第二十一届华杯赛小高组初赛详解

合集下载

2016年第二十一届华罗庚金杯少年数学邀请赛初赛全国卷(小学高年级组)(含解析)

2016年第二十一届华罗庚金杯少年数学邀请赛初赛全国卷(小学高年级组)(含解析)
故选:A.
+16)=100-16=84,
6.答案: B;
试题分析: 试题分析: 首先在 0 到 2016 这 2016 个数中,数字和最大的为 1999,其和是 1+9×3=28,
数字之和最小是 1;按其和的多少可以方程 28 组,并且根据多少依次编上号, 进而得出答案。
解:数字和是 1 的①号有 1、10、100、1000; 数字和是 2 的②号有 11、101、110、1001、1010、1100、2、20、200、2000; 数字和是 3 的③号有 111、1011、1101、1110、102、120、201、210、1002、··· ······ ······ 在这 28 个数中,除 1999 只有一个数外,其余每组都有 4 个或 4 个以上的数; 如果我们在这些数字和为 4 个或 4 个以上的数的各组中,每组取 4 个数,并且将 1999 也取上,这样共有数:27× 4+1=109(个); 这样,在剩余的数中,任取一个,必然会从这个数相同组中取出的 4 个数的数字和相 等,即产生 5 个数字和相等的情况; 所以,n 的最小值等于:109+1=110; 故选:B.
10.答案: 4029;
试题分析: 试题分析: 由题意可知,题目要求剪出的小梯形,只在梯形的上底和下底以及底角作了要 求,并没有谈及梯形的高的事,可知,要分割的小梯形就是一横排。 因为题中的等腰梯形纸片,上底长度为 2015,下底长度为 2016,下底与上底 之间只相差 2016-2015=1,为了达到分割出的所有的小梯形的上底的和为 1, 且下底也只能比上底多 1, 如果设上底为 x,下底为 x+1,上、下底交错搭配,这样,两个小梯形搭配起来 就是一个小平行四边形,因为所有 x 的和为 1 知,平行四边形最多有 20151=2014(个),另外还有一个符合要求的等腰梯形,如下图:

华杯赛初赛小高组试题卷(含答案)

华杯赛初赛小高组试题卷(含答案)

华杯赛初赛模拟题(小高组)1.计算:22222221234201520162017-+-++-+ 【解析】 原式22222222017201654321=-++-+-+ (20172016)(20172016)(32)(32)1=-⨯+++-⨯++2017201620152014321=+++++++()120171201720351532=⨯+⨯= 2.幼儿园的老师把一些画片分别给A 、B 、C 三个班,每人都分到6张,如果只分给B 班,每人能得15张,如果只分给C 班,每人能得14张,如果只分给A 班,每人能得 张.【解析】 设三个班的总人数为x 人,A 班、B 班、C 班的人数分别为a ,b ,c , 则61514x b c ==,从而62155b x x ==,63147c x x ==,所以2365735a x x x x =--=,因此将这些画片分给A 班,每人能得663535x x ÷=(张). 3.A 、B 两杯食盐水各有40克,浓度比是3:2.在B 中加入60克水,然后倒入A 中________克,再在A 、B 中加入水,使它们均为100克,这时浓度比为7:3.【解析】 在B 中加入60克水后,B 盐水浓度减少为原来的25,但溶质质量不变,此时两杯盐水中的盐的质量比仍然为3:2,B 中的盐占所有盐的质量的22325=+,但最终状态下B 中的盐占所有盐的质量的337310=+,也就是说B 中的盐减少了32111054-÷=,所以从B 中倒出了14的盐水到A ,即25克. 4.如图,点E 是长方形ABCD 的对角线AC 上任一点,过E 作AB 与BC 的垂线分别交AB 、BC 于F 、G ,连接DF 、FG 和GD 。

已知8AB =、10AD =、三角形DFG 的面积为30,则长方形BGEF 的面积为 。

G F EC DB A解析:205.四边形ABCD 中,,,E F I 是AB 上的四等分点,,,H G J 是DC 上的三等分的点,如果30,25,AEHD EFGH S S ==,求IBCJ S 。

第二十一届华杯赛初赛试题及答案

第二十一届华杯赛初赛试题及答案
2016 个 2016 个
)个数字 0. D. 2014
A. 2017 B. 2016 C. 2015 【知识点】计算模块——多位数计算 【解析】 999 9 999 9 10
2016 个 2016 个

2016
1 10 2016 1
230 270 500 350 500 500 350 350 .
【答案】A 2. 如右图所示,韩梅家的左右两侧各摆了两盆花. 每 次,韩梅按照以下规则往家中搬一盆花: 先选择左 侧还是右侧,然后搬该侧离家最近的. 要把所有花 搬到家里,共有( )种不同的搬花顺序. A. 4 B. 6 C. 8 D. 10 【知识点】 计数模块——加法原理 【解析】 将图中花从左往右依次编号 1,2,3,4. 根据题目要求,有下列搬花方式: 2-1-3-4,2-3-4-1,2-3-1-4,3-4-2-4,3-2-1-4,3-2-4-1 共 6 种不同的搬花顺序. 【答案】B 3. 在桌面上,将一个边长为 1 的正六边形纸片与一个边长为 1 的正三角形纸片拼接,要求无 重叠,且拼接的边完全重合,则得到的新图形的边数为( ). A. 8 B. 7 C. 6 D. 5 【知识点】 几何——平铺 【解析】如图所示,共有 5 个边.


