面内的一条斜线的射影垂直,那么它也和这条斜线垂直。
已知:如图,PB 是平面 的斜线,PA 是平面 的垂线, 求证:a PB证明:••• PA 是平面 的垂线,直线a 平面•••直线 a PA 又•••直线 a AB AB PA A •••直线 a 平面PAB 而PB 平面PAB • a PB总结:定理论述了三个垂直关系, ①垂线PA 和平面a 垂直.三垂线定理揭示了一个平面和四条直线所构成的三种垂直关系的内在联系,是线面垂直的性质,在立体 几何中有广泛的应用。
求二面角是高考考查的热点,三垂线法是求二面角最常用的方法,应用好定理的关键是实现斜线与其在面内射影垂直关系的转化,因此寻找垂线、斜线及其射影至关重要。
运用三垂线法求二面角的一般步骠: ① 作:过二面角的其中一个平面上一点作 (找)另一个平面的垂线,过垂足作二面角的棱的垂线。
② 证:证明由①所得的角是二面角的平面角(符合二面角的定义)。
③ 求:二面角的平面角的大小(常用面积相等关系求垂线段长度 )。
ACB 为二面角B CD A 的平面角1、如右图所示的四面体 ABCD 中,AB 平面BCD BC CD 且 BCC ABD 的大小;②求二面角 B CD A 的大小; 1 •解:①••• AB 面 BCD BC AB BD AB CBD 为二面角C AB D 的平面角 ••• BC CD 且 BC CD 1 • CBD =— 4 •二面角C AB D 的大小为一 4 C②••• AB 面 BCD BC CD •••由三垂线定理得CD AC方法点拨:本题①的方法是直接运用二面角的定义求解,本题②的关键••• AB 平面 BCD • AB BC AB BD• AB . AD 2 BD 21 在 Rt ABC 中,tan ACB 理 1 ,BC面角B CD A 的大小为一4由已知得 DA=2,AE=.,3 • DE=、7 • COS AEDAE .21 ED 7故二面角A - VB- D 的余弦值为.21方法点拨:本题的关键是过二面角的一个平面VBD 上一点D 到二面角的另一个平面 AVB 的垂线DS AB C 的正切值.AC 的中点D ,贝U BD 3,DC 的中点O ,为VB 的中点.求二面角 A — VB- D 的余弦值.2解:取AB 的中点P,连结VP 、DE 则由题意可知 VP 丄平面ABCD : DAL VP又•/ AD 丄AB ••• AD 丄平面 VAB •/ VAB 是正三角形,E 为VB 的中点,二AE L VB,•••由三垂线定理得 VB 丄DE.所以 AED 就是所求二面角的平面角则斜线为DE,其射影为AE 从而得到二面角的平面角为 AED 。
怎样求解二面角问题
二面角问题在立体几何中比较常见,常见的命题形式有求二面角的大小、求二面角的余弦值,证明两个平面互相垂直等.此类问题的难度一般较大,需综合运用立体几何知识、平面几何知识、解三角形知识、三角函数知识,才能顺利求得问题的答案.本文结合实例,重点探讨一下求解二面角问题的几种常用方法.一、定义法二面角是由从一条直线出发的两个半平面所组成的,而二面角的大小往往是用其平面角的大小来表示,因此在求二面角的大小时,通常要用到二面角的平面角的定义:过二面角的棱上的一点在两个半平面内作垂直于棱的射线,两射线所成的角.然后根据正余弦定理、勾股定理求得二面角的平面角的大小,即可求得二面角的大小.例1.如图1,已知空间中有三条射线CA 、CP 、CB ,且∠PCA =∠PCB =60°,∠ACB =90°,求二面角B -PC -A 的余弦值.图1解:在PC 上任取一点D ,过D 分别作DE ⊥PC ,DF ⊥PC ,连接EF ,所以∠EDF 为二面角B -PC -A 的平面角,设CD =a ,因为∠PCA =∠PCB =60°,所以CE =CF =2a ,DE =DF =3a ,因为∠ACB =90°,所以EF =22a ,在△DEF 中,根据余弦定理得:cos ∠EDF =3a 2+3a 2-8a 22∙3a2=-13.解答本题主要运用了定义法,需根据二面角的平面角的定义,在二面角B -PC -A 的棱PC 上任取一点D ,过D 分别作DE ⊥PC ,DF ⊥PC ,从而确定了二面角B -PC -A 的平面角∠EDF ,再根据余弦定理求得cos ∠EDF 的值.二、垂面法垂面法是指作一个垂直的平面,根据其中的垂直关系求得问题的答案.在求解二面角问题时,若题目中涉及的垂直关系较多,可过二面角棱上的一点在两个半平面内作棱的垂线;也可将两个半平面内的垂线平移,使其交于一点;还可过一条垂线上的一点作另一个平面的垂线,从而构成一个垂面,则垂面上的两条垂线或其平行线所形成的夹角即为二面角的平面角.最后根据勾股定理即可求得二面角的平面角的大小.例2.如图2,在四棱锥P -ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA =AB =a ,求二面角B -PC -D 的大小.图2解:因为PA ⊥平面ABCD ,ABCD 是正方形,所以PA ⊥BD ,BD ⊥AC ,所以BD ⊥平面PAC ,可得BD ⊥PC ,分别过B 、D 作DH ⊥PC ,BH ⊥PC ,则∠BHD 为二面角B -PC -D 的平面角,因为PA =AB =a ,所以BC =a ,PB =AC =2a ,所以PC =3a ,根据勾股定理可得∠PBC =90°,所以在△PBC 中,12PB ∙BC =S △PBC =12PC ∙BH ,则BH ,同理可得DH ,因为BD =2a ,所以在△BHD 中,由余弦定理可得:cos ∠BHD =ö÷2+ö÷2-2a 2-12,因为0<∠BHD <π,则∠BHD =2π3,即二面角B -PC -D 的大小为2π3.