高三数学一轮复习优质教案5:2.1 函数及其表示教学设计
高三数学一轮复习精品教案4:2.1 函数及其表示教学设计
2.1 函数及其表示基础盘查一 函数的有关概念 (一)循纲忆知1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念. 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(二)小题查验 1.判断正误(1)函数是建立在其定义域到值域的映射( )(2)函数y =f (x )的图象与直线x =a 最多有2个交点( ) (3)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数( )(4)若两个函数的定义域与值域相同,则这两个函数是相等函数( ) (5)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射( ) 『答案』(1)√ (2)× (3)√ (4)× (5)× 2.(人教A 版教材复习题改编)函数f (x )=x -4|x |-5的定义域是________________. 『答案』『4,5)∪(5,+∞)3.已知函数y =f (n ),满足f (1)=2,且f (n +1)=3f (n ),n ∈N *,则f (4)=________. 『答案』54基础盘查二 分段函数 (一)循纲忆知了解简单的分段函数,并能简单应用(函数分段不超过三段). (二)小题查验 1.判断正误(1)函数f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,是分段函数( )(2)若f (x )=⎩⎨⎧ 1-x 2,-1≤x ≤1,x +1,x >1或x <-1,则f (-x )=⎩⎨⎧1-x 2,-1≤x ≤1,-x +1,x >1或x <-1( )『答案』(1)√ (2)√2.分段函数的定义域等于各段函数的定义域的________,其值域等于各段函数的值域的________.『答案』并集 并集3.已知函数f (x )=⎩⎪⎨⎪⎧4x ,x ≤1,-x ,x >1,若f (x )=2,则x =________.『答案』12考点一 函数的概念|(基础送分型考点——自主练透)『必备知识』1.函数的定义设A 、B 为两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ).2.函数的三要素『题组练透』1.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =x -12B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100『答案』D2.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4『解析』选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象,故选B.『类题通法』两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.考点二 函数的定义域问题|(常考常新型考点——多角探明)『多角探明』函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.常见的命题角度有:(1)求给定函数解析式的定义域; (2)求抽象函数的定义域; (3)已知定义域确定参数问题.角度一:求给定函数解析式的定义域 1.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.『解析』由⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2』. 『答案』(0,2』2.(2013·安徽高考)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 『解析』要使函数有意义,需⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0,即⎩⎪⎨⎪⎧x +1x >0,x 2≤1,即⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1,解得0<x ≤1,所以定义域为(0,1』. 『答案』(0,1』角度二:求抽象函数的定义域3.若函数y =f (x )的定义域是『1,2 014』,则函数g (x )=f x +1x -1的定义域是( )A .『0,2 013』B .『0,1)∪(1,2 013』C .(1,2 014』D .『-1,1)∪(1,2 013』『解析』选B 令t =x +1,则由已知函数的定义域为『1,2 014』,可知1≤t ≤2 014.要使函数f (x +1)有意义,则有1≤x +1≤2 014,解得0≤x ≤2 013,故函数f (x +1)的定义域为『0,2013』.所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 013,x -1≠0,解得0≤x <1或1<x ≤2 013.故函数g (x )的定义域为『0,1)∪(1,2 013』.故选B.4.若函数f (x 2+1)的定义域为『-1,1』,则f (lg x )的定义域为( ) A .『-1,1』 B .『1,2』 C .『10,100』D .『0,lg 2』『解析』选C 因为f (x 2+1)的定义域为『-1,1』,则-1≤x ≤1,故0≤x 2≤1,所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应法则,所以1≤lg x ≤2,即10≤x ≤100,所以函数f (lg x )的定义域为『10,100』.故选C.角度三:已知定义域确定参数问题 5.(2015·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.『解析』函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.『答案』『-1,0』『类题通法』简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)已知f (x )的定义域是『a ,b 』,求f (g (x ))的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f (g (x ))的定义域是『a ,b 』,指的是x ∈『a ,b 』.考点三 求函数的解析式|(重点保分型考点——师生共研)『必备知识』(1)函数的解析式是表示函数的一种方法,对于不是y =f (x )的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法求出的解析式,不注明定义域往往导致错误.『典题例析』(1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,求f (x ). 解:(1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x >1.(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R .(4)在f (x )=2f ⎝⎛⎭⎫1x x -1中, 用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x-1, 将f ⎝⎛⎭⎫1x =2f x x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中, 可求得f (x )=23x +13.『类题通法』求函数解析式常用的方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (4)消去法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).