大学物理大作业
大学物理大作业

荷兰物理学家安德烈·吉姆(Andre Geim)曾经做过一个有关磁悬浮的著名实验,将一只活的青蛙悬浮在空中的技术迈纳斯效应—完全抗磁性零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。
是否转变为超导态,必须综合这两种测量结果,才能予以确定。
如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场,使超导体内部的磁场为零。
根据公式和,由于超导体=-1,所以超导体具有完全抗磁性。
内部B=0,故m超导体与理想导体在抗磁性上是不同的。
若在临界温度以上把超导样品放入磁场中,这时样品处于正常态,样品中有磁场存在。
当维持磁场不变而降低温度,使其处于超导状态时,在超导体表面也产生电流,这电流在样品内部产生的磁场抵消了原来的磁场,使导体内部的磁感应强度为零。
超导体内部的磁场总为零,这一现象称为迈纳斯效应。
超导体的抗磁性可用下面的动画来演示,小球是用超导态的材料制成的,由于小球的抗磁性,小球被悬浮于空中,这就是所说的磁悬浮。
下图是小磁铁悬浮在Ba-La-Cu-O超导体圆片(浸在液氮中)上方的照片。
零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。
是否转变为超导态,必须综合这两种测量结果,才能予以确定。
如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场,使超导体内部的磁场为零。
根据公式和,由于超导体内部B=0,故cm=-1,所以超导体具有完全抗磁性。
超导材料必须在一定的温度以下才会产生超导现象,这一温度称为临界温度。
大学物理力学作业

力学作业一、填空题1、按匀速圆周运动计算,地球公转(公转半径为1.5×1011m )的速度值为 ,公转的加速度值为 。
2、一质量为M 的小平板车,以速率v 在光滑水平面上滑行。
另外有一质量为m 的物体从高h 处,由静止竖直下落到小车里并与车子粘在一起前进,它们合在一起的速度大小为 ,方向为 。
3、若有一个三星系统:三个质量都是M 的星球沿同一圆形轨道运动,轨道半径为R 则每个星球受的合力方向 ,大小为 。
4、质量为m 的物体以速率v 向北运动,突然受到外力打击而向西运动,速率v 不变,物体受此力的冲量大小为 ,方向为 。
5、空中飞舞的五彩缤纷的烟火忽略阻力和风力,其质心运动 轨迹是 ,空中烟火以球形扩大的原因是 。
6、质点的运动学方程是j t i t r ˆ)925(ˆ52-+=ρ,这个质点的速度公式表达为 ,质点运动轨道方程为 。
7、质量为m 的人造地球卫星,以速率υ绕地球做匀速圆周运动,当绕过半个圆周时,卫星的动量改变量的量值为 ,当转过整个圆周时,卫星的动量改变量量值为 。
8、当一质点系所受的合外力 时,其质心速度保持不变。
高台跳水运动员的质心运动轨迹应是 。
(忽略空气阻力) 9、一质点沿X 轴做直线运动,其坐标X 与t 的关系是X =1.5t 3(m )。
这个质点在0到2s 的平均速度大小是 ;在t=2s 时刻的瞬时速度大小是 。
10、有质量为m 的单摆挂在架上,架子固定在小车上。
若小车以匀加速度a 向右运动,则摆线的方向要偏离竖直方向一个角度,该角为 ;绳的张力为 。
11、一质点在xy 平面上运动,运动函数为x =2t ,y =4t 2-8,则这个质点的速度公式表达为 ,质点运动的轨道方程为 。
12、某滑轮的转动惯量为25m kg ⋅,以s rad /2的角速度匀速转动,转动动能为 焦耳,角动量为千克米2/秒。
13、质点的运动为532-+=t t x ,t y 2=则质点的速度表达式为 ,位矢表达式为 轨道方程为 。
大学物理学 大作业参考解答

静电场中的导体和电介质
大作业参考解答
选择题1:当一个带电导体达到静电平衡时, (A)导体表面上电荷密度较大处电势较高; (B)导体表面曲率较大处电势较高; (C)导体内部的电势比导体表面的电势高; (D)导体内任一点与表面上任一点的电势差等于零。
NIZQ 第1页
大学物理学
静电场中的导体和电介质
d a
a
E dx
x
d a d ln ln 0 a 0 a
0 q 1 C U U A U B ln d a
NIZQ 第18页
大学物理学
静电场中的导体和电介质
计算题3:如图所示,在一不带电的金属球旁,有一点电荷 +q,金属球半径为R,点电荷+q与金属球球心的间距为d, 试求: (1)金属球上感应电荷在球心处产生的电场强度。 (2)若取无穷远处为电势零点,金属球的电势为多少?
-σ1 σ1 σ2 -σ2
d1 (A) d2 (C) 1
d2 (B) d1 d2 (D) 2 d1
2
d1
d2
1 2 d1 d2 0 0
NIZQ 第8页
大学物理学
静电场中的导体和电介质
填空题1:如图所示,两同心导体球壳,内球壳带 电量+q,外球壳带电量 -2q . 静电平衡时,外球壳 的内表面带电量为 ;外表面带电量 -q 为 。 -q
q CU r C 0U r q 0
U E E0 d
1 1 1q 2 W qU CU r E0 2 2 2C
NIZQ 第16页
2
计算题1:两块相互平行的导体板a和b ,板面积均为S,
大学物理学
静电场中的导体和电介质
大学物理作业

Q2 Q1
(1)求球壳内部空间的场强E1
在球壳内部空间作一半径为r 的球面为 高斯面S1,如右图所示;则S1面上各点
S1 r
R2 R1
的 E 大小相等,方向与各点对应面积矢量元 dS 的方向相同 2 E dS (r R1 ) 所以,1 E 4 r 1
S
y
B A F H D G
(4)对于AFDC平面(类似于BGHO平面), O dS dSk E (E1 kx)i E2 j z C 所以, AFDC E dS 0 (5)对于ABGF平面, E (E1 kx)i E2 j 所以, ABGF E dS
R3 R2 R1
S3
rr
(4)求球面外空间的场强E4 在球壳与球面间作一半径为r的球面为高斯面S4,如上图所示; 类似(1)的分析,得到: 4 E dS E4 4 r 2 ( R3 r )
S4
高斯面S4内的电荷q为:q Q1 Q2
由高斯定理,得到场强E4为: 1 Q1 Q2 E4 (r R3 ) 4 0 r 2 电场强度分布为:
O
dx
1 2
L
P
x
dq 4 0 (r x) 2 Q dx dE 即, dE 的大小dE为: 4 0 L (r x)2 dE 的方向为: 沿x轴正向; r x 应用电场强度的叠加原理, dx 1 O 1 L 2 L 2 得到总场强的大小E为:
Q
L 2
dE dq在P点的场强 dE 的大小dE为:
[( E1 kx )i E2 j ] ( dSj )
S
大学物理标准化作业答案