10 2016 10 2016 2 10 2016 1
10 2016 ( 10 2016 2) 1
1000 0 999 98 1
2016 个 2015个
999 98000 01
A 选项中 998 显然不能被 11 整除,由 99+8 4=131,13+1 4=17,显然 17 不能 被 13 整除,从而 998 也不能被 13 整除. B 选项中 988 显然不能被 11 整除,由 98+8 4=130,显然 130 能被 13 整除,从而 988 能被 13 整除; 884 显然不能被 11 整除,由 88+4 4=104,10+4 4=26,显然 26 能被 13 整除,从而 884 能被 13 整除; 847 中,8+7-4=11,显然能被 11 整除; 473 中,4+3-7=0,显然能被 11 整除; 737 中,7+7-3=11,显然能被 11 整除. C 选项中 997 显然不能被 11 整除,由 99+7 4=127,12+7 4=30,显然 30 不能被 13 整除,从而 997 也不能被 13 整除. D 选项中 987 显然不能被 11 整除,由 98+7 4=126, 12+6 4=36,显然 36 不能被 13 整除,从而 987 也不能被 13 整除. 【答案】B 4. 将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么 共有( A. 1152 )种不同的排法. B. 864 C. 576 D.288

第21届“华杯赛”决赛小高组B组试题

第21届“华杯赛”决赛小高组B组试题

第二十一届华罗庚金杯少年数学邀请赛 决赛试题B (小学高年级组) (时间: 2016年3月12日10:00~11:30) 一、填空题(每小题 10分, 共80分) 1. 计算: =-÷⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-4.213453611753971 . 2. 如右图, 30个棱长为1的正方体粘成一个四层的立体, 这个立体的表面积等于 . 3. 有一片草场, 10头牛8天可以吃完草场上的草; 15头牛, 如果从第二天开始每天少一头, 可以5天吃完. 那么草场上每天长出来的草够 头牛吃一天. 4. 如右图所示, 将一个三角形纸片ABC 折叠, 使得点C 落在三角形ABC 所在平面上, 折痕为DE . 已知︒=∠74ABE , ︒=∠70DAB , ︒=∠20CEB , 那么CDA ∠等于 . 5.甲、乙二人骑自行车从环形公路上同一地点同时出发, 背向而行. 已知甲骑行一圈的时间是70分钟, 出发后第45分钟甲、乙二人相遇, 那么乙骑行一圈的时间是 分钟. 6.如右图, 正方形ABCD 的边长为5, E , F 为正方形外两点,满足4==CF AE , 3==DF BE , 那么=2EF .7. 如果832⨯能表示成k 个连续正整数的和, 则k 的最大值为 .8. 现有算式: 甲数□乙数○1, 其中□, ○是符号+, -, ⨯,÷中的某两个. 李雷对四组甲数、乙数进行了计算, 结果见右表, 那么, A ○=B .学校____________姓名_________ 参赛证号密封线 内请勿答题第二十一届华罗庚金杯少年数学邀请赛决赛试题B(小学高年级组)二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 计算:⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++201624232201613121 201620152016201420152014201635343+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++++ . 10.商店春节促销, 顾客每次购物支付现金时, 每100元可得一张价值50元的代金券. 这些代金券不能兑成现金, 但可以用来购买商品, 规则是: 当次购物得到的代金券不能当次使用; 每次购物支付的现金不少于购买商品价值的一半. 李阿姨只有不超过1550元的现金, 她能买到价值2300元的商品吗? 如果能, 给她设计一个购物方案; 如果不能, 说明理由.11. 如右图, 等腰直角三角形ABC 与等腰直角三角形DEF 之间的面积为20, 2=BD , 4=EC , 求三角形ABC 的面积.12. 试找出这样的最大的五位正整数, 它不是11的倍数, 通过划去它的若干数字也不能得到可被11整除的数.三、解答下列各题(每小题 15分,共30分,要求写出详细过程)13. 如右图, 正方形ABCD 的面积为1, M 是CD 边的中点, E , F 是BC 边上的两点, 且FC EF BE ==. 连接AE , DF 分别交BM分别于H , G . 求四边形EFGH 的面积.14. 现有下图左边所示的“四连方”纸片五种, 每种的数量足够多. 要在如下图右边所示的55⨯方格网上, 放“四连方”, “四连方”可以翻转, “四连方”的每个小方格都要与方格网的某个小方格重合, 任意两个“四连方”不能有重叠部分. 那么最少放几个“四连方”就不能再放了?。

第二十一届华杯赛决赛B卷答案详解

第二十一届华杯赛决赛B卷答案详解

H A 4 D
3 F 4
E 3 B 4 G C 3
7、如果 2 38 能表示成 k 个连续正整数的和, 【答案】108 【解析】 令 k 个连续正整数的首个为 N,有
则 k 的最大值为(