『演练冲关』1.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1.2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.考点四 分段函数|(重点保分型考点——师生共研)『必备知识』若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.『提醒』 分段函数虽然由几部分组成,但它表示的是一个函数.『典题例析』1.已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3『解析』选B 由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝⎛⎭⎫12-3+1=9, 从而f (f (-3))=f (9)=log 39=2.2.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.『解析』当a >0时,1-a <1,1+a >1. 这时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a , f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.『答案』-34『类题通法』分段函数“两种”题型的求解策略 (1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.『提醒』 当分段函数的自变量范围不确定时,应分类讨论.『演练冲关』(2015·榆林二模)已知f (x )=⎩⎪⎨⎪⎧12x +1, x ≤0,-x -12, x >0,使f (x )≥-1成立的x 的取值范围是________. 『解析』由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故x 的取值范围是『-4,2』. 『答案』『-4,2』。
高考数学一轮复习教学案函数及其表示(含解析)
第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。
版高考数学一轮复习 2.1函数及其表示精品学案
2013版高三数学一轮精品复习学案:函数、导数及其应用【知识特点】1.函数、导数及其应用是高中数学的重要内容,本章主要包括函数的概念及其性质,基本初等函数Ⅰ(指数函数、对数函数、幂函数),导数的概念,导数及其几何意义,导数与函数的单调性、最值,导数在实际问题中的应用等内容。
2.本章内容集中体现了函数与方程、数形结合、分类讨论的思想方法,函数的类型较多,概念、公式较多,具有较强的综合性。
【重点关注】1.函数的概念及其性质(单调性、奇偶性、周期性、对称性)是高考考查的主要内容,函数的定义域、解析式、值域是高考考查重点,函数性质的综合考查在历年考试中久考不衰,应重点研究。
2.函数的图象及其变换既是高考考查的重点,又是学生学习的一个难点,应注意区分各函数的图象及图象的变换,利用图象来研究性质。
3.导数的几何意义,导数在函数的最值及单调性方面的应用是高中数学的一个重点内容,也是高等数学的必修内容,是近几年高考的一大热点,复习时应引起足够的重视。
4.注意思想方法的应用。
数形结合思想、函数与方程的思想、分类讨论思想在各种题型中均有体现,应引起重视。
【地位与作用】一、函数在高考中的地位与作用从近几年的全国各地的高考试题中可以看出,近几年高考在函数中的考查有如下特点:1、知识点的考查情况①映射与函数:以考查概念与运算为主,部分涉及新定义运算;②定义域、值域、解析式是考查的重点,而且比较稳定,有时结合其它知识点(一本部分内容为背景),分段函数较多、花样翻新;③函数的单调性在历年考试中久考不衰,且比例有上升趋势,和导函数联系较多;④函数的奇偶性主要和单调性、不等式、最值、三角函数等综合,与周期性、对称性、抽象函数等问题联系较多;⑤反函数出现在选择题、填空题中,考反函数概念运算可能性较大,若出现在解答题中,则必定与单调性、奇偶性、不等式、导函数等知识综合,难度较大;⑥二次函数问题是每年的必考题,一方面直接考查二次函数,另一方面是利用二次函数的性质解题,三个“二次”问题(即二次函数、二次方程、二次不等式)是函数考试题中永恒的主题⑦指数函数与对数函数以基本概念、性质为主设计试题,考查指数、对数的定义域、值域、单调性和运算,选择、填空题属中等难度,若解答题涉及到指、对数函数,往往难度会上升;⑧函数的图像与最值每年必考,体现“形是数的直观反映,数是形的抽象概括”,是数学思想方法中的数相结合思想的最直接的表现形式,尤其是函数y=x+a/x(a>0)的图像和性质,从未间断过;⑨函数应用题与综合应用题是最能体现考生函数水平的试题:一次函数、二次函数、y=x+a/x (a>0)型、指数型、对数型与现实生活相结合,考查学生的建模能力,而函数与数列、不等式、导函数等众多知识的交汇已经成为函数综合应用中的典型问题。
高三数学一轮复习教案(函数全)
函数(一)函数1.了解构成函数的要素,了解映射的概念,会求一些简单函数的定义域和值域.2.理解函数的三种表示法:解析法、图象法和列表法,能根据不同的要求选择恰当的方法表示简单的函数。
3.了解分段函数,能用分段函数来解决一些简单的数学问题。
4.理解函数的单调性,会讨论和证明一些简单的函数的单调性;理解函数奇偶性的含义,会判断简单的函数奇偶性。
5.理解函数的最大(小)值及其几何意义,并能求出一些简单的函数的最大(小)值.6.会运用函数图像理解和研究函数的性质.(二)指数函数1.了解指数函数模型的实际背景。
2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。
3.理解指数函数的概念,会求与指数函数性质有关的问题。
4.知道指数函数是一类重要的函数模型。
(三)对数函数1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
2.理解对数函数的概念;会求与对数函数性质有关的问题.3.知道对数函数是一类重要的函数模型.4.了解指数函数与对数函数互为反函数()。
(四)幂函数1.了解幂函数的概念。
2.结合函数的图像,了解它们的变化情况。
(五)函数与方程1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。
2.理解并掌握连续函数在某个区间上存在零点的判定方法。
能利用函数的图象和性质判别函数零点的个数.(六)函数模型及其应用1.了解指数函数、对数函数以及幂函数的增长特征。
知道直线上升、指数增长、对数增长等不同函数类型增长的含义。
2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。
3.能利用给定的函数模型解决简单的实际问题。
定义定义域区间对应法则值域一元二次函数一元二次不等式映射函数性质奇偶性单调性周期性指数函数根式分数指数指数函数的图像和性质指数方程对数方程反函数互为反函数的函数图像关系对数函数对数对数的性质积、商、幂与根的对数对数恒等式和不等式常用对数自然对数对数函数的图像和性质函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势.考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想.函数概念(一)知识梳理1.映射的概念设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →: ,f 表示对应法则 注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。
高中数学教案《函数的概念及其表示》
教学计划:《函数的概念及其表示》一、教学目标1.知识与技能:o学生能够理解并掌握函数的基本概念,包括自变量、因变量、函数定义域和值域。
o学生能够识别函数关系,并用不同的方式(如解析式、表格、图像)表示函数。
