数列中an与Sn的关系
数学人教A版高中必修5数列中an与Sn的关系探究优秀学案
数列中n a 与n S 的关系探究1、理解数列的前n 项和n S 与通项n a 的关系;对数列的前n 项和n S 与通项n a 的关系能有较深刻的理性认识,会变形利用⎩⎨⎧≥-==-.2,;1,11n S S n S a n n n )(*N n ∈来解决一些与n a 及n S 有关联的一定难度的灵活性、综合性问题,形成技能。
2、通过对问题探究与变式训练,体会⎩⎨⎧≥-==-.2,;1,11n S S n S a n n n )(*N n ∈联结数列的通项n a 和前n 项和n S 的作用。
重点:由数列前n 项和n S 与通项n a 的关系求n a ; 难点:(1)由1-⇒n n S S 及使用1--=n n n S S a 的前提条件”“2≥n ; (2)由数列前n 项和n S 与通项n a 的关系,进行n a 与n S 的转化。
1、回顾:我们前面学过等差数列、等比数列,可以由a n →S n ,如等差数列中有2)(1n n a a n S +=;等比数列中有S n →a n ,如已知22n S n n =+,可以求a n 。
2、问题引入:如果知道a n 与S n 之间的关系式,能否求a n 或S n 呢? 3、典型例题及类题演练:例1:2016年全国III 卷17题:已知数列}{n a 的前n 项和n n a S λ+=1,其中0≠λ。
(1)、证明}{n a 是等比数列,并求其通项公式;(2)、若32315=S ,求λ。
类题演练:2015年全国I 卷17:n S 为数列}{n a 的前n 项,已知342,02+=+>n n n n S a a a .(1)、求}{n a 的通项公式;(2)、设11+=n n n a a b ,求数列}{n b 的前n 项和。
问题演变:变式:已知正项数列{a n }的前n 项和为n S ,a 1=3,且)2(21≥=+-n a S S n n n ,求该数列的通项a n 。
等差数列中Sn与an间的重要关系及应用
等差数列中S n 与a n 间的 重要关系及其应用“设S n、a n分别是等差数列{a n}的前n 和与通项,则它们之间有如下的重要关系:S n =(kn )a n ,其中k 是非零实数,n 是正整数。
”我们知道,等差数列{a n }的前n 和S n 、通项a n 分别有如下的表达式:⑴ S n =na 1- n(n-1)2 d ,其可等价变形为S n = d 2 n 2 +(a 1-d2 )n ,它是关于n 的二次函数且不含常数项,一般形式是:S n =An 2+Bn ,其中A 、B 是非零待定系数;⑵ a n = a 1 +(n-1)d ,其可等价变形为a n =dn+(a 1 -d ),它是关于n 的一次函数,一般形式是:a n =an+b ,其中a 、b 是非零待定系数;通过对等差数列{a n }前n 和S n 的一般形式S n =An 2+Bn 与其通项a n 的一般形式a n =an+b 的观察分析,不难得出S n 与a n 之间有这样的重要关系式:S n =(kn )a n 。
S n 与a n 相互关系的应用举例:[例1]在等差数列{a n }中,a 4=0.8,a 11=2.2,求a 51+a 52+…+a 80.【解】 由等差数列的通项公式得⎩⎨⎧=+=+2.2108.0311d a d a ,解得a 1=0.2,d =0.2.∴a 51+a 52+…+a 80=S 80-S 50 =80a 1+d a d 2495050279801⨯--⨯=30a 1+1935d =30×0.2+1935×0.2=393. 【点评】 本题求解分两个层次,首先由已知求出a 1和d ,再将所求转化为S 80-S 50,这是解题的关键.[例2]根据数列{a n }的前n 项和公式,判断下列数列是否是等差数列. (1)S n =2n 2-n (2)S n =2n 2-n +1【解】 (1)a 1=S 1=1 当n ≥2时,a n =S n -S n -1=(2n 2-n )-[2(n -1)2-(n -1)]=2(2n -1)-1=4n -3∵n =1 时也成立,∴a n =4n -3 a n +1-a n =[4(n +1)-3]-[4n -3]=4∴{a n }成等差数列(2)a 1=S 1=2 a 2=S 2-S 1=5 a 3=S 3-S 2=9 ∵a 2-a 1≠a 3-a 2 ∴{a n }不是等差数列.【点评】 已知S n ,求a n ,要注意a 1=S 1,当n ≥2时a n =S n -S n -1, 因此a n =⎩⎨⎧≥-=-)2( )1(11n S S n S n n.练习: 已知等差数列{a n }的前项和S n 满足条件:S n =2n 2+3n ,求此等差数列的通项a n解: 根据等差数列的前n 项和S n 是关于n 的二次函数且不含常数项,即S n = d 2n 2+(a 1-d 2 )n,并结合已知条件等差数列{a n }的前项和S n =2n 2+3n 立有, d2 =2且a 1-d2=3, 解之得 a 1=5,d=4,于是便得所求等差数列的通项a n =4n+1. [例3]已知等差数列{a n }满足:S p =q ,S q =p ,求S p +q (其中p ≠q ). 【解】 由已知S p =q ,S q =p 得 pa 1+q d p p =-2)1( ① qa 1+p d q q =-2)1( ② ①-②整理得2)1(21dq p a -++=-1∴d q p q p a q p S q p 2)1)(()(1-++++=+=(p +q )2)1(21d q p a -++=-(p +q ) 【点评】 本问题即是在a 1、d 、n 、a n 、S n 中知三求二问题,但在解方程的过程中体现出了较高的技巧;也可考虑设S n =An 2+Bn 去求解. 例4 有两个等差数列{a n }、{b n },其前n 和分别为S n 、 T n ,并且n n T S =7n+2n+3 ,求:⑴ 55b a 的值;⑵115b a的值分析:由等差数列可知,其前n 项和是关于n 的二次函数且不含常数项;根据已知条件,两个等差数列前n 项和的比的结果是关于n 的一次因式,说明它们在相比的过程中约去了一个共同的因式kn ,于是,我们只要将其还原,即可得到两个等差数列的前n 项和,再对照等差数列前n 项和的二次函数形式:S n = d 2 n 2 +(a 1-d2 )n ,很快便可得到其首项、公差与通项,进而由等差数列通项公式求出数列中的任意一项。
数列中an及Sn的关系
对于任意一个数列,当定义数列的前n项和通常用S表示时,记作S= a i+ a2+・・・+禺,此时通项公S,n= 1,式a n= .Si—S T, n》2而对于不同的题目中的a n与S的递推关系,在解题时又应该从哪些方向去灵活应用◎= S— S-1 (n》2)去解决不同类型的问题呢?我们将从下面三个角度去探索在各类考试中出现的a n与S相关的问题:归纳起来常见的角度有:角度一:直观运用已知的S,求a n;角度二:客观运用a n= S—S—1 (n》2),求与如S有关的结论;角度三:a n与S的延伸应用.方法:已知 $求a n的三个步骤(此时S为关于n的代数式):(1) 先利用a i= S求出a i ;(2) 用n—1替换S中的n得到一个新的关系,利用a n = S—S—1 (n》2)便可求出当n》2时a n的表达式;(3) 对n= 1时的结果进行检验,看是否符合n》2时a n的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n = 1与n》2两段来写.同时,在部分题目中需要深刻理解“数列的前n项和”的实际意义,对“和的式子”有本质的认识,这样才能更好的运用S求解.女口:a+ 2a2+ 3a s+ — + na n= 2n—1,其中a+ 2比+ 3a s+^+ na n表示数列{na n}的前n 项和.1.已知数列{a n}的前n项和S= n2—2n+2,则数列{a()n}的通项公式为A. a n = 2n —3 B . a n= 2n+ 31, n= 11, n= 1C. a n = D . a n =2n —3, n》22n+ 3, n》2【解析】当n》2时,a n = S n —S n—1 = 2n—3 .当n = 1时,a1= S = 1,不满足上式.【答案】C2. (2015 •河北石家庄一中月考)数列{a n}满足:a1+ 3a2+ 5&+…+ (2 n—1) • a n= ( n—1) • 3n+1+ 3( n € M),则数列的通项公式a n= _____________ .【解析】当n》2时,a1 + 3a2 + 5a3+-+ (2n —3) • a n—1= (n —2) • 3n+ 3;则用已知等式减去上式得(2 n—1) • a n = (2n—1) • 3,得a n= 3 ;当n = 1 时,a i = 3,满足上式;故a n = 3.【答案】a n= 3n3. ____________________________________________________________________________________ (2015 •天津一中月考)已知{a n}的前n项和为S,且满足log2(S+1) = n +1,贝U a n= ______________________________ .【解析】由已知得S+ 1= 2n+1,贝U S= 2n+1—1;当n》2 时,a n= S—S—1= 2n+1—1 —2n+ 1 = 2n;当n3, n= 1=1时,a1 = S1 = 3,不满足上式;故a n= n.2 , n》23, n= 1【答案】a n= n2 , n》24. (2015 •四川成都树德期中)已知{a n}是一个公差大于0的等差数列,且满足a3a5= 45, a2 + a6= 14.(1) 求{a n}的通项公式;b b2 b n(2) 若数列{b n}满足:空+ 尹…+ 2 = a n+ 1(n€ M),求{b n}的前n项和.【解】(1)设等差数列{a n}的公差为d,则d>0,由a2+ a6= 14,可得a4= 7由a3a5= 45,得(7 —d)(7 + d) = 45,解得d= 2 或d=—2(舍)a n= a4+ ( n—4) d= 7+ 2( n —4),即a n= 2n—1.b n(2) 令6=尹贝U C1+ C2+ C3+ — + C n= a n+ 1 = 2n ①当n》2 时,d+ C2+ C3+・・・+ C n-1= 2( n—1) ②由①一②得,C n= 2,当n= 1时,C1= 2,满足上式;b n n 亠 1贝U C n= 2(n€ N*),即戸=2, . b n= 2 + ,故数列{b n}是首项为4,公比为2得等比数列,4(1 —2n) n+2•••数列{b n}的前n项和S n= = 2 +—4.1 —2此类题目中,已知条件往往是一个关于a n与S n的等式,问题则是求解与a n, S有关联的结论.那么我们需要通过对所求问题进行客观分析后,判定最后的结果中是保留a n,还是S.那么,主要从两个方向利用a n= S n—S n- 1( n》2):方向一:若所求问题是与a n相关的结论,那么用S—S—1 = a n ( n》2)消去等式中所有S与S n—1,保留项数a n,在进行整理求解;1. (2015 •广州潮州月考)数列{a n}的前n项和记为S, ai = 1, a n+1= 2S+ 1(n》1, n€ N*),则数列的通项公式是.【解析】当 n 》2 时,a n = 2S — i +1,两式相减得 a n +i — a n = 2( S — S —J ,即 a n +1 — a n = 2a n ,得 a n +1 = 3a n ;当n = 1时,a 2= 3,则a 2= 3a i ,满足上式;故{a n }是首项为1,公比为3得等比数列,二a n = 3 I . 【答案】a n = 3n — 12.数列{a n }的前 n 项和为 S,若 a n +1 = — 4S +1, a 1= 1. (1) 求数列{a n }的通项公式;(2) 设b n = na n ,求数列{b n }的前n 项和T n .【解】(1)当 n 》2 时,a n = — 4S —1 + 1,又 a n +1 = — 4S + 1,又 a 2 = — 4a 1 + 1 = — 3, a 1 = 1,•••数列{a n }是首项为a 1= 1,公比为q =— 3的等比数列,⑵由(1)可得b n = n • ( — 3)T n = 1 • ( — 3)0+ 2 • ( — 3)1 + 3 • ( — 3)2 +•••+ (n — 1) • ( — 3)n —2 + n • ( — 3)n —1,—3T n = 1 • ( — 3)1 + 2 • ( — 3)2+…+ (n — 2) • ( — 3)n —2 + (n — 1) • ( — 3)n —1+ n ( — 3)n ,1 2 n — 1n.•4 T n = 1 + ( — 3) + ( — 3) +…+ ( — 3)— n ,( — 3),16方向二:若所求问题是与 S 相关的结论,那么用 &= S — S —1 (n 》2)消去等式中所有项数 a n ,保留S 与$-1,在进行整理求解.11. 已知数列{a n }的前n 项和为S 且满足a n + 2S • S-1 = 0( n 》2) , a 1=玄1(1) 求证:—是等差数列; (2) 求a n 的表达式.【解】(1)证明:••• a n = S — S-1( n 》2),又 a n =— 2S • S-1,• S n - 1 — Si = 2S n • Si - 1 , S n M 0 .11因此疋―W= 2( n 》2).S 1 S 1— 111 1故由等差数列的定义知$是以&=一=2为首项,2为公差的等差数列.Si S 1 a 11 1 1(2)由(1)知S = S + (n — 1)d = 2 + (n — 1) x 2= 2n ,即 S =亦.1当 n 》2 时,a n =— 2S • Si —1 =—2n (n — 1)I又T a 1 = ,不适合上式.a n= ( — 3)n — 11 — (4n + 1)( — 3)所以, T n =--a n +1 — a n = —4a即—3(n 》2),12, n = 1,2. (2015 •江西名校联盟调考)已知正项数列{a n }的前n 项和为S ,且a 2— 2S a n + 1 = 0. (1) 求数列{S }的通项公式;1 1 1 一 1 2(2) 求证:$+疋+…+Q >2(S+I — 1).(提示: 一 > ------------------------ )o ! S2 Sn寸 n 寸 n +1+寸 n【解】(1) T a n = S1— Si -1 (n 》2),由 a n — 2S n a n +1 = 0,得(S — S —1)2— 2S n (S n — S —1) + 1= 0,整理得 S 2— S 2— 1= 1 . 当 n = 1 时,a 1 — 2Sa 1 + 1 = 0,且 a 1 >0,解得 a = 1, 故由等差数列的定义知{S n }是以1为首项,1为公差的等差数列. • S n = n ,则 S n = n . 亠 & 1 1 22 ,—— 厂⑵由⑴知十=丽>$+讦=2("—回,• S + S +…+ S >2( .2 — 1) + 2( 3 — 2) +…+ 2( n + 1— , n) = 2( n + 1 — 1) 即 1 + 2+…+ 1 > 2(S n + 1— 1)【总结】此类题目往往伴随着等差、等比数列的判定,所以需要对数列的判定方法熟练掌握.S , n = 1, 解此类题目中不仅需要深刻理解“数列的前 n 项和”的实际意义,还需要对a n =关S n — S n - 1 , n系式的形式结构很熟练的掌握,这样才能在题目中对已知等式灵活地变换.当然在解决问题的时候仍然需要从求谁的角度出发分析,确定等式的变换方向. 方向一:关于双重前n 项和此类题目中一般出现“数列 {a n }的前n 项和为S,数列{S }的前n 项和为T n ”的条件,在解答时需要 确定清楚求的是与 a n , S n , T n 中谁相关的问题,确定已知等式的运用方向.但一般是求解最底层的/ .1. (2015 •湖北武汉质检)设数列{a n }的前n 现和为S ,数列{S }的前n 项和为T n ,满足T n = 2S — n 2,n € N*.(1) 求a 1的值;(2) 求数列{a n }的通项公式.【解】(1)当 n = 1 时,T 1= 2S — 1,且 T 1 = S = a 1,解得 a 1= 1,(2)当 n 》2 时,S n = T n — T n -1= 2S — n — [2 S -1 — (n — 1) ] = 2S — 2S n -1 — 2n + 1a n =1 2n (n — 1)n 》2.i +1 i歹(1 -尹)n + 1_3尹=2n + 3 3盯v 2--S n = 2Si -1 + 2n — 1①则 S+1 = 2S + 2n +1②由②一①,得 a n +i = 2a n + 2,••• a n + 2 = 3 - 2n -1,贝y a n = 3 • 2n -1-2(n € N*).2• (2015 •安徽滁州期末联考)设数列{a n }的前n 项和为S,数列{S n }的前n 项和为T n ,且2T n = 4S n -2(n + n ), n € N*.(1) 证明:数列{a n + 1}为等比数列;n +1(2) 设 b n =■ ~-,证明:b 1 + b 2+^+ b n v 3.a n + 1【解】(1)当 n = 1 时,2T 1 = 4S - 2,且 T 1 = S= a 1,解得 a= 1,当 n = 2 时,212= 2(a + ◎ + a ?) = 4(a+ a ?) — 6,解得 a ?= 3, 当 n >2 时,2T n -1= 4S n -1-[( n — 1) + (n - 1)]• 2S = 2T n - 2T n -1 = 4S — (n + n ) — 4S -1 + [( n — 1) + ( n — 1)] 整理得s= 2S n -1 + n ① 则 S n +1 = 2S + n + 1②由②一①,得 a n +1 = 2a n + 1 ,a n + 1 + 1• a n +1 +1= 2(a n + 1),即——=2(n 》2),a n + 1•数列{a n +1}是首项为2,公比为2的等比数列,(2)由(1)知,a n + 1 = 2n ,贝 y b n =号1则 b 1+ b 2+-+ b n = |+ 22 + 壬…+2 2 2令T n = 2 +斗芬+专,① 则扣=|+1+寺…+ 7+齐,②,—+ 1 1 1 1 1 n +1由①一②,得2几=1+戸+戸+尹••+歹一I ^+Ta n +1 + 2K+I=E 2),易求得, a i + 2= 3, a 2 + 2= 6,贝U=2 ,显然a ?+ 1 a 1 + 1n + 12 ,a n + 1 + 2= 2( a n + 2), 即•••数列{a n + 2}是首项为3,公比为2的等比数列,1 则 T n V 3,即 b i + b 2+…+ b n v 3.方向二:已知等式在整理过程中需要因式分解求数列{a n }的通项公式.【解】(1)当 n = 1 时,「= 2S — 1;又 T 1 = S = a 1,__22(2)当 n 》2 时,S n = T n — T n — 1 = (2 S n — n ) — [2 S n —1 — (n — 1) ] = 2S n — 2 Si — 1 — 2n + 1,整理得s= 2$-1 + 2n — 1①•- S n + 1 = 2S n + 2n + 1②由②一①,得 a n +1 = 2a n + 2又 T 2= 20— 4;得 a 2= 4a 1 + 2当 n = 1 时,a1+ 2 = 3,比+ 2= 6,则市=2,•••数列{a n + 2}是以3为首项,2为公比的等比数列. 则 a n + 2 = 3 ・2“ 1,所以 a n = 3 ・2“ 1 — 2. 已知数列{ a n }的各项均为正数,前n 项和为$,且S= a (a J ° , n € N*.1设 b n = 2S , T n = b + b 2+…+ b n ,求 T n .a 1 (a 1 + 1)【解】(1)由已知得,当n = 1时,a 1 = S =2 ( &> 0) , - a 1= 1.22S a n + a n ,当n 》2时,由cc 22Si —1 = a n — 1 + a n — 1得 2a n = a n + ai — a n - 1 — a n —1 . 即(a n + a n -1)( a n — a n — 1 — 1) = 0,a n + a n —1 >0, • a n — a n — 1 = 1( n 》2).所以数列{a n }是以1为首项,1为公差的等差数列.