x)
Acos 2p( t x 2 L)
, 则入射波的表达式为y1 = __________________.
O
L
Bx
三、1(5519)在绳上传播的入射波表达式为 y1 Acos(t 2p
,入射波在x = 0处绳端反射,反射端为自由端.设反射波不
x
)
衰减,求驻波表达式.
解:入射波在x = 0处引起的振动方程为 y10 Acost
2
22
波节:
2π x
p
2
(2n 1) p
2
xn
2
n 0,1,2,3
3 如图所示,一平面简谐波沿x轴正方向传播,BC为波密媒
质的反射面.波由P点反射,OP = 3 /4, DP 6在t = 0时,O处质
(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零[ C ]
二、填空题 3、在同一媒质中两列频率相同的平面简谐波的强度之比I1 / I2 = 16,
则这两列波的振幅之比是A1 / A2 = _______4__________.
一、选择题
(1) 反射波的表达式; (2) 合成的驻波的表达式;
(3) 波腹和波节的位置.
解: (1)
y10
A cos 2π t T
y20
A cos(2π t T
p)
y2
A cos[2π( t T
x)p]
(2)
xp
tp
y
y1
y2
2 A cos(2π
) cos(2π
2
T
) 2
(3) 波腹: 2π x p np x (n 1) n 1,2,3,4
大学物理大作业答案