o学生能够区分函数与非函数关系,理解函数关系的唯一对应性。
2.过程与方法:o通过实例分析,引导学生从具体到抽象地理解函数概念。
o运用对比、归纳等方法,帮助学生掌握函数的不同表示方法。
o通过小组合作探究,培养学生的合作学习能力和问题解决能力。
3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探究数学规律的精神。
o引导学生认识到函数在现实生活中的应用价值,增强数学应用的意识。
o通过解决问题,培养学生的耐心、细致和严谨的科学态度。
二、教学重点和难点●重点:函数的基本概念及其三种表示方法(解析式、表格、图像)。
●难点:理解函数关系的唯一对应性,区分函数与非函数关系;灵活运用不同方式表示函数。
三、教学过程1. 导入新课(5分钟)●生活实例引入:通过日常生活中的实例(如气温随时间变化、汽车速度与行驶时间的关系等),引导学生思考这些关系中是否存在一个变量随另一个变量变化而变化的规律。
●提出问题:这些关系中的两个变量之间是如何相互影响的?能否用数学语言来描述这种关系?●明确目标:引出函数的概念,并说明本节课将要学习的内容。
2. 概念讲解(15分钟)●函数定义:详细讲解函数的基本概念,包括自变量、因变量、函数关系以及定义域和值域的概念。
●实例分析:结合生活实例,分析哪些关系可以构成函数,哪些不能,强调函数关系的唯一对应性。
●表示方法:介绍函数的三种表示方法(解析式、表格、图像),并举例说明每种方法的应用场景。
3. 案例分析(10分钟)●典型例题:选取几道具有代表性的例题,通过分析题目中的变量关系,引导学生判断是否为函数关系,并尝试用不同方式表示该函数。
●师生互动:在例题讲解过程中,适时提问引导学生思考,鼓励学生尝试自己解答或提出疑问。
高三数学第二章函数+导数高考一轮复习教案2.1函数及其表示
2.1函数及其表示一、学习目标:考纲点击:理解函数的有关概念热点提示:1.函数是高考数学的核心内容,在历年高考中,函数知识覆盖面广、综合性强,在难中易各类考题中都会出现。
而在江苏高考中,函数题的难度一般偏大,同其他省比有其独特性。
2、本节是函数的起始部分,以考查函数的概念、三要素及表示法为主,同时函数的图像,分段函数的考查是热点,另外,实际问题中的建模能力也经常考查。
本节复习重点:函数的定义域和表达式二、知识要点:1.函数的概念定义:设A,B 是___________,如果按照某种对应法则f,对于集合A 中的______,在集合B 中都有______元素y 和它对应,这样的对应叫做从A 到B 的一个函数记作____________. 其中,x 叫做______,x 的取值范围A 叫做函数的_______;与x 的值相对应的y 的值叫做______,函数值的集合{ f(x) |x ∈A}叫做函数的_______.2.函数的三要素:①_________;②__________________;③_________ 。
注:两个函数当且仅当_______和________,都相同时,才称作相同的函数.3.常用的函数表示法(1)解析法:;(2)列表法:;(3)图象法:。
4.分段函数5.复合函数若y =f (u),u=g(x ),x ∈ (a ,b ),u∈ (m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域。
三、课前检测:1. (09山东理)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为________2.(09福建文)下列函数中,与函数y= 有相同定义域的是( ) A .()ln f x x = B.1()f x x =C. ()||f x x =D.()x f x e = 3. (09江西理)函数y =的定义域为________4. (09北京文)已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x = .5. .(09安徽理)已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 .四.经典例题:热点考向一:求函数定义域例1:(1)求函数02)4(1||21)(-+-+-=x x x x f 的定义域。
高考数学一轮复习总教案:2.1函数的概念及表示法
第二章 函 数高考导航 考试要求重难点击 命题展望1.了解构成函数的三要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际生活中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单运用.4.理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.5.会运用函数的图象理解和研究函数的性质.6.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.7.理解指数函数的概念及其单调性,掌握指数函数通过的特殊点.8.理解对数的概念及其运算性质,知道用换底公式能将一般对数化成自然对数或常用对数;了解对数在简化运算中的作用.9.理解对数函数的概念及其单调性,掌握对数函数通过的特殊点.10.了解指数函数y =ax 与对数函数y =logax (a >0且a≠1)互为反函数.11.了解幂函数的概念,结合函数y =x , y =x2, y =x3 ,y =x 1, y =21x 的图象,了解它们的变化情况.12.结合二次函数的图象,了解函数的零点与方程的根的联系,判断一元二次方程根的存在性和根的个数.13.根据具体函数图象,能够用二分法求相应方程的近似解. 14.了解指数函数、对数函数以及幂函数的增长特征;知道直线上升、指数增长、对数增长等不同函数类型增长的含义. 15.了解指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型的广泛应用. 本章重点:1.函数的概念及其三要素; 2.函数的单调性、奇偶性及其几何意义;3.函数的最大(小)值;4.指数函数与对数函数的概念和性质;5.函数的图象及其变换;6.函数的零点与方程的根之间的关系;7.函数模型的建立及其应用. 本章难点:1.函数概念的理解;2.函数单调性的判断;3.函数图象的变换及其应用;4.指数函数与对数函数概念的理解及其性质运用;5.研究二次函数的零点与一元二次方程的根的关系;6.函数模型的建立及求解.高考对函数的考查,常以选择题和填空题来考查函数的概念和一些基本初等函数的图象和性质,解答题则往往不是简单地考查概念、公式和法则的应用,而是常与导数、不等式、数列、三角函数、解析几何等知识及实际问题结合起来进行综合考查,并渗透数学思想方法,突出考查函数与方程、数形结合、分类与整合、化归与转化等数学思想方法.知识网络2.1函数的概念及表示法典例精析题型一 求函数的解析式【例1】 (1)已知f(x +1)=x2+x +1,求f(x)的表达式; (2)已知f(x)+2f(-x)=3x2+5x +3,求f(x)的表达式. 【解析】(1)设x +1=t ,则x =t -1,代入得f(x)=(t -1)2+(t -1)+1=t2-t +1,所以f(x)=x2-x +1. (2)由f(x)+2f(-x)=3x2+5x +3,x 换成-x ,得f(-x)+2 f(x)=3x2-5x +3,解得f(x)=x2-5x +1.【点拨】已知f(x),g(x),求复合函数f[g(x)]的解析式,直接把f(x)中的x 换成g(x)即可,已知f[g(x)],求f(x)的解析式,常常是设g(x)=t ,或者在f[g(x)]中凑出g(x),再把g(x)换成x.【变式训练1】已知f(x x+-11)=2211x x +-,求f(x)的解析式.【解析】设x x +-11=t ,则x =t t +-11,所以f(t)=22)11(1)11(1t t t t +-++--=212t t +, 所以f(x)=212x x+(x≠-1).题型二 求函数的定义域【例2】(1)求函数y =229)2lg(x x x --的定义域;(2)已知f(x)的定义域为[-2,4],求f(x2-3x)的定义域. 