2 38 =n n 1 n 2 kn
的到:
n k 1
10、 商店春节促销, 顾客每次购物支付现金时, 每 100 元可得一张价值 50 元的 代金券. 这些代金券不能兑成现金, 但可以用来购买商品, 规则是: 当次购物得 到的代金券不能当次使用; 每次购物支付的现金不少于购买商品价值的一半. 李 阿姨只有不超过 1550 元的现金, 她能买到价值 2300 元的商品吗? 如果能, 给 她设计一个购物方案; 如果不能, 说明理由。 【答案】能 【解析】制定一种最节省现金,最大化得到和使用代金券的方案即可。由于 1、 每 100 元可得一张价值 50 元的代金券, 2、 当次购物得到的代金券不能当次使 用,3、每次购物支付的现金不少于购买商品价值的一半。故每次最低消费 100 元现金即可,以此不停循环。 第一次, 付现 100 元,返券 50 元; 第二次, 付现 100 元,抵券 50 元,返券 50 元; 第三次, 付现 100 元,抵券 50 元,返券 50 元; · · · · · · (如此 15 次) 第十六次,付现 50 元,抵券 50 元。 共付现 1550 元,抵券 50 15=750 元,获得商品总价: 1550 750=2300 元 11、 如右图, 等腰直角三角形 ABC 与等腰直角三
9 5 圈,得出: = 14 14
5, E, F 为正方形
外两点,满足 AE CF 4 , BE DF 3 ,那么 EF 2 【答案】98 【解析】 补全成大正方形如图, EF 2 的平方即为大正方形面积的两倍,即:

第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)带答案

第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)带答案

999...998000 (001)v ⎪ = 第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题 10 分,共 60 分,以下每题的四个选项中,仅有一个是正确的,请将 表示正确答案的英文字母写在每题的圆括号内.)1.算式 999...9×999...9 的结算中含有()个数字 0. 2016个2016个A.2017B.2016C.2015D.2014【答案】C【解析】(102016 -1)2 = (102016 - 2) ⨯102016 +1 =2015个2015个2.已知 A ,B 两地相距 300 米.甲、乙两人同时分别从 A , B 两地出发,相向而行,在距 A 地140 米处相遇;如果乙每秒多行 1 米,则两人相遇处距 B 地 180 米.那么乙原来的速度 是每秒( )米.3 A. 254 B. 25C.31 D. 35【答案】D【解析】设甲速 v 1 乙速 v 2⎧ v 1 = 140 = 7 ⎧v = 14⎪ v 2 ⎨ 300 -140 8 ⎪ 1 5 解得 ⎨⎪ v 1 = 300 -180 = 2 ⎪ 162 ⎪⎩ v 2 +1180 3 ⎩⎪ 5 3.在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数, 则这个七位数最大是()A.9981733B.9884737C.9978137D.9871773【答案】B【解析】1001 =11⨯13⨯7 ,ACD 前三位都不是 11 或13 的倍数 988 =13⨯76 , 884 =13⨯68, 847 =11⨯77 , 473 =11⨯ 43, 737 =11⨯674.将1,2,3,4,5,6,7,8 这8 个数排成一行,使得8 的两边各数之和相等,那么共有()种不同的排行.A.1152B.864C.576D.288【答案】A【解析】1+2 +3+... +7=28 ,8 的两边之和都是14有(1247)8(356),(1256)8(347),(1346)8(257),(2345)8(356) 四种分法共有2⨯4⨯4!⨯3! =1152 种排法E 5.在等腰梯形ABCD 中,AB 平行于CD ,AB =6 ,CD =14 , A B ∠AEC 是直角,CE =CB ,则AE2 等于()D CA.84B.80C.75D.64【答案】A【解析】AG =BF =h ,CG =10 ,CF = 4AC2 =AG2 +CG2 =h2 +100CE2 =BC2 =BF 2 +CF 2 =h2 +16AE2 =AC2 -CE2 =846.从自然数1,2,3,…,2015,2016 中,任意取n 个不同的数,要求总能在这n 个不同的数中找到5 个数,它们的数字和相等.那么n 的最小值等于()A.109B.110C.111D.112【答案】B【解析】1 到2016 中,数字和最大28。

第21届华杯赛小学高年级组初赛试题解析(成都)

第21届华杯赛小学高年级组初赛试题解析(成都)

报名咨询电话:68890961
86111521
成都市青羊区金河路 59 号尊城国际 1305 室
第6题 在一个七位数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,那么这个七位数最大是() (A)9981733 答案:B 解析: 要使此 7 位数最大,则第一个数为 9,如果第二个数为 9,要使其 能被 13 整除,用试除法知 988 能被 13 整除,990 能被 11 整除, 而如果为 990,则 0 不能和它后面两位数构成三位数,则不能为 990, 所以第二个数不能为 9, 所以第二个数为 8,998 能被 13 整除, 则看第 4 位,用同样的方法可得此七位数为 9884737. ___________________________________________________________ (B)9884737 (C)9978137 (D)9871773
2 n 1 4 无法求出 n 值,不符合。
___________________________________________________________
报名咨询电话:68890961
86111521
成都市青羊区金河路 59 号尊城国际 1305 室
第3题 有一种饮料包装瓶的容积是 1.5 升。现瓶里装了一些饮料,正放时饮 料高度为 20 厘米,倒放时空余部分的高度为 5 厘米,如右图。那么 瓶内现有饮料()升
则 ab 为 15 的倍数
ab 15 , 15 3 5 a b 4 ab 30 , 30 1 30 2 15 3 10 5 6 a b 8 ab 45 , 45 1 45 3 15 5 9 a b 12 ab 60 , 60 1 60 2 30 3 20 4 15 5 12 6 10(符合) a b 16

第二十一届华杯赛高年级组初赛模拟0102(学生)

第二十一届华杯赛高年级组初赛模拟0102(学生)

