高等数学模拟试题一
高等数学基础模拟题

高等数学基础模拟题一、单项选择题(每小题4分,本题共20分)1.函数2e e xx y -=-的图形关于( )对称.(A)坐标原点 (B)x 轴 (C)y 轴 (D)x y = 2.在下列指定的变化过程中,()是无穷小量. (A))(1sin∞→x xx (B))0(1sin →x xk4.函数x y arctan =的单调增加区间是 .5.若⎰+=c x x x f sin d )(,则=')(x f .三、计算题(每小题11分,共44分) 1.计算极限1)1sin(lim 21-+-→x x x .2.设xx y 3e cos +=,求y d .3.计算不定积分⎰x xxd e21.4.计算定积分⎰e1d ln x x .四、应用题(本题16分)某制罐厂要生产一种体积为V 的有盖圆柱形容器,问容径与高各为多少时用料最省?答案一、单项选择题(每小题4分,本题共20分) 1.A 2.C 3.C 4.B 5.D二、填空题(每小题4分,本题共20分) 1.)2,1(- 2.e 3.3 4.),(∞+-∞ 5.sin- 三、计算题(每小题11分,共44分) 1.解:21)1)(1()1sin(lim 1)1sin(lim 121-=-++=-+-→-→x x x x x x x )3(d )e (cos xx +h ,则其表面积为 ,由实际问题可知,当3π4V =,即当容器x(B))(xx f =x ln (D)ln )(x x f =),+∞,则函数 轴坐标原点(A)x 1 (B)xx sin(C)1e -x(D)32xx⑷设)(x f 在点1=x 处可导,则--→hf h f h ()21(lim0( ). (A))1(f ' (B))1(f '-(C))1(2f ' (D))1(2f '-⑸函数322-+=x x y 在区间)4,2(内满足().(A)先单调上升再单调下降 (B)单调上升(C)先单调下降再单调上升 (D)单调下降⑹若x x f cos )(=,则='⎰x x f d )(().(A)c x +sin (B)c x +cos (C)c x +-sin (D)c x +-cos⑺=+-⎰-x x x x d )22cos (2π2π7().(A)0 (B)π(C)2π(D)2πk ⑺=⎰x xx d e d d 2. (三)计算题⑴已知32)1(2-+=+x x x f ,求1(,)2(,)(xf f x f .⑵计算极限xxx 5sin 6tan lim 0→.⑶计算极限5456lim 221--++-→x x x x x .⑷计算极限32)1sin(lim 21-+-→x x x x .⑸设2ln sin x xx y -=,求'y . ⑹设x y 3sin ln =,求y d .⑺设y yx =()是由方程x y x y cos e e 3+=确定的函d y .⑻计算不定积分⎰x x xd sin .⑼计算不定积分⎰x x d )1. .x .)0,2(A 的距离d ,问当底的无盖圆柱形铁桶,问怎样62.5立方米的长方体x x arctan >.e e x x>.]a 上可积并为奇函数,则0d )(=⎰-aax x f .三、综合练习答案 (一)单项选择题⑴C ⑵D ⑶C ⑷D ⑸B ⑹B ⑺D ⑻B ⑼B(二)填空题⑴)2,1()1,2[Y -⑵0=x ⑶e ⑷41⑸),2(∞+⑹x 3cos 3⑺2e x(三)计算题⑴42-x ,0,2241x x -⑵56⑶32-⑷41 ⑸3ln 2sin 21cos xxx x x +--⑹x x d cot 3⑺x xy xy y x d cos 3e sin e 23--⑻c x +-cos2⑼c x ++ln 1ln ⑽c x+-1e ⑾-h h4.若⎰+=c x F x x f )(d )(,则⎰=x x f xd )(1( ).(A))(x F (B)c x F +)((C)c x F +)(2(D))(2x F5.下列无穷限积分收敛的是( ). (A)⎰+∞1d 1x x (B)⎰+∞d e x x(C)⎰+∞1d 1x x(D)⎰+∞12d 1x x二、填空题(每小题3分,共15分)1.函数)1ln(1-+=x x y 的定义域是.2.若函数⎪⎩⎪⎨⎧≥+<+=00)1()(1x kx x x x f x ,在0=x 处连续=k.3.曲线x x f =)(在)1,1(处的切线斜率是4.函数)1ln(2x y +=的单调增加区间是.5.='x x d )(cos .分) .'. 3e y y =+确定的函数,..l ,问当底半 )1ln(x +>.e 3.21 4.),0(∞+1.42.xx x x x e sin cos 22+++ 3.22ecos e 2x x x 4.x y x yd )e 3(12- 5.c x +-1sin 6.94e 923+ 四、应用题当底半径l r 36=,高l h 33=时,圆柱体的体积最大. 山东广播电视大学开放教育高等数学基础课程综合练习题(1)一、 单项选择题1.下列各函数对中,( )中的两个函数相等. (A)2)()(x x f =,x x g =)((B)2)(x x f =,x x g =)((C)3ln )(x x f =,x x g ln 3)(=(D)4ln )(x x f =,g f(C)2π(D)2π8.若)(x f 的一个原函数是x1,则=')(x f ( ).(A)x ln (B)32x(C)x 1(D)21x-9.下列无穷积分收敛的是( ). (A)⎰∞+0d cos x x(B)⎰∞+-03d ex x(C)⎰∞+1d 1x x(D)⎰∞+1d 1x x二、填空题 1.函数x x xy ++-=2)2ln(的定义域是2.函数⎩⎨⎧≤>+=0sin 02x x x x y 的间断点是 .3.若函数⎪⎨⎧≥<+=00)1()(1x x x x f x ,在0=x 处连)处的切线斜率是的单调增加区间是=)(x f 3,求,)2(,)(f x f .x y cos 3+确定的函x9.计算不定积分⎰+x x x d )ln 1(1. 10.计算不定积分⎰x x xd e21. 11.计算不定积分⎰x xxd ln 2.12.计算定积分⎰102d e x x x .13.计算定积分⎰e12d ln x x x .14.计算定积分⎰e1d ln x x x .四、应用题 1.求曲线x y 22=上的点,使其到点)0,2(A 的距离最短.2.圆柱体上底的中心到下底的边沿的距离为d ,问当底半径与高分别为多少时,圆柱体的体积最大?3.某厂要生产一种体积为V 的无盖圆柱形铁桶,问怎样才能使用料最省?⎰2.53.32-4.41 5.3ln 2sin 21cos x x x x x +--6.x x d cot 37.x xy x y y x d cos 3e sin e 23-- 8.c x +-cos29.c x ++ln 1ln10.c x+-1e11.c x x x +--1ln12.)1e (412+13.)12e (13+2)(x f -=()(A) (B)(C)e 41 (D)e 214.=⎰x x xf xd )(d d 2( ). (A))(2x xf (B)x x f d )(21(C))(21x f (D)x x xf d )(2 5.下列无穷限积分收敛的是( ). (A)⎰+∞d e x x(B)⎰+∞-0d e x x(C)⎰+∞1d 1x x(D)⎰+∞1d 1x x二、填空题(每小题3分,共15分)1.函数)1ln(92--=x x y 的定义域是 .2.函数⎩⎨⎧≤>-=0sin 01x x x x y 的间断点是 .3.曲线1)(+=x x f 在)2,1(处的切线斜率是.21.解:5655sin lim 66sin lim5655sin 66sin 56lim 5sin 6sin lim0000=⋅=⋅=→→→→xx x xx x x x x x x x x x 2.解:由导数四则运算法则得3.解:)e 2sin(e e cos e sin e 2x x x x x y =='4.解:等式两端求微分得 左端y x x y x y d cos )(cos d )cos (d +==右端y yy d e )e (d ==由此得 整理后得5.解:由分部积分法得6.解:由换元积分法得四、应用题(本题12分)解:如图所示,圆柱体高h 与底半径r 满足222l r h =+圆柱体的体积公式为 将222h l r -=代入得求导得 令0='V 得l h33=,并由此解出l r 36=.即当底63x ,则有)(x 单调增加,所以当x。
大一数学测试题