【解析】(1)要使函数有意义,则只需要⎩⎨⎧>->-,09,0222x x x 即⎩⎨⎧<<-<>,33,02x x x 或解得-3<x <0或2<x <3,故所求的定义域为(-3,0)∪(2,3). (2)依题意,只需-2≤x2-3x≤4,解得-1≤x≤1或2≤x≤4,故f(x2-3x)的定义域为[-1,1]∪[2,4]. 【点拨】有解析式的函数的定义域是使解析式有意义的自变量的取值范围,往往列不等式组求解.对于抽象函数f[g(x)]的定义域要把g(x)当作f(x)中的x 来对待. 【变式训练2】已知函数f(2x)的定义域为[-1,1],求f(log2x)的定义域.【解析】因为y =f(2x)的定义域为[-1,1],即-1≤x≤1时2-1≤2x≤21,所以y =f(x)的定义域为[12,2].令12≤log2x≤2,所以2≤x≤22=4,故所求y =f(log2x)的定义域为[2,4].题型三 由实际问题给出的函数【例3】 用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底部长为2x ,求此框围成的面积y 与x 的函数关系式,并指出其定义域.【解析】由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,而矩形的长AB =2x ,设宽为a ,则有2x +2a +πx =l ,即a =2l -2πx -x ,半圆的半径为x , 所以y =22πx +(2l -π2x -x)·2x =-(2+π2)x2+lx.由实际意义知2l -π2x -x >0,因x >0,解得0<x <π+2l.即函数y =-(2+π2)x2+lx 的定义域是{x|0<x <π+2l}.【点拨】求由实际问题确定的定义域时,除考虑函数的解析式有意义外,还要考虑使实际问题有意义.如本题使函数解析式有意义的x 的取值范围是x ∈R ,但实际问题的意义是矩形的边长为正数,而边长是用变量x 表示的,这就是实际问题对变量的制约.【变式训练3】一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x 、y ,剪去部分的面积为20,若2≤x≤10,记y =f(x),则y =f(x)的图象是( ) 【解析】由题意得y =10x(2≤x≤10),选A. 题型四 分段函数【例4】 已知函数f(x)=⎩⎨⎧≥+<+).0(1),0(32x x x x(1)求f(1)+f(-1)的值; (2)若f(a)=1,求a 的值;(3)若f(x)>2,求x 的取值范围.【解析】(1)由题意,得f(1)=2,f(-1)=2,所以f(1)+f(-1)=4. (2)当a <0时,f(a)=a +3=1,解得a =-2;当a≥0时,f(a)=a2+1=1,解得a =0.所以a =-2或a =0. (3)当x <0时,f(x)=x +3>2,解得-1<x <0; 当x≥0时,f(x)=x2+1>2,解得x >1. 所以x 的取值范围是-1<x <0或x >1.【点拨】分段函数中,x 在不同的范围内取值时,其对应的函数关系式不同.因此,分段函数往往需要分段处理.【变式训练4】已知函数f(x)=⎪⎩⎪⎨⎧>+-≤<.10,621,100|,lg |x x x x 若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【解析】不妨设a <b <c ,由f(a)=f(b)=f(c)及f(x)图象知110<a <1<b <10<c <12,所以-lg a =lg b =-12c +6,所以ab =1,所以abc 的范围为(10,12),故选C.总结提高1.在函数三要素中,定义域是灵魂,对应法则是核心,因为值域由定义域和对应法则确定,所以两个函数当且仅当定义域与对应法则均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.2.若一个函数在其定义域不同的子集上,解析式不同,则可用分段函数的形式表示.3.函数的三种表示法各有利弊,一般情况下,研究函数要求出函数的解析式,通过解析式来解题.求函数解析式的方法有:配方法、观察法、换元法和待定系数法等.。
高中数学 第5章 函数概念与性质 5.2 函数的表示方法教学案(含解析)苏教版必修第一册-苏教版高一
5.2 函数的表示方法学习目标核心素养1.理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数.(重点)2.了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值.(重点、难点) 通过学习本节内容,进一步提升学生的逻辑推理、数学运算核心素养.观察教材第5.1节开头的3个函数问题,你能说出各种函数表达形式上的特点吗?如何用数学语言来准确地描述函数表示法?你能说出几种函数表示法的优缺点吗?1.函数的表示方法2.分段函数(1)在定义域内不同部分上,有不同的解析表达式.像这样的函数,通常叫做分段函数.(2)分段函数定义域是各段定义域的并集,其值域是各段值域的并集.(3)分段函数图象:画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象.分段函数是一个函数,因此应在同一坐标系中画出各段函数图象.1.思考辨析(正确的打“√〞,错误的打“×〞)(1)任何一个函数都可以用列表法表示.( )(2)任何一个函数都可以用解析法表示.( )(3)有些函数能用三种方法来表示.( )[答案] (1)× (2)× (3)√ 2.(一题两空)假设函数f (x )=⎩⎪⎨⎪⎧x ,x >0,x 2-1,x <0,那么f (x )的定义域为,值域为.{x |x ≠0} {y |y >-1} [定义域为{x |x >0或x <0}={x |x ≠0}, 当x >0时,f (x )>0,当x <0时,f (x )>-1,∴值域为{y |y >-1}.]3.某同学去商店买笔记本,单价5元,买x (x ∈{1,2,3,4,5})个笔记本需要y 元,试用三种方法表示函数y =f (x ).[解] 列表法:笔记本数x 1 2 345钱数y5 10 15 20 25解析法:y =5x ,x ∈{1,2,3,4,5}. 图象法:求函数解析式(1)f (x )为一次函数,f (2x +1)+f (2x -1)=-4x +6,那么f (x )=. (2)f (x +1)=x +2x ,那么f (x )=.(3)f (x )为一次函数,且f (f (x ))=4x -1,那么f (x )=.(4)设函数f (x )=⎩⎪⎨⎪⎧2,x >0,x 2+bx +c ,x ≤0,假设f (-4)=f (0),f (-2)=-2,那么f (x )的解析式为.(5)假设f ⎝⎛⎭⎪⎫x -2x =x 2+4x2,那么f (x )=.[思路点拨] (1)(3)可以设出函数解析式,用待定系数法求解.(2)可以把x +1看作一个整体来求解.(4)用待定系数法求解.(5)可以把x -2x看作一个整体来求解.(1)-x +3 (2)x 2-1(x ≥1) (3)2x -13或-2x +1 (4)f (x )=⎩⎪⎨⎪⎧2,x >0x 2+4x +2,x ≤0(5)x 2+4 [(1)设f (x )=ax +b (a ≠0),f (2x +1)=a (2x +1)+b , f (2x -1)=a (2x -1)+b ,f (2x +1)+f (2x -1)=4ax +2b =-4x +6,所以⎩⎪⎨⎪⎧4a =-4,2b =6,解得⎩⎪⎨⎪⎧a =-1,b =3,即函数f (x )的解析式为f (x )=-x +3. (2)令x +1=t (t ≥1), 那么x =t -1,x =(t -1)2, ∴f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(3)设所求函数f (x )=kx +b (k ≠0),所以f (f (x ))=f (kx +b )=k (kx +b )+b =k 2x +kb +b =4x -1,那么⎩⎪⎨⎪⎧k 2=4,kb +b =-1,解得⎩⎪⎨⎪⎧k =2,b =-13或⎩⎪⎨⎪⎧k =-2,b =1,所以f (x )=2x -13或f (x )=-2x +1.