本题中的垂直关系较多,于是分别过B 、D 作DH ⊥PC ,BH ⊥PC ,得到PC 的垂面BHD ,据此确定二面角B -PC -D 的平面角∠BHD ,再在△BHD 中由怎样求解二面角问题方法集锦43余弦定理即可求得∠BHD 的大小,进而求得二面角B -PC -D 的大小.值得注意的是,二面角α的范围为:[0,π].三、三垂线法三垂线法是利用三垂线定理解题的方法.运用三垂线法求解二面角问题,需先找到平面的垂线,然后过垂线上的一点作平面的斜线,若平面内的一条直线与平面的斜线垂直,那么这条直线与斜线在平面内的射影垂直,根据这些垂直关系就可以确定二面角的平面角,最后根据勾股定理、正余弦定理即可求得平面角的大小.例3.如图3所示,在四棱锥P -ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA =AB =a ,∠ABC =30°,求二面角P -BC -A 的大小.图3解:如图3,过A 作AH ⊥BC 于H ,连接PH ,因为PA ⊥平面ABCD ,所以PA ⊥BC ,PA ⊥AH ,所以BC ⊥平面PHA ,所以BC ⊥PH ,可知∠PHA 是二面角P -BC -A 的平面角,在Rt△ABH 中,AB =a ,∠ABH =∠ABC =30°所以AH =AB sin ∠ABH =a sin 30°=12a ,因为PA ⊥AH ,所以在Rt△PHA 中,tan ∠PHA =PA AH=2,所以∠PHA =arctan 2,故二面角P -BC -A 的大小为arctan 2.根据题意作AH ⊥BC ,便可知AH 为PH 在平面ABCD 内的射影,由三垂线定理可得BC ⊥PH ,由此可确定∠PHA 是二面角P -BC -A 的平面角,再在Rt△PHA 中根据正切函数的定义求得∠PHA 的大小,进而可得到二面角P -BC -A 的大小.由此可见,求解二面角问题的关键有两步:第一步,根据二面角的平面角的定义、三垂线定理、垂面的性质,确定二面角的平面角;第二步,根据勾股定理、正余弦定理、三角函数的定义求得平面角的大小.(作者单位:江西省赣州市南康第三中学)二次函数是一种基本初等函数.二次函数问题的常见命题形式有求二次函数的解析式、最值、对称轴、单调区间、零点等.这类问题侧重于考查二次函数的图象和性质.下面重点谈一谈如何求解有关二次函数的最值问题、零点问题和不等式问题.一、二次函数的最值问题二次函数y =ax 2+bx +c 的图象是一条抛物线,若a >0,则抛物线的开口向上;若a <0,则抛物线的开口向下.当x =-b 2a 时,函数在R 上有最值b 2-4ac 4a.若函数的定义域为[m ,n ],则需分三种情况考虑:(1)当-b 2a ∈[m ,n ]时,函数在x =-b 2a 处取得最值;(2)当x =-b 2a,在[m ,n ]的左侧时,若a >0,则函数在x =m处取最小值,在x =n 处取最大值,若a <0,则相反;(3)当x =-b2a在[m ,n ]的右侧时,若a >0,则函数在x =m 处取最大值,在x =n 处取最小值;若a <0,则相反.例1.求y=-5x 2-6x +1的最大值.解:y =-5x 2-6x +1是二次函数,x 2的系数是-5,所以二次函数图象的开口向下,当x =-65时,函数有最大值1.利用二次函数的图象,即可确定二次函数在对称轴处取得最值.除了用图象法求解最值问题,还可以用配方法,比如y =x 2+4x +3=()x +22-1,可知当x =-2时函数的最小值为-1.例2.已知函数f (x )=x 2+(2a -1)x -3.方法集锦44。
求解二面角的六种常规方法
求解二面角的六种常规方法作者:李淑芸来源:《中学教学参考·理科版》2010年第03期求解二面角问题是高考的热点问题,在近几年的高考中几乎每一年、每一套高考题的立体几何问题都涉及到求二面角的大小问题.然而通过对学生考卷的分析,我们发现这一问题的得分率却并不理想.因此,本文总结了常见的六种求解二面角的方法,希望能给部分读者以帮助.1.定义法是指过二面角的棱上任一点在两个面内分别作垂直于棱的直线,则两直线所构成的角即为二面角的平面角,继而在平面中求出其平面角的一种方法.【例1】如图1,空间四边形ABCD中,AB=BC=CD=DA=a,对角线AC=a,BD=2a,求二面角A—BD—C的大小.图1解:取BD的中点为O,分别连接AO、CO,∵AB=AD,BC=CD.∴AO⊥BD,CO⊥BD.∴∠AOC为二面角A—BD—C的平面角.∵AB=AD=a,BD=2a,∴AO=22a.∵BC=CD=a,BD=2a,∴OC=22a.在△AOC中,OC=22a,OA=22a,AC=a,OA2+OC2=AC2,∴∠AOC=90°,即二面角A—BD—C为直二面角.2三垂线法是指利用三垂线定理,根据“与射影垂直,则也与斜线垂直”的思想构造出二面角的平面角,继而求出平面角的方法.【例2】如图2,二面角α-AB-β的棱AB上有一点C,线段CDα,CD=100,∠BCD=30°,点D 到平面β的距离为253,求二面角α-AB-β的度数.图2解:过D作DE⊥β于E,DF⊥AB于F,连接EF.∵DF⊥AB,EF是DF在β内的射影,∴AB⊥EF(三垂线定理).∴∠DFE为二面角为α-AB-β的平面角.在Rt△DEF中,DF=12CD=50,DE=253,∴sin∠DFE=DEDF=25350=32.