1、有两组数,第一组数的平均数是13.4,第二组数的平均数是11.5,而两组数的平均数为12.83,那么第一组至少有()个数。

A、3B、5C、7D、92、N个仅由数码3和0组成的自然数之和等于55...5(2013个5),那么N的最小值是()A、10B、7C、8D、93、如图边长为10分米的正方形,内侧有一个半径为20厘米的圆形,沿边长滚动一周,圆形滚动不到的地方有()平方分米。

A、7.44B、14.88C、3.14D、6.284、以平面上任意四个点为顶点的三角形中,钝角三角形最多有()个。

A、2B、3C、5D、45、两数之和与两数之商都为9,那么这两数之积减两数之差(大减小)等于()A、7.29B、7.2C、0.09D、8.16、桌上有编号1到20的20张卡片,小明一次取出两张卡片,要求一张卡片的编号是另一张卡片的2倍多2,则小明最多取出()张卡片。

A、10B、12C、14D、15二、填空题:(每小题10分,共40分)7、篮球友谊赛的票价是50元,赛前一小时还有余票,于是决定降价,结果售出的票增加了三分之一,而票房收入增加了四分之一,每张票售价下降了()元。

8、工程队完成一项工作,每天工作6小时,12天可以完成。

如果效率不变,每天工作8小时,则可以提前()天完成。

9、有红、白球若干个,若每次拿出1个红球和1个白球,拿到没有红球时,还剩下50个白球;若每次拿走1个红球和3个白球,则拿到没有白球时,红球还剩下50个,那么这堆红球、白球共有()个。

10、长方形ABCD中,BE:EC=2:3,DF:FC=1:2,三角形DGF的面积是2,求长方形ABCD的面积是()1、有两组数,第一组的平均数是13.6,第二组的平均数是10.8,而这两组数的总平均数是12.4,那么第一组的个数与第二组的个数至少是()个和()个。

A、4和3B、5和4C、3和4D、4和52、两个水池内有金鱼若干条,数目相同,亮亮和红红进行捞鱼比赛,第一个水池内的金鱼被捞完时,亮亮和红红所捞到的金鱼数目比是3:4,捞完第二个水池内的金鱼时,亮亮比第一次多捞33条,与红红捞到的金鱼数目比是5:3.那么每个水池内有金鱼()条。

最新第二十一届华杯赛决赛小高组模拟试题B答案(小学高年级)

最新第二十一届华杯赛决赛小高组模拟试题B答案(小学高年级)

第二十一届华杯赛决赛小高组模拟试题B 答案1、637【解答】原式=910891078910678910106372!3!4!5!⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯++++=。

2、32【解答】她爷爷正常是60岁退休,应该是1939年出生的兔,1945年是鸡年,1957年又是鸡年,这一年她爷爷才18岁,不到结婚年龄,因而1969年的鸡年,应该是她爸爸的出生年,否则,下一个鸡年是1981年,到2000年才19岁,也不能当父亲,故2001年,小琴的爸爸32岁。

3、23【解答】乙已经开了9小时,甲再开9小时,此时15-9=6小时,两个一起放水还需要6小时注满。

由已知,要达到乙开6小时的注水量,甲还需要开6×43=8小时,故甲还需要9+6+8=23小时注满水池。

4、51【解答】10个数中有5个奇数,5个偶数,从5个偶数中取出3个,共有10种不同的取法;从5个偶数中取1个,从5个奇数中取2个,共有50种不同的取法,所以和为偶数的不同取法共有60种,其中{}0,1,3,{}0,1,5,{}0,1,7,{}0,2,4,{}0,2,6,{}0,3,5,{}1,2,3,{}1,2,5,{}1,3,49种取法的和小于10.综上,满足条件的不同取法共有51种。

5、2【解答】将棋子放中间行的白色方格中,就可以唯一地确定一种放法,其中棋子放左边方格和右边方格是相同放法,故不同放法只有2种。

6、201【解答】连接EF ,三角形BCF 的面积=41,三角形BEF 的面积=41×31=121,三角形ECF 的面积=61,三角形BED 的面积=61,三角形FED 的面积=三角形BED 的面积-三角形BEF 的面积=121。

由共边定理,面积面积EGF ECF ∆∆=面积面积DFG DFC ∆∆=GF CF ,面积DFG -12161∆=面积DFG 41∆=GF CF ,解得DFG ∆的面积=201。

7、14从表中可以看出,满足这样条件的(m,n )数对有14个。

详解第二十一届“华罗庚金杯”少年数学邀请赛初赛试题

详解第二十一届“华罗庚金杯”少年数学邀请赛初赛试题

详解第二十一届华罗庚金杯少年数学邀请赛小学高年级组初赛试卷解答者 仙桃 吴乃华一、选择题(每小题10分, 共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式 2016201699999999⨯的结果中含有( )个数字0. A 、2017 B 、2016 C 、2015 D 、2014答案:选C 。

解:我们用“以小见大”的方法来探索这类题的规律:99×99=9801 2个9的两位数自乘,积中9和0各1个,8、1各1个999×999=998001 3个9的三位数自乘,积中9和0各2个,8、1各一个9999×9999=99980001 4个9的四位数自乘,积中9和0各3个,8、1各一个…… ……根据上述规律,2016个9的2016位数自乘,积应当是:2016201699999999⨯ =201520159999800001, 所以,积中应当为:8和1各一个,9和0各有 2016-1=2015(个)。