高等数学(上)模拟试卷一一、 填空题(每空3分,共42分)1、函数lg(1)y x =-的定义域是 ;2、设函数20() 0x x f x a x x ⎧<=⎨+≥⎩在点0x =连续,则a = ; 3、曲线45y x =-在(-1,-4)处的切线方程是 ; 4、已知3()f x dx x C=+⎰,则()f x = ;5、21lim(1)xx x →∞-= ; 6、函数32()1f x x x =-+的极大点是 ;7、设()(1)(2)2006)f x x x x x =---……(,则(1)f '= ;8、曲线x y xe =的拐点是 ;9、21x dx-⎰= ;10、设32,a i j k b i j k λ=+-=-+,且a b ⊥,则λ= ;11、2lim()01x x ax b x →∞--=+,则a = ,b = ;12、311lim xx x-→= ;13、设()f x 可微,则()()f x d e =。
二、 计算下列各题(每题5分,共20分)1、011lim()ln(1)x x x →-+ 2、y =y ';3、设函数()y y x =由方程xye x y =+所确定,求0x dy =; 4、已知cos sin cos x t y t t t =⎧⎨=-⎩,求dydx 。
三、 求解下列各题(每题5分,共20分)1、421x dx x +⎰2、2secx xdx⎰3、40⎰4、2201dx a x +四、 求解下列各题(共18分):1、求证:当0x >时,2ln(1)2x x x +>-(本题8分) 2、求由,,0x y e y e x ===所围成的图形的面积,并求该图形绕x 轴旋转一周所形成的旋转体的体积。
(本题10分)高等数学(上)模拟试卷二一、填空题(每空3分,共42分)1、函数lg(1)y x =-的定义域是 ; 2、设函数sin 0()20xx f x xa x x ⎧<⎪=⎨⎪-≥⎩在点0x =连续,则a = ;3、曲线34y x =-在(1,5)--处的切线方程是 ; 4、已知2()f x dx xC=+⎰,则()f x = ;5、31lim(1)x x x →∞+= ; 6、函数32()1f x x x =-+的极大点是 ; 7、设()(1)(2)1000)f x x x x x =---……(,则'(0)f = ;8、曲线xy xe =的拐点是 ; 9、32x dx-⎰= ;10、设2,22a i j k b i j k λ=--=-++,且a b ,则λ= ;11、2lim()01x x ax b x →∞--=+,则a = ,b = ;12、311lim xx x-→= ;13、设()f x 可微,则()(2)f x d =。
2023年高等教育自学考试《高等数学(一)》模拟真题一

2023年高等教育自学考试《高等数学(一)》模拟真题一1. 【单选题】(江南博哥)A. 奇函数B. 偶函数C. 有界函数D. 周期函数正确答案:C参考解析:2. 【单选题】A. (x+y)>1B. ln(x+y)≠0C. (x+y)≠1D. (x+y)>0正确答案:A参考解析:3. 【单选题】A. 1B. lnaC. aD. e a正确答案:C参考解析:4. 【单选题】设f(x)=2x,则f''(x)=A. 2x ln2 2B. 2x ln 4C. 2x·2D. 2x·4正确答案:A参考解析:5. 【单选题】设f(x)在x=0处可导,则f'(0)=A.B.C.D.正确答案:A参考解析:6. 【单选题】设二元函数 f(x,y)在点(x0,y0)处有极大值且两个一阶偏导数都存在,则必有A.B.C.D.正确答案:D参考解析:7. 【单选题】设z=e x sin y,则dz=A. e x cos y(dx+dy)B. e x(sin ydx-cosy dy)C. e x(sin ydx+dy)D. e x(sin ydx+cos ydy)正确答案:D参考解析:8. 【单选题】A. x=-3B. x=-1C. x=1D. x=3正确答案:B参考解析:9. 【单选题】若直线x=1是曲线y=f(x)的铅直渐近线,则f(x)是A.B.C.D.正确答案:C参考解析:10. 【单选题】下列无穷限反常积分发散的是A.B.C.D.正确答案:B参考解析:11. 【简单计算题】我的回答:参考解析:12. 【简单计算题】我的回答:参考解析:13. 【简单计算题】我的回答:参考解析:14. 【简单计算题】我的回答:参考解析:15. 【简单计算题】我的回答:参考解析:16. 【计算题】指出下列函数由哪些函数复合而成?(1)y=(cos x)3:(2)y=e-x(3)我的回答:参考解析:解:(1)y=(cosx)3是由y=u3,u=cosx复合而成。
高数考试试卷

高等数学模拟试题一一、单项选择题,(每题3分,共15分) 1、函数=y ( )的定义域为[-1,1] A 、2)(ln 1x -; B 、xe arcsin ; C 、21x e-; D 、x sin ;2、设x x x f 1)(+=,则下式成立的是( )A 、)()1(x f x f =; B 、)()(1x f x f =; C 、)())(1(x f x f f =; D 、)()1(1x f x f =;3、函数x y sin 1+=是 ( )A 、无界函数;B 、 单调减少函数;C 、单调增加函数;D 、有界函数;4、已知xe x g x xf ==)(,)(3,则)]([x g f 等于( )A 、xe3; B.、3xe ;C 、3xe ; D 、3e x;5、设f(x)的定义域为(-1,1)则f(x+1) 的定义域为( ) A 、(-2,0); B 、(-1,1); C 、(0,2); D 、[0,2] ; 二、填空题,(每题3分,共15分)1、抛物线)0(22p px y =在点)(p pM ,2处的切线方程是-----------。
2、已知函数)()()(t f x f t x f +=+对任何实数都成立,则)0(f =-----。
3、已知函数)(x f 是以T 为周期的周期函数且)(a f =3,那么)2(T a f +=______.4、已知()dttx x⎰=2sin ϕ,则()x ϕ'-------------。
5、若()211lim ex xk x =+∞→,则=k ----------。
三、计算题,(每题12分,共60分)1、判断)1ln()(2x x x f ++=的奇偶性。
2、计算 323lim 243+-+-∞→x x x x x 极限;3、求函数xe x xf 2)(-=在闭区间0[,]3上的最大值与最小值。
4、计算55ln 5555-++-=x x y x 的导数; 5、求不定积分1cos dxx -⎰;四、证明题,(每题10分,共10分)1、证明:当0→x 时,()1-xe 与x 是等价无穷小量。
高等数学模拟试题及答案

武汉大学网络教育入学考试 专升本 高等数学 模拟试题一、单项选择题1、在实数范围内,下列函数中为有界函数的是( b )A.xy e = B.1sin y x =+ C.ln y x = D.tan y x =2、函数23()32x f x x x -=-+的间断点是( c ) A.1,2,3x x x === B.3x = C.1,2x x == D.无间断点3、设()f x 在0x x =处不连续,则()f x 在0x x =处( b ) A. 一定可导 B. 必不可导 C. 可能可导 D. 无极限4、当x →0时,下列变量中为无穷大量的是( D ) A.sin x x B.2x- C.sin xxD.1sin xx+ 5、设函数()||f x x =,则()f x 在0x =处的导数'(0)f = ( d ) A.1 B.1- C.0 D.不存在. 6、设0a >,则2(2)d aaf a x x -=⎰( a )A.0()d af x x -⎰B.0()d af x x ⎰ C.02()d af x x ⎰ D.02()d af x x -⎰7、曲线23x xy e--=的垂直渐近线方程是( d ) A.2x = B.3x = C.2x =或3x = D.不存在8、设()f x 为可导函数,且()()000lim22h f x h f x h→+-=,则0'()f x = ( c ) A. 1 B. 2 C. 4 D.0 9、微分方程''4'0y y -=的通解是( d )A. 4x y e =B. 4x y e -=C. 4xy Ce = D. 412x y C C e =+10、级数1(1)34nn nn ∞=--∑的收敛性结论是( a ) A. 发散 B. 条件收敛 C. 绝对收敛 D. 无法判定 11、函数()f x ( d )A. [1,)+∞B.(,0]-∞C. (,0][1,)-∞⋃+∞D.[0,1]12、函数()f x 在x a =处可导,则()f x 在x a =处( d )A.极限不一定存在B.不一定连续C.可微D.不一定可微 13、极限1lim(1)sin nn e n →∞-=( c)A.0B.1C.