∴∠DFE=60°.即二面角α-AB-β的度数为60°.3.垂面法是指用垂直于棱的平面去截二面角,则截面与二面角的两个面必有两条交线,这两条交线构成的角即为二面角的平面角,继而再求出其平面角的一种方法.【例3】如图3,已知SA⊥平面ABC,AB⊥BC,SA=AB,SB=BC,E是SC的中点,DE⊥SC交AC于D,求二面角E-BD-C的大小.图3解:∵BS=BC,SE=EC,∴SC⊥BE,又∵SC⊥DE,∴SC⊥面BDE.∴SC⊥BD.又∵BD⊥SA,∴BD⊥面SAC.∴∠EDC为二面角E-BD-C的平面角.设SA=a,则SB=BC=2a.∵BC⊥AB,SA⊥平面ABC.∴BC⊥SB.∴SC=2a,∠SCD=30°.∴∠EDC=60°,即二面角E-BD-C的大小为60°.4.面积射影法所谓面积射影法,就是根据三角形及其在某一个平面上的射影面积之间的关系,利用cosθ=S射S来计算二面角的一种方法(其中θ为二面角).【例4】在正方体ABCD-A1B1C1D1中,K∈BB1,M∈CC1,且BK=14BB1,CM=34CC1,求平面AKM与ABCD所成角的大小.图4解:连结AC,则由题意可知,△ABC是△AKM在平面AC上的射影.设平面AKM与ABCD所成角为θ,则cosθ=S射S=S△ABCS△AKM.令正方体的棱长为4,∴S△ABC=12AB•A C=12×4×4=8.在△AKM中,AK=12+42=17,AM=42+42+32=41,KM=42+22=20.由海伦公式可知S△AKM=221,∴cosθ=421,θ=arccos421.5.法向量法法向量法是通过求与二面角垂直的两个向量所成的角,继而利用这个角与二面角的平面角相等或互补的关系,求出二面角的一种方法.【例5】如图5,过正方形ABCD的顶点A作PA⊥平面ABCD,设PA=AB=ɑ,求平面PAB 和平面PCD所成的二面角的大小.图5解:以A为射点建立直角坐标系(如图5所示),则P(0,0,a),D(0,a,0),C(a,a,0).设平面PCD的法向量为n=(x,y,z),则n•PD=0,n•CD=0.即(x,y,z)•(0,a,-a)=0,(x,y,z)•(-a,0,0)=0.∴y=-z,x=0.即n=(0,1,-1).又AD成为平面PAB的法向量,而cos〈AD,n〉=(0,a,0)•(0,1,-1)a•2=22,∴AD与n所成的角为45°.因此平面PAB和平面PCD所成的角为45°.6.垂线法是指先利用待定系数法确定垂足,再利用公式求出二面角的大小.【例6】如图6,在四棱锥P—ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点,PE⊥EC,已知PD=2,CD=2,AE=12,求(1)异面直线PD与EC的距离;(2)二面角E-PC-D的大小.图6解:(1)略.(2)以D为原点,DA、DC、DP分别为x,y,z轴建立空间直角坐标系.作DG⊥PC,可设G(0,y,z).由DG•PC=0得(0,y,z)•(0,2,-2)=0,即z=2y.故可取DG=(0,1,2).作EF⊥PC于F,设F(0,m,n),则EF=(-32,m-12,n).由EF•PC=0,得(-32,m-12,n)•(0,2,-2)=0,即2m-1-2n=0.又由F在PC上得n=-22m+2,故m=1,n=22,EF=(-32,12,22).因EF⊥PC,DG⊥PC,故二面角E-PC-D的平面角θ的大小为向量EF与DG的夹角.故cosθ=DG•EF|DG|•|EF|=22,∴θ=π4.故二面角E-PC-D的大小为π4.(责任编辑金铃)。
二面角的求法---三垂线法
”三垂线法作二面角的平面角的技巧求二面角的大小是考试中经常出现的问题,而用三垂线法作二面角的平面角是求二面角大小的一个重要方法,许多同学在解题过程中由于没有有效地利用三垂线定理(或逆定理)作出二面角的平面角,使得解题受阻.我们把用三垂线定理(或逆定理)作二面角的平面角的方法称为三垂线法,其作图模型为:如图1,在二面角α—l一β中,过平面α内一点A作AO⊥平面β,垂足为O,过点O作OB⊥l于B(过A点作AB⊥于B),连结AB(或OB),由三垂线定理(或逆定理)知AB⊥l(或OB⊥l),则∠ABO为二面角。
α—l—β的平面角.作图过程中,作出了两条垂线AO与OB(或AB),后连结AB两点(或OB两点),这一过程可简记为“两垂一连,其中AO为“第一垂线.“第一垂线”能否顺利找到或恰当作出是用三垂线法作二面角的平面角的关键,在具体解题过程中要注意以下几点:1.善于利用图中已有的“第一垂线”例1已知斜三棱柱ABC—A1B1C1中,∠BCA=90°,AC=BC,A1在底面ABC的射影恰为AC的中点M,又知AA1与底面ABC所成的角为60°.(1)求证:BC⊥平面AA1CC1;(2)求二面角B一AA1—C的大小.-可编辑修改-的平面角.设 AC =BC = ,正△a AA 1C 的边长为 a ,所以 CN =3a ,在 Rt△” ” 剖析:注意该题的第(1)问,事实上本题已经暗示了 BC 就是我们要寻求的“第一垂线.略解 2 A 1A 与底面 AB 成的角为 60°,所以∠A 1AC =60°,又 M 是 AC中点,所以 △AA 1C 是正三角形,作 CN ⊥AA 1 于 N ,点 N 为 A 1A 的中点,连结 BN ,由 BC ⊥平面 AA 1CC 1,BN ⊥AA 1,则∠BNC 为二面角 B 一 AA 1 一 C2BNC 中,tan∠BNC = BC = a = 2 3 ,即∠BNC = arctan 2 3 .NCa 3 332例 2如图 3,在底面是直角梯形的四棱锥 S —ABCD 中,∠ABC =90°,SA ⊥面 ABCD ,SA =AB =BC =1,AD = 12(1)求四棱锥 S —ABCD 的体积;(2)求面 SCD 与面 SBA 所成的二面角的正切值.