(4)由题意得⎩⎪⎨⎪⎧16-4b +c =c ,4-2b +c =-2,解得⎩⎪⎨⎪⎧b =4,c =2,故f (x )=⎩⎪⎨⎪⎧2,x >0,x 2+4x +2,x ≤0.(5)f ⎝⎛⎭⎪⎫x -2x =x 2+4x2=⎝ ⎛⎭⎪⎫x -2x 2+4,∴f (x )=x 2+4.]求函数解析式的常用方法1待定系数法:函数f x 的函数类型,求f x的解析式时,可根据类型设出其解析式,将条件代入解析式,得到含待定系数的方程组,确定其系数即可.2换元法:令t =g x ,注明t 的X 围,再求出f t 的解析式,然后用x 代替所有的t 即可求出f x ,一定要注意t 的X 围即为fx 中x 的X 围.3配凑法:f g x的解析式,要求f x 时,可从f g x的解析式中拼凑出“gx 〞,即用g x 来表示,再将解析式两边的g x 用x 代替即可.4代入法:y =f x的解析式求y =fg x 的解析式时,可直接用新自变量g x 替换y =f x 中的x .[跟进训练]1.(1)f (x )是一个正比例函数和一个反比例函数的和,且f (2)=3,f (1)=3,那么f (x )=.(2)假设f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2+1x ,那么f (x )=.(1)x +2x(2)x 2-x +1(x ≠1)[(1)设f (x )=k 1x +k 2x ,那么⎩⎪⎨⎪⎧f 1=k 1+k 2=3,f 2=2k 1+k 22=3⇒⎩⎪⎨⎪⎧k 1=1,k 2=2,∴f (x )=x +2x.(2)令t =x +1x (t ≠1),那么x =1t -1,∴f (t )=⎝ ⎛⎭⎪⎫1t -12+1⎝ ⎛⎭⎪⎫1t -12+(t -1)=t 2-t +1,∴f (x )=x 2-x +1(x ≠1).]分段函数[例2] 函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.试求f (-5),f (-3),f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52的值.[思路点拨] 要求各个函数值,需要把自变量代入到相应的解析式中.[解] 由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2(-3)=3-23.因为f ⎝ ⎛⎭⎪⎫-52=-52+1=-32, -2<-32<2,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-32 =⎝ ⎛⎭⎪⎫-322+2×⎝ ⎛⎭⎪⎫-32 =94-3=-34.1.(变结论)本例条件不变,假设f (a )=3,某某数a 的值.[解] ①当a ≤-2时,f (a )=a +1,所以a +1=3,所以a =2>-2不合题意,舍去. ②当-2<a <2时,a 2+2a =3, 即a 2+2a -3=0.所以(a -1)(a +3)=0,所以a =1或a =-3. 因为1∈(-2,2),-3(-2,2), 所以a =1符合题意.③当a ≥2时,2a -1=3,所以a =2符合题意. 综合①②③,当f (a )=3时,a =1或a =2.2.(变结论)本例条件不变,假设f (m )>m (m ≤-2或m ≥2),某某数m 的取值X 围. [解] 假设f (m )>m ,即⎩⎪⎨⎪⎧m ≤-2,m +1>m 或⎩⎪⎨⎪⎧m ≥2,2m -1>m ,即m ≤-2或⎩⎪⎨⎪⎧m ≥2,m >1,所以m ≤-2或m ≥2.所以m 的取值X 围是(-∞,-2]∪[2,+∞).1.分段函数求值,一定要注意所给自变量的值所在的X 围,代入相应的解析式求值.2.分段函数的函数值求相对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验分段解析式的适用X 围;也可先判断每一段上的函数值的X 围,确定解析式再求解.3.求分段函数的定义域时,取各段自变量的取值X 围的并集即可. 求分段函数的值域时,要先求出各段区间内的值域,然后取其并集.方程组法求解析式1.解二元一次方程组的主导思想是什么?[提示] 主导思想是消元,常用的消元方法有代入消元和加减消元两种.2.解方程组:⎩⎪⎨⎪⎧A +B =4,①A -B =6,②[提示] 法一(代入消元法):由②得A =B +6,代入①得B +6+B =4,∴B =-1,代入A =B +6,得A =5,∴A =5,B =-1.法二(加减消元法):①+②得2A =10,∴A =5, ①-②得2B =-2,∴B =-1.3.探究2中,每个等式右边如果是代数式,如⎩⎪⎨⎪⎧A +B =x 2,A -B =4x ,能求A ,B 吗?[提示] 能求A ,B .仍可以采用上述两种方法. 两式相加得2A =x 2+4x ,∴A =x 2+4x2,两式相减得2B =x 2-4x ,∴B =x 2-4x2.[例3] 求解析式.(1)f (x )+2f (-x )=1x,求f (x );(2)2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,求f (x ).[思路点拨] 将f (x )与f (-x ),f (x )与f ⎝ ⎛⎭⎪⎫1x 分别看作两个变量,构造这两个变量的方程组,通过解方程组求f (x ).[解] (1)∵f (x )+2f (-x )=1x,①用-x 替换x 得f (-x )+2f (x )=-1x,②②×2-①得3f (x )=-2x -1x =-3x ,∴f (x )=-1x.(2)∵2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,用1x替换x 得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x,消去f ⎝ ⎛⎭⎪⎫1x 得3f (x )=6x -3x ,∴f (x )=2x -1x.方程组法(消去法),适用于自变量具有对称规律的函数表达式,如:互为倒数⎝ ⎛⎭⎪⎫f x ,f ⎝ ⎛⎭⎪⎫1x ,互为相反数(f (-x ),f (x ))的函数方程,通过对称构造一个对称方程组,解方程组即可.在构造对称方程时,一般用1x或-x 替换原式中的x 即可.[跟进训练]2.f (x )满足f (x )=2f ⎝ ⎛⎭⎪⎫1x+x ,那么f (x )的解析式为. f (x )=-23x -x 3 [因为f (x )=2f ⎝ ⎛⎭⎪⎫1x +x ,用1x 替换x 得f ⎝ ⎛⎭⎪⎫1x =2f (x )+1x , 代入上式得f (x )=2⎣⎢⎡⎦⎥⎤2f x +1x +x ,解得f (x )=-23x -x3.]1.函数三种表示法的优缺点2.描点法画函数图象的步骤:(1)求函数定义域;(2)化简解析式;(3)列表;(4)描点;(5)连线.3.求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)消元法;(5)方程组法等.1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )C[先分析小明的运动规律,再结合图象作出判断.距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.]2.函数f(3x+1)=x2+3x+2,那么f(10)=.20[令3x+1=10,∴x=3,代入得f(10)=32+3×3+2=20.]3.f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,那么f(x)=.3x -2 [设f (x )=kx +b (k ≠0), ∵2f (2)-3f (1)=5,2f (0)-f (-1)=1,∴⎩⎪⎨⎪⎧k -b =5,k +b =1,∴⎩⎪⎨⎪⎧k =3,b =-2,∴f (x )=3x -2.]4.函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值; (2)假设f (x 0)=8,求x 0的值. [解] (1)∵0≤x ≤2时,f (x )=x 2-4,∴f (2)=22-4=0,f (f (2))=f (0)=02-4=-4. (2)当0≤x 0≤2时,由x 20-4=8,得x 0=±23(舍去); 当x 0>2时,由2x 0=8,得x 0=4.∴x 0=4.。