(2)由(1)可得 a n = n , $= n(ri+ ° , b n = 2 =1——=-—^^22S n (n + 1) nn +1此类问题大多数时候会伴随"各项均为正数的数列{a n } ”这样的条件,运用在因式分解后对因式进行符号的判定,对因式进行的取舍.(2015 •山东青岛一模)各项均为正数的数列2{a n }满足 a n = 4S — 2a n —1( n € N*),其中 S 为{a n }的n 项和. (1) 求a i , a 2的值;则 a 1= 2a — 1,解得 a 1= 1 ;...a n + 1 + 2= 2( a n + 2),即 a n + 1 + 2K =2(n > 2)(1) 求证:数列{a n }是等差数列;方向三:需对已知等式变形后,再求解1. (2015 •江西五校联考)已知正项数列{&}中,其前n 项和为S ,且a n = 2西一1. (1) 求数列{a n }的通项公式;1(2) 设 b n =, T n = b 1 + b 2+ b 3+…+ b n ,求 T n .a n • a n+1【解】(1)由已知得,4S = (a n + 1)2.当 n 》2 时,4S —1= (a n -1+ 1)2,2222则 4S1 — 4S n - 1 = (a n + 1) — ( a n - 1 + 1),整理得(a n — 1) — ( a n - 1 +1) = 0 ,..(a n — a n — 1 — 2)( a n + a n — 1) = 0 又 a n > 0,贝U a n — a n — 1 = 2,2当 n = 1 时,4S = (a 1 +1),得 a 1 = 1 ; 故数列{a n }是首项为1,公差为2的等差数列;--a n = 2n — 1.1 111 1 12 1 —3 + 3 — 5 +…+ 2n — 1 — 2n + 1 1 1 n 2 1 — 2n + 1 = 2n + 12. (2015 •浙江温州中学月考)设数列{a n }的前n 项和为S,已知a 1 = 2, a 2= 8, $+1 + 4S -1= 5$(n 》2) , T n 是数列{log 2a n }的前n 项和.(1) 求数列{a n }的通项公式; (2) 求 T n .【解】(1)当n 》2时,S+1+ 4S —1= 5S ,..S n + 1 — Si = 4( S n — S n — 1),即 N n + 1 = 43n , 当 n = 1 时,a 2= 4a 1;故数列{a n }是以2为首项,4为公比的等比数列.n —12n —1a n = 2 • 4 = 2.2n 一 1(2)由(1)可知 log 2a n = log 22 = 2n — 1,111 1 ...T n = b 1 + b 2+ b 3+ …+ b n = 1—石 + 石一厅+…+ - 2 2 3 n1 1 nn =1—nnn n T! •1 1 1⑵由(1)可得"=K =犷* — 1 1 2 2n —11 2n + 1,T n =+ £ + £ +…+ b 1 b 2 b 31b n•- A n =1 — q n1 — q ,4. (2015 •辽宁沈阳诊断考试)设数列{a n }的前n 项和为S, a 1= 10, a n +1 = 9S + 10. (1)求证:{lg a n }是等差数列;⑵设Tn 是数列(lg a n )(lg a n +!)的前n 项和,求Tn ;1 2⑶ 求使T n >4(m i — 5m )对所有的n € N*恒成立的整数 m 的取值集合.【解】(1)证明:当n 》2时,&= 9S — 1+ 10,/• T n = log 2a i + log 2a ?+ log 2a 3+・・・+ log 2a n=1 + 3+ 5+…+ 2n — 1n (1 + 2n —1) 23. (2015 •江西三县联考)已知数列{a n }的各项均为正数, 记A (n ) = a i + a 2+-+ a n , B ( n )=a 2 + a 3+…+ a n +1, C ( n )= a 3 + a 4 +…+ a n +2,其中 n € N .(1)若a 1= 1, a 2 = 5,且对任意n € N ,三个数A (n ),巳n ) , C (n )依次组成等差数列,求数列{a n }的通项公式;⑵ a 1 = 1,对任意n € N*,三个数A (n ),耳n ) , C (n )依次组成公比为 q 的等比数列,求数列{a n }的前n 项和A.【解】(1) •••任意n € N*,三个数A (n ) , B ( n ) , C (n )依次组成等差数列,••• B ( n ) — A ( n ) = C ( n ) — B ( n ),贝V a n +1 — a 1 = a n + 2— a 2,即卩 a n + 2— a n +1 = a 2— a 1 = 4, 故数列{ a n }是首项为1,公差为4的等差数列;•- a n = 1 + (n — 1) x 4 = 4n — 3.(2)若对任意n € N*,三个数A (n ),B ( n ),C (n )依次组成公比为q 的等比数列,• B (n ) = qA (n ), C ( n ) = qB (n ), 则 C (n ) — Rn ) = q [Bn ) — A ( n )],得 a n + 2— a 2= q (a n +1 — a 1),即 a n + 2—qa n +1 = a 2— qa 1 , 当 n = 1 时,由 耳1) = qA (1),可得 a 2= qa ; a n +2 a 2 则 a n + 2—qa n +1 = a 2— qa = 0,又 a n >0,则—==q ,a n +1 a 1故数列{a n }是以1为首项,q 为公比的等比数列.a n + 1 a n + 1 — a n = 9( S n — S n _1),贝U a ・+ 1= 10a n ,即 =10,a n当 n = 1 时,a 2= 9a 1+ 10= 100,则竺=10, a 1故数列{a n }是以10为首项,10为公比的等比数列.a n = 10:贝y ig a n = n ,--lg a n +1 — Ig a n = n + 1 — n = 1,故数列{Ig a n }是首项为1,公差为1的等差数列.- 3 11⑵解:由(1)知 --=——=3 -—(Ig a n ) (lg a n +1)n n +1 n1 1 1 1 1 1• Tn =31 —1+1—3+…+ n —市=31—市3n3⑶Tn =市=3—市,3•••当n = 1时,T n 取最小值2-依题意有|>治—5n ),解得一1v m< 6, 故整数m 的取值集合为{0,1,2,3,4,5}1. (2015 •江苏扬州外国语中学模拟 )已知数列{a n }的前n 项和S = 2n — 3,则数列{a n }的通项公式为 __________ .【解析】当n 》2时,a n = Si — Si -1 = I — 3— I 1 + 3 = I 1.当n = 1时,a 1= S = — 1,不满足上式.—1, n =1【答案】a n = n — !2, n 》2a 2a n 2n2. (2015 •辽宁沈阳二中月考)已知数列{a n }满足a 1 + - +…+ -= a — 1,求数列{a n }的通项公式. 【解】当n 》2时,a 1 +号+…十-^7 = a 2n —2 — 12 n — 1an2n 2n — 2 2 2n —2由已知等式减去上式,得 -=a — 1 — a + 1 = (a — 1)a ,n —2…a n = n (a — 1) a ,3 (2015 •安徽江淮十校联考)已知函数f (x )是定义在(0,+^ )上的单调函数,且对任意的正数x .y 都有 f (x • y )= f (x ) + f (y ),若数列{a n }的前 n 项和为 S,且满足 f(S + 2) — f (a n )= f (3)( n € M),则 a n3nn +^.当n = 1时,a 1= a 2— 1,满足上式;.2八 2n—2• a n = n (a — 1) a .n — 1A. 2C. 2n—1【解析】由f(x • y)= f (x) + f(y) , f (S+ 2) —f(a n)= f (3),得S+ 2 = 3a n, S—1+ 2= 3a n—1 (n》2),3 两式相减得2a n= 3a n—1 ;当n= 1时,S + 2= 3a1= a1 + 2,则a1= 1 .所以数列{a n}是首项为1,公比为q的等比数列.3 n 1 【答案】a n= 2 n—134. (2015 •辽宁鞍山二中期中)设数列{a n}是等差数列,数列{b n}的前n项和S满足S=^(b n—1),且a2 = b1, a5= b2.(1) 求数列{a n}和{b n}的通项公式;(2) 设C n= a n • b n, T n 为{C n}的前Fl 项和,求T n .3【解】(1)当n >2 时,S n— 1 = 2(b n—1—1),3 3 亠则b n= S n—S n—1= ^( b n—1) —?(b n —1- 1),整理得b n = 3b n—13当n= 1 时,b1 = ^(匕一1),解得b1= 3 ;故数列{b n}是以3为首项,3为公比的等比数列.b n= 3,设等差数列{a n}的公差为d,由a2= b1= 3, a5= b2= 9,a1 + d = 3,则解得d= 2, a1 = 1,—a n= 2n—1,a1 + 4d= 3,a n= 2n—1,b n= 3.(2)由(1)知C n= a n • b n= (2n —1) • 3n,• T n= 3 + 3 • 32+ 5 • 33+…+ (2 n—1) • 3n,①3T n= 3 2+ 3 • 33+ 5 • 34+…+ (2 n —3) • 3n+ (2n—1) • 3n+1,②由①一②,得—2T n= 3+ 2(3 2+ 33+…+ 3n ) —(2 n—1) • 3n+1【解析】由已知1 n》2时,a n= 2S1-1①当n》3时,①—②整理得a n1,n= 1,=3 ( n》3), • a n = n- 2a n—12X3 ,n》2.1,n= 1,【答a n =n 22X3 ,n》2.(2015 •广东桂城摸底6.a n- 1 = 2S1 -2 ②B. nD.=3+ 2X2 n —1、3 (1 —3 )—(2n—1) 3n+1(2 —2n) • 3n+1—6,)已知各项均为正数的数列{a n }的前n 项和为S,且a :+ a n = 2S .(1) 求a i ;求数列{a n }的通项公式; ⑶若b n=-5n € N*) , T n = b 1+ b 2+・・・+ b n ,求证:T n < -.提示:31 1n "< 2 2n — 1 2n +12【解】(1)当 n = 1 时,a i + a i = 2S ,且 a n > 0,得 a i = 1 ;(2) 当 n 》2 时,a n -1 + a n —1 = 2S -1 ①;且 ai + a n = 2S n ②;由②一①,得(a n +a n — 1)( a n — a n — 1— 1) = 0, 又 a n > 0,贝U a n — a n -1= 1,故数列{a n }是首项为1,公差为1的等差数列;1 1⑶证明:由⑵知,b n = 2=「a n2,5当n = 1时,b 1= 1 <3,不等式成立; 11 41当 n 》2 时,孑< Yl = 4n 2— 1 = 2 乔 12n + 1,n —41 1 12 5• Tn =b1+b+・・+ bn =1+尹尹•••+ 冷v 1 + 2 3—才5—7^+ 冇—市 <1 +3=3, 3 555• Tn < 32 *7. (2015 •大连双基测试)已知数列{a n }的前n 项和S = n +2n +1(n € N),贝U a n= ______________________________ .4, n = 1, 【解析】当 n 》2 时,a n = Si — S n -1 = 2n + 1,当 n = 1 时,a 1 = S = 4去2x 1 + 1,因此 a n =2n +1, n 》2.4, n = 1【答案】2n + 1, n 》21& (2014 •烟台一模)已知数列{a n }前n 项和为S n ,首项为a 1,且刁a n , $成等差数列. (1)求数列{a n }的通项公式;11 1【解】(1) T 2, a n , S 成等差数列,二2a n = S n + 2,t丄11 当 n = 1 时,2a 1 = S + 2,二已1= 2,t丄1 1当 n 》2 时,S n = 2a n — 2, S n - 1 = 2a n — 1 — 2,a n 两式相减得:a n = Si — S —1 = 2a n — 2 a n — 1,「. —= 2,a n — 11 1所以数列{a n }是首项为2,公比为2的等比数列,即a n = 2"n —1 = 2n —2.(2) T b n = (log 2a 2n +1)x (I og 2a 2n + 3)= (log 222n +1—2) x (log 222n +3—2) = (2 n —1)(2 n +1),1 1 1 1 1 1/.——= x =— ,b n 2n — 12n + 12 2n — 1 2n + 11数列 的前n 项和b n1 11 11 111 1111 n1b 1 +b 2+b 3+ +b n 213 + 3 5 ++2n — 12n +12 12n +12n +19. __________________________________________________________________________ (2014 •山西四校联考)已知数列{a n }的前n 项和为S , S= 2a n — n ,贝U a n = ____________________________________________________________ .【解析】当 n 》2 时,a n = S n — S n —1 = 2a n — n — 2an —1 + (n — 1),即 a n = 2a n — 1 + 1, • a n +1 = 2( a n —1 + 1), •数列{a n +1}是首项为a 1+ 1 = 2,公比为2的等比数列,• a n +1 = 2・2 n —1= 2n ,「. a n = 2n — 1.【答案】2n — 1n 2 + n *10. (2014 •湖南卷)已知数列{a n }的前n 项和S= —, n € N .(1)求数列{a n }的通项公式;⑵ 设b n = 2a n + ( — 1)n a n ,求数列{b n }的前2n 项和.【解】(1)当n = 1时, a 1 = S 1 = 1 ;当n 》2时, 22小 cn + n n — 1 + n — 1a n Si Si-12 2 n .又a 1= 1满足上式,故数列{a n }的通项公式为a n = n .(2)由(1)知,b n = 2n + ( — 1)n n ,记数列{b n }的前2n 项和为Tm ,_122n则 T 2n = (2 + 2 +…+ 2 ) + ( — 1 + 2— 3+ 4—…+ 2n ).B= ( — 1 + 2) + ( — 3+ 4) +…+ [ — (2n — 1) + 2n ] = n .故数列{b n }的前 2n 项和 T 2n = A + B= 22n +1 + n — 2.11.已知数列{a n }是各项均为正数的等比数列, a 3= 4, {a n }的前3项和为7.(1)求数列{a n }的通项公式;记 A = 21+ 22 +…+ 22n ,B=— 1 + 2 — 3+ 4-…+ 2n ,则 A =-2n1 —2 1 — 2=22n +1n1111 ⑵ 若ab + a 2b 2 + ・・・+ a n b n = (2 n — 3)2 n + 3,设数列{ b n }的前n 项和为 S,求证:+…+2—- .S 1 S 2Si na*1 q 4,a*1 1,【解】 ⑴ 设数列{a n }的公比为q ,由已知得q >0,且/•a 1 + ag + 4= 7,q = 2.•••数列{a n }的通项公式为a n = 2n —1.(2)【证明】当n = 1时,a1b = 1,且a 1 = 1,解得b 1 = 1.当 n 》2 时,a n b n = (2n — 3)2 n + 3 — (2 n — 2 — 3)2 n — 1 — 3 = (2n — 1)・2 n — 1. a n = 2 1 ,•当 n 》2 时,b n = 2n — 1.■/ b 1= 1 = 2x 1 — 1 满足 b n = 2n — 1,•数列{b n }的通项公式为 b n = 2n —1(n € N *). •数列{b n }是首项为1,公差为2的等差数列.•- S n = nl1 1 •••当 n = 1 时,S = 1 =2 — 1t」1 1 1 1 当 n 》2 时,S = n 2< n (n — 1) =n —1 1 1 1 1 1 1 1 1• ◎+S 2+…+ 亍2—1+厂 2+…+ n — - n =2—n 12.设数列{a n }的前 n 项和为 S , a 1 = 1, a n = + 2 (n — 1) ( n € N). n(1)求证:数列{a n }为等差数列,并分别写出 a n 和S 关于n 的表达式;请说明理由.*【解】(1)由 a n = n + 2( n — 1),得 S = na n — 2n ( n — 1) ( n € N).当 n 》2 时,a n S n — S n — 1 na n — (n — 1) a n — 1 — 4( n — 1),艮卩 a n — a n —1 4, 故数列{a n }是以1为首项,以4为公差的等差数列.a 1 + a n n 2*a n =4n — 3, S = = 2n — n ( n € N).(2)由 S n = na n — 2n ( n — 1),得—=2n — 1 ( n € N),$ S 3 S 1 2 2 2 2又 s+ 2 + 3 +…+ n — (n — 1) = 1 + 3 + 5 + 7+-+ (2n — 1) — (n — 1) = n —(n — 1) = 2n — 1.令2n — 1 = 2 013,得n = 1 007,即存在满足条件的自然数n = 1 007 .(2)是否存在自然数n ,S ? S 3Si…使得S+ 2+ 3+…+ -—(n — 1)2= 2 013?若存在,求出n 的值;若不存在,于是,1. 已知$为正项数列{a n }的前n 项和,且满足 S = 2a n + ?a n (n € N *).⑴求a i , a 2, a 3, a 4的值;⑵求数列{a n }的通项公式.1 2 1 1 2 1【解】(1)由$=,a n + 2a n ,可得a 1 = 2^+空31,解得◎= 1 ;1 2 1S= a + a 2= 2a 2 + g a ?,解得 a 2 = 2;同理,1 2 1当 n 》2 时,S n - 1= 2 a n -1 + ^a n - 1,②①一②得(a n — a n -1 — 1)( a n + a n -1)= 0 .由于 a n + a n -1 工 0,所以 a n — a n -1 = 1, 又由(1)知a 1= 1, 故数列{a n }是首项为1,公差为1的等差数列,故 a n = n .2. 在数列{a n }中,a 1=- 5, a 2=- 2,记 A (n ) = a 1 + 比+…十 a n , B (n ) = a 2 + a 3+・・・+ a n +1, qn ) =a 3+ a 4 + •••+ a n +2(n €N *),若对于任意 n € N *, A (n ) , B ( n ), q n)成等差数列.(1) 求数列{a n }的通项公式; (2) 求数列{| a n |}的前n 项和.【解】(1)根据题意A (n ) ,B (n ),C ( n )成等差数列,二A ( n ) + C ( n ) = 2B ( n ),整理得 a n +2— a n +1 = a 2— a 1 = — 2+ 5 = 3,•••数列{a n }是首项为—5,公差为3的等差数列,a n = — 5 + 3( n — 1) = 3n — 8.—3n + 8, n W 2,(2)| a n | =记数列{| a n |}的前n 项和为S.3n — 8, n 》3,2当 n W2 时,S n =n 5+ 2— 3n = — + 务3 2 13—尹 + 厂,n w 2,3. (2014 •广东卷)设各项均为正数的数列 {a n }的前n 项和为S ,且S 满足S n — (n 2+ n -3)S n — 3( n 2 + n ) = 0, n€ N .(1) 求a 1的值;(2) 求数列{a n }的通项公式;a 3 = 3, a 4= 4.当n 》3时,S n = 7 +n -2 1 + 3n — 8 2普-岭+ 14,2 2综上,S n =|n 2 —爭+ 14, n 》3.1(3)证明:对一切正整数亠 1 1 11n, a 1 a+1 + a 2 a ?+1 + + a n a n +1 <3'【解】(1)由题意知,U — (n 2+ n — 3)S h -3(n 2+ n ) = 0, n € N*. 令 n = 1,有 S — (1 2+ 1— 3) S — 3X (1 2+ 1) = 0,可得 S 1+ S — 6 = 0,解得 S =— 3或 2, 即卩 a 1 =— 3 或 2, 又a n 为正数,所以a 1 = 2.222* __(2)由 S>— ( n + n — 3) Si — 3( n + n ) = 0, n € N 可得,2 2(S + 3)( S — n — n ) = 0,贝U S = n +n 或 $=— 3,又数列{a n }的各项均为正数,2 2S= n + n , S -1 = (n — 1) + (n — 1),当 n 》2 时,a n = S n — S n — 1 = n + n — [( n — 1)2+ (n — 1)] = 2n . 又 a 1= 2 = 2x 1,所以 a n = 2n .1a a+ 1111 111当n ^2时, a na n + 1= 2n 2n + 1 v 2n —12n + 12 2n — 1 —2n + 1 , 1 111 1 1 111 …a 1 a 1+ 1+a 2a 2 + 1 + -••+ a na n + 1+ ■ 6 +2 3 5 + •' '• 2n — 12n + 11 1 11 1 1 1=一 + — —v —+ _ =6 2 3 2n + 1 6 6 3(3)证明:当n = 1时,11+a 2a 2 + 1+…+aT^+所以对一切正整数n,有07葛+• T n= (n—1) 3 n+1+ 3.5.在数列{a n}中,已知a1 =1, a n= 2(a n —1 + a n—2 + — + a2+ a" ( 2, n€N*),则数列的通项公式是_________ .1。