第1章 质点运动学§1.3 用直角坐标表示位移、速度和加速度一.选择题和填空题1. (B)2. (B)3. 8 m10 m4. ()[]t t A tωβωωωββsin 2cos e22 +--()ωπ/1221+n (n = 0, 1, 2,…) 5. h 1v /(h 1-h 2)二.计算题1解: (1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m2解: =a d v /d t 4=t ,d v 4=t d t⎰⎰=vv 0d 4d tt tv=2t 2 v=dx/dt=2t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)§1.5 圆周运动的角量描述 角量与线量的关系一.选择题和填空题 1. (D) 2. (C)3. 16R t 2 4rad /s 24. -c(b -ct )2/R二.计算题1. 解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=§1.6 不同参考系中的速度和加速度变换定理简介一.选择题和填空题1. (C)2. (B)3. (A)4.0321=++v v v ϖϖϖ二.计算题1.解:选取如图所示的坐标系,以V ϖ表示质点的对地速度,其x 、y 方向投影为:u gy u V x x +=+=αcos 2v ,αsin 2gy V y y ==v当y =h 时,V ϖ的大小为: ()2cos 222222αgh u gh uy x ++=+=V V VV ϖ的方向与x 轴夹角为γ,ugh gh xy +==--ααγcos 2sin 2tg tg 11V V第2章 牛顿定律§2.3 牛顿运动定律的应用一.选择题和填空题 1. (C) 2. (C) 3. (E)4. l/cos 2θ5. θcos /mgθθcos sin gl二.计算题1. 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f ϖ和质量为m 的物块对它的拉力F ϖ的合力提供.当M 物块有离心趋势时,f ϖ和F ϖ的方向相同,而当M 物块有向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有F + f max =M r max ω2 2分 F - f max =M r min ω2 2分m 物块是静止的,因而F = m g 1分 又 f max =μs M g 1分 故2.372max =+=ωμM Mgmg r s mm 2分 4.122min=-=ωμM Mg mg r s mm 2分γ v ϖ2. 解:球A 只受法向力N ϖ和重力g m ϖ,根据牛顿第二定律法向: R m mg N /cos 2v =-θ ① 1分 切向: t ma mg =θsin ② 1分由①式可得 )/cos (2R g m N v +=θ 1分 根据牛顿第三定律,球对槽压力大小同上,方向沿半径向外. 1分 由②式得 θsin g a t = 1分三.理论推导与证明题 证:小球受力如图,根据牛顿第二定律tm ma F k mg d d vv ==--t mF k mg d /)(d =--v v初始条件: t = 0, v = 0.⎰⎰=-tt F)/m k mg 00d (d v -v v∴ k F mg mkt /)e1)((/---=v第3章 功和能§3.3 动能定理一.选择题和填空题 1. (B) 2. (C)3. 1.28×104 J4. 18 J 6 m/s二.计算题1. 解:用动能定理,对物体⎰⎰+==-402402d 610d 021x x x F m )(v 3分3210x x +==168解出 v =13 m/s 2分§3.4(1)势能一.选择题和填空题1.(C)2. 20kx2021kx -gm ϖxf ϖFϖ a ϖ2021kx3. R GmM 32RGmM 3-4. 保守力的功与路径无关W = -ΔE P二.计算题1. 解:(1) 外力做的功=31 J 1分(2) 设弹力为F ′= 5.34 m/s 1分(3) 此力为保守力,因为其功的值仅与弹簧的始末态有关. 2分§3.4(2)机械能守恒定律一.选择题和填空题1. (C)2.)(mr k )2(r k -二.计算题1. (1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy lmy f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =222121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分xyal -a⎰⎰⋅+==21d )4.388.52(d 2x x xx x xF W ρρ⎰⎰⋅=-==1212d d 21'2x x x x Wx F x F m ρρv 3分3分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分 2. 解:把卸料车视为质点.设弹簧被压缩的最大长度为l ,劲度系数为k .在卸料车由最高点下滑到弹簧压缩最大这一过程中,应用功能原理有h G kl h G 12121sin 2.0-=-α ① 2分对卸料车卸料后回升过程应用功能原理,可得:22221sin 2.0kl h G h G -=-α ② 2分由式①和②联立解得: 372.030sin 2.030sin 21=-︒+︒=G G 1分第4章 冲量和动量§4.2 质点系的动量定理一.选择题和填空题 1. (D) 2. (C)3. 18 N ·s二.计算题1. 解:设在某极短的时间t ∆内落在传送带B 上矿砂的质量为m ,即m=q m t ∆,这时矿砂动量的增量为(参看附图) 图1分12v v v ϖϖϖm m m -=∆)( 1212221s m kg 98.375cos 2)(-⋅⋅∆=︒-+=∆t q m m m v v v v v ϖ 2分设传送带作用在矿砂上的力为F ϖ,根据动量定理)(v ϖϖm t F ∆=∆于是 N 2.213.98/)(==∆∆=m q t m F v ϖϖ 2分方向:︒==︒∆2975θ,sin sin )(θm m 2v v ϖϖ 2分 由牛顿第三定律,矿砂作用在传送带B 上的(撞击)力与F ϖ大小相等方向相反,即等于2.21 N ,偏离竖直方向1︒,指向前下方. 1分§4.3 质点系动量守恒定律一.选择题和填空题 1. (C)2. 4.33 m/s ;30︒15︒θ1v ϖm )(v ϖm ∆ 2v ϖm与A 原先运动方向成 -30° 3.二.计算题1. 解:这个问题有两个物理过程:第一过程为木块M 沿光滑的固定斜面下滑,到达B 点时速度的大小为θsin gl 21=v 1分方向:沿斜面向下第二个过程:子弹与木块作完全非弹性碰撞.在斜面方向上,内力的分量远远大于外力,动量近似守恒,以斜面向上为正,则有V v v )(cos M m M m +=-1θ 3分Mm gl M m +-=θθsin cos 2v V 1分2. 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v ρ方向为正方向) 2分负号表示冲量方向与0v ϖ方向相反. 2分第5章 刚体力学基础 动量矩§5.2 力矩 刚体绕定轴转动微分方程量一.选择题和填空题 1. (C) 2. (B) 3.(B)4. 6.54 rad / s 24.8 s5. 62.51.67s6. 0.25 kg ·m 2二.计算题1. 解:(1) ∵ mg -T =ma 1分TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分211m m t F +∆22211m t F m m t F ∆∆++(2) ∵ βθωω2202-=当ω=0 时, rad 612.0220 ==βωθ 物体上升的高度h = R θ = 6.12×10-2 m 2分 (3)==βθω210.0 rad/s方向垂直纸面向外. 2分2. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ·s -2 2分 (2) M r =ml 2β / 12=-0.25 N ·m 2分 (3) θ10=ω 0t +21β t 2=75 rad 1分§5.3 绕定轴转动刚体的动能 动能定理一.选择题和填空题 1. (D) 2. (A) 3.(D)4. 6π rad/s 237 J5. 角动量gl mM 334二.计算题1.解:选泥团和杆为系统,在打击过程中,系统所受外力对O 轴的合力矩为零,对定轴O 的角动量守恒,设刚打击后两者一起摆起的角速度为ω,则有 1分ωJ lm lm +=v v 21210 ① 2分其中 2/l ⋅=ωv ② 1分在泥团、杆上摆过程中,选杆、泥团、地球为系统,有机械能守恒.当杆摆到最大角度θ 时有()()222121cos 121ωθJ m l g m M +=-+v ③ 3分联立解以上三式可得()()⎥⎦⎤⎢⎣⎡++-=-gl M m m M m 4331cos 221v θ 3分2.解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量: W =∆E k =212210222204)21(214)21(21n ml J n ml J π+-π+2 4分 这里的J 0是没有砝码时系统的转动惯量.(2) 过程中无外力矩作用,系统的动量矩守恒:2π(J 0+2121ml ) n 1 = 2π (J 0+2221ml ) n 2 ∴ ()()1222212102n n n l n l m J --= 4分(3) 将J 0代入W 式,得 ()2221212l l n mn W -π= 2分T Tmga§5.4 动量矩和动量矩守恒定律一.选择题和填空题 1. (C) 2. (B) 3.(C) 4.(D)5. 031ω6. ()212mR J mr J ++ω 7. ()l m M /3460+v二.计算题1. 解:将杆与两小球视为一刚体,水平飞来小球与刚体视为一系统.由角动量守恒得 1分ωJ l m lm +-=3223200v v (逆时针为正向) ① 2分 又 22)3(2)32(lm l m J += ② 1分将②代入①得 l230v =ω 1分2. 解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 2分 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒. 1分设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 2分 将①式代入②式得:R2120v+=ωω ③ 1分(2) 欲使盘对地静止,则式③必为零.即ω0 +2v / (21R )=0 2分 得: v =-21R ω0 / 2 1分式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.1分3. 解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v 2分∴l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1 2分(2) -M r =(231ml +2l m ')β 2分0-ω 2=2βθ 2分∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad 2分答案 第六章 振动§6.1-1简谐振动 振幅 周期和频率 相位1-2.BB3. 1.2 s 1分; -20.9 cm/s 2分.4. 0.05 m 2分; -0.205π(或-36.9°)2分.5. )212cos(π-πT t A 2分; )312cos(π+πT t A 2分.二计算题1. 解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴ T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5×10-2m/s 2 2分(3) π=21φ x = 0.02)215.1cos(π+t (SI) 3分 2. 解:(1) 1s 10/-==m k ω 1分, 63.0/2=π=ωT s 1分(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0 由 2020)/(ωv +=x A 得 3.12020-=--=x A ωv m/s 2分π=-=-31)/(tg 001x ωφv 或 4π/3 2分;∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI) 2分§6.1-2简谐运动的能量1-3:DBD4. b ,f 2分; a ,e 2分.5. 9.90×102 J 3分§9-3旋转矢量1-6:BBBBCA7. π 1分; - π /2 2分; π/3. 2分.8. 10 cm 1分; (π/6) rad/s 1分; π/3 1分. 二.计算题1. 解:旋转矢量如图所示. 图3分由振动方程可得 π21=ω,π=∆31φ 1分667.0/=∆=∆ωφt s 1分2. 解:(1) 设振动方程为 )cos(φω+=t A xx (m) ω ωπ/3π/3t = 0 t0.12 0.24 -0.12 -0.24 OA ϖA ϖ由曲线可知 A = 10 cm , t = 0,φcos 1050=-=x ,0sin 100<-=φωv 解上面两式,可得 φ = 2π/3 2分由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )3/22cos(100π+=ω(SI) 则有2/33/22π=π+ω,∴ ω = 5 π/12 2分 故所求振动方程为:)3/212/5cos(1.0π+π=t x (SI) 1分 3. 解:依题意画出旋转矢量图3分。
面向新世纪课程教材大学物理大作业答案——刚体力学作业

