圆的综合练习(给学生答案版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的综合练习
1、如图,△ABC内接于半圆,AB为直径,过点A 作直线MN,若∠MAC=∠ABC。(1)求证:MN是半圆的切线。
(2)设D是弧AC的中点,连结BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG。
(3)若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积。
2、如图已知直线L:
3
3
4
y x
=+,它与x轴、y轴的交点分别为A、B两点。
(1)求点A、点B的坐标。
(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F(不写作法,保留作图痕迹)。
(3)设(2)中所作的⊙P的圆心坐标为P(x,y),求y
关于x的函数关系式。
(4)是否存在这样的⊙P,既与x轴相切又与直线L相切
于点B,若存在,求出圆心P的坐标,若不存在,请说明
理由。
3、如图,已知AB 是O ⊙的直径,点C 在O ⊙上,过点C 的直线与AB 的延长线交于点P ,AC PC =,2COB PCB ∠=∠. (1)求证:PC 是O ⊙的切线; (2)求证:1
2
BC AB =
; (3)点M 是AB 的中点,CM 交AB 于点N ,若4AB =,求MN MC 的值.
解:(1)OA OC A ACO =∴∠=∠,, 又22COB A COB PCB ∠=∠∠=∠,, A ACO PCB ∴∠=∠=∠. 又AB 是O ⊙的直径, 90ACO OCB ∴∠+∠=°,
90PCB OCB ∴∠+∠=°,即OC CP ⊥, 而OC 是O ⊙的半径,
∴PC 是O ⊙的切线.
··································································································· (3分) O N B P
C
A
M O N B
P
C
A
M
(2)
AC PC A P =∴∠=∠,,
A ACO PC
B P ∴∠=∠=∠=∠,
又COB A ACO CBO P PCB ∠=∠+∠∠=∠+∠,,
1
2
COB CBO BC OC BC AB ∴∠=∠∴=∴=,,. ····················································· (6分)
(3)连接MA MB ,,
点M 是AB 的中点,AM BM ∴=,ACM BCM ∴∠=∠, 而ACM ABM ∠=∠,BCM ABM ∴∠=∠,而BMN BMC ∠=∠,
MBN MCB ∴△∽△,BM MN MC BM
∴
=,2
BM MN MC ∴=, 又
AB 是O ⊙的直径,AM BM =,
90AMB AM BM ∴∠==°,.
4AB BM =∴=,28MN MC BM ∴==. ·············································· (10分)
4、如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,若AEC ODB ∠=∠.
(1)判断直线BD 和O ⊙的位置关系,并给出证明; (2)当108AB BC ==,时,求BD 的长.
解:(1)直线BD 和O ⊙相切. 证明:∵AEC ODB ∠=∠,AEC ABC ∠=∠, ∴ABC ODB ∠=∠.························································ 2分 ∵OD ⊥BC ,
∴90DBC ODB ∠+∠=°. ············································· 3分 ∴90DBC ABC ∠+∠=°.
即90DBO ∠=°. ····························································· 4分
∴直线BD 和O ⊙相切. ··················································· 5分
(2)连接AC . ∵AB 是直径,
∴90ACB ∠=°. ······························································ 6分 在Rt ABC △中,108AB BC ==,,
∴6AC =
=.
∵直径10AB =,∴5OB =. ····························································································· 7分 由(1),BD 和O ⊙相切,∴90OBD ∠=°. ···································································· 8分 ∴90ACB OBD ∠=∠=°. 由(1)得ABC ODB ∠=∠, ∴ABC ODB △∽△. ········································································································· 9分 ∴AC BC OB BD =.∴685BD =,解得20
3
BD =. ································································· 10分
D
B
O
A C
E F
D
B
O
A
C E F