不存在D. ∞14、下列变量中,当x →0时与ln(12)x +等价的无穷小量是( ) A.sin x B.sin 2x C.2sin x D. 2sin x 15、设函数()f x 可导,则0(2)()limh f x h f x h →+-=( c )A.'()f x -B.1'()2f x C.2'()f x D.016、函数32ln 3x y x +=-的水平渐近线方程是( c )A.2y =B.1y =C.3y =-D.0y =17、定积分sin d x x π=⎰( c )A.0B.1C.πD.218、已知x y sin =,则高阶导数(100)y 在0x =处的值为( a )A. 0B. 1C. 1-D. 100. 19、设()y f x =为连续的偶函数,则定积分()d aaf x x-⎰等于( c )A. )(2x afB.⎰adxx f 0)(2 C.0 D. )()(a f a f --20、微分方程d 1sin d yxx =+满足初始条件(0)2y =的特解是( c ) A. cos 1y x x =++ B. cos 2y x x =++C. cos 2y x x =-+D. cos 3y x x =-+ 21、当x →∞时,下列函数中有极限的是( C )A.sin xB.1x eC.211x x +- D.arctan x22、设函数2()45f x x kx =++,若(1)()83f x f x x --=+,则常数k 等于 ( a )A.1B.1-C.2D.2- 23、若0lim ()x x f x →=∞,lim ()x x g x →=∞,则下列极限成立的是( b )A. lim[()()]ox x f x g x →+=∞B.lim[()()]0x x f x g x →-=C.1lim()()x x f x g x →=∞+ D. 0lim ()()x x f x g x →=∞24、当x →∞时,若21sin x 与1k x 是等价无穷小,则k =( b )A.212 C.1 D. 325、函数()f x =[0,3]上满足罗尔定理的ξ是( a )A.0B.3C. 32 D.2 26、设函数()y f x =-, 则'y =( c )A. '()f xB.'()f x -C. '()f x -D.'()f x --27、定积分()d baf x x⎰是( a )A.一个常数B.()f x 的一个原函数C.一个函数族D.一个非负常数 28、已知naxy x e =+,则高阶导数()n y=( c )A. n axa e B. !n C. !axn e + D. !n axn a e + 29、若()()f x dx F x c =+⎰,则sin (cos )d xf x x ⎰等于( b )A. (sin )F x c +B. (sin )F x c -+C. (cos )F x c +D. (cos )F x c -+ 30、微分方程'3xy y +=的通解是( b )A. 3c y x =- B. 3y c x =+ C. 3c y x =-- D. 3c y x =+3121,y x =+(,0]x ∈-∞的反函数是( c ) A. 1,[1,)y x =∈+∞ B.1,[0,)y x =∈+∞C. [1,)y =∈+∞ D. [1,)y =∈+∞ 32、当0x →时,下列函数中为x 的高阶无穷小的是( a )A. 1cos x -B. 2x x +C. sin xD.33、若函数()f x 在点0x 处可导,则|()|f x 在点0x处( c ) A. 可导 B. 不可导 C. 连续但未必可导 D. 不连续 34、当0x x →时,α和(0)β≠都是无穷小. 当0x x →时下列可能不是无穷小的是( d )A. αβ+B. αβ-C. αβ⋅D. αβ35、下列函数中不具有极值点的是( c ) A.y x= B. 2y x = C. 3y x = D.23y x =36、已知()f x 在3x =处的导数值为'(3)2f =, 则0(3)(3)lim2h f h f h →--=( b )A.32B.32-C.1D.1-37、设()f x 是可导函数,则(())f x dx '⎰为( d )A.()f xB. ()f x c +C.()f x 'D.()f x c '+38、若函数()f x 和()g x 在区间(,)a b 内各点的导数相等,则这两个函数在该区间内( d )A.()()f x g x x -=B.相等C.仅相差一个常数D.均为常数二、填空题1、极限20cos d limxx t tx →⎰ =2、已知 102lim()2ax x x e -→-=,则常数 =a . 3、不定积分2d x x e x -⎰= .4、设()y f x =的一个原函数为x ,则微分d(()cos )f x x = .5、设2()d f x x x C x=+⎰,则()f x = . 6、导数12d cos d d xt t x -=⎰ .7、曲线3(1)y x =-的拐点是 .8、由曲线2y x =,24y x =及直线1y =所围成的图形的面积是 .9、已知曲线()y f x =上任一点切线的斜率为2x 并且曲线经过点(1,2)- 则此曲线的方程为 .10、已知22(,)f xy x y x y xy +=++,则f f x y∂∂+=∂∂ . 11、设(1)cos f x x x +=+,则(1)f = .12、已知 112lim(1)x x a e x --→∞-=,则常数 =a .13、不定积分2ln d x x x =⎰.14、设()y f x =的一个原函数为sin 2x ,则微分d y = .15、极限022arcsin d limxx t t x →⎰ = .16、导数2d sin d d x a t t x =⎰ .17、设0d x te t e=⎰,则x = .18、在区间[0,]2π上 由曲线cos y x =与直线2x π=,1y =所围成的图形的面是 .19、曲线sin y x =在点23x π=处的切线方程为 .20、已知22(,)f x y x y x y -+=-,则f f x y ∂∂-=∂∂ .21、极限01lim ln(1)sinx x x →+⋅ =22、已知21lim()1axx x e x -→∞-=+,则常数 =a .23、不定积分d xex =⎰.24、设()y f x =的一个原函数为tan x ,则微分d y = . 25、若()f x 在[,]a b 上连续,且()d 0baf x x =⎰, 则[()1]d baf x x +=⎰.26、导数2d sin d d xx t t x =⎰ .27、函数224(1)24x y x x +=++的水平渐近线方程是 . 28、由曲线1y x =与直线y x=2x =所围成的图形的面积是 .29、已知(31)x f x e '-=,则()f x = .30、已知两向量(),2,3a λ→=,()2,4,b μ→=平行,则数量积a b ⋅= .31、极限2lim(1sin )xx x →-=32、已知973250(1)(1)lim 8(1)x x ax x →∞++=+,则常数=a .33、不定积分sin d x x x =⎰ .34、设函数sin 2xy e =则微分d y = .35、设函数()f x 在实数域内连续, 则()d ()d xf x x f t t -=⎰⎰.36、导数2d d d x tate t x =⎰ .37、曲线22345(3)x x y x -+=+的铅直渐近线的方程为 . 38、曲线2y x =与22y x =-所围成的图形的面积是 .三、计算题1、求极限:22lim (11)x x x x x →+∞++--+.解:22lim (11)x x x x x →+∞++--+=22lim (11)x x x x x →+∞++--+/2x=2、计算不定积分:2sin 2d 1sin xx x +⎰解:3、计算二重积分sin d d Dxx y x ⎰⎰ D 是由直线y x =及抛物线2y x =围成的区域解:4、设2ln z u v = 而x u y=32v x y =-. 求z x∂∂z y∂∂解:5、求由方程221x y xy +-=确定的隐函数的导数d d y x. 解:6、计算定积分:2|sin| dx x π⎰.解:7、求极限:xxxex2)(lim+→.解:8、计算不定积分:212d1xxe xx++⎰.解:9、计算二重积分22()Dx y dσ+⎰⎰其中D是由y x=,y x a=+,y a=3y a=(0a>)所围成的区域解:10、设2u vz e -=, 其中3sin ,u x v x ==,求dzd t .解:11、求由方程ln y x y =+所确定的隐函数的导数d d yx .解:,12、设2,01,(),1 2.x x f x x x ⎧≤≤=⎨<≤⎩. 求0()()d x x f t t ϕ=⎰在[0, 2]上的表达式.解:13、求极限:2x →.