L2
−
L1
=
J 2ω2
−
J1ω1
质点的动量定理
dpr
=
r F
⋅
dt
∫ r
I
=
tr F ⋅ dt =
t0
pr − pr0 = mvr − mvr0
三、刚体的角动量守恒定律
1. 角动量守恒定律
∫ 由角动量定理
r M
当
r M外
=
0
时,
外
d
t r
ΔL
= =
Δ 0
r L
r L
=
恒矢量
P.6
1
区分两类冲击摆
(1)
大作业题解
刚体力学
第3章 刚体力学基础
一、对转轴的力矩
r M
=
rr
×
r F
单位:N·m
r M
=
rr
×
r F⊥
r M
=
rr
×
r F
大小: 方向:
M = Frsinϕ
rr
→
r F
右旋前进方向
二、定轴转动定律
M z = Jβ
P.2
转动惯量(moment of inertia)
∑ 1. 定义 J = iri2mi 单位: kg ⋅ m 2
l/4 O
[ A]
mg l = 1 Jω 2 J = 7 ml 2
22
48
⇒ ω = 4 3g 7l
P.11
9.如图所示,一人造卫星到地球中心C的最大距离和
最小距离分别为RA和RB。设人造卫星对应的角动量分
别为LA和LB,动能分别为EkA和EkB,则有
(A) LB > LA,EkB > EkA
东北大学2021 2021 第二学期 大学物理(上) 作业(1)

东北大学2021 2021 第二学期大学物理(上)作业(1)东北大学2021-2021第二学期大学物理(上)作业(1)2022-2022学年第二学期大学物理(第一部分)作业第一章粒子运动学作业一、教材:选择问题1-4填空;计算题:9,13,14,17 2。
附加问题(1),多项选择题1。
物体的运动规律是DV/dt??KVT,其中k是大于零的常数?当0时,初始速度为V0,那么速度V 和时间t之间的函数关系为【】12a、v?2kt?v0;212b、v??2公斤?v01kt21c、v?2?v0;1kt21d、v??2.v02、某质点作直线运动的运动学方程为x?3t?5t3?6(si),则该质点作[]a、加速度以匀速直线运动。
加速度沿X轴的正方向B以均匀加速度沿直线移动。
加速度沿X轴负方向C以可变加速度直线移动。
加速度沿X轴正方向D以可变加速度直线移动。
加速度沿X轴负方向3以可变加速度直线移动。
粒子在t中?在时间0从原点开始,以速度v0沿x轴移动2a??kv运动,其加速度与速度的关系为,k为正常计数这个粒子的速度V和距离x之间的关系是1[a、v?v0e?kxx;b、v?v0(1-2v2)02v?v1?xc、0;d、条件不足不能确定4.当粒子在平面上移动时,粒子的位置向量表是已知的22示式为r?ati?btj(其中a、b为常量),则该质点作[]a、匀速直线运动B、变速直线运动C、抛物线运动D、一般曲线运动(II)、计算问题1、已知质点沿x轴运动,其加速度和坐标的关系为二a=2+6x(si),且质点在x=0处的速率为10m/s,求该质点的速度v与坐标x的关系。
2.粒子沿半径为r的圆运动,其距离s在任何时候都是12间t变化的规律为s?bt?2ct(si)其中B和C大于零的常量,求在t时刻,质点的切向加速度at和法向加速度an各为多少?3.已知在x轴上以可变加速度直线运动的粒子的初始运动2速度是V0,初始位置是x0,加速度是a?CT2(其中C为常数),求出:1)粒子速度与时间之间的关系;2)质点运动方程。
2021学年东北大学第二学期大学物理作业

2021学年东北大学第二学期大学物理作业2014 ~2015学年第二学期大学物理作业题第1章质点运动学作业一、教材:选择题1 ~ 4;计算题:9, 13, 14, 17二、附加题(一)、选择题1、某物体的运动规律为d v/dt= - k v2t,式中的k为大于零的常量.当t=0时,初速为v o,则速度v与时间t的函数关系是[ ]1 2 r 1 2 1 kt2 1 1 kt21A、v = — kt v0;B、v kt v0;C、;D、2 2 v 2 v0v 2 v0 2、某质点作直线运动的运动学方程为x=3t- 5t3+6(SI),则该质点作[ ]A、匀加速直线运动,加速度沿x轴正方向B、匀加速直线运动,加速度沿x轴负方向C、变加速直线运动,加速度沿x轴正方向D、变加速直线运动,加速度沿x轴负方向3、一质点在t=0时刻从原点出发,以速度v o沿x轴运动,其加速度与速度的关系为a= - k v2, k为正常数。
这个质点的速度v与所经路程x的关系是] ]x __A、v= v0^kx;B、v=v o(1-〒);C、v 二v o J-x2;D、条件不足不能确定2v4、一质点在平面上运动,已知质点位置矢量的表示式为r =at2i bt2j (其中a、b为常量),则该质点作] ]A、匀速直线运动B、变速直线运动C、抛物线运动D、一般曲线运动(二)、计算题1 一质点在一平面内做运动,其运动方程为:r(t)(卩-门:⑸)试求:(1)质点的轨道方程(2)质点从t=0到t=5s这段时间的平均速度⑶质点在第5s末的速度;(4 )质点的加速度;2、已知质点沿x轴运动,其加速度和坐标的关系为 a = 2+6x2 (SI),且质点在x= 0处的速度为10m/s,求该质点的速度v与坐标x的关系。
3、已知质点作半径为R=3m的圆周运动,切向加速度at=3m-s'2,且t =0时质点的速度为10m/s。
试求:(1)t =1s时的速度和加速度(2)第2s内质点所通过的路程。
大学物理大作业力学答案