剖析:由 SA ⊥面 ABCD 及∠ABC =90°,不难发现,BC 即为“第一垂线,但是,本题要作二面角的平面角,还需首先作出二面角的棱.略解 2 延长 BA 、CD 相交于点 E ,连结 SE ,则 SE 是所求二面角的棱,因为 AD ∥BC ,BC =2AD ,所以 EA =AB =SA ,所以 SE ⊥SB ,因为 SA ⊥面 ABCD ,得面 SEB ⊥面 EBC ,EB 是交线,又 BC ⊥EB ,所以 BC ⊥面 SEB ,故 SB 是CS 在面 SEB 上的射影,所以 CS ⊥SE ,所以∠BSC 是所求二面角的平面角,因为 SB = SA 2+ AB 2= 2 ,BC =1,BC ⊥SB ,因为 tan∠BSC = = BC = 2,即所SB2求二面角的正切值为 2 .2-可编辑修改-例3如图4,正三棱柱ABC—A1B1C1的底边长为a,侧棱长为2a,DF⊥面A1AB1,即DF为我们要作的“第一垂线.因为D是A1C1中点,A1B1=a,所以B1F=3a,DF=3a,在Rt△DFG,可2.借助第三个平面,作“第一垂线”2若经过对角线AB1且与对角线BC1平行的平面交上底面一边A1C1于点D.(1)确定点D的位置,并证明你的结论;(2)求二面角A1—AB1—D的大小.剖析:由线面平行的性质定理及三角形中位线性质,易知D是A1C1中点.二面角A1—AB1一D的放置属于非常规位置的图形,但是,容易发现,平面A1B1C1过点D且与平面A1AB1垂直,这样的平面相对于二面角的两个平面而言,我们称为第三个平面.过D作DF⊥A1B1,由面面垂直的性质知,”略解2在平面A1B1C1内,作CF⊥A1B1于F,连DC,由三垂线定理可证AB1⊥DG,∠DGF就是二面角A1—AB1一D的平面角,在正△A1B1C1中,44求得∠DCF=45°.3.利用特殊图形的定义、性质作“第一垂线”-可编辑修改-例4已知:△Rt ABC的斜边BC在平面α内,AB、AC分别与平面。
立体几何二面角5种常见解法
立体几何二面角大小的求法二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.例、在四棱锥P-ABCD 中,ABCD 是正方形,PA⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。
jA BCDPHPOBA二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。
例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.ABCDA 1B 1C 1D 1EO例、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC 内的射影是AB 中点M ,二面角P —AC—B 的大小为45°。
求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的大小.B 1AαA 1 LE F三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.四、射影法:(面积法)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PβαlCBA例、如图,设M为正方体ABCD-A1B1C1D1的棱CC1的中点,求平面BMD1与底面ABCD所成的二面角的大小。
三垂线法求二面角例题
三垂线法求二面角例题
三垂线法是求取夹角的一种实用方法,具体操作如下:
1、首先,找出三垂线法求解问题中的三角形,把三角形的底边放在
水平线上,然后给出需要求取夹角的两条边,得出三角形的两个内角;
2、然后,绘制三垂线,从三角形的顶点向垂足引出垂线,使得三角
形的两个其他内角的垂足落在同一条直线上;
3、最后,从两个内角的垂足开始,向夹角的顶点作用射线,两射线
之间所成的夹角即为所求夹角。
例如,求△ABC中∠C夹角,用三垂线法可做如下计算:
首先,将△ABC的底边BC放在水平线上,得出△ABC的两个内角∠A、∠B;
然后,绘制三垂线,从三角形的顶点A向垂足引出垂线,使得∠A的
垂足F、∠B的垂足G落在同一条直线上;
最后,从F、G开始,向∠C的顶点C作用射线,两射线之间所成的
夹角即为△ABC的∠C夹角。
二面角求解方式
二面角的作与求求角是每一年高考必考内容之一,能够做为选择题,也可作为填空题,时常作为解答题形式显现,重点把握好二面角,它一样出此刻解答题中。
下面就对求二面角的方式总结如下:一. 概念法:在棱上任取一点•过这点在两个面内别离引棱的垂线,这两条射线所成的角确实是二面角的平面角。
二、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线取得棱上的点。
斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。
3、作棱的垂面法:自空间一点作与棱垂直的平面■截二面角的两条射线所成的角确实是二面角的平面角。
4、投影法:利用S投形沪S被投影面cos&那个公式关于斜面三角形,任意多边形都成立,是求二面角的好方式。