解:14、计算不定积分:d ln ln ln x x x x ⋅⋅⎰.解:15、计算二重积分(4)dDx yσ--⎰⎰D是圆域222x y y+≤解:16、设2x yzx y-=+,其中23y x=-,求dzd t.解:17、求由方程1yy xe=+所确定的隐函数的导数ddyx.解:18、设1sin,0,2()0,x xf xπ⎧≤≤⎪=⎨⎪⎩其它.求0()()dxx f t tϕ=⎰在(),-∞+∞内的表达式.解:19、求极限:x→.解:20、计算不定积分:1d1xx+解:21、计算二重积分2D xy d σ⎰⎰ D 是由抛物线22y px =和直线2p x =(0p >)围成的区域解:22、设y z x = 而t x e =,21t y e=- 求dz d t .解:四、综合题与证明题 1、函数21sin , 0,()0, 0x x f x x x ⎧≠⎪=⎨⎪=⎩在点0x =处是否连续?是否可导?2、求函数32(1)y x x =-的极值.解:3、证明:当0x >时 221)1ln(1x x x x +>+++.证明:4、要造一圆柱形油罐 体积为V问底半径r 和高h 等于多少时 才能使表面积最小?这时底直径与高的比是多少?解:5、设ln(1),10,()11,01x x f x x x x +-<≤⎧⎪=⎨+--<<⎪⎩ 讨论()f x 在0x =处的连续性与可导性解:,6、求函数32(1)x y x =-的极值.解:7、证明: 当20π<<x 时 sin tan 2x x x +>.证明:8、某地区防空洞的截面拟建成矩形加半圆(如图) 截面的面积为5m 2问底宽x为多少时才能使截面的周长最小 从而使建造时所用的材料最省?解:9、讨论21, 0,21, 01,()2, 12,, 2x x x f x x x x x ≤⎧⎪+<≤⎪=⎨+<≤⎪⎪>⎩在0x =,1x =,2x =处的连续性与可导性解:10、确定函数23(2)()y x a a x =--(其中0a >)的单调区间.解:;11、证明:当20π<<x 时331tan x x x +>. 证明:12、一房地产公司有50套公寓要出租 当月租金定为1000元时 公寓会全部租出去 当月租金每增加50元时 就会多一套公寓租不出去 而租出去的公寓每月需花费100元的维修费 试问房租定为多少可获最大收入?解:13、函数21, 01,()31, 1x x f x x x ⎧+≤<=⎨-≤⎩在点x 1处是否可导?为什么?解:14、确定函数x x x y 6941023+-=的单调区间. 解:。
成人高考专升本高等数学(一)全真模拟试题及答案解析⑤

成人高考专升本高等数学(一)------------------------全真模拟试题及答案解析⑤1(单选题)函数在x=0处()(本题4分)A 连续且可导B 连续且不可导C 不连续D 不仅可导,导数也连续标准答案: B解析:【考情点拨】本题考查了函数在一点处的连续性和可导性的知识点。
【应试指导】因为所以函数在x=0处连续;又因不存在,所以函数在x=0处不可导。
2(单选题)曲线()(本题4分)A 没有渐近线B 仅有水平渐近线C 仅有铅直渐近线D 既有水平渐近线,又有铅直渐近线标准答案: D解析:【考情点拨】本题考查了曲线的渐近线的知识点。
【应试指导】所以y=1为水平渐近线。
又因所以x=0为铅直渐近线。
3(单选题)则α的值为()(本题4分)A -1B 1C -1/2D 0标准答案: B解析:【考情点拨】本题考查了洛必达法则的知识点。
【应试指导】因为x→0时分母极限为0,只有分子极限也为0,才有可能使分式极限为6,故解得a=-1,所以4(单选题)设()(本题4分)A 等价无穷小B f(x)是比g(x)高阶无穷小C f(x)是比gCc)低阶无穷小D f(x)与g(x)是同阶但非等价无穷小标准答案: D解析:【考情点拨】本题考查了两个无穷小量阶的比较的知识点。
【应试指导】故f(x)与g(x)是同价但非等价无穷小。
5(单选题)已知=()(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了已知积分函数求原函数的知识点。
【应试指导】因为所以6(单选题)曲线y=e^x与其过原点的切线及y轴所围面积为()(本题4分)ABCD标准答案: A解析:【考情点拨】本题考查了曲线围成的面积的知识点。
【应试指导】设(x0,y0)为切点,则切线方程为联立得x0=1,y0=e,所以切线方程为y=ex。
故所求面积为7(单选题)设函数()(本题4分)A 1B 0C -1/2D -1标准答案: D解析:【考情点拨】本题考查了一元函数在一点处的一阶导数的知识点。
高等数学基础模拟题答案

高等数学基础模拟题一、单项选择题(每题 3 分,此题共15 分)1. 设函数 f ( x) 的定义域为( , ) ,则函数 f (x) f ( x) 的图形对于( D )对称.(A)y x(B)x 轴(C)y 轴(D)坐标原点2.当 x 0时,变量(C)是无量小量.(A)1(B)sin x x x(C)e x1(D)xx23. 设f (x)e x,则 lim f (1x) f (1)( B).x 0x(A)2e(B)e(C) 1 e(D) 1 e4. d42 xf (x 2 ) dx ( A ).dx1f (x)dx (A)xf ( x 2 )(B)12(C) f ( x)(D)xf ( x2 )dx25. 以下无量限积分收敛的是(B).(A)0e x dx(B)e x dx(C)1dx(D)1dx 1x1x二、填空题(每题 3 分,共 15 分)1.函数2.函数y9x 2的定义域是(1,2)U(2,3].ln( x1)yx1x0sin x x的中断点是X=0.3.曲线 f ( x)x 1 在 (1, 2) 处的切线斜率是1/2.4.函数 y ( x1) 21的单一减少区间是(-∞,- 1).5.(sin x) dx sinx + c.三、计算题(每题9 分,共 54 分)1. 计算极限 limsin 6x.x 0sin 5x2. 设 ysin x2xx2,求 y .3. 设 y sin 2 e x ,求 .4. 设是由方程 y cos x e y确立的函数,求.5. 计算不定积分 x cos3xdx .6. 计算定积分e 2 ln x1dx .x四、应用题(此题12 分)圆柱体上底的中心到下底的边缘的距离为l ,问当底半径与高分别为多少时,圆柱体的体积最大?五、证明题(此题4 分)当 x0 时,证明不等式 xarctan x .高等数学基础 模拟试题答案一、单项选择题(每题3 分,此题共 15 分)4.A5. B二、填空题(每题 3 分,此题共 15 分)1. (1, 2) (2 , 3]2.x3.1 4. ( ,1) 5. sin x c2三、计算题(每题6 分,共54 分)sin 6xlim sin 6x 1. 解: limsin 6xlim66x 6 6x 6 x 0 x 0sin 5xx 05 sin 5x5 lim sin 5x55xx 05x 2. 解:由导数四则运算法例得(sin x2 x ) x 2 2x(sin x2 x ) x 2 cos x x 2 2x ln 2 2x sin x 2x2 xyx 4 x 4x cos xx2x ln 2 2 sin x2 x 1x 33. 解: y 2e x sin e x cose x e x sin(2e x )4. 解:等式两头求微分得 左端右端由此得d( y cos x) yd(cos x) cos xdyysin xdxcos xdyd(e y ) e y dyy sin x x cos x ye yd ydd整理后得dyy sin xdxcos x e y5. 解:由分部积分法得x cos3xdx1xsin 3x 1 sin 3xdx 3 31 1cos3x cx sin 3x936. 解:由换元积分法得e2 ln xe ( 2 ln x)d( 2 ln x)3 1dx1udux23u 2 5222四、应用题(此题12 分)解:如下图,圆柱体高h 与底半径r知足h 2r 2l 2圆柱体的体积公式为Vπr2h l 将r2l 2h2代入得Vπ(l2h2 )h求导得V π( 2h2(l2h2 ))π(23h 2 )l令 V0得 h 3l ,并由此解出 r6l .即当底半径 r6l ,高 h3l 时,圆柱3333体的体积最大.五、证明题(此题 4 分)证明:设 F ( x)x arctan x ,则有 F ( x)11x 2 1x 2 1 x2当 x0时,F ( x)0,故 F (x) 单一增添,因此当x0 时有F ( x) F (0)0 ,即不等式 x arctan x 建立,证毕.高等数学基础练习题一、单项选择题: (每题 3 分,共 15 分)1.设函数 f ( x ) 的定义域为 (, ) ,则函数 f ( x )f ( x) 的图形对于()对称。
高等数学模拟试卷6篇