数列中an与Sn的关系
、
,
.
在教学 中 应 对 学 生 加 强 数 学 建 模 训 练 引 导 学 生 自己 运 用 所 学 的 知 识 建 立 基 本 模 型 并 灵 活 的 运 用 举 反 三 达 到事 半 功倍 的效 果 ;这 也 是 培 养 和 提 高学 生 分析 和 解 决 实 际 问题 能力 的最有 效 途径
, ,
, ,
一
,
,
.
A
,
’
’
,
.
.
、
’
一
、
’
’
’
,
=
一
一
,
.
,
障
.
,
.
,
.
A
,
,
则 DE
C D
. .
=
2+ 1
'
=
3 ,C E
—
—
AB
5
.
=
4
,
i
卜.. .
、
. — … … …
一
~
C / E 0 + D E2
=
厂( z )
、
≯ ~/ +
1 +
/( 4
.
一
z
0 ) + 4 的最 小值
葶 } 锐a 甜
7
E
.
节
z 0
曰
’r 一
。
.
。
,
。
,
,
。
,
.
。
.
解 :设 A P
4
一
=
z
,
则 BP
=
D
z
数列中an与sn的关系探究(课堂PPT)
挖掘条件,得到新式(与
间的关an系
S1 Sn
n=1 Sn1 n
2
条件相邻),作差将“和” 转化为“项”之间的关系
直接代入
作差消元
10
类题演练
1、 如 果 数 列 {an}的 前 n项 和 为 Sn=3 2an-3, 则 an
【 答 案 】 an63n1
11
类题演练
2、 数 列 {an}中 , 已 知 a11 2, 其 前 n项 和 为 Sn=n2an, 则 an
南京市第九中学 易雪梅
2
典型例题 例 1: 若 数 列 {an} 的 前 n项 和 Sn3an1 , 求 该 数 列 的 通 项 an 。
3
数学解题的四个步骤: • 理解问题 • 拟定计划 • 实现计划 • 回顾与检验
——乔治·波利亚《怎样解题》
4
例 1: 若 数 列 {an} 的 前 n项 和 Sn3an1 , 求 该 数 列 的 通 项 an 。
这是一个什么类型的问题?
类型
求数列通项an
特征
已 知 条 件 为 a n 与 S n 的 关 系 式
如何实现从条件到结论的转化?
S n 转化 a n
怎样转化?
an
SS1n
n=1 Sn1 n
2
5
例 1: 若 数 列 {an} 的 前 n项 和 Sn3an1 ,
求 该 数 列 的 通 项 an 。
解:当 n 1 时 ,a 1S 1 3 a 1 1 , 得 a 1 12 ; 当 n2 时 ,a nS n S n 13an1(3an11)
7
变 式 : 已 知 正 项 数 列 { a n } 的 前 n 项 和 为 S n , a 1 3 , 且 S n S n -1 = a n ( 2n 2 ) , 求 该 数 列 的 通 项 a n 。
数列Sn与an关系(含详细答案)
数列n s 与n a 关系知识点1.等差数列前n 项和公式:n da n d d n n na a a n S n n )2(22)1(2)(1211-+=-+=+=2. 等比数列前n 项和公式: ⎪⎩⎪⎨⎧≠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=111)1(1111q q q a a q q a q na S n n n3.数列{}n a 是等差数列⇔q p n q pn a n ,),1(≥+=为常数b a n bn an S n ,),1(2≥+=⇔为常数(没有常数项的二次函数)数列{}na 是等比数列⇔n a =m ap (a ≠0)⇔n ns ap r =+(a+r=0) 4.等差数列{}n a 的前n 项和为n S ,n n a n S )12(12-=-5. 数列n s 与n a关系:⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-21,11n S S n S a S n n n n训练题A 组1.设数列{}n a 的前n 项和2n S n =,则8a 的值为( A ) A.15 B.16 C.49 D.642.设数列{}n a 的前n 项和为n S ,)1(13≥-=n S n n ,则=n a ( A ) A.132-⋅n B.46-n C.432-⋅n D.n32⋅3.等差数列{}n a 的前n 项和为n S ,若,2211=S 则=6a ( B ) A.1 B.2 C.3 D.44.数列6.等差数列}{n a 的前n 项和为n S ,若102,a a 是方程08122=-+x x 的两个根, 那么11S 的值为 ( D )A.44B.-44C.66D.-665.若两个等差数列{}n a 与{}n b 的前n 项和分别为n n B A ,,且3233+-=n n B A n n , 则=66b a ( C ) A.23 B.1 C.56 D.23276.(2010辽宁文数)设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( B )A.3B.4C.5D.67.设n S 是等差数列}{n a 的前n 项和,若==5935,95S S a a ( A ) A.1 B.-1 C.2 D.21 8.{}n a 的前n 项和为n S ,)1(12≥+=n n S n ,则=n a ⎩⎨⎧≥-=21211n n n9.已知数列}{n a 的前n 项和为n S ,))(1(31*N n a S n n ∈-=,则=n a n )21(- 10.数列{}n a 的前n 项和为n S ,且.35-=n n S a 则{}n a 的通项公式是1)41(43--n 11.数列{}n a 前n 项和为n S ,)2(122,121≥-==n S S a a n n n ,则=n S121-n12.等差数列{}n a 的前n 项和为n S ,若,147=S 则=4a 2 13.等比数列}{n a 的前n 项和为n S ,r S n n +=3,则=r -114.数列}{n a 的前n 项和为n S ,且,1≥n 时22nn S n +=(1)求数列{}n a 的通项公式; (2)求992199111S S S T +⋅⋅⋅++=的值. (1))1(≥=∴n n a n(2) 22n n S n +=,)111(2)1(21+-=+=∴n n n n S n⎥⎦⎤⎢⎣⎡-+⋅⋅⋅+-+-=+⋅⋅⋅++=∴)1001991()3121()211(2111992199S S S T 5099)10011(2=-=15.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn16.数列{}n a 满足条件11131,1--⎪⎭⎫⎝⎛+==n n n a a a ),3,2( =n(1)求;n a(2)求.321n a a a a ++++解:(1)∑∑=--=+=-+=nk k k k nk n a a a a 21121)31(1)(11)31(2123311])31(1[311---=--+=n n(2)43)31(4323])31(4343[23311)31(212123.321-+=--=-⋅--=++++n n n n n n n a a a a17.(2012广东文)设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足2*2,n n T S n n N =-∈. (1) 求1a 的值;(2) 求数列{}n a 的通项公式.解:(1):21112-=a a ………………………………………………3分11=a …………………………………………………………5分(2)①②…………………………6分①-②得:122+-=n a S n n ……………… ③………………………7分在向后类推一次1)1(2211+--=--n a S n n ……… ④…………………………8分③-④得:2221--=-n n n a a a …………………………………………9分221+=-n n a a …………………………………………………10分 )2(221+=+-n n a a ……………………………………………12分 的数列公比为是以首项为2,32}2{1=++a a n …………13分1232-⨯=+∴n n a2231-⨯=∴-n n a ………………………………………………14分训练题B 组1.数列}{n a 的前n 项和为n S ,当,1≥n 32-=n n a S 则n a = 123-⋅n2.等差数列{}n a 中,已知74a =,则13s= 523.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 241494.等比数列}{n a 的前n 项和为n S ,14n n S r -=+,则=r 14- 5.等差数列{}n a 的前n 项和为n S ,若1114S =,则61411a =22n S T n n -= 211)1(2--=--n S T n n6.已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n+1,求数列的通项公式. 解 S n 满足log 2(1+S n )=n+1,∴1+S n =2n+1,∴S n =2n+1-1.∴1=n 时,311==S a ,2≥n 时,a n =S n -S n-1=(2n+1-1)-(2n-1)=2n,∴{a n }的通项公式为a n =⎪⎩⎪⎨⎧≥=).2(2),1(3n n n7.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn8.数列{}n a 的前n 项和为)()1(*2N n n n a n S n n ∈+++= (1)求通项n a ; (2)设),1111(321nn S S S S T +⋅⋅⋅⋅⋅⋅+++-=求证:1<n T 解:(1) n a n 2-=∴(2)nn n n n n S n n S n a n n n 111)111()1(11),1(,2-+=+--=+-=∴+-=∴-= 1111+-=-∴n n S n )11111(1321nn n S S S S S T ++⋅⋅⋅+++-=∴-n T ∴=1111)111()111()3121()211(<+-=+-+--+⋅⋅⋅+-+-n n n n n *N n ∈ ∴1<n T9.已知等差数列{}n a 中,11=a ,前n 项和nS 满足条件12412+-=-n n SS nn ,( n=1,2,3,┅) (1)求数列{a n }的通项公式;(2)设nn S b 1=,求数列{}n b 的通项公式; (3)数列{}n b 的前n 项和为n T ,若1+<n n a T λ对一切∙∈N n 都成立,求λ的取值范围. 解:(1) 等差数列{}n a 中11=a ,12412+-=-n n SS nn 对于任意正整数都成立, 所以,当n=2时,有21222423=+-⨯=SS ,设数列{}n a 的公差为d ,则d d a S 333313+=+=,d d a S +=+=22212,所以)2(233d d +=+,解得公差1=d ,所以n n a n=-+=)1(11(2)因为()22121nn d n n na S n +=-+=,n n b n +=∴223)由n n b n+=22=()⎪⎭⎫ ⎝⎛+-=+111212n n n n ,得()⎪⎪⎭⎫⎝⎛+++⨯+⨯+⨯=114313212112n n T n ⎪⎭⎫ ⎝⎛+-++-+-+-=111413*********n n 121112+=⎪⎭⎫ ⎝⎛+-=n n n 若1+<n n a T λ对一切∙∈N n 都成立,即)1(12+<+n n n λ,∙∈N n 恒成立, 所以2)1(2+>n nλ,而212122212)1(22=+≤++=+nn n n , (当且仅当n=1时取等号) 所以,λ的取值范围是⎪⎭⎫ ⎝⎛+∞,21.10.已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和. (1)12n n a -=,21n b n =-. (2)数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-. 11.已知数列{}n a 满足21=a ,241+=-n n a S (n=2,3,4,...). (1)证明数列{}n n a a 21-+成等比数列;(2)证明数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧n n a 2成等差数列;(3)求数列{}n a 的通项公式n a 和前n 项和n S .(1){}n n a a 21-+是首项为4,公比为2的等比数列, (2)⎭⎬⎫⎩⎨⎧n n a 2是首项为1,公差为1的等差数列. (3)n n n a 2⋅=,12)1(2+⋅-+=n n n S12.已知数列{}n a 满足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。
数列Sn与an关系(含详细答案)
数列n s 与n a 关系知识点1.等差数列前n 项和公式:n da n d d n n na a a n S n n )2(22)1(2)(1211-+=-+=+=2. 等比数列前n 项和公式: ⎪⎩⎪⎨⎧≠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=111)1(1111q q q a a q q a q na S n n n3.数列{}n a 是等差数列⇔q p n q pn a n ,),1(≥+=为常数b a n bn an S n ,),1(2≥+=⇔为常数(没有常数项的二次函数)数列{}na 是等比数列⇔n a =m ap (a ≠0)⇔n ns ap r =+(a+r=0) 4.等差数列{}n a 的前n 项和为n S ,n n a n S )12(12-=-5. 数列n s 与n a关系:⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-21,11n S S n S a S n n n n训练题A 组1.设数列{}n a 的前n 项和2n S n =,则8a 的值为( A ) A.15 B.16 C.49 D.642.设数列{}n a 的前n 项和为n S ,)1(13≥-=n S n n ,则=n a ( A ) A.132-⋅n B.46-n C.432-⋅n D.n32⋅3.等差数列{}n a 的前n 项和为n S ,若,2211=S 则=6a ( B ) A.1 B.2 C.3 D.44.数列6.等差数列}{n a 的前n 项和为n S ,若102,a a 是方程08122=-+x x 的两个根, 那么11S 的值为 ( D )A.44B.-44C.66D.-665.若两个等差数列{}n a 与{}n b 的前n 项和分别为n n B A ,,且3233+-=n n B A n n , 则=66b a ( C ) A.23 B.1 C.56 D.23276.(2010辽宁文数)设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( B )A.3B.4C.5D.67.设n S 是等差数列}{n a 的前n 项和,若==5935,95S S a a ( A ) A.1 B.-1 C.2 D.21 8.{}n a 的前n 项和为n S ,)1(12≥+=n n S n ,则=n a ⎩⎨⎧≥-=21211n n n9.已知数列}{n a 的前n 项和为n S ,))(1(31*N n a S n n ∈-=,则=n a n )21(- 10.数列{}n a 的前n 项和为n S ,且.35-=n n S a 则{}n a 的通项公式是1)41(43--n 11.数列{}n a 前n 项和为n S ,)2(122,121≥-==n S S a a n n n ,则=n S121-n12.等差数列{}n a 的前n 项和为n S ,若,147=S 则=4a 2 13.等比数列}{n a 的前n 项和为n S ,r S n n +=3,则=r -114.数列}{n a 的前n 项和为n S ,且,1≥n 时22nn S n +=(1)求数列{}n a 的通项公式; (2)求992199111S S S T +⋅⋅⋅++=的值. (1))1(≥=∴n n a n(2) 22n n S n +=,)111(2)1(21+-=+=∴n n n n S n⎥⎦⎤⎢⎣⎡-+⋅⋅⋅+-+-=+⋅⋅⋅++=∴)1001991()3121()211(2111992199S S S T 5099)10011(2=-=15.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn16.数列{}n a 满足条件11131,1--⎪⎭⎫⎝⎛+==n n n a a a ),3,2( =n(1)求;n a(2)求.321n a a a a ++++解:(1)∑∑=--=+=-+=nk k k k nk n a a a a 21121)31(1)(11)31(2123311])31(1[311---=--+=n n(2)43)31(4323])31(4343[23311)31(212123.321-+=--=-⋅--=++++n n n n n n n a a a a17.(2012广东文)设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足2*2,n n T S n n N =-∈. (1) 求1a 的值;(2) 求数列{}n a 的通项公式.解:(1):21112-=a a ………………………………………………3分11=a …………………………………………………………5分(2)①②…………………………6分①-②得:122+-=n a S n n ……………… ③………………………7分在向后类推一次1)1(2211+--=--n a S n n ……… ④…………………………8分③-④得:2221--=-n n n a a a …………………………………………9分221+=-n n a a …………………………………………………10分 )2(221+=+-n n a a ……………………………………………12分 的数列公比为是以首项为2,32}2{1=++a a n …………13分1232-⨯=+∴n n a2231-⨯=∴-n n a ………………………………………………14分训练题B 组1.数列}{n a 的前n 项和为n S ,当,1≥n 32-=n n a S 则n a = 123-⋅n2.等差数列{}n a 中,已知74a =,则13s= 523.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 241494.等比数列}{n a 的前n 项和为n S ,14n n S r -=+,则=r 14- 5.等差数列{}n a 的前n 项和为n S ,若1114S =,则61411a =22n S T n n -= 211)1(2--=--n S T n n6.