2.
一质点在平面上运动,已知质点位置矢量为
r
at
2
i
bt
2
j
(其中a、b为常量), 则该质点作
(A) 匀速直线运动. (B) 变速直线运动.
(C) 抛物线运动. (D)一般曲线运动.
轨道方程: x ay b
a 2ai 2b j
3 如图所示,湖中有一小船.岸上有人用绳跨过定滑轮拉船靠
方向:沿X 轴的负方向
h
y
l0 v
θ
xx
l
v
6.
x Ae t cos t
(1) 任意时刻t质点的加速度a =
a dx dt
(2) 质点通过原点的时刻t =
x Ae t cost 0
大作业:P2
一.选择题和填空题
2.某物体的运动规律为 dv / dt kv2t ,式中的k为大于零的常数. 当t=0时,初速为v0,则速度v与时间t的函数关系是:
x1 2
mgx2
x1cos
第6页8. 劲度系数为k的弹簧,上端固定,下端悬挂重物.当弹 簧伸长x0,重物在O处达到平衡,现取重物在O处时各种势能均 为零,则当弹簧长度为原长时,系统的重力势能 为____________;系统的弹性势能为________;系统的总 势能为____________. (答案用k和x0表示)
m时,其速率v=_______________________.
W 1 mv2 0 v 6m / s 2
第6页12.一质量为m的质点在指向圆心的平方反比力F =-k/r2的 作用下,作半径为r的圆周运动.此质点的速度v=__________.若 取距圆心无穷远处为势能零点,它的机械能E =________.
同济大学物理大作业解答4至6章答案

第四章(一) 振动学基础解答一、选择题1.D 2.B 3.C 4.C 5.B 6.B 7.D 8.B二、填空题1.振动系统自身的性质;π2秒内的的振动次数;振动系统运动的初始条件;表示振动的幅度或振动的强度;表征计时零点的振动状态。
2.;cm 2 ;4s ;1-s 2π ;π23 )232cos(02.0ππ+t ;m )232s i n (01.0πππ+-t -1s m ⋅;)232cos(201.02πππ+-t -2s m ⋅; ππ或33.0.158 m ; 0.5 s ; 2π4.)41cos(02.0ππ+t m ; )43c o s (02.0ππ+t m5.π326.8T , T 83 7.ππ232或-8.合力的大小与位移成正比,方向与位移方向相反; 0d d 222=+x tx ω三、计算题1.解:(1) s 638.084.922,s84.9258.0251-======πωπωT mk(2) m/s 17.03sin02.084.9sin ,30-=⨯⨯-=-==πϕωπϕA v (3) )384.9cos(02.0)cos(πϕω+=+=t t A x m2.解:(1))32cos(3πππϕ-=-=t T A x (2)0=a ϕ,2πϕ=b(3)作振幅矢量图,得到: 6233T Tt a ===ππωπ125223T Tt b =⎪⎭⎫⎝⎛=πππ+3.解:木块下移时,恢复力 )1(22xgL gxLf -=-=水ρmk =ω , 由(1)式知 2gL k =所以,木块做简谐运动。
在水中的木块未受压而处于平衡时 a gL mg 2水ρ= ,于是可求得ag aL gLm k ===22水ρω ga T πωπ22==振幅:a b A -=4.解:(1)两个同方向、同频率简谐运动的合振动仍为简谐运动,且合振动的频率与分振动的频率相同,即121s 3-===ωωω合振动振幅A 和初相0ϕ为 ()cm 52cos 43243cos 22221212221=⨯⨯++=++=πϕϕ-A A A A A︒==+︒+︒=++=--13.5334tg 24cos 3cos024sin 3sin0tgcos cos sin sin tg11-2211221110ππϕϕϕϕϕA A A A即0ϕ在第一象限内。
大连理工大学大学物理作业及答案详解1-22

大连理工大学大学物理作业及答案详解作业1 (静电场一)1.关于电场强度定义式,下列说法中哪个是正确的?[ ] A .场强E 的大小与试探电荷0q 的大小成反比。
B .对场中某点,试探电荷受力F 与0q 的比值不因0q 而变。
C .试探电荷受力F 的方向就是场强E 的方向。
D .若场中某点不放试探电荷0q ,则0F =,从而0E =。
答案: 【B 】[解]定义。
场强的大小只与产生电场的电荷以及场点有关,与试验电荷无关,A 错;如果试验电荷是负电荷,则试验电荷受的库仑力的方向与电场强度方向相反,C 错;电荷产生的电场强度是一种客观存在的物质,不因试验电荷的有无而改变,D 错;试验电荷所受的库仑力与试验电荷的比值就是电场强度,与试验电荷无关,B 正确。
2.一个质子,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示,已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示哪个正确?[ ]答案: 【D 】[解]a m E q=,质子带正电且沿曲线作加速运动,有向心加速度和切线加速度。
存在向心加速度,即有向心力,指向运动曲线弯屈的方向,因此质子受到的库仑力有指向曲线弯屈方向的分量,而库仑力与电场强度方向平行(相同或相反),因此A 和B 错;质子沿曲线ACB 运动,而且是加速运动,所以质子受到的库仑力还有一个沿ACB 方向的分量(在C 点是沿右上方),而质子带正电荷,库仑力与电场强度方向相同,所以,C 错,D 正确。
3.带电量均为q +的两个点电荷分别位于X 轴上的a +和a -位置,如图所示,则Y 轴上各点电场强度的表示式为E = ,场强最大值的位置在y = 。
答案:j y a qyE 23220)(2+=πε,2/a y ±= [解]21E E += )(422021y a qE E +==πε关于y 轴对称:θcos 2,01E E E y x ==y a qyE y 23220)(2+==∴πε沿y 轴正向的场强最大处0=dydEy y a y y a dy dE 2)(23)(25222322⨯+-+∝-- 2/a y = 2/a y ±=处电场最强。
大学物理大作业(一;三;五)