模拟试题一一、单项选择题(本大题共10小题,每小题3分,共30分)1—5ACDDA 6—10DCCDD二、填空题(每小题4分)11.3/2,0,012.213.111110x y z ---==-14.cos (1)x y C e =+]15.011limsin 2sin _____x x x x x →+==216.-1,117.212!n x n e -+18.019.320.1三、计算题(本大题共8小题,每小题7分,共56分)21.()210lim cos x x x →。
()22ln cos 100lim cos lim x x x x x x e →→=又因为200ln cos sin 1lim lim 2cos 2x x x x x x x →→-==-所以原式=12e -或。
22.已知函数y =,求dy 。
等式两边取对数得()()()1ln 2ln ln 1ln 2ln 134y x x x x =-++--+⎡⎤⎣⎦等式两边同时求导得()()3132111424x y y x x x +'=-+-+-所以()()3132111424x y x x x ⎡⎤+'=-+-⎢⎥+-⎣⎦所以()()3132111424x dy y dx x x x ⎡⎤+'==-+-⎢⎥+-⎣⎦。
23.求由方程0=-+x y e xy e 所确定的隐函数y 的二阶导数22d y dx。
方程两边同时求导0y x e y y xy e ''++-=所以x y e y y e x-'=+对y '等式两边同时求导()()()()()21x y x y y e y e x e y e y y ex ''-+--+''=+把y '代入整理得()()()223x y y x y e e x e e y y e x +--''=+。
高等数学模拟试题及答案[1]
![高等数学模拟试题及答案[1]](https://img.taocdn.com/s3/m/3224ac3d43323968011c92db.png)
武汉大学网络教育入学考试 专升本 高等数学 模拟试题一、单项选择题1、在实数范围内,下列函数中为有界函数的是( b )A.xy e = B.1sin y x =+ C.ln y x =D.tan y x =2、函数23()32x f x x x -=-+的间断点是( c ) A.1,2,3x x x === B.3x = C.1,2x x == D.无间断点3、设()f x 在0x x =处不连续,则()f x 在0x x =处( b )A. 一定可导B. 必不可导C. 可能可导D. 无极限 4、当x →0时,下列变量中为无穷大量的是( D ) A.sin x x B.2x-C.sin x x D. 1sin xx+ 5、设函数()||f x x =,则()f x 在0x =处的导数'(0)f = ( d )A.1B.1-C.0D.不存在. 6、设0a >,则2(2)d aaf a x x -=⎰( a )A.0()d af x x -⎰B.0()d af x x ⎰ C.02()d af x x ⎰ D.02()d af x x -⎰7、曲线23x xy e--=的垂直渐近线方程是( d ) A.2x = B.3x = C.2x =或3x = D.不存在8、设()f x 为可导函数,且()()000lim22h f x h f x h→+-=,则0'()f x = ( c ) A. 1 B. 2 C. 4 D.0 9、微分方程''4'0y y -=的通解是( d )A. 4x y e =B. 4x y e -=C. 4xy Ce = D. 412x y C C e =+10、级数1(1)34nn nn ∞=--∑的收敛性结论是( a )A. 发散B. 条件收敛C. 绝对收敛D. 无法判定 11、函数()f x =( d )A. [1,)+∞B.(,0]-∞C. (,0][1,)-∞⋃+∞D.[0,1]12、函数()f x 在x a =处可导,则()f x 在x a =处( d )A.极限不一定存在B.不一定连续C.可微D.不一定可微 13、极限1lim(1)sin nn e n →∞-=( c)A.0B.1C.不存在D. ∞ 14、下列变量中,当x →0时与ln(12)x +等价的无穷小量是( )A.sin xB.sin 2xC.2sin xD. 2sin x15、设函数()f x 可导,则0(2)()limh f x h f x h →+-=( c )A.'()f x -B.1'()2f x C.2'()f x D.016、函数32ln 3x y x +=-的水平渐近线方程是( c )A.2y =B.1y =C.3y =-D.0y =17、定积分sin d x x π=⎰( c )A.0B.1C.πD.218、已知x y sin =,则高阶导数(100)y 在0x =处的值为( a )A. 0B. 1C. 1-D. 100. 19、设()y f x =为连续的偶函数,则定积分()d aaf x x-⎰等于( c )A. )(2x afB.⎰adxx f 0)(2C.0D. )()(a f a f --20、微分方程d 1sin d yx x =+满足初始条件(0)2y =的特解是( c )A. cos 1y x x =++B. cos 2y x x =++C. cos 2y x x =-+D. cos 3y x x =-+ 21、当x →∞时,下列函数中有极限的是( C )A.sin xB.1x eC.211x x +- D.arctan x22、设函数2()45f x x kx =++,若(1)()83f x f x x --=+,则常数k 等于 ( a ) A.1 B.1- C.2 D.2- 23、若0lim ()x x f x →=∞,lim ()x x g x →=∞,则下列极限成立的是( b )A. lim[()()]ox x f x g x →+=∞B.lim[()()]0x x f x g x →-=C.1lim()()x x f x g x →=∞+ D. 0lim ()()x x f x g x →=∞24、当x →∞时,若21sin x 与1k x 是等价无穷小,则k =( b )A.2B.12C.1D. 325、函数()f x =[0,3]上满足罗尔定理的ξ是( a )A.0B.3C. 32 D.2 26、设函数()y f x =-, 则'y =( c )A. '()f xB.'()f x -C. '()f x -D.'()f x --27、定积分()d baf x x⎰是( a )A.一个常数B.()f x 的一个原函数C.一个函数族D.一个非负常数 28、已知naxy x e =+,则高阶导数()n y=( c )A. n axa e B. !n C. !axn e + D. !n axn a e + 29、若()()f x dx F x c =+⎰,则sin (cos )d xf x x ⎰等于( b )A. (sin )F x c +B. (sin )F x c -+C. (cos )F x c +D. (cos )F x c -+ 30、微分方程'3xy y +=的通解是( b )A. 3c y x =- B. 3y c x =+ C. 3c y x =-- D. 3c y x =+31、函数21,y x =+(,0]x ∈-∞的反函数是( c )A. 1,[1,)y x =∈+∞B. 1,[0,)y x =∈+∞C. [1,)y =∈+∞D. [1,)y =∈+∞ 32、当0x →时,下列函数中为x 的高阶无穷小的是( a )A. 1cos x -B. 2x x + C. sin xD.33、若函数()f x 在点0x 处可导,则|()|f x 在点0x处( c )A. 可导B. 不可导C. 连续但未必可导D. 不连续 34、当x x →时,α和(0)β≠都是无穷小. 当0x x →时下列可能不是无穷小的是( d )A. αβ+B. αβ-C. αβ⋅D. αβ35、下列函数中不具有极值点的是( c ) A.y x= B. 2y x = C. 3y x = D. 23y x =36、已知()f x 在3x =处的导数值为'(3)2f =, 则0(3)(3)lim2h f h f h →--=( b )A.32B.32-C.1D.1-37、设()f x 是可导函数,则(())f x dx '⎰为( d )A.()f xB. ()f x c +C.()f x 'D.()f x c '+38、若函数()f x 和()g x 在区间(,)a b 内各点的导数相等,则这两个函数在该区间内( d ) A.()()f x g x x -= B.相等 C.仅相差一个常数 D.均为常数二、填空题 1、极限20cos d limxx t tx →⎰=2、已知 102lim()2ax x x e -→-=,则常数 =a .3、不定积分2d xx ex -⎰= .4、设()y f x =的一个原函数为x ,则微分d(()cos )f x x = .5、设2()d f x x x C x=+⎰,则()f x = . 