已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n+1,求数列的通项公式. 解 S n 满足log 2(1+S n )=n+1,∴1+S n =2n+1,∴S n =2n+1-1.∴1=n 时,311==S a ,2≥n 时,a n =S n -S n-1=(2n+1-1)-(2n-1)=2n,∴{a n }的通项公式为a n =⎪⎩⎪⎨⎧≥=).2(2),1(3n n n7.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn8.数列{}n a 的前n 项和为)()1(*2N n n n a n S n n ∈+++= (1)求通项n a ; (2)设),1111(321nn S S S S T +⋅⋅⋅⋅⋅⋅+++-=求证:1<n T 解:(1) n a n 2-=∴(2)nn n n n n S n n S n a n n n 111)111()1(11),1(,2-+=+--=+-=∴+-=∴-= 1111+-=-∴n n S n )11111(1321nn n S S S S S T ++⋅⋅⋅+++-=∴-n T ∴=1111)111()111()3121()211(<+-=+-+--+⋅⋅⋅+-+-n n n n n *N n ∈ ∴1<n T9.已知等差数列{}n a 中,11=a ,前n 项和nS 满足条件12412+-=-n n SS nn ,( n=1,2,3,┅) (1)求数列{a n }的通项公式;(2)设nn S b 1=,求数列{}n b 的通项公式; (3)数列{}n b 的前n 项和为n T ,若1+<n n a T λ对一切∙∈N n 都成立,求λ的取值范围. 解:(1) 等差数列{}n a 中11=a ,12412+-=-n n SS nn 对于任意正整数都成立, 所以,当n=2时,有21222423=+-⨯=SS ,设数列{}n a 的公差为d ,则d d a S 333313+=+=,d d a S +=+=22212,所以)2(233d d +=+,解得公差1=d ,所以n n a n=-+=)1(11(2)因为()22121nn d n n na S n +=-+=,n n b n +=∴223)由n n b n+=22=()⎪⎭⎫ ⎝⎛+-=+111212n n n n ,得()⎪⎪⎭⎫⎝⎛+++⨯+⨯+⨯=114313212112n n T n ⎪⎭⎫ ⎝⎛+-++-+-+-=111413*********n n 121112+=⎪⎭⎫ ⎝⎛+-=n n n 若1+<n n a T λ对一切∙∈N n 都成立,即)1(12+<+n n n λ,∙∈N n 恒成立, 所以2)1(2+>n nλ,而212122212)1(22=+≤++=+nn n n , (当且仅当n=1时取等号) 所以,λ的取值范围是⎪⎭⎫ ⎝⎛+∞,21.10.已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和. (1)12n n a -=,21n b n =-. (2)数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-. 11.已知数列{}n a 满足21=a ,241+=-n n a S (n=2,3,4,...). (1)证明数列{}n n a a 21-+成等比数列;(2)证明数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧n n a 2成等差数列;(3)求数列{}n a 的通项公式n a 和前n 项和n S .(1){}n n a a 21-+是首项为4,公比为2的等比数列, (2)⎭⎬⎫⎩⎨⎧n n a 2是首项为1,公差为1的等差数列. (3)n n n a 2⋅=,12)1(2+⋅-+=n n n S12.已知数列{}n a 满足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。
等差数列sn和an的关系
等差数列sn和an的关系全文共四篇示例,供读者参考第一篇示例:等差数列是数学中非常常见且重要的数列之一,其中每一项与前一项之差都相等。
在等差数列中,我们常使用两种常见的记号:S_n和a_n。
S_n表示等差数列的前n项和,而a_n表示等差数列的第n项。
本文将详细探讨S_n和a_n之间的关系。
我们来看S_n和a_n之间的关系。
设等差数列的首项为a_1,公差为d,则等差数列的第n项可以表示为a_n=a_1+(n-1)d。
而S_n表示等差数列的前n项和,即S_n=a_1+a_2+...+a_n。
接下来,我们来看一些具体的例子来说明S_n和a_n之间的关系。
假设我们有一个等差数列的首项a_1=2,公差d=3,我们来求该等差数列的前5项和S_5。
首先确定等差数列的第5项:a_5=2+(5-1)\times 3=14。
然后利用前面推导的公式计算前5项和S_5:S_5=\frac{5}{2}(2\times2+(5-1)\times 3)=5\times 8=40。
所以,当等差数列的首项为2,公差为3时,它的前5项和为40。
通过这个例子,我们可以看到S_n和a_n之间的关系是非常紧密和重要的。
在实际生活和工作中,等差数列的概念和相关公式会被广泛应用。
比如在金融领域中,等差数列常用来描述递增或递减的收入或支出情况;在物理学中,等差数列可以用来描述匀速运动的距离随时间的变化等问题。
S_n和a_n之间的关系是数学中一个非常重要的概念,对于理解等差数列的性质和应用起着至关重要的作用。
希望通过本文的介绍,读者能够更加深入地理解等差数列及其相关知识,从而更好地应用于实际问题中。
【2000字】第二篇示例:等差数列,顾名思义,就是数列中相邻两项之间的差值是相同的。
在数学中,我们常用字母a表示等差数列的首项,d表示公差,n表示项数,数列的一般形式可以表示为:an = a + (n-1)d,其中an表示第n项,a表示首项,d表示公差。
利用an与sn的关系解题
利用n a 与n S 的关系解题例1.(1994全国文,25)设数列{a n }的前n 项和为S n ,若对于所有的正整数n ,都有S n =2)(1n a a n +.证明:{a n }是等差数列.解:证法一:令d =a 2-a 1,下面用数学归纳法证明a n =a 1+(n -1)d (n ∈N *) ①当n =1时,上述等式为恒等式a 1=a 1,当n =2时,a 1+(2-1)d =a 1+(a 2-a 1)=a 2,等式成立.②假设当n =k (k ∈N ,k ≥2)时命题成立,即a k =a 1+(k -1)d由题设,有2))(1(,2)(1111++++=+=k k k ka a k S a a k S , 又S k +1=S k +a k +1,所以2)(2))(1(111k k a a k a a k +=++++a k +1将a k =a 1+(k -1)d 代入上式,得(k +1)(a 1+a k +1)=2ka 1+k (k -1)d +2a k +1 整理得(k -1)a k +1=(k -1)a 1+k (k -1)d ∵k ≥2,∴a k +1=a 1+[(k +1)-1]d . 即n =k +1时等式成立.由①和②,等式对所有的自然数n 成立,从而{a n }是等差数列.证法二:当n ≥2时,由题设,2)(,2))(1(1111n n n n a a n S a a n S +=+-=--所以2))(1(2)(11211--+--+=-=n n n n a a n a a n S S a同理有2)(2))(1(1111n n n a a n a a n a +-++=++从而2))(1()(2))(1(111111-+++-++-++=-n n n n n a a n a a n a a n a a整理得:a n +1-a n =a n -a n -1,对任意n ≥2成立.从而{a n }是等差数列.评述:本题考查等差数列的基础知识,数学归纳法及推理论证能力,教材中是由等差数列的通项公式推出数列的求和公式,本题逆向思维,由数列的求和公式去推数列的通项公式,有一定的难度.考生失误的主要原因是知道用数学归纳法证,却不知用数学归纳法证什么,这里需要把数列成等差数列这一文字语言,转化为数列通项公式是a n =a 1+(n -1)d 这一数学符号语言.证法二需要一定的技巧.例2.(2010年高考安徽卷理科20)设数列12,,,,n a a a 中的每一项都不为0. 证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有1223111111n n n na a a a a a a a +++++=. 证:先证必要性.设数列{}n a 的公差为d .若0d =,则所述等式显然成立. 若0d ≠,则12231111n n a a a a a a ++++21321122311()n nn n a a a a a a d a a a a a a ++---=+++122311111111[()()()]n n d a a a a a a +=-+-++-11111()n d a a +=-11n n a a +=.再证充分性. 证法1:(数学归纳法)设所述的等式对一切n ∈+N 都成立. 首先,在等式122313112a a a a a a +=, ① 两端同乘123a a a ,即得1322a a a +=,所以123,,a a a 成等差数列. 记公差为d ,则21a a d =+.假设1(1)k a a k d =+-,当1n k =+时,观察如下二等式1223111111k k kk a a a a a a a a --+++=, ② 122311111111k k k k k ka a a a a a a a a a -++++++=, ③ 将②代入③,得111111k k k k k ka a a a a a ++-+=. 在该式两端同乘11k k a a a +,得11(1)k k k a a ka +-+=. 将1(1)k a a k d =+-代入其中,整理后,得11k a a kd +=+. 由数学归纳法原理知,对一切,都有1(1)n a a n d =+-. 所以{}n a 是公差为d 的等差数列. 证法2:(直接法)1223111111n n n na a a a a a a a +++++=, ① 12231121211111n n n n n n a a a a a a a a a a +++++++++=,② ②-①得12121111n n n n n na a a a a a +++++=-,在上式两端同乘112n n a a a ++,得112(1)n n a n a na ++=+-, ③ 同理可得11(1)n n a na n a +=--, ④③- ④得122()n n n na n a a ++=+,即211n n n n a a a a +++-=-,所以{}n a 是等差数列. 例3.(1997全国文,21)设S n 是等差数列{a n }前n 项的和,已知31S 3与41S 4的等比中项为4354131,51S S S 与的等差中项为1,求等差数列{a n }的通项a n . 解:设等差数列{a n }的首项为a ,公差为d ,则a n =a +(n -1)d ,前n 项和为S n =na +2)1(dn n -, 由题意得⎪⎪⎩⎪⎪⎨⎧=+=⋅,24131,)51(4131432543S S S S S 其中S 5≠0.于是得⎪⎪⎩⎪⎪⎨⎧=⨯++⨯+⨯+=⨯+⨯⨯+.2)2344(41)2233(31,)2455(251)2344(41)2233(312d a d a d a d a d a 整理得⎪⎩⎪⎨⎧=+=+,2252.0532d a d ad 解得⎪⎩⎪⎨⎧=-=⎩⎨⎧==.4,512;1,0a d a d 由此得a n =1;或a n =4-512(n -1)=532-512n .经验证a n =1时,S 5=5,或a n =5121532-n 时, S 5=-4,均适合题意.故所求数列通项公式为a n =1,或a n =5121532-n . 评述:该题考查了数列的有关基本知识及代数运算能力,思路明显,运算较基本. 例4.在数列{}n a 中,1a +22a +33a +…+n na =)2)(1(++n n n ,求n a . 解析:令n S =1a +22a +33a +…+n na =)2)(1(++n n n , 则1-n S =1a +22a +33a +…+1)1(--n a n =)1()1(+-n n n , 则n S -1-n S =n na =)2)(1(++n n n -)1()1(+-n n n , ∴ n a =)2)(1(++n n -)1)(1(+-n n =33+n .定理 设数列{n a 的前n 项和为n S ,2n n n S Aa Ba C =++(10,0n n A a a +≠+≠),则数列{n a }是等差数列的充要条件是12B =. 证明 若12B =,则212n n n S Aa a C =++. 当1n =时,1a 满足等式211112a Aa a C =++;当2n ≥时,2211111()()22n n n n n n n a S S Aa a C Aa a C ---=-=++-++,整理得111()()02n n n n a a a a A--+--=.因为10n n a a ++≠,所以112n n a a A--=.故{n a }是以1a 为首项,12A为公差的等差数列.若{n a }是等差数列,则11()(1),2n n n n a a a a n d S +=+-=,故11111()()/()()()222n n n n n n n a a a a d d a a a a d a a S d +-++-++===2211()()2n n a a d a a d -++=221111222n n da a a a d d-=⋅++.故21111,,222da a A B C d d-===. 例5. (1994年全国高考题)设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)写出数列{a n }的前3项;(2)求数列{a n }的通项公式(写出推证过程);(3)令()N ∈⎪⎪⎭⎫ ⎝⎛+=++n a a a a b n n n n n 1121,求().lim 21n b b b n n -+++∞→ 解:(1)由题意,当n =1时有11222S a =+,S 1=a 1,∴11222a a =+,解得a 1=2.当n =2时有22222S a =+,S 2=a 1+ a 2,a 1=2代入,整理得(a 2-2)2=16. 由a 2>0,解得 a 2=6. 当n =3时有33222S a =+,S 3=a 1+ a 2+ a 3,将a 1=2,a 2=6代入,整理得(a 3-2)2=64. 由a 3>0,解得 a 3=10.故该数列的前3项为2,6,10.(2)解法一:由(1)猜想数列{a n }有通项公式a n =4n -2.下面用数学归纳法证明数列{ a n }的通项公式是a n =4n -2 (n ∈N ).①当n =1时,因为4×1-2=2,又在(1)中已求出a 1=2,所以上述结论成立. ②假设n =k 时结论成立,即有a k =4k -2.由题意,有k k S a 222=+, 将a k =4k -2代入上式,得2k = k S 2,解得S k =2k 2.由题意,有11222++=+k k S a ,S k +1=S k +a k +1, 将S k =2k 2代入,得2122⎪⎭⎫ ⎝⎛++k a =2(a k +1+2k 2),整理得21+k a -4 a k +1+4-16 k 2=0.由a k +1>0,解得a k +1=2+4k .所以a k +1=2+4k =4(k +1)-2. 这就是说,当n =k +1时,上述结论成立.根据①、②,上述结论对所有的自然数n 成立.解法二:由题意,有()N n S a n n ∈=+222,整理得S n =81(a n +2)2, 由此得 S n +1 =81(a n +1+2)2,∴a n +1= S n +1-S n =81[(a n +1+2)2-(a n +2)2],整理得(a n +1+ a n )( a n +1-a n -4)=0,由题意知 a n +1+a n ≠0,∴a n +1-a n =4.即数列{ a n }为等差数列,其中a 1=2,公差d =4.∴a n =a 1+(n -1)d =2+4(n -1),即通项公式为a n =4n -2.(3)解:令c n =b n -1,则⎪⎪⎭⎫ ⎝⎛-+=++22111n n n n n a a a a c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛--+=112121121221n n n n 121121+--=n n , b 1+b 2+…+b n -n =c 1+c 2+…+c n =⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1211215131311n n 1211+-=n .∴()11211lim lim 21=⎪⎭⎫⎝⎛+-=-+++∞→∞→n n b b b n n n .例 5.(2006年湖南高中联赛)设}{n a 是正数数列,其前n 项和S n 满足)3)(1(41+-=n n n a a S .(1)求数列}{n a 的通项公式;(2)令nn S b 1=,试求}{n b 的前n 项和T n .解、(1)由)3)(1(411111+-==a a S a 及0>n a 得,1a =3.由)3)(1(41+-=n n n a a S 得)3)(1(41111+-=---n n n a a S .故)(2)[(411212---+-=n n n n n a a a a a ,))(()(2111----+=+n n n n n n a a a a a a∵ 01>+-n n a a ,∴ 21=--n n a a .{n a }是以3为首项,2为公差的等差数列,故n a =2n +1.(2)n a =2n +1,∴)2(+=n n S n ,)211(211+-==n n S b n n 。
非等差等比数列前n项和计算方法
第二章:数列11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。
2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +), 那么这个数列就叫做等差数列。
⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔= ⑶通项公式:1(1)()nma a n d a n m d =+-=+- 或(na pn q p q =+、是常数).⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则qpnma a a a +=+;②下标为等差数列的项()Λ,,,2mk m k k a a a ++,仍组成等差数列;③数列{}b a n+λ(b ,λ为常数)仍为等差数列; ④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n nka pb + (k 、p 是非零常数)、*{}(,)p nqa p q N +∈、,…也成等差数列。
⑤单调性:{}na 的公差为d ,则:ⅰ)⇔>0d {}n a 为递增数列; ⅱ)⇔<0d {}n a 为递减数列; ⅲ)⇔=0d {}na 为常数列;⑥数列{n a }为等差数列na pn q ⇔=+(p,q 是常数)⑦若等差数列{}n a 的前n 项和,则、kk S S -2、kk S S 23-… 是等差数列。
3、等比数列⑴定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
⑵等比中项:若三数a b 、G 、成等比数列2,G ab ⇒=(ab 同号)。
反之不一定成立。
⑶通项公式:11n n mn ma a q a q --==⑷前n 项和公式:()11111n n na q a a q Sqq--==--⑸常用性质①若()+∈ +=+N q p n m q p n m ,,,,则mnpqa a a a ⋅=⋅;②Λ,,,2mk m k k a a a ++为等比数列,公比为kq (下标成等差数列,则对应的项成等比数列)③数列{}na λ(λ为不等于零的常数)仍是公比为q 的等比数列;正项等比数列{}na ;则{}lg na 是公差为lg q 的等差数列;④若{}na 是等比数列,则{}{}2n n ca a ,,1n a ⎧⎫⎨⎬⎩⎭,{}()r na r Z ∈是等比数列,公比依次是21.rq q q q,,, ⑤单调性:110,10,01a q a q >><<<或{}n a ⇒为递增数列;{}110,010,1na q a q a ><<<>⇒或为递减数列; {}1n q a =⇒为常数列; {}0nq a <⇒为摆动数列;⑥既是等差数列又是等比数列的数列是常数列。