《大学物理》学期作业一质点运动学与牛顿运动定律学院专业班级姓名学号一. 选择题1. 以下四种运动,加速度保持不变的运动是 (A) 单摆的运动; (B) 圆周运动; (C) 抛体运动; (D) 匀速率曲线运动.2. 质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为: (A) 8m/s, 16m/s 2. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2.3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s ,v 2=15m/s ,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s. (B) 11.75 m/s. (C) 12.5 m/s. (D) 13.75 m/s.4. 质点沿X 轴作直线运动,其v- t 图象为一曲线,如图1.1,则以下说法正确的是(A) 0~t 3时间内质点的位移用v- t 曲线与t 轴所围面积绝对值之和表示, 路程用v- t 曲线与t 轴所围面积的代数和表示;(B) 0~t 3时间内质点的路程用v- t 曲线与t 轴所围面积绝对值之和表示, 位移用v- t 曲线与t 轴所围面积的代数和表示;(C) 0~t 3时间内质点的加速度大于零; (D) t 1时刻质点的加速度不等于零.5. 质点沿XOY 平面作曲线运动,其运动方程为:x =2t , y =19-2t 2. 则质点位置矢量与速度矢量恰好垂直的时刻为(A) 0秒和3.16秒. (B) 1.78秒.图1.1(C) 1.78秒和3秒.(D)0秒和3秒.6. 下面表述正确的是(A) 质点作圆周运动,加速度一定与速度垂直;(B) 物体作直线运动,法向加速度必为零;(C) 轨道最弯处法向加速度最大;(D) 某时刻的速率为零,切向加速度必为零.7. 由于地球自转,静止于地球上的物体有向心加速度,下面说法正确的是(A) 静止于地球上的物体,其向心加速度指向地球中心;(B) 荆州所在地的向心加速度比北京所在地的向心加速度大;(C) 荆州所在地的向心加速度比北京所在地的向心加速度小;(D) 荆州所在地的向心加速度与北京所在地的向心加速度一样大小.8. 下列情况不可能存在的是(A) 速率增加,加速度大小减少;(B) 速率减少,加速度大小增加;(C) 速率不变而有加速度;(D) 速率增加而无加速度;(E) 速率增加而法向加速度大小不变.9. 质点沿半径R=1m的圆周运动,某时刻角速度ω=1rad/s,角加速度α=1rad/s2,则质点速度和加速度的大小为(A) 1m/s, 1m/s2.(B) 1m/s, 2m/s2.(C) 1m/s, 2m/s2.(D) 2m/s, 2m/s2.10. 一抛射体的初速度为v0,抛射角为θ,抛射点的法向加速度,最高点的切向加速度以及最高点的曲率半径分别为(A) g cosθ ,0 , v02 cos2θ/g.(B) g cosθ , g sinθ, 0.(C) g sinθ, 0, v02/g.(D) g ,g ,v02sin2θ/g.11. 下面说法正确的是(A) 物体在恒力作用下,不可能作曲线运动; (B) 物体在变力作用下,不可能作直线运动;(C) 物体在垂直于速度方向,且大小不变的力作用下,作匀速园周运动; (D) 物体在不垂直于速度方向力的作用下,不可能作园周运动;(E) 物体在垂直于速度方向,但大小可变的力的作用下,可以作匀速曲线运动. 12. 如图1.2(A)所示,m A >μm B 时,算出m B向右的加速度为a ,今去掉m A 而代之以拉力T =m A g , 如图1.2(B)所示,算出m B 的加速度a ',则(A) a > a '. (B) a = a '. (C) a < a '. (D) 无法判断.13. 把一块砖轻放在原来静止的斜面上,砖不往下滑动,如图1.3所示,斜面与地面之间无摩擦,则(A) 斜面保持静止. (B) 斜面向左运动. (C) 斜面向右运动. (D) 无法判断斜面是否运动.14. 如图1.4所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为(A) 3mg . (B) 2mg . (C) 1mg . (D) 8mg / 3.15. 如图1.5所示,手提一根下端系着重物的轻弹簧,竖直向上作匀加速运动,当手突然停止运动的瞬间,物体将(A) 向上作加速运动.图1.2图1.4< < < < 图1.5a(B) 向上作匀速运动.(C) 立即处于静止状态.(D) 在重力作用下向上作减速运动.二. 填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t= 秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).3. 一质点的运动方程为r=A cosω t i+B sinω t j, 其中A, B ,ω为常量.则质点的加速度矢量为a= , 轨迹方程为 .4. 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 .5. 任意时刻a t=0的运动是运动;任意时刻a n=0的运动是运动;任意时刻a=0的运动是运动;任意时刻a t=0, a n=常量的运动是运动.6. 已知质点的运动方程为r=2t2i+cosπt j (SI), 则其速度v= ;加速度a= ;当t=1秒时,其切向加速度τa= ;法向加速度n a= .7. 如图2.1所示,一根绳子系着一质量为m的小球,悬挂在天花板上,小球在水平面内T cosθ-mg = 0 (1)也有人在沿绳子拉力方向求合力写出T - mg cosθ= 0 (2)显然两式互相矛盾,你认为哪式正确?答 .理由是 .三.计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.3. 一轻杆CA以角速度ω绕定点C转动,而A端与重物M用细绳连接后跨过定滑轮B,如图3.1所示.试求重物M的速度.(已知CB=l为常数,ϕ=ωt,在t时刻∠CBA=α,计算速度时α作为已知数代入).4. 质量为m的子弹以速度v0水平射入沙土中,设子弹所受阻力与速度成正比,比例系数为k,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数关系式;(2) 子弹射入沙土的最大深度.《大学物理》学期作业三刚体力学基础学院专业班级姓名学号一.选择题1. 以下运动形态不是平动的是 (A) 火车在平直的斜坡上运动; (B) 火车在拐弯时的运动; (C) 活塞在气缸内的运动; (D) 空中缆车的运动.2. 以下说法正确的是(A) 合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零; (E) 合外力不为零,合外力矩一定为零.3. 有A 、B 两个半径相同,质量相同的细圆环.A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A 和I B ,则有(A) I A >I B . (B) I A <I B .(C) 无法确定哪个大. (D) I A =I B .4. 质量为m , 内外半径分别为R 1、R 2的均匀宽圆环,求对中心轴的转动惯量.先取宽度为d r 以中心轴为轴的细圆环微元,如图1.1所示.宽圆环的质量面密度为σ = m /S =m /[π (R 22-R 12)],细圆环的面积为d S =2πr d r ,得出微元质量d m = σd S = 2mr d r /( R 22-R 12),接着要进行的计算是,(A) I =()2d 2d 212221223221R R m R R r mr m r mR R +=-=⎰⎰. (B) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=mR R R R R r mr R m 2221222221d 2)d (=mR 22. (C) I =⎰⎰⎪⎪⎭⎫ ⎝⎛-=m R R R R R r mr R m 2121222121d 2)d (=mR 12. 图1.1(D) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R +=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛+⎰⎰. (E) I =()42d 22)d (212212212221221R R m R R R R r mr R R m m R R -=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-⎰⎰. (F) I =⎰mR m 22)d (-⎰mR m 21)d (=m (R 22-R 12) . (G) I =I 大圆-I 小圆=m (R 22-R 12)/2.5. 一质量为m ,长为l 的均质细杆可在水平桌面上绕杆的一端转动,杆与桌面间的摩擦系数为μ,求摩擦力矩M μ . 先取微元细杆d r ,其质量d m = λd r = (m /l )d r .它受的摩擦力是d f μ=μ(d m )g =(μmg /l )d r ,再进行以下的计算,(A) M μ=⎰r d f μ=⎰lr r lmgd μ=μmgl/2.(B) M μ=(⎰d f μ)l/2=(⎰lr l mgd μ)l/2=μmgl/2.(C) M μ=(⎰d f μ)l/3=(⎰l r l mg0d μ)l/3=μmgl/3.(D) M μ=(⎰d f μ)l =(⎰l r lmg0d μ)l =μmgl .6. 以下说法错误的是:(A) 角速度大的物体,受的合外力矩不一定大; (B) 有角加速度的物体,所受合外力矩不可能为零; (C) 有角加速度的物体,所受合外力一定不为零;(D) 作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零. 7. 在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是: (A) 合力矩增大时, 物体角速度一定增大; (B) 合力矩减小时, 物体角速度一定减小; (C) 合力矩减小时,物体角加速度不一定变小; (D) 合力矩增大时,物体角加速度不一定增大.8. 质量相同的三个均匀刚体A 、B 、C, 如图1.2所示。
大学物理大作业答案(2024)