《函数的概念及其表示》教案完美版
?函数的概念及其表示?教案第一课时: 1.2.1 函数的概念〔一〕教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此根底上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间〞的符号表示某些集合。
教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学过程:一、复习准备:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2 .回忆初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. 表示方法有:解析法、列表法、图象法.二、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h 〔米〕与时间t 〔秒〕的变化规律是21305h t t =-.B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.〔见书P16页图〕C .国际上常用恩格尔系数〔食物支出金额÷总支出金额〕反映一个国家人民生活质量的上下。
“八五〞方案以来我们城镇居民的恩格尔系数如下表. 〔见书P17页表〕②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →③定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数〔function 〕,记作:(),y f x x A =∈.其中,x 叫自变量,x 的取值范围A 叫作定义域〔domain 〕,与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域〔range 〕.④讨论:值域与B 的关系?构成函数的三要素?一次函数(0)y ax b a =+≠、二次函数2(0)y ax bx c a =++≠的定义域与值域? ⑤练习:2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。
高中数学函数及其表示教案
高中数学函数及其表示教案
教学对象:高中学生
教学目标:
1.了解函数的概念和性质;
2.掌握函数的表示方法;
3.能够应用函数解决实际问题。
教学步骤:
一、引入(10分钟)
通过一个生活实例引入函数的概念,让学生了解函数是什么,并探讨函数的性质。
二、讲解(20分钟)
1.函数的定义和符号表示;
2.函数的性质(奇偶性、单调性等);
3.函数的表示方法(映射法则、方程法则、图象法则)。
三、练习(30分钟)
1.完成课本上的相关习题;
2.结合生活实际问题,应用函数解决问题。
四、总结(10分钟)
总结今天所学知识,强化重点,澄清疑惑。
五、作业布置(5分钟)
布置相关作业,巩固所学知识。
教学辅助手段:
1.幻灯片;
2.黑板;
3.教材。
教学反馈:
1.听取学生对函数概念和性质的理解;
2.检查学生完成的习题。
教学延伸:
1.探讨更多函数的相关性质;
2.引导学生分析更复杂的函数问题。
教学检测:
出一个综合性考试,测试学生对函数概念和表示方法的掌握程度。
高三数学一轮复习精品教案8:2.1 函数及其表示教学设计
2.1 函数及其表示目标定位1. 了解映射的概念,在此基础上加深对函数概念的理解。
2.能根据函数的二要素判断两个函数是否为同一函数。
3.理解分段函数的意义。
4.掌握函数的三种表示方法。
知识梳理1. 设集合A是一个非空的数集,对A内任意数x,按照确定的法则f,都有,则这种对应关系叫做集合A的一个函数。
记作:。
2.确定一个函数只需两个要素:。
3.设A、B是两个非空的集合,如果按照某种对应法则f,对A内任意一个元素x,在B 内,则称f是集合A到集合B的映射。
4.函数的三种表示方法是:。
课堂互动知识点1 函数的概念函数的定义有各种不同的形式,不管哪种形式其中最核心的内容都是“对于任意的一个数x,按照确定的法则f,都有惟一确定的数值y与它对应”,“惟一”是其中的关键字。
在处理有关函数的概念的问题时,必须切实把握“惟一”二字。
『例题1』下列各图象不能表示函数图象的是『分析』根据函数的定义,对于任意的一个数x,按照确定的法则f,都有惟一确定的数值y与它对应,而在D中对于的x可能有两个y值与它对应,所以D不能表示函数图象。
『答案』D『点评』在解决考查函数的概念的题目时,必须把握两点:一是定义域非空数集(当然值域也非空数集);二是对于任意的一个数x,按照确定的法则f,都有惟一确定的数值y与它对应(必须是惟一的)。
巩固练习 以下四组函数中,表示同一函数的是A .2)(|,|)(t t g x x f ==B .22)()(,)(x x g x x f ==C .1)(,11)(2+=--=x x g x x x f D .1)(,11)(2-=-⋅+=x x g x x x f 知识点2 函数的表示法函数的表示方法是函数的外在表现形式,在三种形式中最重要的是解析法、图象法(这两种表示方法必须既要能读懂,又要能用它们熟练地表示函数),列表法在以前的考查中主要是能读懂列表法表示的函数和列表法画函数图象,一般不要求学生用列表的方法表示函数。
高三数学一轮复习精品教案9:2.1 函数及其表示教学设计
2.1 函数及其表示1.函数映射的概念函数映射两集合A,B设A,B是两个非空数集设A,B是两个非空集合对应关系f:A→B 如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A对应f:A→B是一个映射2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图像法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.3.误把分段函数理解为几种函数组成.『试一试』1.(2013·江西高考)函数y =x ln(1-x )的定义域为( ) A .(0,1) B .『0,1) C .(0,1』D .『0,1』『解析』选B 根据题意得⎩⎪⎨⎪⎧1-x >0,x ≥0,解得0≤x <1,即所求定义域为『0,1).2.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0『解析』选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2.求函数解析式的四种常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).『练一练』1.设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于( ) A .-2x +1 B .2x -1 C .2x -3 D .2x +7『答案』D2.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (x )=________. 『答案』x 2-4x +3考点一函数与映射的概念1.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =x -12B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100『答案』D2.以下给出的同组函数中,是否表示同一函数?为什么? (1)f 1:y =xx;f 2:y =1.