尤其对无棱问题5异面直线距离法:EF2=m2+n2+d2—2mn cos&例1:若p是A4BC所在平面外一点,而APBC和A43C都是边故为2的正三角形,PA=V6,求二面角P-BC-A的大小。
分析:由于这两个三角形是全等的三角形,故采纳概念法解:取BC的中点E,连接AE、PEAC=AB, PB=PCAE丄BC, PE 丄BC"E4为二面角P-BC-A的平面角在APAE中AE=PE=V3 , PA=A/6ZP£X=90°二二面角P-BC-A的平面角为90%例2:已知AABC是正三角形,PA丄平面ABC且PA=AB=a f求二面角A-PC-B的大小。
[思维]二面角的大小是由二面角的平面角来气宇的,本题可利用三垂线定理(逆)来作平面角,还能够用射影面积公式或异面直线上两点间距离公式求二面角的平面角。
解1:(三垂线定理法)取AC的中点E,连接BE,过E做EF丄PC,连接BF••• PA丄平面ABC, PAu平面PAC二平面PAC丄平面ABC,平面PAC fl平面ABC=AC二BE丄平面PAC由三垂线定理知BF丄PC图1 .■- ZBFE为二面角A-PC-B的平面角设PA=1,E为AC的中点,BE二琴,EF:=^2 4BE l•・.tan ZBFE=——=、/6EF/. ZBFE=arctan解2:(三垂线定理法)取BC的中点E,连接AE, PE过A做AF丄PE,FM丄PC,连接FM P•. AB=AC/PB=PCAE 丄BCfE 丄BCBC丄平面PAE,BCu平面PBC由三垂线定理知AM丄PC■■■ ZFM4为二面角A-PC-B的平面角设PA", AM=——,AF= -- =2 PE 7.•- sin ZFMA=AM 7/. ZFM4=argsin 二^解3:(投影法)过B作BE丄AC于E,连结PEPA丄平面ABC, PAu平面PAC二平面PAC丄平面ABC,平面PAC fl平面ABC=AC ..BE丄平面PACAPEC是AP3C在平面PAC上的射影设PA=1,贝!J PB=PC= 72^=1_V74由射影面积公式得,C。
五种方法求二面角及练习题
五种方法求二面角及练习题一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
1.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求: (1)二面角C 1—BD —C 的正切值(2)二面角11B BC D --2.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上,ABM ∠=60,M 在侧棱SC 的中点(1)求二面角S AM B --的余弦值。
AB CD A 1D 1 C 1 B 1二、三垂线法:三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。
1. 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 111111图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知ο60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.三.补棱法本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。
即当二平面没有明确的交线时,一般用补棱法解决1.已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。
(1)求证:AC 1⊥BC ;(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。
EABCFE 1 A 1B 1C 1D 1 DACBB 1C 1AL2: 如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值.3如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ;(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小.角的平面角(锐角).ABCEDPA 1D 1 B 1C 1 E DBCA图5分析 平面AB 1E 与底面A 1B 1C 1D 1交线即二面角的棱没有给出,要找到二面角的平面角,. 四、向量法向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。
二面角的计算(方法加经典题型)
二面角的求法(1)定义法——在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
注:o 点在棱上,用定义法。
(2)垂线法(三垂线定理法)——利用三垂线定理作出平面角,通过解直角三角形求角的大小。
注:o 点在一个半平面上,用三垂线定理法。
(3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角。
注:点O 在二面角内,用垂面法。
(4)射影面积法——若多边形的面积是S ,它在一个平面上的射影图形面积是S`,则二面角θ的大小为COS θ= S`÷ SA 图3 α βO B lO图5β α l C B A例题讲解 1、(本小题满分14分)如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面,,ABCD PD CD E =是PC 的中点,作EF PB ⊥交PB 于点F 。