引言概述:正文内容:一、力学1.牛顿三定律的应用解释牛顿第一定律的原理,并给出实际应用的例子。
找出物体的质心,并计算其位置坐标。
利用牛顿第二定律计算物体所受的合力和加速度。
2.作用力和反作用力解释作用力和反作用力的概念,并给出相关案例。
计算物体所受的作用力和反作用力的大小和方向。
应用牛顿第三定律解决实际问题。
3.动能和动能守恒计算物体的动能,并解释其物理意义。
说明动能守恒定律的原理,给出相应的实例。
利用动能守恒定律解决能量转化问题。
4.力学振动和波动解释简谐振动的特征和公式,并计算相关参数。
介绍波的基本概念和性质,并给出波动方程的解释。
分析机械波的传播和干涉现象。
5.万有引力和天体运动介绍万有引力定律的公式和原理。
计算引力和重力的大小和方向。
描述行星运动的轨道和速度,并解释开普勒定律。
二、热学1.理想气体定律和状态方程解释理想气体和实际气体的区别。
推导理想气体定律,解释每个变量的含义。
计算理想气体的性质和状态。
2.热力学第一定律和功解释热力学第一定律的原理,并给出相应公式。
计算系统的内能变化和热量的传递。
分析功的定义和计算方法。
3.热力学第二定律和熵介绍热力学第二定律的概念和表述方法。
计算熵的变化和热力学过程的可逆性。
解释热力学第二定律对能量转化的限制。
4.热传导和热辐射分析热传导的机制和方法,并计算热传导的速率。
描述热辐射的特性和功率密度。
利用热传导和热辐射解决实际问题。
5.热力学循环和效率给出常见热力学循环的定义和示意图。
计算热力学循环的效率和功率输出。
分析热力学循环的改进方法和应用。
三、电磁学1.静电场和电势描述静电场的特性和形成原理,并给出电势的定义。
计算电场和电势的大小和方向。
利用电势差解决电荷移动和电场中的工作问题。
2.电场和电场强度推导库仑定律和电场强度公式。
计算由点电荷、带电导体和带电平面产生的电场。
分析电场中带电粒子受力和加速度。
3.电容和电容器解释电容和电容器的概念和原理,并计算其电容量。
大学物理大作业(一三五)(二)2024

大学物理大作业(一三五)(二)引言概述:
在大学物理的大作业中,我们将着重探讨三个主题:一、运动学与力学;三、热力学与热学;五、波动与光学。
正文内容:
一、运动学与力学:
1.1 物体的运动描述:位置、位移、速度与加速度等概念
1.2 运动的基本定律:牛顿三定律及其应用
1.3 非惯性系下的运动:离心力,向心力等
1.4 动量与能量守恒定律的应用
1.5 运动的抛体运动、圆周运动等特殊情况的分析
二、热力学与热学:
2.1 温度、热量和热平衡的概念与度量
2.2 理想气体状态方程及其应用
2.3 热力学定律与热力学循环的分析
2.4 相变与相变热的计算
2.5 热平衡与热传导、热辐射等热学过程的探究
三、波动与光学:
3.1 机械波与电磁波的概念与性质
3.2 机械波的传播、干涉、衍射和声音的分析
3.3 光的反射、折射和光的干涉、衍射的规律
3.4 薄透镜与光学仪器的成像原理与应用
3.5 光的波粒二象性与量子光学简介
总结:
在本次大学物理的大作业中,我们深入研究了一、运动学与力学;三、热力学与热学;五、波动与光学三个主题。
通过对这些主题的探究,我们获得了深入理解物理学的基本理论与应用,提高了我们的分析和问题解决能力。
通过分析运动学与力学,我们研究了物体在运动中的特性和力学定律的应用。
通过研究热力学与热学,我们理解了热平衡、能量转化和热传导上的规律。
最后,通过研究波动与光学,我们探索了波动与粒子性质之间的关系以及光学现象的产生和应用。
在头脑中建立这些物理知识的框架将有助于我们在更高级的物理课程和实验中更深入地应用它们。
(完整word版)大学物理大题及答案