(2)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:x x ≤1 1<x <2 x ≥2 y123(3)f 1:y =2x ;f 2:如图所示.『答案』(1)不同函数.f 1(x )的定义域为{x ∈R|x ≠0},f 2(x )的定义域为R.(2)同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式.(3)同一函数.理由同②. 『类题通法』两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.考点二函数的定义域问题角度一 求给定函数解析式的定义域 1.(1)(2013·山东高考)函数f (x )= 1-2x +1x +3的定义域为( ) A .(-3,0』B .(-3,1』C .(-∞,-3)∪(-3,0』D .(-∞,-3)∪(-3,1』(2)(2013·安徽高考)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 『解析』(1)由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x ≥0,x +3>0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)要使函数有意义,需⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0,即⎩⎪⎨⎪⎧x +1x >0,x 2≤1,即⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1,解得0<x ≤1,所以定义域为(0,1』.『答案』(1)A (2)(0,1』角度二 已知f (x )的定义域,求f (g (x ))的定义域2.已知函数f (x )的定义域是『-1,1』,求f (log 2x )的定义域. 『答案』∵函数f (x )的定义域是『-1,1』,∴-1≤log 2x ≤1, ∴12≤x ≤2.故f (log 2x )的定义域为⎣⎡⎦⎤12,2. 角度三 已知定义域确定参数问题 3.(2014·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.『解析』函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.『答案』『-1,0』 『类题通法』简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为『a ,b 』,则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.考点三求函数的解析式『典例』 (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(4)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. 『解』 (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).(4)当x ∈(-1,1)时,有 2f (x )-f (-x )=lg(x +1).① 以-x 代x ,得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).『类题通法』求函数解析式常用的方法(1)待定系数法;(2)换元法(换元后要注意新元的取值范围); (3)配凑法;(4)解方程组法. 『针对训练』1.已知f (x +1)=x +2x ,求f (x )的解析式. 『答案』法一:设t =x +1, 则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1),即f (x )=x 2-1(x ≥1).2.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.『答案』设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.考点四分段函数『典例』 (1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.(2)(2013·福建高考)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. 『解析』 (1)当a >0时,1-a <1,1+a >1. 这时f (1-a )=2(1-a )+a =2-a , f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,这时f (1-a )=-(1-a )-2a =-1-a , f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.(2)∵π4∈⎣⎡⎭⎫0,π2, ∴f ⎝⎛⎭⎫π4=-tan π4=-1, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=f (-1)=2×(-1)3=-2. 『答案』 (1)-34(2)-2『类题通法』分段函数“两种”题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.提醒:当分段函数的自变量范围不确定时,应分类讨论. 『针对训练』设函数f (x )=⎩⎨⎧2-x ,x ∈-∞,1,x 2,x ∈[1,+∞,若f (x )>4,则x 的取值范围是______.『解析』当x <1时,由f (x )>4,得2-x >4,即x <-2; 当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2.综上可得x <-2或x >2. 『答案』(-∞,-2)∪(2,+∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 函数及其表示
考情分析
考点新知①本节是函数部分的起始部分,以考查函数
概念、三要素及表示法为主,同时考查学生在实际问题中的建模能力.
②本节内容曾以多种题型出现在高考试题中,要求相对较低,但很重要,特别是函数的解析式仍会是2015年高考的重要题型.①理解函数的概念,了解构成函数的要素.
②在实际情境中,会根据不同的需要选择恰
当的方法(如图象法、列表法、解析法)表
示函数.
③了解简单的分段函数,并能简单应用
.
1. 函数的定义
一般地,设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的一个元素y和它对应,这样的对应叫做从A到B 的一个函数,通常记为y=f(x),x∈A.
2. 函数的三要素
函数的构成三要素为定义域、值域、对应法则.由于值域是由定义域和对应法则决定的,所以如果两个函数的定义域和对应法则完全一致,我们就称这两个函数是同一函数.
3. 函数的表示方法
表示函数的常用方法有列表法、解析法、图象法.
4. 分段函数
在定义域内不同部分上,有不同的解析式,像这样的函数通常叫做分段函数.分段函数的定义域是各段自变量取值集合的并集,值域是各段上函数值集合的并集.
5. 映射的概念
一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射.
『备课札记』
题型1函数的概念
例1判断下列对应是否是从集合A到集合B的函数.
(1) A=B=N*,对应法则f:x→y=|x-3|,x∈A,y∈B;
(2) A=『0,+∞),B=R,对应法则f:x→y,这里y2=x,x∈A,y∈B;
(3) A=『1,8』,B=『1,3』,对应法则f:x→y,这里y3=x,x∈A,y∈B;
(4) A={(x,y)|x、y∈R},B=R,对应法则:对任意(x,y)∈A,(x,y)→z=x+3y,z ∈B.
『解析』(1) 对于A中的元素3,在f的作用下得到0,但0不属于B,即3在B中没有元素与之对应,所以不是函数.