2、已知A 、B 两地相距300米。

甲、乙两人同时分别从A, B 两地出发, 相向而行, 在距A 地140米处相遇;如果乙每秒多行1米, 则两人相遇处距B 地180米。

那么乙原来的速度是每秒( )米.A 、235B 、245C 、3D 、315答案:选D 。

解:由甲、乙两人同时分别从A 、B 两地相向出发,知甲由A 地出发,在距A 地140米处相遇,知第一次相遇时,甲行了140米,乙行了300-140=160(米)甲行走的速度是乙的140÷160=78;第二次相遇时,相遇处距B地180米,知,乙行了180米,甲行了300-180=120(米)甲行走的速度是乙的120÷180=23。

设乙的速度为每秒x米,列比例式:7 8x:(x+1)=23解得x=3153、在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是().A、9981733B、9884737C、9978137D、9871773答案:选B。

第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)详解

第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)详解

5.在等腰梯形 ABCD 中, AB 平行于 CD , AB 6 , CD 14 ,
E A B C
AEC 是直角, CE CB ,则 AE 2 等于(
A.84 【答案】A 【解析】
E A B

D
B.80
C.75
D.64
D
G
F
C
AG BF h , CG 10 , CF 4 ,
2 10 2.5 4.5 9
OM AO AM
4 1 3 AB AB AB 5 2 10 2 1 1 5 10 PM BP MB AB AB AB OM 3 2 6 9 9
9.设 q 是一个平方数.如果 q 2 和 q 2 都是质数,就称 q 为 P 型平方数,例如,9 就是 一个 P 型平方数,那么小于 1000 的最大 P 型平方数是 【答案】441 【解析】显然,q 是奇数.且 q 2 和 q 2 都不是 3 的倍数. 只能 q 2 1 和 q 2 2 (mod 3) 所以 q 是 3 的倍数. .
B.9884737
A.1152 【答案】A
【解析】 1 2 3 ... 7 28 ,8 的两边之和都是 28÷2=14, 有 (1247)8(356),(1256)8(347),(1346)8(257),(2345)8(167) 四种分法, 共有 2 4 4! 3! 1152 种排法.选 A.
1 ,即 n=2014 是成立 4029
根据原来梯形的上底可得 n(2x 1) x 2015
n
2015 x 2x 1
尝试可得, 当 x 增大时,n 会减少,且 x 为 0 时,n 最大取 2015, 但是 x 不能为 0, 否则不能形成梯形,n 不能取 2015. 当 n=2014 时,可得 2014(2 x 1) x 2015 ,解得 x 的. 综上可得,n 最大值为 2014,最多可以剪 2×2014+1=4029 个等腰梯形.

历年华杯赛初赛真题合集(12年至17年)(小高组)

历年华杯赛初赛真题合集(12年至17年)(小高组)
目录
第二十二届华罗庚金杯少年数学邀请赛............................................................................................................................ 1 第二十一届华罗庚金杯少年数学邀请赛........................................................................................................................... 3 第二十一届华罗庚金杯少年数学邀请赛........................................................................................................................... 5 第二十届华罗庚金杯少年数学邀请赛............................................................................................................................... 7 第二十届华罗庚金杯少年数学邀请赛............................................................................................................................... 9 第十九届华罗庚金杯少年数学邀请赛 ............................................................................................................................... 11 第十九届华罗庚金杯少年数学邀请赛 ..............................................................................................................................13 第十八届华罗庚金杯少年数学邀请赛 ..............................................................................................................................15 第十八届华罗庚金杯少年数学邀请赛 .............................................................................................................................. 17 第十七届华罗庚金杯少年数学邀请赛............................................................................................................................. 19 第十七届华罗庚金杯少年数学邀请赛 ..............................................................................................................................21 第二十二届华罗庚金杯少年数学邀请赛答案............................................................................................................... 23 第二十一届华罗庚金杯少年数学邀请赛答案............................................................................................................... 24 第二十一届华罗庚金杯少年数学邀请赛答案............................................................................................................... 25 第二十届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 26 第二十届华罗庚金杯少年数学邀请赛答案 ....................................................................................................................27 第十九届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 28 第十九届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 29

华杯赛讲义_小高组第1讲计算和应用专题

华杯赛讲义_小高组第1讲计算和应用专题

第一讲计算和应用专题1、在杯赛中常考提取公因数与平方差公式;注意估算与取整为难点2、(一)和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。

一般关系式有:(和-差)÷2=较小数(和+差)÷2=较大数(二)差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。

基本关系式是:两数差÷倍数差=较小数(三)还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。

(四)置换问题:题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。

其结果往往与条件不符合,再加以适当的调整,从而求出结果。

(五)盈亏问题(盈不足问题):题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。

解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。

其计算方法是:当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差(六)年龄问题:年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

常用的计算公式是:成倍时小的年龄=大小年龄之差÷(倍数-1)几年前的年龄=小的现年-成倍数时小的年龄几年后的年龄=成倍时小的年龄-小的现在年龄(七)鸡兔问题:已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。

一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。

常用的基本公式有:(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数(八)牛吃草问题(船漏水问题):若干头牛在一片有限范围内的草地上吃草。