1 已知振动曲线如教材P112图所示, 试求: ( 1) 简谐振动方程;( 2) t = 0时振子的运动状态( 如何描述) ? ( 3) t =3/2s 时的相位;( 4) 4s 内振子的位移和路程。
题11.7图??? [分析与解答] (1)由振动曲线可知:A=2cm,T=4s,则ω=2π/T=π/2rad/s, 又因t=0时,由0y =Acos φ,得cos φ=1/2,即φ= ±π/3,由于0v <0, 故取初φ=π/3,则振动方程为 y=2cos(πt/2+π/3)cm(2)当t=0时,振子位于0y =A/2处,并沿-y 方向向平衡位置运动。
(3)t=3/2s 时的相位为 ωt + φ=π/2×3/2+π/3=13π/12 (4)由于T=4s ,所以在4s 内刚好完成一次完整的振动,即回到初始位置。
因此,位移 △y=0,所经历的路程S=4A=8cm 。
2. 已知平面谐波A = 5cm ,ν= 100Hz , 波速u = 400m/ s , 沿x 正方向传播, 以位于坐标原点O 的质元过平衡位置向正方向运动时为时间起点, 试求: (1) 点O 的运动方程; (2) 波动方程;(3) t = 1s 时, 距原点100cm 处质元的相位(1) 要建立O 点的运动方程,关键在于找三个特征量。
由题设条件可知,圆频率ω=2πv=200πrad/s.振幅A=5cm;t=0时,坐标原点O 处质点过平衡位置,且向正方向运动,则O 点的初相位0ϕ =-π/2(或3π/2),于是 O 点的运动方程为 0y =5cos(200πt-π/2)cm(2) 波沿x 轴的正方向传播。
波线上任一点质元的相位较O 点质元落后ωx/u,则波动方程为y=Acos[ω(t-x/u)+0ϕ]=5cos[200π(t-x/400)-π/2]=5cos(200π.t-π.x/2-π/2)cm(3)将t=1s,x=100cm=1m 代入波动方程,得y=5cos(200π-π/2-π/2)=5cos(199π)cmt=1s 时,距原点100cm 处质点的相位为199π(若取230πϕ=,则该点相位为201π)3.将波长λ= 632.8nm 的一束水平的He-Ne 激光垂直照射一双缝, 在缝后D= 2m 处的屏上, 观察到中央明纹和第1 级明纹的间距为14mm 。
大学物理大作业相对论振动答案PPT幻灯片课件

P22
B 4. 质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的 ( ) (A) 4倍. (B) 5倍. (C) 6倍. (D) 8倍.
E0 m0c2
Ek / E0 [
1 1] 4 1 v2 / c2
m / m0
1 5 1 v2 / c2
6
P22
B
解:动能定理仍然成立。电子动能的增量为
v l l0 1 v2 / c2
c 1 (l / l0 )2
m0c
2
(
l0
l
l
)
13
振动
旋转矢量 x Acos(t ) 自原点O作一 矢量 A,使它的模 等于振动的振幅A , 并使矢量 A
在Oxy平面内绕点 O作逆时针方向的 匀角速转动,其角
速度 与振动频率
相等,这个矢量就 叫做旋转矢量.
v (m/s)
v Asin( t ) O
t (s)
a 2 Acos( t )
vm A
1 2
v
m
- vm
t 0时 x0 Acos
v0 A sin
sin 1/ 2 = /6 A
O
5/6
25
P26
17.一作简谐振动的振动系统,振子质量为2 kg,系统振动 频率为1000 Hz,振幅为0.5 cm,则其振动能量 ______________.
量E2变为 (A) E1/4. (B) E1/2. (C) 2E1. (D) 4 E1 []
E1
1 2
kA2
D
19
4.当质点以频率 作简谐振动时,它的动能的变化频率为
大学物理作业

第4章 真空中的静电场4-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:建立如图所示的直角坐标系o-xy ,在半环上任取d l =Rd θ的线元,其上所带的电荷为则r R <12d 4S E r π=⋅=⎰E S R >22d 4S E r π=⋅=⎰E S 2r e rπε=外E 0q 44-9 如图所示,厚度为d 的“无限大”均匀带电平板,体电荷密度为ρ,求板内外的电场分布。
解:带电平板均匀带电,产生的电场具有面对称性,因而可以应用高斯定理求解。
作一柱形高斯面,其侧面与板面垂直;两底面s 和板面平行,且到板中心平面的距离相等,用xdEx表示。
(1) 平板内(2d x <) 11102d 2S S x E S ρψε⋅=⋅==⎰E S 得 10E x ρε=,方向垂直板面向外。
02d ρε=,方向垂直板面向外。
两个同心球面的半径分别为1R 12114S E dS E rπ⋅=⎰(b) 12R r R ≤≤22224S E dS E r π⋅=⎰1224E r πε=(c) 2r R >32123304S Q Q E dS E r πε+⋅==⎰12304r Q Q E e πε+=(2)求各区域的电势 (a) 1r R <1221212112112320044R R R rR R R R Q Q Q V E dr E dr E dr dr dr rπεπε∞∞+=⋅+⋅+⋅=⋅+⋅⎰⎰⎰⎰⎰得 1210121(4Q Q V R R πε=+ 12324R rE dr E dr rπε⋅+⋅=⎰⎰2() 4r R πε+ 14rdr πε=⎰0 4rπε=224R R Q E dr πε⋅=⎰取棒表面为零电势,求空间电势分布并画出电势分布曲线。
据高斯定理有2r e ρε=R r ≤时:102RRr rV E dr rdr ε=⋅=⎰⎰)(4220r R -=ερ习题7-10图R r >时:22202SR l E dS E rl ρππε⋅==⎰2202n R E e r ρε→= 2202R R rr R dr V E dr rρε=⋅=⎰⎰r RR ln 202ερ=空间电势分布并画出电势分布曲线大致如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荷兰物理学家安德烈·吉姆(Andre Geim)曾经做过一个有关磁悬浮的著名实验,将一只活的青蛙悬浮在
空中的技术
迈纳斯效应—完全抗磁性
零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。
是否
转变为超导态,必须综合这两种测量结果,才能予以确定。
如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的
表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场,
使超导体内部的磁场为零。
根据公式和,由于超导体=-1,所以超导体具有完全抗磁性。
内部B=0,故
m
超导体与理想导体在抗磁性上是不同的。
若在临界温度以上把超导样品放
入磁场中,这时样品处于正常态,样品中有磁场存在。
当维持磁场不变而降低
温度,使其处于超导状态时,在超导体表面也产生电流,这电流在样品内部产
生的磁场抵消了原来的磁场,使导体内部的磁感应强度为零。
超导体内部的磁
场总为零,这一现象称为迈纳斯效应。
超导体的抗磁性可用下面的动画来演示,小球是用超导态的材料制成的,
由于小球的抗磁性,小球被悬浮于空中,这就是所说的磁悬浮。
下图是小磁铁悬浮在Ba-La-Cu-O超导体圆片(浸在液氮中)上方的照片。
零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。
是否转变为超导态,必须综合这两种测量结果,才能予以确定。
如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场,使超导体内部的磁场为零。
根据公式和,由于超导体内部B=0,故cm=-1,所以超导体具有完全抗磁性。
超导材料必须在一定的温度以下才会产生超导现象,这一温度称为临界温度。