6、导数12d cos d d x t t x-=⎰ . 7、曲线3(1)y x =-的拐点是 .8、由曲线2y x =,24y x =及直线1y =所围成的图形的面积是 .9、已知曲线()y f x =上任一点切线的斜率为2x , 并且曲线经过点(1,2)-, 则此曲线的方程为 .10、已知22(,)f xy x y x y xy +=++,则f f x y∂∂+=∂∂ . 11、设(1)cos f x x x +=+,则(1)f = .12、已知 112lim(1)x x a e x --→∞-=,则常数 =a .13、不定积分2ln d x x x =⎰.14、设()y f x =的一个原函数为sin 2x ,则微分d y = .15、极限22arcsin d limxx t t x →⎰ =.16、导数2d sin d d x a t t x =⎰ .17、设d xt e t e=⎰,则x = .18、在区间[0,]2π上, 由曲线cos y x =与直线2x π=,1y =所围成的图形的面是 .19、曲线sin y x =在点23x π=处的切线方程为 . 20、已知22(,)f x y x y x y -+=-,则f fx y ∂∂-=∂∂ .21、极限01limln(1)sinx x x →+⋅ =22、已知21lim()1axxxex-→∞-=+,则常数=a.23、不定积分x=⎰.24、设()y f x=的一个原函数为tan x,则微分d y=.25、若()f x在[,]a b上连续,且()d0baf x x=⎰, 则[()1]dbaf x x+=⎰.26、导数2dsin ddxxt tx=⎰.27、函数224(1)24xyx x+=++的水平渐近线方程是.28、由曲线1yx=与直线y x=2x=所围成的图形的面积是.29、已知(31)xf x e'-=,则()f x= .30、已知两向量(),2,3aλ→=,()2,4,bμ→=平行,则数量积a b⋅=.31、极限2lim(1sin)x xx→-=32、已知973250(1)(1)lim8(1)xx axx→∞++=+,则常数=a.33、不定积分sin dx x x=⎰.34、设函数y=则微分d y=.35、设函数()f x在实数域内连续, 则()d()dxf x x f t t-=⎰⎰.36、导数2dddx tate tx=⎰.37、曲线22345(3)x xyx-+=+的铅直渐近线的方程为.38、曲线2y x=与22y x=-所围成的图形的面积是.三、计算题1、求极限:lim x →+∞.解:lim x →+∞=lim x →+∞/2x=2、计算不定积分:2sin 2d 1sin xx x +⎰解:3、计算二重积分sin d d Dx x y x ⎰⎰, D 是由直线y x =及抛物线2y x =围成的区域. 解:4、设2ln z u v =, 而x u y =, 32v x y =-. 求z x ∂∂, zy∂∂. 解:5、求由方程221x y xy +-=确定的隐函数的导数d d yx. 解:6、计算定积分: 20|sin | d x x π⎰.解:7、求极限:xxx e x 20)(lim +→.解:8、计算不定积分:x.解:9、计算二重积分22()Dx y d σ+⎰⎰, 其中D 是由y x =,y x a =+,y a =, 3y a =(0a >)所围成的区域. 解:10、设2u vz e -=, 其中3sin ,u x v x ==,求dz d t .解:11、求由方程lny x y=+所确定的隐函数的导数ddyx.解:,12、设2,01,(),1 2.x xf xx x⎧≤≤=⎨<≤⎩. 求0()()dxx f t tϕ=⎰在[0, 2]上的表达式.解:13、求极限:2 0x→解:14、计算不定积分:dln ln lnxx x x⋅⋅⎰.解:15、计算二重积分(4)dDx yσ--⎰⎰,D是圆域222x y y+≤.解:16、设2x yzx y-=+,其中23y x=-,求dzd t.解:17、求由方程1yy xe=+所确定的隐函数的导数ddyx.解:18、设1sin,0,2()0,x xf xπ⎧≤≤⎪=⎨⎪⎩其它.求0()()dxx f t tϕ=⎰在(),-∞+∞内的表达式.解:19、求极限:x→解:20、计算不定积分:1d 1xx +解:21、计算二重积分2Dxy dσ⎰⎰,D是由抛物线22y px=和直线2px=(p>)围成的区域.解:22、设yzx=,而tx e=,21ty e=-,求dzd t.解:四、综合题与证明题1、函数21sin,0,()0,0x xf x xx⎧≠⎪=⎨⎪=⎩在点0x=处是否连续?是否可导?2、求函数(y x=-.解:3、证明:当0x >时, 221)1ln(1x x x x +>+++.证明:4、要造一圆柱形油罐, 体积为V , 问底半径r 和高h 等于多少时, 才能使表面积最小?这时底直径与高的比是多少?解:5、设ln(1),10,()01x x f x x +-<≤⎧⎪=<<, 讨论()f x 在0x =处的连续性与可导性. 解:,6、求函数32(1)x y x =-的极值.解:7、证明: 当20π<<x 时, sin tan 2x x x +>. 证明:8、某地区防空洞的截面拟建成矩形加半圆(如图), 截面的面积为5m 2, 问底宽x 为多少时才能使截面的周长最小, 从而使建造时所用的材料最省?解:9、讨论21, 0,21, 01,()2, 12,, 2x x x f x x x x x ≤⎧⎪+<≤⎪=⎨+<≤⎪⎪>⎩在0x =,1x =,2x =处的连续性与可导性.解:10、确定函数y =(其中0a >)的单调区间.解:;11、证明:当20π<<x 时, 331tan x x x +>. 证明:12、一房地产公司有50套公寓要出租. 当月租金定为1000元时, 公寓会全部租出去. 当月租金每增加50元时, 就会多一套公寓租不出去, 而租出去的公寓每月需花费100元的维修费. 试问房租定为多少可获最大收入?解:13、函数21, 01,()31, 1x x f x x x ⎧+≤<=⎨-≤⎩在点x =1处是否可导?为什么?解:14、确定函数x x x y 6941023+-=的单调区间. 解:。
现代远程教育入学考试《高等数学》模拟试题及答案

现代远程教育入学考试《高等数学》模拟试题(专科起点本科)1、设函数的定义域为,则函数的定义域为(A ).A. B.C. D.2、下列极限中结果等于的是(B ).A. B.C. D.3、函数,则等于(B ).A. 1B. 0C. D. 不存在4、函数在下列区间上不满足拉格朗日定理条件的是(B ).A. B.C. D.5、设是函数的一个原函数,且,则为(B ).A. B.C. D.6、积分(B ).A. B.C. D.7、已知,,则(A ).A. B.C. D.8、由方程所确定的隐函数,则(B ).A. B.C. D.9、若级数收敛,那么下列级数中发散的是(B ).A. B.C. D.10、设一阶线性微分方程(是已知的连续函数),则它的通解为(D ).A.B.C.D.11、函数是(C ).A. 以为周期的周期函数,且是偶函数B. 以为周期的周期函数,且是偶函数C. 以为周期的周期函数,且是奇函数D. 以为周期的周期函数,且是奇函数12、极限等于(C ).A. B. 1C. D. 213、设函数在点处可导,则的值依次为(A ).A. B.C. D.14、函数在区间内单调增加,则应满足(B ).A. B. 为任意实数C. D.为任意实数15、若,则(D ).A. B.C. D.16、极限(D ).A. 1B. 0C. D.17、二次曲面,表示(C ).A. 球面B. 椭圆锥面C. 椭球面D. 椭圆抛物面18、设,则(C ).A. 是的驻点,但非极值点B. 是的极大值点C. 是的极小值点D. 无驻点19、级数的和为(A ).A. B.C. D.20、齐次方程的通解为(A ).A. B.C. D.21、设,则(D ).A. 函数在的任意去心邻域内都有界B. 函数在的某个邻域内有定义C. 函数在处无定义D. 函数,其中是时的无穷小22、设函数在点可导,则极限为(D ).A. B.C. 不存在D.23、设函数,则等于(C ).A. B.C. D.24、对曲线,下列结论正确的是(D ).A. 有4个极值点B. 有3个拐点C. 有2个极值点D. 有1个拐点25、下列积分可直接使用牛顿-莱布尼兹公式的是(A ).A. B.C. D.26、设曲线及直线围成的平面图形的面积为,则下列四个式子中不正确的是(A ).A. B.C. D.A、AB、BC、CD、D27、过点且与平面平行的平面方程为(B ).A. B.C. D.28、二次积分(D ).A. B.C. D.29、设幂级数的收敛半径为,则的收敛半径为(A ).A. B.C. D.30、微分方程的通解为(B ).A. B.C. D.31、函数,在点处有(B ).A. 