高三理科数学培养讲义:第2部分_专题2_第4讲_数列求和与综合问题
第4讲 数列求和与综合问题高考统计·定方向题型1 数列中的a n 与S n 的关系■核心知识储备·1.数列{a n }中,a n 与S n 的关系 a n =⎩⎨⎧S 1(n =1),S n -S n -1(n ≥2).2.求数列{a n }通项的方法 (1)叠加法形如a n -a n -1=f (n )(n ≥2)的数列应用叠加法求通项公式,a n =a 1+(a 2-a 1)+…+(a n -a n -1)=a 1+f (2)+…+f (n )(和可求).(2)叠乘法 形如a n a n -1=f (n )(n ≥2)的数列应用叠乘法求通项公式,a n =a 1·a 2a 1·a 3a 2·…·a na n -1=a 1·f (2)·f (3)…f (n )(积可求).(3)待定系数法形如a n =λa n -1+μ(n ≥2,λ≠1,μ≠0)的数列应用待定系数法求通项公式,a n +μλ-1=λ⎝ ⎛⎭⎪⎫a n -1+μλ-1⎝ ⎛⎭⎪⎫构造新数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +μλ-1为等比数列.■高考考法示例·【例1】 (1)(2018·巴蜀适应性月考)数列{a n }中,a 1=1,a n +1=S n +3n (n ∈N *,n ≥1),则数列{S n }的通项公式为________.(2)(2018·锦州市模拟)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n+1=4S n -3(n ∈N *).①求a 2的值并证明:a n +2-a n =2; ②求数列{a n }的通项公式.(1)S n =3n -2n [∵a n +1=S n +3n =S n +1-S n , ∴S n +1=2S n +3n , ∴S n +13n +1=23·S n 3n +13, ∴S n +13n +1-1=23⎝ ⎛⎭⎪⎫S n 3n -1,又S 13-1=13-1=-23,∴数列⎩⎨⎧⎭⎬⎫S n 3n -1是首项为-23,公比为23的等比数列, ∴S n 3n -1=-23×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n ,∴S n =3n -2n .](2)[解] ①令n =1得2a 1a 2=4a 1-3, 又a 1=1, ∴a 2=12.由2a n a n +1=4S n -3, 得2a n +1a n +2=4S n +1-3. 即2a n +1(a n +2-a n )=4a n +1.∵a n ≠0,∴a n +2-a n =2.②由①可知:数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1,∴a 2k -1=1+2(k -1)=2k -1,即n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2,首项为12, ∴a 2k =12+2(k -1)=2k -32, 即n 为偶数时,a n =n -32. 综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -32,n 为偶数.1.数列{a n }中,a 1=1,对任意n ∈N *,有a n +1=1+n +a n ,令b i =1a i(i ∈N *),则b 1+b 2+…+b 2 018=( )A .2 0171 009 B .2 0172 018 C .2 0182 019D .4 0362 019D [∵a n +1=n +1+a n ,∴a n +1-a n =1+n , ∴a n -a n -1=n ,∴a n =a 1+(a 2-a 1)+…+(a n -a n -1) =1+2+…+n =n (n +1)2, ∴b n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴b 1+b 2+…+b 2 018=21-12+12-13+…+12 018-12 019=4 0362 019,故选D .] 2.数列{a n }满足,12a 1+122a 2+123a 3+…+12n a n =2n +1,则数列{a n }的通项公式为________.a n =⎩⎨⎧6,n =12n +1,n ≥2 [因为12a 1+122a 2+123a 3+…+12n a n =2n +1,所以12a 1+122a 2+123a 3+…+12n -1a n -1=2(n -1)+1,两式相减得12n a n =2, 即a n =2n +1,n ≥2. 又12a 1=3, 所以a 1=6,因此a n =⎩⎨⎧6,n =1,2n +1,n ≥2.]题型2 求数列{a n }的前n 项和■核心知识储备·1.分组求和法:将数列通项公式写成c n =a n +b n 的形式,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.2.裂项相消法:把数列与式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1或⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +2(其中{a n }为等差数列)等形式的数列求和.3.错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分六步:①S n ;②qS n ;③差式;④和式;⑤整理;⑥结论.■高考考法示例· ►角度一 分组求和法【例2-1】 (2018·昆明市教学质量检查)已知数列{a n }中,a 1=3,{a n }的前n 项和S n 满足:S n +1=a n +n 2.(1)求数列{a n }的通项公式;(2)设数列{b n }满足:b n =(-1)n +2a n ,求{b n }的前n 项和T n . [解] (1)由S n +1=a n +n 2 ① 得S n +1+1=a n +1+(n +1)2②则②-①得a n =2n +1.当a 1=3时满足上式, 所以数列{a n }的通项公式为a n =2n +1. (2)由(1)得b n =(-1)n +22n +1, 所以T n =b 1+b 2+…+b n=[](-1)+(-1)2+…+(-1)n+(23+25+…+22n +1)=(-1)×[1-(-1)n ]1-(-1)+23×(1-4n )1-4=(-1)n -12+83(4n-1).【教师备选】(2018·石家庄三模)已知等差数列{a n }的首项a 1=2,前n 项和为S n ,等比数列{b n }的首项b 1=1,且a 2=b 3,S 3=6b 2,n ∈N *.(1)求数列{a n }和{b n }的通项公式;(2)数列{c n }满足c n =b n +(-1)n a n ,记数列{c n }的前n 项和为T n ,求T n . [解] (1)设数列{a n }的公差为d ,数列{b n }的公比为q . ∵a 1=2,b 1=1,且a 2=b 3,S 3=6b 2,∴⎩⎪⎨⎪⎧2+d =q 2,3(2+2+2d )2=6q .解得⎩⎨⎧d =2,q =2.∴a n =2+(n -1)×2=2n ,b n =2n -1.(2)由题意:c n =b n +(-1)n a n =2n -1+(-1)n 2n .∴T n =(1+2+4+…+2n -1)+[-2+4-6+8-…+(-1)n ·2n ], ①若n 为偶数:T n =1-2n 1-2+{(-2+4)+(-6+8)+…+[-2(n -1)+2n ]}=2n -1+n 2×2=2n+n -1.②若n 为奇数:T n =1-2n 1-2+{(-2+4)+(-6+8)+…+[-2(n -2)+2(n -1)]-2n }=2n -1+2×n -12-2n =2n -n -2.∴T n =⎩⎨⎧2n+n -1,n 为偶数,2n -n -2,n 为奇数.►角度二 裂项相消法求和【例2-2】 (2015·全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和. [解] (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3.两式相减可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=12⎝ ⎛⎭⎪⎫13-12n +3=n3(2n +3). 【教师备选】(2018·郑州第三次质量预测)已知数列{a n }的前n 项和为S n ,a 1=-2,且满足S n =12a n +1+n +1(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =log 3(-a n +1),设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +2的前n 项和为T n ,求证:T n <34.[解] (1)由S n =12a n +1+n +1(n ∈N *),得S n -1=12a n +n (n ≥2,n ∈N *), 两式相减,并化简,得a n +1=3a n -2,即a n +1-1=3(a n -1),又a 1-1=-2-1=-3≠0, 所以{a n -1}是以-3为首项,3为公比的等比数列, 所以a n -1=(-3)·3n -1=-3n . 故a n =-3n +1.(2)证明:由b n =log 3(-a n +1)=log 33n =n , 得1b n b n +2=1n (n +2)=12⎝⎛⎭⎪⎫1n -1n +2, T n =121-13+12-14+13-15+…+1n -1-1n +1+1n -1n +2=121+12-1n +1-1n +2=34-2n +32(n +1)(n +2)<34.►角度三 错位相减法求和【例2-3】 (2018·合肥教学质量检测)已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 3=9.(1)求数列{a n }的通项公式;(2)设b n =(2n -1)·a n ,求数列{b n }的前n 项的和T n . [解] (1)设等比数列{a n }的公比为q . 由4S 5=3S 4+S 6,得S 6-S 5=3S 5-3S 4, 即a 6=3a 5,∴q =3,∴a n =9×3n -3=3n -1. (2)由(1)得b n =(2n -1)·a n =(2n -1)·3n -1, ∴T n =1×30+3×31+5×32+…+(2n -1)×3n -1,① ∴3T n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n , ②①-②得-2T n =1+2(31+32+…+3n -1)-(2n -1)·3n =1+2×3(1-3n -1)1-3-(2n -1)·3n =-2-2(n -1)·3n ,∴T n =(n -1)·3n +1.【教师备选】(2018·石家庄教学质量检测)已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n . (1)设b n =a nn ,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n .[解] (1)由a n +1=n +1n a n +n +12n 可得a n +1n +1=a n n +12n .又∵b n =a n n ,∴b n +1-b n =12n ,由a 1=1,得b 1=1, 累加可得:(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=121+122+…+12n -1,化简并代入b 1=1得:b n =2-12n -1.(2)由(1)可知a n =2n -n2n -1,设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n 2n -1的前n 项和为T n ,则T n =120+221+322+…+n2n -1① 12T n =121+222+323+…+n 2n ②①-②得12T n =120+121+122+…+12n -1-n 2n =120-12n1-12-n2n =2-n +22n ,∴T n =4-n +22n -1.又∵数列{2n }的前n 项和为n (n +1), ∴S n =n (n +1)-4+n +22n -1.已知等差数列{a n}的前n项和为S n,且a1=1,S3+S4=S5.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-1a n a n+1,求数列{b n}的前2n项和T2n.[解](1)设等差数列{a n}的公差为d,由S3+S4=S5,可得a1+a2+a3=a5,即3a2=a5,故3(1+d)=1+4d,解得d=2.∴a n=1+(n-1)×2=2n-1.(2)由(1)可得b n=(-1)n-1·(2n-1)·(2n+1)=(-1)n-1·(4n2-1).∴T2n=(4×12-1)-(4×22-1)+(4×32-1)-(4×42-1)+…+(-1)2n-1·[4×(2n)2-1]=4[12-22+32-42+…+(2n-1)2-(2n)2]=-4(1+2+3+4+…+2n-1+2n)=-4×2n(2n+1)2=-8n2-4n.题型3数列中的创新与交汇问题近几年新课标高考对该知识的命题主要体现在以下两方面:一是新信息情境下的数列问题,此类问题多以新定义、新运算或实际问题为背景,主要考查学生的归纳推理解决新问题的能力;二是创新命题角度考迁移能力,题目常与函数、向量、三角、解析几何等知识交汇结合,考查数列的基本运算与应用.■高考考法示例·►角度一新信息情境下的数列问题【例3-1】(2017·全国卷Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110[思路点拨] 阅读题干―――――→提取数据数据分组―――――――→联想数列知识推理论证得出结论A [设首项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n (1+n )2.由题意知,N >100,令n (1+n )2>100⇒n ≥14且n ∈N *,即N 出现在第13组之后.第n 组的各项和为1-2n 1-2=2n -1,前n 组所有项的和为2(1-2n )1-2-n =2n +1-2-n .设N 是第n +1组的第k 项,若要使前N 项和为2的整数幂,则N -n (1+n )2项的和即第n +1组的前k 项的和2k -1应与-2-n 互为相反数,即2k -1=2+n (k ∈N *,n ≥14),k =log 2(n +3)⇒n 最小为29,此时k =5,则N =29×(1+29)2+5=440.故选A .]►角度二 交汇类创新问题【例3-2】 (2018·长沙联考)已知正项数列{a n },{b n }满足:对于任意的n ∈N *,都有点(n ,b n )在直线y =22(x +2)上,且b n ,a n +1,b n +1成等比数列,a 1=3.(1)求数列{a n },{b n }的通项公式;(2)设S n =1a 1+1a 2+…+1a n ,如果对任意的n ∈N *,不等式2aS n <2-b n a n恒成立.求实数a 的取值范围.[思路点拨] (1)点(n ,b n )在直线y =22(x +2)上――→满足方程求b n ―――――――→b n ,a n +1,b n +1成等比数列求a n ; (2)裂项,求S n ―――――――→2aS n <2-b n a n 分离变量建立a 的不等式―――――――→数列的单调性求实数a 的取值范围[解] (1)∵点(n ,b n )在直线y =22(x +2)上,∴b n =22(n +2),即b n =(n +2)22.又∵b n ,a n +1,b n +1成等比数列,∴a 2n +1=b n ·b n +1=(n +2)2(n +3)24, ∴a n +1=(n +2)(n +3)2, ∴n ≥2时,a n =(n +1)(n +2)2, a 1=3适合上式,∴a n =(n +1)(n +2)2. (2)由(1)知,1a n =2(n +1)(n +2)=2⎝ ⎛⎭⎪⎫1n +1-1n +2, ∴S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2 =2⎝ ⎛⎭⎪⎫12-1n +2=n n +2. 故2aS n <2-b n a n可化为: 2an n +2<2-(n +2)22(n +1)(n +2)2=2-n +2n +1=n n +1, 即a <n +22(n +1)=12⎝ ⎛⎭⎪⎫1+1n +1对任意的n ∈N *恒成立,令f (n )=n +22(n +1)=12⎝ ⎛⎭⎪⎫1+1n +1,显然f (n )随n 的增大而减小,且f (n )>12恒成立,故a ≤12. 综上知,实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,12.1.若数列{a n }满足:对任意的n ∈N *,只有有限个正整数m 使得a m <n 成立,记这样的m 的个数为(a n )*,则得到一个新数列{(a n )*}.例如,若数列{a n }是1,2,3,…,n ,…,则数列{(a n )*}是0,1,2,…,n -1,….已知对任意的n ∈N *,a n =n 2,则(a 5)*=________,((a n )*)*=________.2 n 2 [因为a m <5,而a n =n 2,所以m =1,2,所以(a 5)*=2.因为(a 1)*=0,(a 2)*=1,(a 3)*=1,(a 4)*=1,(a 5)*=2,(a 6)*=2,(a 7)*=2,(a 8)*=2,(a 9)*=2,(a 10)*=3,(a 11)*=3,(a 12)*=3,(a 13)*=3,(a 14)*=3,(a 15)*=3,(a 16)*=3, 所以((a 1)*)*=1,((a 2)*)*=4,((a 3)*)*=9,((a 4)*)*=16,猜想((a n )*)*=n 2.]2.(2014·全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式; (2)证明:1a 1+1a 2+…+1a n<32. [证明] (1)由a n +1=3a n +1得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列.所以a n +12=3n 2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1. 因为当n ≥1时,3n -1≥2×3n -1,所以13n-1≤12×3n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1 =32⎝ ⎛⎭⎪⎫1-13n <32. 所以1a 1+1a 2+…+1a n<32.[高考真题]1.(2016·全国卷Ⅲ)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个C [由题意知:当m =4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a 1=0,a 8=1.不考虑限制条件“对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数”,则中间6个数的情况共有C 36=20(种),其中存在k ≤2m ,a 1,a 2,…,a k 中0的个数少于1的个数的情况有:①若a 2=a 3=1,则有C 14=4(种);②若a 2=1,a 3=0,则a 4=1,a 5=1,只有1种;③若a 2=0,则a 3=a 4=a 5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C .]2.(2018·全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________.-63 [法一:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1; 当n =2时,a 1+a 2=2a 2+1,解得a 2=-2;当n =3时,a 1+a 2+a 3=2a 3+1,解得a 3=-4;当n =4时,a 1+a 2+a 3+a 4=2a 4+1,解得a 4=-8;当n =5时,a 1+a 2+a 3+a 4+a 5=2a 5+1,解得a 5=-16;当n =6时,a 1+a 2+a 3+a 4+a 5+a 6=2a 6+1,解得a 6=-32.