(I )求证://PA 平面EDB ; (II )求证:PB ⊥平面EFD ;(III )求二面角P BC D --的大小。
2、 如图1-125,PC ⊥平面ABC ,AB =BC=CA =PC ,求二面角B -PA -C 的平面角的正切值。
(三垂线定理法)3.在棱长为1的正方体1AC 中,(1)求二面角11A B D C --的大小的余弦值;(2)求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小 的正切值。
18、(本题满分14分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD AC CD ⊥⊥,, 60ABC ∠=°,PA AB BC ==,E 是PC 的中点.(Ⅰ)求PB 和平面PAD 所成的角的大小; (Ⅱ)证明⊥AE 平面PCD ;(Ⅲ)求二面角A PD C --的正弦值.O 1A 1C 1D 1B 1DCBAA B CD PE。
五种方式求二面角及练习题
五种方式求二面角及练习题一、概念法:从一条直线起身的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,别离在两面内引两条射线与棱垂直,这两条垂线所成的角的大小确实是二面角的平面角。
1.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求: (1)二面角C 1—BD —C 的正切值(2)二面角11B BC D --2.如图,四棱锥中,底面为矩形,底面,,,点M 在侧棱上,=60,M 在侧棱的中点 (1)求二面角的余弦值。
S ABCD -ABCD SD ⊥ABCD 2AD =2DC SD ==SC ABM ∠SC S AM B --A B CDAD C B二、三垂线法:三垂线定理:在平面内的一条直线,若是和那个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上那么通常常利用三垂线定理法求二面角的大小。
1. 如图,在直四棱柱ABCD -A B C D 中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA =2, E 、E 、F 别离是棱AD 、AA 、AB 的中点。
(1) 证明:直线EE //平面FCC ;(2)求二面角B -FC -C 的余弦值。
2.如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.三.补棱法1111111111EABCF E A BCDD本法是针对在解组成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的概念法与三垂线法解题。
即当二平面没有明确的交线时,一样用补棱法解决1.已知斜三棱柱ABC—A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。
(完整版)二面角求解方法
二面角的作与求求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。
下面就对求二面角的方法总结如下:1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。
2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。
斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。
3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。
4、投影法:利用s投影面=s被投影面θcos 这个公式对于斜面三角形,任意多边形都成立,是求二面角的好方法。
尤其对无棱问题5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos例1:若p 是ABC ∆所在平面外一点,而PBC ∆和ABC ∆都是边长为2的正三角形,PA=6,求二面角P-BC-A 的大小。
分析:由于这两个三角形是全等的三角形, 故采用定义法解:取BC 的中点E ,连接AE 、PEAC=AB ,PB=PC ∴AE ⊥ BC ,PE ⊥BC∴PEA ∠为二面角P-BC-A 的平面角在PAE ∆中AE=PE=3,PA=6PCBAE∴PEA ∠=900∴二面角P-BC-A 的平面角为900。
例2:已知ABC ∆是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。
[思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。