连续B. 不连续,但右连续C. 不连续,但左连续D. 左、右都不连续32、若曲线和在点处相切(其中为常数),则的值为(A ).A. B.C. D.33、函数的定义域为(B ).A. B.C. D.34、若函数可导,且,则有等于(B ).A. B.C. D.35、下面结论正确的是(C ).A. B.C. D.36、函数在区间上的最小值是(C ).A. 1B.C. 0D.37、积分(C ).A. 2B.C. 4D.38、设,则(A ).A. 6B. 3C. 2D. 039、下列函数在给定区间上满足罗尔定理条件的是(A ).A. B.C. D.40、曲线在区间上的曲边梯形的面积为(A ).A. B.C. 10D.41、若,则(D ).A. B.C. D.42、二元函数的两个偏导数存在,且,,则(D ).A. 当保持不变时,是随x的减少而单调增加的B. 当保持不变时,是随y的增加而单调增加的C. 当保持不变时,是随x的增加而单调减少的D. 当保持不变时,是随y的增加而单调减少的43、二重积分,是由所围成的区域,则二重积分的值为(B ).A. B.C. D.44、函数展开为的幂级数为(B ).A.B.C.D.45、微分方程的满足初始条件的特解为(C ).A. B.C. D.46、积分(A ).A. 1B. 2C. 3D. 447、已知,,则(D ).A. 0B. 1C. 2D. 348、方程确定隐函数,则(A ).A. B.C. D.49、级数(为常数)收敛的充分条件是(A ).A. B.C. D.50、设可微函数满足,且,则的值为(B ).A. B.C. 1D. 251、设,那么的定义域是(C ).A. B.C. D.52、极限(C ).A. 0B.C. 1D.53、,则(A ).A. B.C. D.54、下列极限中不能使用洛必达法则的是(A ).A. B.C. D.55、已知,且时,,则(C ).A. B.C. D.56、积分(C ).A. B.C. D.57、函数是(D ).A. 奇函数,非偶函数B. 偶函数,非奇函数C. 既非奇函数,又非偶函数D. 既是奇函数,又是偶函数58、已知向量,,,则(A ).A. B.C. D.59、极限(B ).A. B. 0C. 3D.60、由方程所确定的隐函数为,则(A ).A. B.C. D.高等数学模拟试题答案:1、A2、B3、B4、B5、B6、B7、A8、B9、B 10、D 11、C 12、C 13、A 14、B 15、D 16、D 17、C 18、C 19、A 20、A 21、D 22、D 23、C 24、D 25、A 26、A 27、B 28、D 29、A 30、B 31、B 32、A 33、B 34、B 35、C 36、C 37、C 38、A 39、A 40、A 41、D 42、D 43、B 44、B 45、C 46、A 47、D 48、A 49、A 50、B 51、C 52、C 53、A 54、A 55、C 56、C 57、D 58、A 59、B 60、A。
高等数学模拟试题1

高等数学模拟试卷一、填空题 .函数1||)3ln(--=x x y 的定义域为...____________1lim =⎪⎭⎫ ⎝⎛+-∞→xx x x.曲线33)4(x x y -+=在点(,)处的切线方程为. 二、选择题. 设)(x f 在点0x 处可导,且2)(0-='x f ,则=--→hx f h x f h )()(lim000( )21).A ( 2).B ( 21).C (- 2).D (-. .当0→x 时, 2x 与x sin 比较是 ( ).().较高阶的无穷小 (). 较低阶的无穷小 (). 同阶但不等价的无穷小 ().等价的无穷小.设曲线22-+=x x y 在点处的切线斜率为,则点的坐标为( ) )0,1).(A ( )0,1).(B (- )4,2).(C ( )0,-2).(D ()cos(arcsin ).C (C x y += C x +arcsin ).D (三、计算题 .计算)1ln(arctan lim3x xx x +-→ .设,cos ,,sin t v e u t uv z t==+=求全导数.dtdz .求微分方程x x y y x cos =+'的通解..求幂级数∑∞=--121)1(n nn x n 的收敛域. 答案一、填空题:.分析 初等函数的定义域,就是使函数表达式有意义的那些点的全体. 解 由⎩⎨⎧>->-0103|x |x 知,定义域为{}131-<<<x x x 或.. 分析 属∞1型,套用第二个重要极限.解 1)1(11lim 1lim --⋅∞→-∞→=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+e x x x x x xx . .解 323)3(31)4(3x x x y --⋅++-=',12-='=x y ,所求切线方程为:)2(6--=-x y ,即8+-=x y . 二、选择题 . 解 2)()1()()(lim )()(lim0000000='-=-⋅---=--→→x f hx f h x f h x f h x f h h .选).B ( . 分析 先求两个无穷小之比的极限,再做出正确选项.解 因0sin lim sin lim020=⋅=→→x xxx x x x ,故选(). . 解 由312=+='x y 知1=x , 又01==x y ,故选(). 三、计算题 .分析 属型未定式,利用等价无穷小代换,洛必达法则等求之. 解 22030303111lim arctan lim )1ln(arctan limx x x xx x x x x x x +-=-=+-→→→ 31)1(31lim )1(3lim 202220=+=+=→→x x x x x x . .解tz dt dv v z dt du u z dt dz ∂∂+⋅∂∂+⋅∂∂= t t t e t t u ve t t cos )sin (cos cos )sin (+-=+-+=..分析 属一阶线性微分方程,先化成标准形,再套用通解公式.解 原方程化为: x y x y cos 1=+',x x q xx p cos )(,1)(== 通解为: ⎥⎦⎤⎢⎣⎡+⎰⎰=⎥⎦⎤⎢⎣⎡+⎰⎰=⎰⎰--C dx xe e C dx e x q e y dx x dx x dx x p dxx p 11)()(cos )([][][]C x x x xC x xd x C xdx x x++=+=+=⎰⎰cos sin 1sin 1cos 1. .分析 先求收敛半径,收敛区间,再讨论端点处的敛散性,从而确定收敛区域.解 收敛半径:1)1(lim lim 221=+==∞→+∞→n n a a R n n n n , 收敛区间为() 在1-=x 处,级数∑∑∞=∞=--=--121211)1()1(n n nn n n 收敛;在1=x 处,级数∑∞=--121)1(n n n 收敛,所以收敛域为:[].高数模拟试卷一. 选择题:本大题共个小题,每小题分,共分。
高等数学期中模拟试题3套

∂u ∂x
A= x+
1 y2 + z2
(1,0,1) = 1/ 2 ;
∂u ∂y
A= x+
1
⋅
y2 + z2
y y2 + z2
(1,0,1) = 0 ;
∂u ∂z
A= x+
1
⋅
y2 + z2
z y2 + z2
(1,0,1) = 1/ 2
而 l = AB = (2,−2,1), 所以 l o = ( 2 ,− 2 , 1) ,故在 A 点沿 l = AB 方向导数为: 3 33
x2 + y2 =ε 2
6. 解: 解:补上 ∑1 : z = 0 (x2 + y2 ≤ 4) 下侧。……………………2 分
∫∫ y2dzdx + zdxdy = ∫∫ y2dzdx + zdxdy − ∫∫ y2dzdx + zdxdy..............2分
∑
∑ + ∑1
∑1
= ∫∫∫ (2 y +1)dxdydz − 0............................................3分 Ω
3
3
→
6. 解:连接 OA ,由 Green公式得:
∫ ∫ ∫ ∫ ∫ I = + − =
−
L
OA
OA
L +OA
OA
Green公式
=
∫∫ (e x cos y − e x cos y + m)dxdy + 0
x2 + y2 ≤ax, y≥0
= 1 mπa 2 8
习题册 高数1,2 中期考试模拟试题(一)

2
2
sin x
x
dx ,
则
2 0
dy
sin x
y
x
2 0
dx
2
0
yF y
2 0
y
sin y
y
dy
sin ydy
2
0
cos y
10
1.