所以S 6=-1-2-4-8-16-32=-63.法二:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1, 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,所以a n =-2n -1,所以S 6=-1×(1-26)1-2=-63.] 3.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑nk =1 1S k =________.2n n +1[设等差数列{a n }的首项为a 1,公差为d ,则 由⎩⎪⎨⎪⎧ a 3=a 1+2d =3,S 4=4a 1+4×32d =10,得⎩⎨⎧a 1=1,d =1. ∴S n =n ×1+n (n -1)2×1=n (n +1)2,1S n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1.∴∑nk =11S k =1S 1+1S 2+1S 3+…+1S n=2⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1 =2⎝⎛⎭⎪⎫1-1n +1=2n n +1.] 4.(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.[解] (1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1.所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n =⎩⎨⎧ 0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.[最新模拟]5.(2018·昆明教学质量检查)数列{a n }满足a n +1+a n =(-1)n ·n ,则数列{a n }的前20项的和为( )A .-100B .100C .-110D .110A [由a n +1+a n =(-1)n n ,得a 2+a 1=-1,a 3+a 4=-3,a 5+a 6=-5,…,a 19+a 20=-19,∴a n 的前20项的和为a 1+a 2+…+a 19+a 20=-1-3-…-19=-1+192×10=-100,故选A .] 6.(2018·安阳模拟)设等差数列{a n }的前n 项和为S n ,点(n ,S n )在函数f (x )=x 2+Bx +C -1(B ,C ∈R )的图象上,且a 1=C .(1)求数列{a n }的通项公式;(2)记数列b n =a n (a 2n -1+1),求数列{b n }的前n 项和T n .[解] (1)设数列{a n }的公差为d ,则S n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,又S n =n 2+Bn +C -1,两式对照得⎩⎪⎨⎪⎧ d 2=1,C -1=0,⎩⎨⎧d =2,a 1=C =1,所以数列{a n }的通项公式为a n =2n -1.(2)b n =(2n -1)(2·2n -1-1+1)=(2n -1)2n ,则T n =1×2+3×22+…+(2n -1)·2n ,2T n =1×22+3×23+…+(2n -3)·2n +(2n -1)·2n +1, 两式相减得T n=(2n-1)·2n+1-2(22+…+2n)-2=(2n-1)·2n+1-2×22(1-2n-1)1-2-2=(2n-3)·2n+1+6.。
数列中an及Sn的关系
课题浅谈数列中a n 与S n 的递推公式的应用对于任意一个数列,当定义数列的前n 项和通常用S n 表示时,记作S n =a 1+a 2+…+a n ,此时通项公式a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.而对于不同的题目中的a n 与S n 的递推关系,在解题时又应该从哪些方向去灵活应用a n =S n -S n -1(n ≥2)去解决不同类型的问题呢?我们将从下面三个角度去探索在各类考试中出现的a n 与S n 相关的问题:归纳起来常见的角度有:角度一:直观运用已知的S n ,求a n ;角度二:客观运用a n =S n -S n -1(n ≥2),求与a n ,S n 有关的结论; 角度三:a n 与S n 的延伸应用.角度一:直观运用已知的S n ,求a n方法:已知S n 求a n 的三个步骤(此时S n 为关于n 的代数式): (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.同时,在部分题目中需要深刻理解“数列的前n 项和”的实际意义,对“和的式子”有本质的认识,这样才能更好的运用S n 求解.如:a 1+2a 2+3a 3+…+na n =2n -1,其中a 1+2a 2+3a 3+…+na n 表示数列{na n }的前n 项和.1.已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎨⎧ 1,n =12n -3,n ≥2D .a n =⎩⎨⎧1,n =12n +3,n ≥2【解析】当n ≥2时,a n =S n -S n -1=2n -3.当n =1时,a 1=S 1=1,不满足上式. 【答案】C2.(2015·河北石家庄一中月考)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1) ·3n +1+3(n ∈N *),则数列的通项公式a n = .【解析】当n ≥2时,a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2) ·3n +3;则用已知等式减去上式得(2n -1)·a n =(2n -1)·3n ,得a n =3n ;当n =1时,a 1=3,满足上式;故a n =3n .【答案】a n =3n3.(2015·天津一中月考)已知{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n = . 【解析】由已知得S n +1=2n +1,则S n =2n +1-1;当n ≥2时,a n =S n -S n -1=2n +1-1-2n +1=2n ;当n =1时,a 1=S 1=3,不满足上式;故a n =⎩⎨⎧3,n =12n ,n ≥2.【答案】a n =⎩⎨⎧3,n =12n ,n ≥24.(2015·四川成都树德期中)已知{a n }是一个公差大于0的等差数列,且满足a 3a 5=45,a 2+a 6=14.(1)求{a n }的通项公式; (2)若数列{b n }满足:b 12+b 222+…+b n2n=a n +1(n ∈N *),求{b n }的前n 项和.【解】(1)设等差数列{a n }的公差为d ,则d >0, 由a 2+a 6=14,可得a 4=7由a 3a 5=45,得(7-d )(7+d )=45,解得d =2 或d =-2(舍) ∴a n =a 4+(n -4)d =7+2(n -4),即a n =2n -1.(2)令c n =b n2n,则c 1+c 2+c 3+…+c n =a n +1=2n ①当n ≥2时,c 1+c 2+c 3+…+c n -1=2(n -1) ②由①-②得,c n =2,当n =1时,c 1=2,满足上式;则c n =2(n ∈N *),即b n2n =2,∴b n =2n +1,故数列{b n }是首项为4,公比为2得等比数列, ∴数列{b n }的前n 项和S n =4(1-2n )1-2=2n +2-4.此类题目中,已知条件往往是一个关于a n 与S n 的等式,问题则是求解与a n ,S n 有关联的结论.那么我们需要通过对所求问题进行客观分析后,判定最后的结果中是保留a n ,还是S n .那么,主要从两个方向利用a n =S n -S n -1(n ≥2):方向一:若所求问题是与a n 相关的结论,那么用S n -S n -1=a n (n ≥2)消去等式中所有S n 与S n -1,保留项数a n ,在进行整理求解;1.(2015·广州潮州月考)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1,n ∈N *),则数列的通项公式是 .【解析】当n ≥2时,a n =2S n -1+1,两式相减得a n +1-a n =2(S n -S n -1),即a n +1-a n =2a n ,得a n+1=3a n ;当n =1时,a 2=3,则a 2=3a 1,满足上式;故{a n }是首项为1,公比为3得等比数列,∴a n=3n -1.【答案】a n =3n -12.数列{a n }的前n 项和为S n ,若a n +1=-4S n +1,a 1=1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .【解】(1)当n ≥2时,a n =-4S n -1+1,又a n +1=-4S n +1,∴a n +1-a n =-4a n ,即a n +1a n=-3(n ≥2), 又a 2=-4a 1+1=-3,a 1=1,∴数列{a n }是首项为a 1=1,公比为q =-3的等比数列, ∴a n =(-3)n -1.(2)由(1)可得b n =n ·(-3)n -1,T n =1·(-3)0+2·(-3)1+3·(-3)2+…+(n -1)·(-3)n -2+n ·(-3)n -1,-3T n =1·(-3)1+2·(-3)2+…+(n -2)·(-3)n -2+(n -1)·(-3)n -1+n (-3)n , ∴4T n =1+(-3)1+(-3)2+…+(-3)n -1-n ·(-3)n , 所以,T n =1-(4n +1)(-3)n16.方向二:若所求问题是与S n 相关的结论,那么用a n =S n -S n -1(n ≥2)消去等式中所有项数a n ,保留S n 与S n -1,在进行整理求解.1.已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是等差数列;(2)求a n 的表达式.【解】(1)证明:∵a n =S n -S n -1(n ≥2),又a n =-2S n ·S n -1,∴S n -1-S n =2S n ·S n -1,S n ≠0.因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n =1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n .当n ≥2时,a n =-2S n ·S n -1=-12n (n -1),又∵a 1=12,不适合上式.∴a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.2.(2015·江西名校联盟调考)已知正项数列{a n }的前n 项和为S n ,且a 2n -2S n a n +1=0. (1)求数列{S n }的通项公式;(2)求证:1S 1+1S 2+…+1S n>2(S n+1-1).(提示:1n >2n +1+n)【解】(1)∵a n =S n -S n -1(n ≥2),由a 2n -2S n a n +1=0,得(S n -S n -1)2-2S n (S n -S n -1)+1=0,整理得S 2n -S 2n -1=1.当n =1时,a 21-2S 1a 1+1=0,且a 1>0,解得a 1=1, 故由等差数列的定义知{S 2n }是以1为首项,1为公差的等差数列. ∴S 2n =n ,则S n =n .(2)由(1)知1S n =1n =22n >2n +1+n=2(n +1-n ),∴1S 1+1S 2+…+1S n >2(2-1)+2(3-2)+…+2(n +1-n )=2(n +1-1)即1S 1+1S 2+…+1S n>2(S n +1-1) .【总结】此类题目往往伴随着等差、等比数列的判定,所以需要对数列的判定方法熟练掌握.解此类题目中不仅需要深刻理解“数列的前n 项和”的实际意义,还需要对a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2关系式的形式结构很熟练的掌握,这样才能在题目中对已知等式灵活地变换.当然在解决问题的时候仍然需要从求谁的角度出发分析,确定等式的变换方向. 方向一:关于双重前n 项和此类题目中一般出现“数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ”的条件,在解答时需要确定清楚求的是与a n ,S n ,T n 中谁相关的问题,确定已知等式的运用方向.但一般是求解最底层的a n .1.(2015·湖北武汉质检)设数列{a n }的前n 现和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.【解】(1)当n =1时,T 1=2S 1-1,且T 1=S 1=a 1,解得a 1=1,(2)当n ≥2时,S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1 ∴S n =2S n -1+2n -1 ① 则S n +1=2S n +2n +1 ② 由②-①,得a n +1=2a n +2,∴a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2),易求得,a 1+2=3,a 2+2=6,则a 2+2a 1+2=2,∴数列{a n +2}是首项为3,公比为2的等比数列,∴a n +2=3·2n -1,则a n =3·2n -1-2(n ∈N *).2.(2015·安徽滁州期末联考)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,且2T n =4S n-(n 2+n ),n ∈N *.(1)证明:数列{a n +1}为等比数列;(2)设b n =n +1a n +1,证明:b 1+b 2+…+b n <3. 【解】(1)当n =1时,2T 1=4S 1-2,且T 1=S 1=a 1,解得a 1=1,当n =2时,2T 2=2(a 1+a 1+a 2)=4(a 1+a 2)-6,解得a 2=3, 当n ≥2时,2T n -1=4S n -1-[(n -1)2+(n -1)]∴2S n =2T n -2T n -1=4S n -(n 2+n )-4S n -1+[(n -1)2+(n -1)] 整理得S n =2S n -1+n ① 则S n +1=2S n +n +1 ② 由②-①,得a n +1=2a n +1, ∴a n +1+1=2(a n +1),即a n +1+1a n +1=2(n ≥2),显然a 2+1a 1+1=2,∴数列{a n +1}是首项为2,公比为2的等比数列,(2)由(1)知,a n +1=2n ,则b n =n +12n.则b 1+b 2+…+b n =22+322+423…+n +12n ,令T n =22+322+423…+n +12n ,①则12T n = 222+323+424…+n 2n +n +12n +1,② 由①-②,得12T n =1+122+123+124…+12n -n +12n +1=1+122(1-12n -1)1-12-n +12n +1=32-n +32n +1<32则T n <3,即b 1+b 2+…+b n <3. 方向二:已知等式在整理过程中需要因式分解此类问题大多数时候会伴随“各项均为正数的数列{a n }”这样的条件,运用在因式分解后对因式进行符号的判定,对因式进行的取舍.1.(2015·山东青岛一模)各项均为正数的数列{a n }满足a 2n =4S n -2a n -1(n ∈N *),其中S n 为{a n }的前n 项和.(1)求a 1,a 2的值; (2)求数列{a n }的通项公式.【解】(1)当n =1时,T 1=2S 1-1;又T 1=S 1=a 1,则a 1=2a 1-1,解得a 1=1;(2)当n ≥2时,S n =T n -T n -1=(2S n -n 2)-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1, 整理得S n =2S n -1+2n -1 ① ∴S n +1=2S n +2n +1 ② 由②-①,得a n +1=2a n +2 ∴a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2)又T 2=2S 2-4;得a 2=4当n =1时,a 1+2=3,a 2+2=6,则a 1+2a 2+2=2,∴数列{a n +2}是以3为首项,2为公比的等比数列. 则a n +2=3·2n -1,所以a n =3·2n -1-2.2.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n,T n =b 1+b 2+…+b n ,求T n .【解】(1)由已知得,当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎨⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1得2a n =a 2n +a n -a 2n -1-a n -1. 即(a n +a n -1)(a n -a n -1-1)=0,∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,1为公差的等差数列. (2)由(1)可得a n =n ,S n =n (n +1)2,b n =12S n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.方向三:需对已知等式变形后,再求解1.(2015·江西五校联考)已知正项数列{a n }中,其前n 项和为S n ,且a n =2S n -1. (1)求数列{a n }的通项公式; (2)设b n =1a n ·a n+1,T n =b 1+b 2+b 3+…+b n ,求T n .【解】(1)由已知得,4S n =(a n +1)2.当n ≥2时,4S n -1=(a n -1+1)2,则4S n -4S n -1=(a n +1)2-(a n -1+1)2,整理得 (a n -1)2-(a n -1+1)2=0, ∴(a n -a n -1-2)(a n +a n -1)=0 又a n >0,则a n -a n -1=2,当n =1时,4S 1=(a 1+1)2,得a 1=1; 故数列{a n }是首项为1,公差为2的等差数列; ∴a n =2n -1.(2)由(1)可得b n =1a n ·a n+1=12n -1×12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =1b 1+1b 2+1b 3+…+1b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 2.(2015·浙江温州中学月考)设数列{a n }的前n 项和为S n ,已知a 1=2,a 2=8,S n +1+4S n -1=5S n (n ≥2),T n 是数列{log 2a n }的前n 项和.(1)求数列{a n }的通项公式; (2)求T n .【解】(1)当n ≥2时,S n +1+4S n -1=5S n ,∴S n +1-S n =4(S n -S n -1),即a n +1=4a n , 当n =1时,a 2=4a 1;故数列{a n }是以2为首项,4为公比的等比数列. ∴a n =2·4n -1=22n -1.(2)由(1)可知log 2a n =log 222n -1=2n -1, ∴T n =log 2a 1+log 2a 2+log 2a 3+…+log 2a n=1+3+5+…+2n -1 =n (1+2n -1)2=n 2.3.(2015·江西三县联考)已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,其中n ∈N *.(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成等差数列,求数列{a n }的通项公式;(2) a 1=1,对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成公比为q 的等比数列,求数列{a n }的前n 项和A n .【解】(1)∵任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成等差数列,∴B (n )-A (n )=C (n )-B (n ),则a n +1-a 1=a n +2-a 2,即a n +2-a n +1=a 2-a 1=4, 故数列{a n }是首项为1,公差为4的等差数列; ∴a n =1+(n -1)×4=4n -3.