第二十一届华罗庚金杯少年数学邀请赛决赛试题C(小学高年级组)解析

第二十一届华罗庚金杯少年数学邀请赛决赛试题C(小学高年级组)解析

第二十一届华罗庚金杯少年数学邀请赛决赛试题C(小学高年级组)解析一、填空题1、计算:_________。

解析:此题考察计算细心能力。

答案为5/3。

2、某月里,星期五、星期六和星期日各有5天,那么该月的第一日是星期_____ _。

解析:此题结合生活常识。

按日历表格式画一个下来,可知,该月从第一个星期五到最后一个星期日有31日。

则第一个星期五即该月第一日。

3、大于且小于的真分数有_______个。

解析:此题是送分题。

答案为:无数或者无穷。

4、哥哥和弟弟各买了若干个苹果,哥哥对弟弟说:“若我给你一个苹果,咱俩的苹果个数一样多”,弟弟想了想,对哥哥说:“若我给你一个苹果,你的苹果数量将是我的2倍”,则哥哥与弟弟共买了_____个苹果。

解析:此题比较容易。

由第一句话?两人苹果数相差2个;再由第二句话,此时两人相差4个苹果,则此时弟弟是4个,哥哥8个,则原有数量为:弟弟5个,哥哥7个。

共买了12个苹果。

5、如下图,AB=AD,∠DBC=21°,∠ACB=39°,则∠ABC=______度。

解析:此题较简单。

解得∠ABC=81°。

6、已知抽水机甲和抽水机乙的工作效率比是3:4,如两台抽水机同时抽取某水池,15小时抽干水池。

现在,乙抽水机抽水9小时关闭,再将甲抽水机打开,要抽干水池还需要_______小时。

解析:此题有两种方法:第一种:根据同时抽水15小时与甲乙工作效率比3:4,可计算出甲的工作效率:1/15×3/7=1/35,乙的工作效率:1/15×4/7=4/105。

再根据乙单独工作的时间计算工作量:4/105×9=12/35,最后一步:剩余工作量由甲单独需要的工作时间:(1-12/35)÷1/35=23(小时)。

第一种计算较繁琐,要求细心,建议用第二种方法。

第二种:同样也是根据同时工作需要15小时,乙单独工作9小时,则可知如果乙再工作15-9=6小时,甲只需15小时即可完成。

第二十一届华杯赛答案

第二十一届华杯赛答案

第二十一届华杯赛答案【篇一:第二十一届华杯赛周周练(一—三)】=txt>周周练(一)一、填空题1、从2012年12月21日冬至起,每九天分为一段,依次称之为一九、二九、三九??九九,冬至那一天是一九的第一天,2013年2月10日是()九的第()天。

2、有一箱苹果,甲班分每人3个余10个,乙班分每人4个余11个,丙班分每人5个余12个,这箱苹果至少有()个。

3、用学和习代表不同的数字,四位数学学学学与习习习习的积是一个七位数,且个位与百万位数字与学代表的数字相同,那么学习所代表的两位数共有()个。

4、若干人完成了植树2013棵的任务,每人植树的棵数相同,如果有5人不参加植树,其余的人每人多植2棵完不成任务,而每人多植3棵超额完成任务,参加植树共有()人。

5、一个四位数,各位数字互不相同,所有数字之和等于6,并且这个数时11的倍数,则满足这种要求的四位数有()个。

二、解答题1、一只青蛙8点从深为12米的井底向上爬,它每向上爬3米,因井壁打滑,就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一,8点17分时,青蛙第二次爬至离井口3米之处,那么青蛙爬到井口时所花的时间为多少分钟?2、钟面上3点多少分时,时针和分针在这2的两边,并且到2的距离相等。

3、某人参加了10场比赛,第6、7、8、9场比赛得分分别为23,20,11,14,已知前9场的平均分比前5场的平均分高,他第10场比赛至少得多少分,10场的平均分才能超过18分?4、一个棱长是10厘米的正方体,从侧面打通两个底面边长是4厘米的洞,从上面打通一个直径是4厘米的圆柱形洞,剩下图形的表面积和体积各是多少?5、由455个棱长1厘米的小正方体无缝隙组成一个长方体,从每条棱上去掉一行后,剩下图形的体积是371,原图形的长、宽、高各是多少?参考答案一、填空题(1)六九第七天(2)67 (3)3 (4)61 (5)6二、解答题8(1)22分钟(2)4 (3)29 (4)表面积785.12平方厘米,体积668.64立13方厘米(5)长13 宽7 高5周周练(二)一、填空题1、a、b两校的男女生人数比分别是8︰7和30︰31,两校合并后男女生人数比是27︰26,两校合并前人数比是()。

2021华杯赛试题解析

2021华杯赛试题解析

2021华杯赛试题解析计算:1234+2341+3412+4123=?答案:11110.详解:1234+2341+3412+4123=(1000+200+30+4)+(2000+300+40+1)+(3000+400+10+2)+(4000+100+ 20+3)=(1000+2000+3000+4000)+(100+200+300+400)+(10+30+30+40)+(1+2 +3+4)=10000+1000+100+10=11110试题二甲仓存粮128吨,乙仓存粮52吨,甲仓每天运出12吨,乙仓每天运进7吨。

那么多少天以后两仓的存粮就同样多了?答案:4天。

详解:①甲、乙两仓存粮相差多少吨?128-52=76(吨)②每天运进19吨,76吨需要运多少天?76÷19=4(天)列综合算式为:(128-52)÷(12+7)=4(天)试题三姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟;妹妹做算术、英语两门练习共用了44分钟。