成都理工大学 · 理工《数学》模拟试题
7.设C为椭圆
x2
4
2
y2
3
1, 其周长记为a,求
C (3x
解 由C :
x 1
u 1,0, 1 y
y2 1
1 2
2y
y 0
y 0
1 1
y 1 2 y 1
0
d ln 1 z u 1,0, 1 z dz
z 1
1 2
AB 2,2,1 ,
1,0,1
u u u u cos cos cos 1,0, 1 l y z x
(D ) 最小值点在D的内部,最大值点在D的边界上
成都理工大学 · 理工《数学》模拟试题
25
解
2 2 2 2 u u u u 由 0 2 2 2 x y y x 2
解
2 2 2 x y a 设曲线C: 围成的区域为D,则 W x 2ydx xy 2dy
C
D
2 0
y 2 x 2 dxdy
d r 3dr
高数下期末复习模拟试题3份

2
∂P ∂P = 在 D 内 连 续 , 且 有 ∂x ∂y , 则
∫
L
( P( x, y ) + y )dx + ( P( x, y ) − x)dy =(
)
2 − 2 a A、 ;
B、 − 2a ;
2
C、 − a ;
2
D、 a
→
2
7. 设流体速度场 v = ci + y j ( c 为常数 ), 则单 位时间内由半径为 2 的球面内部流出球
u = f ( x, xy ), v = g ( x + xy ) ,
∂u ∂u 求 ∂x , ∂y
。
x +t
∂u ∂u 2.(8 分)设 u ( x, t ) = ∫ x −t f ( z )dz ,求 ∂x , ∂t 。 四、求解下列问题(共计 15 分) 。
1.计算 I
= ∫ 0 dx ∫ x e dy 。 (7 分)
即
∫
x0 0
ydx −
1 2 x0 y 0 = x0 2
将 ( x 0 , y 0 ) 改为 ( x, y ) 得: 求导得: y ′ −
∫
x
0
ydx −
1 xy = x 2 2
1 y = −4 ,且 y (1) = 1 x
该方程的通解为 y = (c + (−4)e
∫
−
∫ x dx1dx源自e∫ x dx∂ 2u ∂ 2u 数,则 x ∂x 2 + y ∂y 2
等于(
)
(A) x + y (B) x ; (C) y
(D)0 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学模拟试题一
内蒙古农业大学农科《高等数学》模拟试卷(一)
一、单项选择题(每小题2分,共20分)
1.设
ln(12)0()10
x x f x x
x +⎧≠⎪=⎨⎪=⎩
,则()f x 在0x =处(
).
A.极限不存在
B. 极限存在但不连续
C.连续但不可导
D.可导
2.设22()1
2
x
e
x f x x ⎧+≤⎪=⎨
>⎪⎩,则[]()f f x =( ).
A .22e + B. 2 C. 1 D. 4 3.1()x
f x e =在0x =处的极限为( )
A.∞
B.不存在
C. 1
D. 0 4.0sin lim
x y k
xy
x →→=( )
A .1 B.不存在 C. 0 D. k.
5.若()2sin 2
x
f x dx C =+⎰,则()f x =( )
A .cos 2x B.cos 2x C + C. 2cos 2x C + D. 2sin 2
x
6. 设(,)z f x y =是由方程(,)0F x az y bz --=所定义的隐函数,其中(,)F u v 可微,,a b 为常数,则必有( )
A .1f f a
b x y ∂∂+=∂∂ B.1f f a b x y ∂∂-=∂∂ C. 1f f b a x y ∂∂+=∂∂ D.1f f b a x y
∂∂-=∂∂ 7.1
10
(,)y dy f x y dx -=⎰⎰
( )
A .11
00
(,)y
dx f x y dy -⎰
⎰ B. 1
10
0(,)y dx f x y dy -⎰⎰
C. 1
1
(,)dx f x y dy ⎰⎰ D. D. 1
10
(,)x
dx f x y dy -⎰⎰
8. 设()(1)(2)(3)(4)f x x x x x =----,则()0f x '=在区间[]1,4上有( )个根.
A .1
B .2
C .3
D .4 9. 若在(,)a b 内()0,()0f x f x '''<>,则在此区间内下列( )成立. A. ()f x 单调减少曲线上凸 B .()f x 单调减少曲线下凸
C .()f x 单调增加曲线上凸
D .()f x 单调减少曲线下凸
10.已知12cos ,3cos y x y x ωω==是方程20y y ω''+=的解,则11122y C y C y =+ (其中1C ,2C 为任意常数)( )
A .是方程的解但非通解
B .是方程的通解
D .不一定是方程的解
二、填空题(每小题2分,共20分) 1.函数z
=.
2.设(2)
lim
x f x A x
→∞
=,则lim
(3)x x f x →∞= .
3.设函数()y f x =在1x =处的切线方程为32x y +=,则()y f x =在1x =处自变量的增量为
0.03x ∆=的微分dy =
.
4.设()f x ''连续,则0002
()()2()
lim
x f x x f x x f x x
→++--=.
5.230y y y '''--=的通解为
.
6. 设{}
222(,),0,0D x y x y R x y =+≤≥≥,则D
=
.
7. 设(,)sin (f x y x y y =+-(2,1)x f =
.
8. 设对任意的实数x 都有()()f x f x -=,且(2)1f '=,则(2)f '-=
.
9. 1
325
()58
x tf t dt x -=-⎰,则()f x =
.
10. 更换积分次序2
1
40
3(,)x x
dx f x y dy -=
⎰
1.lim 21x x →∞⎛⎫
⎪=⎝⎭
.
2.设
cos sin x t y t =⎧⎨=⎩,求22d y
dx .
3. 设(1)y z xy =+,求
,z z
x y
∂∂∂∂. 4.设2()0
x
f x ⎧=⎨⎩ 01x ≤≤其它 ,求2()()x G x f t dt -=⎰的表达式.
5. 求3322(,)339f x y x y x y x =-++-的极值. 四、综合题(10分)
设可微函数()f x 满足20()2()2x
tf t dt f x x =--⎰,求(0)f 及()f x .。