(2)若对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成公比为q 的等比数列, ∴B (n )=qA (n ),C (n )=qB (n ), 则C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1, 当n =1时,由B (1)=qA (1),可得a 2=qa 1; 则a n +2-qa n +1=a 2-qa 1=0,又a n >0,则a n +2a n +1=a 2a 1=q , 故数列{a n }是以1为首项,q 为公比的等比数列.∴A n =⎩⎪⎨⎪⎧n ,q =1,1-q n1-q,q ≠1.4.(2015·辽宁沈阳诊断考试)设数列{a n }的前n 项和为S n ,a 1=10,a n +1=9S n +10. (1)求证:{lg a n }是等差数列;(2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3(lg a n )(lg a n +1)的前n 项和,求T n ; (3)求使T n >14(m 2-5m )对所有的n ∈N *恒成立的整数m 的取值集合.【解】(1)证明:当n ≥2时,a n =9S n -1+10,∴a n +1-a n =9(S n -S n -1),则a n +1=10a n ,即a n +1a n=10, 当n =1时,a 2=9a 1+10=100,则a 2a 1=10, 故数列{a n }是以10为首项,10为公比的等比数列. ∴a n =10n ,则lg a n =n , ∴lg a n +1-lg a n =n +1-n =1,故数列{lg a n }是首项为1,公差为1的等差数列.(2)解:由(1)知3(lg a n )(lg a n +1)=3n n +1=3⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =3⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=3⎝ ⎛⎭⎪⎫1-1n +1=3n n +1. (3)∵T n =3n n +1=3-3n +1, ∴当n =1时,T n 取最小值32.依题意有32>14(m 2-5m ),解得-1<m <6,故整数m 的取值集合为{0,1,2,3,4,5}.1.(2015·江苏扬州外国语中学模拟)已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为 .【解析】当n ≥2时,a n =S n -S n -1=2n -3-2n -1+3=2n -1.当n =1时,a 1=S 1=-1,不满足上式.【答案】a n =⎩⎨⎧-1,n =12n -1,n ≥22.(2015·辽宁沈阳二中月考)已知数列{a n }满足a 1+a 22+…+a nn=a 2n -1,求数列{a n }的通项公式. 【解】当n ≥2时,a 1+a 22+…+a n -1n -1=a 2n -2-1 由已知等式减去上式,得a nn=a 2n -1-a 2n -2+1=(a 2-1)a 2n -2, ∴a n =n (a 2-1)a 2n -2,当n =1时,a 1=a 2-1,满足上式; ∴a n =n (a 2-1)a 2n -2.3.(2015·安徽江淮十校联考)已知函数f (x )是定义在(0,+∞)上的单调函数,且对任意的正数x ,y 都有f (x ·y )= f (x )+f (y ),若数列{a n }的前n 项和为S n ,且满足f (S n +2)-f (a n )= f (3)(n ∈N *),则a n 为( )A .2n -1B .nC .2n -1D .⎝ ⎛⎭⎪⎫32n -1【解析】由f (x ·y )= f (x )+f (y ),f (S n +2)-f (a n )= f (3),得S n +2=3a n ,S n -1+2=3a n -1(n ≥2),两式相减得2a n =3a n -1;当n =1时,S 1+2=3a 1=a 1+2,则a 1=1.所以数列{a n }是首项为1,公比为32的等比数列.【答案】a n =⎝ ⎛⎭⎪⎫32n -14.(2015·辽宁鞍山二中期中)设数列{a n }是等差数列,数列{b n }的前n 项和S n 满足S n =32(b n -1),且a 2=b 1,a 5=b 2.(1)求数列{a n }和{b n }的通项公式;(2)设c n =a n ·b n ,T n 为{c n }的前n 项和,求T n . 【解】(1)当n ≥2时,S n -1=32(b n -1-1),则b n =S n -S n -1=32(b n -1)-32(b n -1-1),整理得b n =3b n -1,当n =1时,b 1=32(b 1-1),解得b 1=3;故数列{b n }是以3为首项,3为公比的等比数列. ∴b n =3n ,设等差数列{a n }的公差为d ,由a 2=b 1=3,a 5=b 2=9,则⎩⎨⎧a 1+d =3,a 1+4d =3,解得d =2,a 1=1,∴a n =2n -1,∴a n =2n -1,b n =3n .(2)由(1)知c n =a n ·b n =(2n -1)·3n ,∴T n =3+3·32+5·33+…+(2n -1)·3n ,①3T n = 32+3·33+5·34+…+(2n -3)·3n +(2n -1)·3n +1,② 由①-②,得-2T n =3+2(32+33+…+3n )-(2n -1)·3n +1=3+2×32(1-3 n -1)1-3-(2n -1)·3n +1=(2-2n )·3n +1-6,∴T n =(n -1) 3n +1+3.5.在数列{a n }中,已知a 1=1,a n =2(a n -1+a n -2+…+a 2+a 1) (n ≥2,n ∈N *),则数列的通项公式是 .【解析】由已知n ≥2时,a n =2S n -1 ①;当n ≥3时,a n -1=2S n -2 ②①-②整理得a n a n -1=3 (n ≥3),∴a n =⎩⎨⎧1, n =1,2×3n -2, n ≥2.【答案】a n =⎩⎨⎧1, n =1,2×3n -2, n ≥2. 6.(2015·广东桂城摸底)已知各项均为正数的数列{a n }的前n 项和为S n ,且a 2n +a n =2S n . (1)求a 1;(2)求数列{a n }的通项公式;(3)若b n =1a 2n (n ∈N *),T n =b 1+b 2+…+b n ,求证:T n <53.⎝ ⎛⎭⎪⎫提示:1n 2<2⎝ ⎛⎭⎪⎫12n -1-12n +1【解】(1)当n =1时,a 21+a 1=2S 1,且a n >0,得a 1=1;(2)当n ≥2时,a 2n -1+a n -1=2S n -1 ①;且a 2n +a n =2S n ②;由②-①,得(a n +a n -1)(a n -a n -1-1)=0, 又a n >0,则a n -a n -1=1,故数列{a n }是首项为1,公差为1的等差数列; ∴a n =n .(3)证明:由(2)知,b n =1a 2n =1n2,当n =1时,b 1=1<53,不等式成立;当n ≥2时,1n 2<1n 2-14=44n 2-1=2⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =1+122+132+…+1n 2<1+2⎝ ⎛⎭⎪⎫13-15+15-17…+12n -1-12n +1<1+23=53, ∴T n <537.(2015·大连双基测试)已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 【解析】当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎨⎧4,n =1,2n +1,n ≥2. 【答案】⎩⎨⎧4,n =12n +1,n ≥28.(2014·烟台一模)已知数列{a n }前n 项和为S n ,首项为a 1,且12,a n ,S n 成等差数列.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n 的前n 项和.【解】(1)∵12,a n ,S n 成等差数列,∴2a n =S n +12,当n =1时,2a 1=S 1+12,∴a 1=12,当n ≥2时,S n =2a n -12,S n -1=2a n -1-12,两式相减得:a n =S n -S n -1=2a n -2a n -1,∴a na n -1=2, 所以数列{a n }是首项为12,公比为2的等比数列,即a n =12×2n -1=2n -2.(2)∵b n =(log 2a 2n +1)×(log 2a 2n +3)=(log 222n +1-2)×(log 222n +3-2)=(2n -1)(2n +1), ∴1b n =12n -1×12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n 的前n 项和T n =1b 1+1b 2+1b 3+…+1b n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.9.(2014·山西四校联考)已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________. 【解析】当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.【答案】2n -110.(2014·湖南卷)已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 【解】(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n2-n -12+n -12=n .又a 1=1满足上式,故数列{a n }的通项公式为a n =n . (2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n , 则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+ (22),B =-1+2-3+4-…+2n ,则A =21-22n1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.11.已知数列{a n }是各项均为正数的等比数列,a 3=4,{a n }的前3项和为7. (1)求数列{a n }的通项公式;(2)若a 1b 1+a 2b 2+…+a n b n =(2n -3)2n +3,设数列{b n }的前n 项和为S n ,求证:1S 1+1S 2+…+1S n≤2-1n.【解】(1)设数列{a n }的公比为q ,由已知得q >0,且⎩⎨⎧ a 1q 2=4,a 1+a 1q +4=7,∴⎩⎨⎧a 1=1,q =2.∴数列{a n }的通项公式为a n =2n -1.(2)【证明】当n =1时,a 1b 1=1,且a 1=1,解得b 1=1.当n ≥2时,a n b n =(2n -3)2n +3-(2n -2-3)2n -1-3=(2n -1)·2n -1.∵a n =2n -1,∴当n ≥2时,b n =2n -1. ∵b 1=1=2×1-1满足b n =2n -1, ∴数列{b n }的通项公式为b n =2n -1(n ∈N *). ∴数列{b n }是首项为1,公差为2的等差数列. ∴S n =n 2.∴当n =1时,1S 1=1=2-11.当n ≥2时,1S n =1n 2<1n (n -1)=1n -1-1n.∴1S 1+1S 2+…+1S n ≤2-11+11-12+…+1n -1-1n =2-1n . 12.设数列{a n }的前n 项和为S n ,a 1=1,a n =S nn+2 (n -1) (n ∈N *). (1)求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式;(2)是否存在自然数n ,使得S 1+S 22+S 33+…+S nn -(n -1)2=2 013?若存在,求出n 的值;若不存在,请说明理由.【解】(1)由a n =S n n+2(n -1),得S n =na n -2n (n -1) (n ∈N *).当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-4(n -1),即a n -a n -1=4, 故数列{a n }是以1为首项,以4为公差的等差数列. 于是,a n =4n -3,S n =a 1+a n n2=2n 2-n (n ∈N *).(2)由S n =na n -2n (n -1),得S nn=2n -1 (n ∈N *),又S 1+S 22+S 33+…+S nn -(n -1)2=1+3+5+7+…+(2n -1)-(n -1)2=n 2-(n -1)2=2n -1.令2n -1=2 013,得n =1 007,即存在满足条件的自然数n =1 007.1.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.【解】(1)由S n =12a 2n +12a n ,可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4.(2)S n =12a 2n +12a n,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .2.在数列{a n }中,a 1=-5,a 2=-2,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2(n ∈N *),若对于任意n ∈N *,A (n ),B (n ),C (n )成等差数列.(1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和.【解】(1)根据题意A (n ),B (n ),C (n )成等差数列,∴A (n )+C (n )=2B (n ),整理得a n +2-a n +1=a 2-a 1=-2+5=3, ∴数列{a n }是首项为-5,公差为3的等差数列, ∴a n =-5+3(n -1)=3n -8.(2)|a n |=⎩⎨⎧-3n +8,n ≤2,3n -8,n ≥3,记数列{|a n |}的前n 项和为S n .当n ≤2时,S n =n 5+8-3n2=-3n 22+132n ;当n ≥3时,S n =7+n -21+3n -82=3n 22-132n +14,综上,S n=⎩⎪⎨⎪⎧-32n 2+132n ,n ≤2,32n 2-132n +14,n ≥3.3.(2014·广东卷)设各项均为正数的数列{a n } 的前n 项和为S n ,且 S n 满足 S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1 的值;(2)求数列{a n } 的通项公式;(3)证明:对一切正整数n ,有1a 1a 1+1+1a 2a 2+1+…+1a n a n +1<13.【解】(1)由题意知,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0,可得S 21+S 1-6=0,解得S 1=-3或2,即a 1=-3或2, 又a n 为正数,所以a 1=2.(2)由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *可得,(S n +3)(S n -n 2-n )=0,则S n =n 2+n 或S n =-3, 又数列{a n }的各项均为正数,∴S n =n 2+n ,S n -1=(n -1)2+(n -1),当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n . 又a 1=2=2×1,所以a n =2n . (3)证明:当n =1时,1a 1a 1+1=12×3=16<13成立;当n ≥2时,1a n a n +1=12n 2n +1<12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴1a 1a 1+1+1a 2a 2+1+…+1a n a n +1<16+12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=16+12⎝ ⎛⎭⎪⎫13-12n +1<16+16=13. 所以对一切正整数n ,有1a 1a 1+1+1a 2a 2+1+…+1a n a n +1<13.。
公开课数列an与sn关系
数列中a n 与S n 的关系【使用说明及学法指导】1.复习后完成导学案,不做达标检测和拓展训练部分;2.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;3.必须记住的内容:等差数列通项公式,等比数列通项公式和a n 与S n 的关系的公式。
【学习目标】学习目标:熟练运用S n 与a n 关系,学会S n 与a n 互化。
学习重点:理解S n 与a n 关系。
学习难点:熟练运用S n 与a n 关系,培养利用已知条件建立或推导递推关系的能力,进一步体会方程,化归和类比等数学思想,逐步落实逻辑推理和数学运算核心素养。
【复习回顾,学情自测】一、如何证明一个数列是等差数列,如何证明一个数列是等比数列?二、你能列举出典型的递推式及其求通项公式的方法吗?三、项式a n 与和式S n 的关系的公式__________.基础小测:1(2020安徽)设数列{a n }的前n 项和S n =n 2,则a 8的值为()A .15B .16C .49D .642.已知数列{a n }的前n 项和S n =2n ,则a 3+a 4=__________.3.(2017全国Ⅲ)设数列{}n a 满足123(21)2n a a n a n +++-= .求{}n a 的通项公式;4.根据数列前几项,写出下列数列的一个通项公式:(1)1,3,9,27,81,…(2)2,3,9,27,81,…四、回顾项式a n 与和式S n 的关系常考形式有哪些,条件通常会如何变化,体会不同条件下的联系与区别,易错点有哪些?【变式探究,例题精讲】一.设数列{a n }的前n 项和为S n ,求S n .【例1】(2015课标Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=1,a n+1=-S n S n+1,则S n =.二.设下列数列{a n }的前n 项和为S n ,求a n .【例2】(2021全国)12++=n n S n ;【例3】(1)32-+=n a S n n ;(2)n n n a S 22-=;(3)12+=n n a S 思考:题目求解过程中综合了哪些知识与方法?【变式1】(2021辽宁改编)112,1+==n n a S a ;思考:体会与例3(3)之间的区别与联系,需要注意易错点有哪些?【变式2】1112,2++==n n a S a .【达标检测】1.(2021浙江)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-,求数列{}n a 的通项。
数列“Sn与an的关系”求解 专题课件-高二上学期数学人教A版(2019)选择性必修第二册
【课本P40,3】已知数列 { } 满足 = +1,求出
当n=1时,1 =21 +1
1 = −1
≥ 2时, =2 − − + 1
= 2−1 − 1
+ = 2(−1 + )
设,
= 2−1 + 即=-1
− 1 = 2(−1 − 1)
S1 ,
an
S n S n 1 , n≥2.
【练习金版P11,例3】 根据下面数列 {an } 的前n项和 ,求出{an } 的通项公式
(1) = 22 − 3nΒιβλιοθήκη (2) = 3 + 1
Sn是关于n
的代数式
写出Sn-1
相减得到
an(n≥2)
Sn与an的关系
2 数列的前n项和
n = 1,
S1 ,
an
S n S n 1 , n≥2.
【练习金版P11,例3】 根据下面数列 {an } 的前n项和 ,求出{an } 的通项公式
(1) = 22 − 3n
≥ 2时,−1 =2( − 1)2 −3 − 1
=22 −7n+5
= − −1 = 22 − 3n −(22 −7n+5)
1 −1
−1×( ) ,
2
1 −1
−( )
2
∈ +
+ 2, ∈ +
Sn与an的关系
3 数列的前n项和
根据 与�� 的关系求数列的通项公式的常见类型及解法
n = 1,
S1 ,
(1)若 是关于n的代数式,则可直接利用 an
S n S n 1 , n≥2.