解1:(三垂线定理法)取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC由三垂线定理知BF ⊥PC∴BFE ∠为二面角A-PC-B 的平面角设PA=1,E 为AC 的中点,BE=23,EF=42∴tan BFE ∠=6=EFBE∴BFE ∠=arctan 6解2:(三垂线定理法)取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FMAB=AC,PB=PC ∴AE ⊥BC,PE ⊥BC∴ BC ⊥平面PAE,BC ⊂平面PBC∴平面PAE ⊥平面PBC, 平面PAE 平面PBC=PE由三垂线定理知AM ⊥PCPC BAEF MEPCBAF图1图2∴FMA ∠为二面角A-PC-B 的平面角设PA=1,AM=22,AF=721.=PE AE AP∴sin FMA ∠=742=AM AF ∴FMA ∠=argsin742解3:(投影法)过B 作BE ⊥AC 于E,连结PE ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC∴PEC ∆是PBC ∆在平面PAC 上的射影设PA=1,则PB=PC=2,AB=141=∆PEC S ,47=∆PBC S由射影面积公式得,77cosarg ,77=∴==∆∆θθPBC PEC S S COS , 解4:(异面直线距离法)过A 作AD ⊥PC,BE ⊥PC 交PC 分别于D 、E 设PA=1,则AD=22,PB=PC=2 ∴BE=PC S PBC 21∆=414,CE=42,DE=42由异面直线两点间距离公式得 AB 2=AD 2+BE 2+DE 2-2ADBE θCOS ,θCOS =77cos arg ,77=∴θ [点评]本题给出了求平面角的几种方法,应很好掌握。
立体几何中二面角的求法
立体几何中二面角的求法立体几何中二面角的求法知识综合性强,方法灵活性大,需要学生将二面角问题转化为其平面角问题,在培养其空间想象能力和分析、解决问题能力的前提下,求解过程中又要利用平面几何、立体几何、三角函数等重要知识。
因此,二面角的求法是一个重点及难点内容,以下便谈谈解决该问题的方法:一、传统方法解决二面角问题传统方法求解二面角,关键在于准确作出二面角的平面角,从而化归为求三角形内角大小。
主要有以下几种作法:1.定义法二面角的定义——以二面角的棱上任意一点(点O)为端点,在两个面内分别作垂直于棱的两条射线OA、OB,则∠AOB叫作二面角的平面角。
例1:如图,平行六面体ABCD-A1B1C1D1底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°,CD=2,CC1=,求二面角C1-BD-C的余弦值。
解析:由∠C1CB=∠C1CD及底面ABCD是菱形可得△C1CB≌△C1CD,则C1B=C1D,即△C1BD与△CBD是两个同底的等腰三角形;取BD中点O,得到C1O⊥BD、CO⊥BD,则∠C1OC为二面角C1-BD-C的平面角。
2.三垂线法三垂线定理——平面内的一条直线,如果与这个平面的一条斜线在这个平面上的射影垂直,那么它也和这条斜线垂直。
三垂线逆定理——平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在平面内的射影垂直。
例2:如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点。
求二面角A-PD-C的余弦值。
解析:易证AE⊥平面PCD,过点A作AM⊥PD,垂足为M,连结EM,AM在平面PCD内的射影是EM,则EM⊥PD(三垂线逆定理),因此∠AME是二面角A-PD-C的平面角。
3.垂面法根据二面角平面角的定义知两个半平面α、β的公垂面γ与棱垂直,则公垂面γ与两个半平面交线所成的角∠AOB,就是二面角的平面角。
空间向量处理二面角
二面角二面角的求解方法(范围: )一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例、在四棱锥P -ABCD 中,ABCD 是正方形,PA⊥平面ABCD ,PA=AB=a ,求二面角B -PC -D 的大小。
变式:如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 例、在四棱锥P -ABCD 中,ABCD 是平行四边形,PA⊥平面ABCD ,PA=AB=a ,⊥ABC=30°,求二面角P -BC -A 的大小。
p ABCDL HjA BC DPH ABCD A 1 B 1C 1D 1EOPOBA变式1、如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.变式2、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC 内的射影是AB 中点M ,二面角P —AC —B 的大小为45°。
求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小变式3、如图,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的大小.三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.PlCBAB 1AA 1BLE FCDPMBA四、射影法(无棱二面角)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。
高中数学中如何应用“垂面、三垂线定理”求“二面角”
高中数学中如何应用“垂面、三垂线定理”求“二面角”三垂线定理及其逆定理是立体几何中最重要的知识点。
三垂线定理及其逆定理,概括起来,可叙述为:在平面内的一条直线,如果和这个平面的一条斜线或此斜线的射影,若垂直其中之一,则必垂直于另一。