那么妹妹做英语练习用了多少分钟?答案:25分钟。

详解:根据姐姐做自然练习与妹妹做算术练习和英语练习的时间比较知道,妹妹做英语练习的时间与她做算术练习的时间之差为:48-42=6(分钟)由题目的最后一个条件,妹妹做英语练习所需时间为(44+6)÷2=25(分钟)列综合算式如下:[44+(48-42)]÷2=25(分钟)试题四有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成的每段比第二根剪成的每段长2米。

问原来每根绳子长多少米?答案:35米。

详解:若在第一根绳子分成的5段上每段剪掉2米,只剪去了5×2=10(米)。

这时两根绳子所分的每段长都相等,段数相差为7-5=2(段),因此第二根绳分成7段每段长恰好为10÷2=5(米)。

每根绳子长5×7=35(米)。

试题五0,1,2,3,6,7,14,15,30,___,___,___。

【备战华杯赛】近五年华杯赛小高初赛真题解读

【备战华杯赛】近五年华杯赛小高初赛真题解读

【备战华杯赛】近五年华杯赛小高初赛真题解读为了帮助大家更有效地准备初赛,今天我们针对华杯赛初赛考点和大家进行分享。

1 初赛考什么?初赛一共十道题(六道选择题四道填空题),共100分,都不用写过程,用时60分钟。

大家首先一定要知道华杯赛的所有考点:计算、应用题、行程问题、数论、几何、计数、组合杂题。

而这正好对应于我们小学奥数核心知识体系里面的七大模块。

华杯赛其实就是对学生所学奥数知识的一个测试。

那其中哪些模块是我们的重难点呢?哪些是我们在这段时间里需要重点关注的呢?看下面!2 初赛怎么考?想要通过华杯赛初赛,我们第一步先要了解一下华杯赛初赛的命题规律,在这里我们对近五年的所有华杯赛初赛试题做了一份详细的考点分析。

通过把所有的数据整合到一起,我们发现每年的考点是这样的:通过这个图我们发现:华杯赛涉及的知识点都很全面,七个模块均会考察,只不过每年对模块中的细分知识点有所变化,这就要求我们对各个知识模块的完整体系有所掌握与研究。

然而考试重点在哪里呢?哪些是我们需要关注的重中之重呢?我们通过一个饼图来观察分析一下。

我们可以发现初赛考试侧重点在于:数论、组合杂题、应用题这几个模块。

数论一直最受华杯赛组委会所青睐,小高华杯赛考察数论方面是一个重点!因为2015年华杯赛主试委员会委员陶晓永教授讲过:“华杯赛主要目的是要学习华罗庚先生的精神,而华罗庚先生在数学方面最大的成就就在数论这一块。

” 在数论这一个模块上,考察知识点较多,综合性也比较强,这就要求孩子们对于数论里面的知识点要有一定的了解和灵活运用的能力。

组合杂题一般难度系数比较大点,有的题目需要孩子具有很强的分析、空间、逻辑思维能力。

但不要慌张,大部分学生都做不出来,所以这个不是学生前期备考的重点。

想再冲刺华杯赛一等奖的孩子,组合杂题一定需要被重视起来的。

应用题这个模块,一般考察浓度问题、经济问题、工程问题、比例问题(份数思想、量率对应)、列方程解应用题等,基本上难度系数不高,加把劲,一定可以拿得下来!3 初赛难易度分析上述部分,我们对于模块进行了详细的分析。

华杯赛初赛备考讲义含解析(小学高年级组)

华杯赛初赛备考讲义含解析(小学高年级组)