数列的通项公式利用Sn与an关系求通项公式课件ppt
2n 2n1 2n1 对于 an 2n1,当 n 1 时, a1 1 5
所以: an
5 2n1
,n 1 ,n 2
[解题流程]
当 n 1时求 a1
当 n 2 时,求 an
写出 an
检验:对于②中求出的 an ,当 n 1时, (两种情况,写法不同)
a1 是否与①中的 a1 相同
1.已知数列{an}的前 n 项和 Sn 2n2 n 1,求 an 2.已知数列{an}的前 n 项和 Sn 1 3n ,求 an
S2 n1
1
数列{Sn2} 为等差数列, 首项 S12 a12 1,公差 d 1 Sn2 n,Sn n, n N
处理方法
利用 an Sn Sn1 ,消去 an , 先求出 Sn ,再求 an
5. 已知数列{an}的前 n 项和为 Sn ,a1 1,
若 an
4Sn2 (n 4Sn 1
①当
n
1 时,
a1
S1
1 n 2
1 2n2 2n
对于
an
1 2n2
2n
,当
n
1时,a1 无意义
所以: an
1 2
,n 1
1
2n2 2n
,n
2
已知 Sn 与 an 的关系式,先求 Sn ,再求 an
【例 4】2. 已知正项数列{an} 的前 n 项
答案 第1题
4 n 1 an 4n 1 n 2
第2题
an 2 3n1, n N
隐藏 Sn ,求 an
【例 2】已知数列{an}中, a1 2a2 2n1an n2 n ,求 an
解答过程
令 bn 2n1 an 则 a1 2a2 2n1an n2 n 可转换为 b1 b2 bn n2 n , 若记 Sn b1 b2 bn ,则 Sn n2 n
sn与an的转化二级结论
sn与an的转化二级结论
在数学中,特别是关于数列的部分,我们常常遇到两种不同的数列表示方式:sn 和 an。
其中,sn 通常表示数列的前 n 项和,而 an 表示数列的第 n 项。
这两种表示方式在数列的研究中各有其用途,并且它们之间存在着紧密的关系。
首先,让我们明确这两种表示方式的概念。
sn,即数列的前 n 项和,是指数列中前 n 个数相加得到的和。
而 an,即数列的第 n 项,是指数列中第 n 个位置的数。
在等差数列和等比数列中,这两种表示方式之间有着明确的转化关系。
对于等差数列,其前 n 项和 sn 可以通过公式 sn = n/2 * (2a1 + (n-1)d) 来计算,其中 a1 是首项,d 是公差。
而等差数列的第 n 项 an 可以通过公式 an = a1 + (n-1)d 来计算。
通过这两个公式,我们可以轻松地在 sn 和 an 之间进行转化。
对于等比数列,情况稍有不同。
其前 n 项和 sn 可以通过公式 sn = a1 * (1 - q^n) / (1 - q) 来计算,其中 a1 是首项,q 是公比。
而等比数列的第 n 项 an 可以通过公式 an = a1 * q^(n-1) 来计算。
同样,这两个公式为我们提供了在 sn 和 an 之间进行转化的方法。
理解并掌握 sn 和 an 之间的转化关系,对于研究数列的性质和规律至关重要。
通过这种转化,我们可以更方便地理解和分析数列的特性,从而在数学研究和应用中取得更好的效果。
《数列中an和sn的关系》教案
《数列中an和sn的关系》教学准备学情分析1、知识前的储备:学生已经学习了等差数列和等比数列的定义,通项公式,及其前n项和的求法。
从这两大数列的角度,对于项式an和Sn 之间的关系,已经具备了知识的储备,对进一步掌握两者的关系,学生有了容易接受的心理以及深入探究的兴趣。
2、学生的普遍特征:高中学生的逻辑思维能力日益加强,数学理解能力加强,接受新知识也很快。
学生的整体水平尽管有差异,但探究知识的能力都已经趋向成熟,也能够持之以恒地深入思考,但学生整体上还是具备的由浅入深学习数学的习惯,由特殊到一般学习法是学生的显著特征。
3、本节课知识结构:本节课知识是在等差数列和等比数列已经学完的基础上继续巩固项式与和式之间的关系的一堂课,主要目的是让学生加深数列的理解和应用。
所以本节课的知识学习是有目的性的,课堂设计尽量突出知识结构,使课堂生动吸人、使学生对知识的理解浅显易懂,掌握上变化有序,学习上有深度有广度。
教学工具1、电脑及其投影:投影ppt课件。
2、实物投影仪:投影学生的解题过程。
3、手机及希沃授课助手:拍摄学生解题步骤,投影出来及时点评正确或错误的细节之处。
教案设计教学目标1、知识与技能:(1)加强等差数列,等比数列的定义理解和通项公式的求法;(2)加强对数列项式a n和和式S n的关系进一步掌握;(3)方程消元的思想,迭代的思想,构造新数列的数学方法的应用。
2、过程与方法:本节课通过学生独立思考、小组交流讨论等方式的学习,培养学生的团队合作精神,培养学生的创新意识,提高学生应用数学知识解决实际问题的能力。
使学生学会理解数学,分析数学知识的方法,提高学生的逻辑思维能力。
3、情感、态度和价值观:本节课通过数学的实际应用例子,利用数学建模的思想,激发学生的探究兴趣,科学的创新精神。
让学生形成积极的学习态度,健康向上的人生理想、以及科学精神和正确的人生观、世界观和价值观。
教学重难点重点为利用数列a n与S n的关系,求出a n或者S n难点是间接转化法,是将S n转化为a n还是将a n转化为S n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于任意一个数列,当定义数列的前 n 项和通常用S n 表示时,记作 S n = a i +玄:+…十a n ,此时通项公S i , n = 1,式 a n = *.S n _ 5_1, n 》2而对于不同的题目中的 a n 与S n 的递推关系,在解题时又应该从哪些方向去灵活应用 a n = S n - S n -i (n > 2)去解决不同类型的问题呢?我们将从下面三个角度去探索在各类考试中出现的a n 与S n 相关的问题:归纳起来常见的角度有:角度一:直观运用已知的 S n ,求a n ;角度二:客观运用 a n = S n -S n -i (n > 2)求与a n , Sn 有关的结论; 角度三:a n 与S n 的延伸应用.方法:已知S n 求a n 的三个步骤(此时S n 为关于n 的代数式): (1)先利用a i = S i 求出a i ;⑵用n - 1替换S 中的n 得到一个新的关系,利用a n = S n -S n - i (n > 2)便可求出当n 》2时a n 的表达式; ⑶对n = 1时的结果进行检验,看是否符合n 》2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分 n = 1与n 》2两段来写.同时,在部分题目中需要深刻理解“数列的前n 项和”的实际意义,对“和的式子”有本质的认识,这样才能更好的运用 S n 求解.如:a 1+ 2a 2 + 3a 3+・・・+ na n = 2n — 1,其中a 1+ 2a 2+ 3a 3+・・・+ na n 表示数列 {na n }的前n 项和.1.已知数列{a n }的前n 项和S n = n 2- 2n + 2,则数列{a n }的通项公式为()A . a n =2n -3【解析】 当n 》2时,a n= Si — S n -1 = 2n — 3 .当n = 1时,a 1 = S 1 = 1,不满足上式.【答案】Cn+12 .(2015 河北石家庄一中月考)数列{ a n }满足:a 1 + 3a 2+ 5a 3+…+ (2n-1) a n= (n — 1) • + 3(n € N *), 则数列的通项公式 a n= _________________________________ .【解析】当n 》2时,a 1 + 3a 2+ 5a 3+-+ (2n — 3) a n -1= (n - 2) 3-n + 3;则用已知等式减去上式得 (2n — 1) a n = (2n—1) 3,得 a n = 3 ;当 n = 1 时,a 1= 3,满足上式;故 a n = 3 .B . a n = 2n + 3C . a n = f n =1|2n — 3, n 》21, n = 1D . a n ='2n + 3, n 》2【答案】a n= 3n3. (2015天津一中月考)已知{a n}的前n项和为S n,且满足log2(S n +1) = n+ 1,贝V a.= ______________________ .【解析】由已知得 S n + 1 = 2n +1,贝y S n = 2n +1 - 1 ;当 n A2 时,a n = S n — S n - 1 = 2卄 1- 1 -2n + 1 = 2n ;当4. (2015四川成都树德期中)已知{a n }是一个公差大于0的等差数列,且满足 a 3a 5= 45, a 2 + a 6= 14. (1)求{a n }的通项公式;⑵若数列{b n }满足:2 +》+•••+ 2 = a n + 1(n € N *),求{b n }的前n 项和.【解】(1)设等差数列{a n }的公差为d ,则d >0,由 a 2+ a 6= 14,可得 a 4= 7由 a 3a 5= 45,得(7- d)(7 + d) = 45,解得 d = 2 或 d = - 2(舍)/.an =玄4 + (n — 4)d = 7+ 2(n — 4),即 a n = 2n — 1.b(2)令 c n = 2,则 C 1+ C 2 + C 3+…+ C n = a *+ 1 = 2n ①当 n A 2 时,C 1 + C 2 + C 3+・・・+ C n -1 = 2(n — 1) ② 由①一②得,C n = 2,当n = 1时,C 1= 2,满足上式;贝y C n = 2(n € N *),即戸=2,•/ b n = 2n +1,故数列{b n }是首项为4 ,公比为2得等比数列, 4(1 - 2n )n +2n n 2角度二:客观运用 a n = S n — S n -i (n A 2),求与a n , S n 有关的结论此类题目中,已知条件往往是一个关于a n 与S n 的等式,问题则是求解与 a n , S n 有关联的结论.那么我们需要通过对所求问题进行客观分析后,判定最后的结果中是保留 a n ,还是S n .那么,主要从两个方向利用 a n = S n 一 S n -1 (n A 2):方向一:若所求问题是与a n 相关的结论,那么用 S n - S n -1 =环(n A 2)消去等式中所有 S n 与S n -1,保留项数a n ,在进行整理求解;1. (2015 •州潮州月考)数列{ a n }的前n 项和记为S, a 1= 1, a *+1 = 2S n + 1(n A 1, n € N *),则数列的 通项公式是 _________________ .n = 1时,a 1 = S 1 = 3,不满足上式;故3, n = 1 2n , n A 2【答案】2n , n = 1 n A 2【解析】当 n >2 时,a n = 2S n -1+ 1,两式相减得 a n +i — a n = 2(S n — S IT ),即 a n +1— a n = 2a n ,得 a n +i = 3a n ;当n = I 时,a 2= 3,则a 2= 3a i ,满足上式;故{a n }是首项为1,公比为3得等比数列,二a n【答案】a n = 3n —12 .数列{ a n }的前 n 项和为 S n ,若 a n +1 = — 4S n + 1, a 1= 1.(1)求数列{a n }的通项公式; ⑵设b n = na n ,求数列{b n }的前n 项和T n . 【解】⑴当 n 》2 时,a n=— 4S n - 1+ 1,又 a n + 1 =— 4S n + 1,a n +1a n +1 — a n =— 4a n ,即 =—3(n 》2),a n又 a 2=— 4a 1+ 1 = — 3, a 1= 1,二数列{a n }是首项为a 1= 1,公比为q = — 3的等比数列, ••• a n = (— 3)n —1.(2)由(1)可得 b n = n ( —3)n 1,T n = 1 ( — 3)0+ 2 ( — 3)1+ 3 ( — 3)2+…+ (n — 1) (•— 3)n —2+ n (— 3)n —1,—3T n = 1 (— 3)1 + 2 (— 3)2 + •••+ (n — 2) (•— 3)n —2+ (n — 1) (•— 3)n —1 + n( — 3)n , • 4T n = 1 + (—3)1+ (— 3)2+ …+ ( — 3)n —1 — n (— 3)n ,方向二:若所求问题是与S n 相关的结论,那么用a n = S n — S n - 1(n > 2)消去等式中所有项数a n , 与S n - 1,在进行整理求解.、 11 .已知数列{a n }的前n 项和为Si 且满足a n + 2S n S n -1= 0(n >2), a 1 = 2.(1) 求证:g 是等差数列; (2) 求a n 的表达式.【解】(1)证明:T a n = S n — S n -1( n > 2),又 a n =— 2S S n -1 ,…S n -1—S n= 2S n S n - 1, S n ^ 0 •1 1 因此= 2(n 》2). S n S n -11 ' 1 1故由等差数列的定义知‘g 是以&=a =2为首项,2为公差的等差数列.1当n >2时,a n =-第S 「1 一丽二刁 1又••• a i =-,不适合上式. 冷,n =1,.••an= 1I 1 1(2)由(1)知S = S + (n — 1)d = 2+ (n — 1) >2 = 2n ,即 S n =亦.3n —1所以, 1 —(4n + 1)( —3)n16保留S n一 ,n 》2. 2n(n — 1)2. (2015江西名校联盟调考)已知正项数列{a n }的前n 项和为S n ,且a :— 2S n a n + 1 = 0• (1) 求数列{S n }的通项公式; 11 1 一 1 2(2) 求证:3+3 +…+2(S n+1— 1).(提示:一> --------------S 1 S 2S n7n p n + 1 + V n【解】(1) - a n = Si — S n -1(n 》2),由 a n 一 2S n a n +1 = 0,得(S n - S n -1) 一 2S n (S n 一 S n - 1) + 1 = 0,整理得 S n 一 S n -1 = 1 • 当 n = 1 时,a f - 2S 1a 1 + 1 = 0,且 a 1 >0,解得 a 1= 1,故由等差数列的定义知{§}是以1为首项,1为公差的等差数列. .•.S = n ,则 S n = _n .ddQQ___⑵由⑴知 S =.n = 2.n >一 n + 1 +: n = 2( '1一 ’ ,•••1 + S +…+ S 1 > 2( 2 — 1) + 2( 3— .2)+-+ 2( n + 1一 n)= 2( n + 1 — 1) 即 S + 吉+…+ & > 2(S n +1—1) •【总结】此类题目往往伴随着等差、等比数列的判定,所以需要对数列的判定方法熟练掌握.r.S 1, n = 1 ,解此类题目中不仅需要深刻理解“数列的前n 项和”的实际意义,还需要对a n =关系S n — S n -1 , n >2 式的形式结构很熟练的掌握,这样才能在题目中对已知等式灵活地变换.当然在解决问题的时候仍然需要从求谁的角度出发分析,确定等式的变换方向. 方向一:关于双重前 n 项和此类题目中一般出现“数列 {a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ”的条件,在解答时需要 确定清楚求的是与 a n , S n , T n 中谁相关的问题,确定已知等式的运用方向.但一般是求解最底层的a ..1. (2015湖北武汉质检)设数列{a n }的前n 现和为S n ,数列{ S n }的前n 项和为T n ,满足T n = 2Sn — n 2, n € N *.(1)求a 1的值;⑵求数列{a n }的通项公式.【解】(1)当 n = 1 时,T i = 2S i — 1,且 T i = S i = a i ,解得 a i = 1,(2)当 n 》2 时,S n = T n — T n —1 = 2S n — n 2 — [2 S n -1 — (n — 1)2] = 2S n — 2S n -1 — 2n + 1 S n = 2S n -1 + 2n —1①则 S n + 1 = 2S n + 2n + 1② 由②一①,得 a n +1 = 2a n +2,a n +1 + 2 ••• a n +1+ 2= 2(a n + 2),即—— =2(n 》2), a n + 2a 2 + 2易求得,a 1+ 2 = 3, a 2+2= 6,则 + 2 = 2,a 1 + 2•数列{a n + 2}是首项为3,公比为2的等比数列, ••• a n + 2 = 3 2n —1,贝y a n = 3 2n —1 — 2(n € N *).22. (2015安徽滁州期末联考)设数列{ a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,且2T n = 4$—(n + n), n € N * .(1)证明:数列{a n + 1}为等比数列; n + 1 、十仃口⑵设b n = a + 1,证明:【解】(1)当 n = 1 时,2T 1 = 4S 1 — 2,且 T 1 = S 1= a 1,解得 a 1= 1,当 n = 2 时,2T 2= 2(a 1+a 1+a 2)= 4(a 1+ a2)— 6,解得 a 2= 3,当 n >2 时,2T n -1= 4S n -1—[( n一 1)2+ (n—1)]• 2S n = 2T n — 2T n -1= 4S n — (n 2+ n)— 4S n — 1+ [(n — 1)2+ (n — 1)] 整理得S n = 2S n -1+ n ①则 S n + 1= 2S n + n + 1② 由②一①,得 a n + 1 = 2a n +1 , • a n +1+ 1 = 2(a n + 1),即 a n+1+11 = 2(n > 2), a n 十1••数列{a n + 1}是首项为2,公比为2的等比数列,n E rn + 1(2)由(1)知,a n + 1 = 2 ,贝y b n = ~2亍.234 n + 1则 b 1+ b 2+-+ b n = 2+ 22 + 戸…+~2厂,+ b ?+…+ b n v 3.显然a 2+1a 1+ 1。