欲使用上述定理解题,关键注意以下几点:①要善于观察平面不是水平位置的情况,即选好“平面”。
②要注意四条线:平面内的一条直线、斜线、垂线、射影,找出(作出)垂线是至关重要的;③三垂线定理及其逆定理的本质是线线垂直和线面垂直的转化。
若利用三垂线定理作二面角的平面角(这里以二面角为锐角加以说明,以下若不作说明,都是以锐角为例,当然若遇到钝角能够转化为求锐角的大小)。
我们知道关键是由一个半平面内一点,作另一个半平面的垂线,此垂线恰是三垂线定理所需的、至关重要的垂线,而这条垂线往往由两个平面垂直的性质定理来提供!因为两个平面垂直的性质定理的结论正是线面垂直。
即:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线,就垂直于另一个平面(简记为:面面垂直找交线,垂直交线垂直面。
)。
这样在解题过程中,三垂线定理及两面垂直的性质定理两者有机地结合起来,达到严密推理,快速解题之目的。
综上所述,我们在作二面角的平面角时,可先找与二面角两个半平面其中之一垂直的第三个平面(怎样尽快找到第三个平面呢?可从结论出发,使用逆向思维)。
若存有(已知图形中不存有,能够作)第三个平面,就在此平面内作交线的垂线,就等于作出了那个半平面的垂线,这时要注意在第三个平面内,过哪一点向交线作垂线呢?回答是这个点必在另一个半平面内(此点常常选在三角形的不落在棱上的一个顶点,有时看结论所求二面角的形式,就知道这个“点”。
),这样才可利用三垂线定理作出二面角的平面角,此平面角含在封闭的直角三角形中,到此完成了由二面角向平面角转化的过程。
例1 直三棱柱的底面是等腰直角三角形,,AC=1,。
连结、,求二面角的大小。
分析从结论“求二面角的大小”出发,一方面考虑从点A向平面引垂线,关键是看这条垂线是否落在垂直于平面的某一“垂面”内?换句话说在图中有没有垂直于平面的某个平面?如图1找一下,没有。
二面角大小的几种求法(归类总结分析)
DE AC αFB二面角大小的几种求法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言, 二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小, 在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。
求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法, 作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。
I. 寻找有棱二面角的平面角的方法 ( 定义法、三垂线法、垂面法、射影面积法 )一、定义法:利用二面角的平面角的定义,在二面角的棱上取一点(特殊点),过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。
要注意用二面角的平面角定义的三个“主要特征”来找出平面角。
例 空间三条射线 CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B-PC-A 的大小。
P解:过PC 上的点D 分别作DE ⊥AC 于E ,DF ⊥BC 于F ,连EF.∴∠EDF 为二面角B-PC-A 的平面角,设CD=a ,∵∠PCA=∠PCB=600, ∴CE=CF=2a ,DE=DF= ∴∠EDF= 3a 2 + 3a 2 - 8a 2 2 ⋅ 3a 23a ,又∵∠ACB=900,∴EF= 2 2a ,= 13ADBHC(二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角。
例 在四棱锥 P-ABCD 中,ABCD 是平行四边形,PA ⊥平面 ABCD , PA=AB=a ,∠ABC=30°,求二面角 P-BC-A 的大小。
解:如图,PA ⊥平面 BD ,过A 作AH ⊥BC 于H ,连结PH ,则PH ⊥BC又AH ⊥BC ,故∠PHA 是二面角P-BC-A 的平面角。
Lp在Rt △ABH 中,AH=ABsin ∠ABC=aSin30°= a;2在 Rt △PHA 中 , tan ∠PHA=PA/AH=∠PHA=arctan2.a= 2 , 则a 2三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二面角——垂面法
垂面法:
作一与棱垂直的平面,该垂面与二面角两半平面相交,得到交线,交线所成的
角为二面角的平面角.
1.设P 是二面角α-l -β内一点,P 到面α、β的距离PA 、PB 分别为8和5,且AB
=7,求这个二面角的大小。
,连结BC
α∴PA ⊥
l AC∩PA =A
1.ADC
B
解:由已知条件,D是BC的中点
∴CD=BD=2又△ADC是正三角形
∴AD=CD=BD=2
∴D是△ABC之外心又在BC上
∴△ABC是以∠BAC为直角的三角形,
∴
∴
2.
,点PC=
E
(II
(I)证明:∵2
2100
2
+
+
=
=
AC
64
36PC
PA=
∴△PAC是以∠PAC为直角的直角三角形,同理可证
△PAB 是以∠PAB 为直角的直角三角形,△PCB 是以∠PCB 为直角的直角三角形。
故PA ⊥平面ABC 又∵306102
1||||21=⨯⨯==∆BC AC S PBC 而PBC S CF PB ∆==⨯⨯=3017341534221||||21
故CF ⊥PB,又已知EF ⊥PB。