(2) 集合A中的一个正数在集合B中有两个元素与之对应,所以不是函数.
(3) 由y3=x,即y=3
x,因为A=『1,8』,B=『1,3』,对应法则f:x→y,符合函
数对应.
(4) 由于集合A不是数集,所以此对应法则不是函数.
备选变式(教师专享)
下列说法正确的是______________.(填序号)
①函数是其定义域到值域的映射;
②设A=B=R,对应法则f:x→y=x-2+1-x,x∈A,y∈B,满足条件的对应法则f构成从集合A到集合B的函数;
③函数y=f(x)的图象与直线x=1的交点有且只有1个;
④映射f:{1,2,3}→{1,2,3,4}满足f(x)=x,则这样的映射f共有1个.
『答案』①④
『解析』②中满足y=x-2+1-x的x值不存在,故对应法则f不能构成从集合A 到集合B的函数;③中函数y=f(x)的定义域中若不含x=1的值,则其图象与直线x=1没有交点.
题型2函数的解析式
例2求下列各题中的函数f(x)的解析式.
(1) 已知f(x+2)=x+4x,求f(x);
(2) 已知f ⎝⎛⎭⎫
2x +1=lgx ,求f(x);
(3) 已知函数y =f(x)满足2f(x)+f ⎝⎛⎭⎫1x =2x ,x ∈R 且x≠0,求f(x); (4) 已知f(x)是二次函数,且满足f(0)=1,f(x +1)=f(x)+2x ,求f(x). 『解析』(1) (解法1)设t =x +2,则x =t -2,即x =(t -2)2, ∴ f(t)=(t -2)2+4(t -2)=t 2-4, ∴ f(x)=x 2-4(x≥2).
(解法2)∵ f(x +2)=(x +2)2-4, ∴ f(x)=x 2-4(x≥2). (2) 设t =2x +1,则x =2t -1
,
∴ f(t)=lg 2t -1,即f(x)=lg 2
x -1(x>1).
(3) 由2f(x)+f ⎝⎛⎭⎫
1x =2x ,① 将x 换成1x ,则1
x 换成x ,得
2f ⎝⎛⎭⎫1x +f ()x =2
x
,② ①×2-②,得3f(x)=4x -2
x ,得
f(x)=43x -23x
.
(4) ∵ f(x)是二次函数,∴ 设f(x)=ax 2+bx +c(a≠0).由f(0)=1,得c =1. 由f(x +1)=f(x)+2x ,得
a(x +1)2+b(x +1)+1=(ax 2+bx +1)+2x , 整理,得(2a -2)x +(a +b)=0,
由恒等式原理,知⎩
⎪⎨
⎪⎧2a -2=0,
a +
b =0⎩
⎪⎨⎪⎧a =1,
b =-1, ∴ f(x)=x 2-x +1. 变式训练
求下列函数f(x)的解析式.
(1) 已知f(1-x)=2x 2-x +1,求f(x); (2) 已知f ⎝⎛⎭⎫x -1x =x 2+1
x
2,求f(x);
(3) 已知一次函数f(x)满足f(f(x))=4x -1,求f(x);
(4) 定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x +1),求f(x). 『解析』(1) (换元法)设t =1-x ,则x =1-t , ∴ f(t)=2(1-t)2-(1-t)+1=2t 2-3t +2, ∴ f(x)=2x 2-3x +2.
(2) (配凑法)∵ f ⎝⎛⎭⎫x -1x =x 2+1
x 2=⎝⎛⎭⎫x -1x 2+2, ∴ f(x)=x 2+2.
(3) (待定系数法)∵ f(x)是一次函数, ∴ 设f(x)=ax +b(a≠0),则
f(f(x))=f(ax +b)=a(ax +b)+b =a 2x +ab +b. ∵ f(f(x))=4x -1,
∴ ⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩
⎪⎨⎪⎧a =2,
b =-13
或⎩⎪⎨
⎪
⎧a =-2,b =1,
∴ f(x)=2x -1
3或f(x)=-2x +1.
(4) (消去法)当x ∈(-1,1)时,有 2f(x)-f(-x)=lg(x +1),①
以-x 代替x 得2f(-x)-f(x)=lg(-x +1),② 由①②消去f(-x)得,
f(x)=23lg(x +1)+1
3lg(1-x),x ∈(-1,1).
题型3 分段函数
例3 已知实数a≠0,函数f(x)=⎩
⎪⎨⎪⎧2x +a ,x<1,-x -2a ,x≥1.
(1) 若a =-3,求f(10),f(f(10))的值; (2) 若f(1-a)=f(1+a),求a 的值.
『解析』(1) 若a =-3,则f(x)=⎩
⎪⎨⎪
⎧2x -3,x<1,-x +6,x≥1.
所以f(10)=-4,f(f(10))=f(-4)=-11. (2) 当a>0时,1-a<1,1+a>1,
所以2(1-a)+a =-(1+a)-2a ,解得a =-3
2,不合,舍去;
当a<0时,1-a>1,1+a<1,
所以-(1-a)-2a =2(1+a)+a ,解得a =-3
4,符合.
综上可知,a =-3
4.
备选变式(教师专享)
如图所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B(起点)向点A(终点)运动,设点P 运动的路程为x ,△ABP 的面积为y.
(1) 求y 与x 之间的函数关系式; (2) 画出y =f(x)的图象.
『解析』(1)y =⎩⎨⎧
2x ()0≤x≤4,
8()4<x≤8,-2x +24()8<x≤12.
(2)y =f ()x 的图象如图.
1. 函数是特殊的映射,其特殊性在于集合A 与B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射;而映射不一定是函数从A 到B 的一个映射,A 、B 若不是数集,则这个映射不是函数.
2. 函数是一种特殊的对应,要检验给定的两个变量是否具有函数关系,只需要检验:① 定义域和对应法则是否给出;② 根据给出的对应法则,自变量在定义域中的每一个值,
是否都有唯一确定的函数值.
3. 函数解析式的求解方法通常有:配凑法,换元法,待定系数法及消去法.用换元法求解时要特别注意新元的范围,即所求函数的定义域;而消去法体现的方程思想,即根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).。