, , , , 华杯赛初赛备考讲义含解析(小学高年级组)第一节 计算、几何精讲考点概述计算考点 一、整数、小数、分数的基本计算; 二、整数、小数、分数的常见巧算方法;(凑整、抵消、约分、提取公因数、裂项) 三、分数比较大小;(通分子、通分母、通分差、取倒数) 四、分数与循环小数.(纯循环小数化分数、混循环小数化分数)几何考点 一、基本面积公式;(长方形、正方形、三角形、平行四边形、梯形、圆、扇形) 二、割补法计算面积;三、等积变换; 四、各类几何模型;(等高模型、蝴蝶模型、共角模型、一半模型、沙漏模型、金字塔模型、燕尾模型等) 五、勾股定理与弦图; 六、立体几何.(基本公式、展开图、三视图)真题精讲例题1. 将 5.425 ⨯ 0.63 的积写成小数形式是.(2007 年 12 届)【答案】 3.4180 .【解答】 5.425=5425 = 5420 ,所以 5.425 ⨯ 0.63= 5420 ⨯ 63 = 34146 =34176 ,999 999 999 100 9990 9990而 4176 =1 ⨯ 4176 =1 ⨯ 4 180 =1⨯ 4.180 = 0.4180 ,所以 5.425 ⨯ 0.63 = 3.4180 . 9990 10 999 10 999 10例题2. 从 1 1 1 1 1中去掉两个数,使得剩下的三个数之和与 6最接近,去掉的两个数是 ().2 3 4 5 67(A ) 1 , 1 (B ) 1 , 1 (C ) 1 , 1 (D ) 1 , 1(2010 年 15 届)25263534【答案】D . 【解答】通分1 = 210 , 1 = 140 , 1 = 105 , 1 = 84 , 1 = 70 , 6 = 360 .2 4203 4204 4205 4206 4207 420显然,210+84+70=364 最接近 360.练习1. 2012.25 ⨯ 2013.75-2010.25 ⨯ 2015.75=.(2013 年 18 届)2 , 2 , 2 , 2 , 2 , 2 ,…,而 1 = 2,所以从23 5 7 9 11 13 1000 20002001 【答案】7.【解答】记 x =2010.25,y = 2013.75,则原式= (x + 2) y - x ( y + 2) = 2( y - x ) = 7 .练习2. 两数之和与两数之商都为 6,那么这两数之积减这两数之差(大减小)等于()(2011 年 16 届)(A ) 26 4 (B ) 5 1 (C ) 6 (D ) 67 7 7 49 【答案】D .【解答】设两数分别为 x 与 6x ,那么 7x =6,x = 6 ,所以这两个数分别为 6 与 36 ,两数之积为216 ,7两数之差为 30,216 - 30 = 6 .7749749 7 49练习3. 若 a =2005 ⨯ 2006 , b = 2006 ⨯ 2007 , c = 2007 ⨯ 2008,则有().2007 ⨯ 2008 2008 ⨯ 2009 2009 ⨯ 2010(A ) a > b > c (B ) a > c > b (C ) a < c < b (D ) a < b < c (2008 年 13 届) 【答案】D .【解答】比较 a 与 b ,两边同时可以约掉2006,而2005<2007,所以 a < b , 20082007 2009比较 b 与 c ,两边同时可以约掉 2007 ,而 2006 < 2008,所以 b < c ,故选D . 2009 2008 2010练习4. 在 1 , 3 , 5 , 7 , 9 , 11,…中,从开始,1 与每个数之差都小于 1 .3 5 7 9 11 131000(2004 年 9 届)【答案】 1999 .2001【解答】这一排分数与 1 的差分别为开始,就开始小于 11000,所以答案为 1999 .2001例题3. 如图所示,AB 是半圆的直径,O 是圆心,AC = CD = DB ,M 是 CD 的中点,H 是弦 CD 的中点.若N 是OB 上一点,半圆的面积等于12 平方厘米,则图中阴影部分的面积是平方厘米.(2009 年14 届)MC DHA O N B【答案】2.【解答】如下图,可以利用等积变换变成一个扇形:MC DHA O B因为AC = CD = DB ,M 是CD 的中点,所以CM 是半圆弧的1,所以阴影扇形面积为半圆面积的1,6 6为2.例题4. 大正方形格板是由81 个1 平方厘米的小正方形铺成,B、C 是两个格点.若请你在其它的格点中标出一点A,使得△ABC 的面积恰好等于3 平方厘米,则这样的A 点共有个.(2010 年15 届)CB(A)6 (B)5 (C)8 (D)10【答案】C.【解答】方法一:从最上面的水平线开始将水平线分别记为第1、第2、…、第10 条水平线,每条水平线均由左至右判断哪个格点符合题目要求.以此穷举法可以得到:第1 条水平线上没有格点符合要求,第2 条水平线上仅有A7 符合要求.如右图所示,类似可以得到格点A2,A1,A6符合要求,对称地,可以得到A ,A ,A ,A 符合要求.故答案是C.5 4 3 8方法二:先通过尝试找到A ,然后找到经过A ,而且平行于BC 的线,画出来,那么这条线经过的格1 1点都是符合要求的(等积变换),这样可以得到A ,A ,A ,A ,然后利用对称性,可以得到A ,A ,A 3 ,A8.故答案是C.2 1 6 7 5 4练习5. 正方形ABCD 的面积为9 平方厘米,正方形EFGH 的面积为64 平方厘米.如图所示,边BC 落在EH 上.已知三角形ACG 的面积为6.75 平方厘米,则三角形ABE 的面积为平方厘米.(2012 年17 届)【答案】2.25.【解答】如图:连接EG,由于AC 和EG 都是对角线,因此相互平行,所以三角形ACG 的面积等于三角形ACE 的面积,所以S△ABE =S△ACE-S△ABC=6.75 -4.5=2.25 .练习6. 右图ABCD 是平行四边形,M 是DC 的中点,E 和F 分别位于AB 和AD 上,且EF 平行于BD.若三角形MDF 的面积等于5 平方厘米,则三角形CEB 的面积等于()平方厘米.(2013 年18 届)(A)5 (B)10 (C)15 (D)20【答案】B【解答】如右图,连接FC,BF,DE.因为M 是DC 的中点,三角形MDF 的面积等于5 平方厘米,所以由三角形面积公式可知:三角形CDF的面积等于10 平方厘米.两个三角形,同底等高,面积则相等.由此可知:由DC / / AB ,得△CEB 的面积=△BDE 的面积;由EF / /B D ,得△BDE 的面积=△BDF 的面积;由AD / /B C ,得△BDF 的面积=△C DF 的面积,所以三角形CEB 的面积等于10 平方厘米.练习7. 如右图所示,梯形ABCD 的面积为117 平方厘米.AD∥BC,EF = 13 厘米,MN = 4 厘米,又已知EF⊥MN 于O,那么阴影部分的总面积为平方厘米.(2011 年16 届)【答案】65.【解答】四边形 EMFN 的面积= 1⨯ EF ⨯ MN =26 .(对角线相互垂直的四边形面积为对角线相乘再除2以 2),又根据蝴蝶模型, S △ABM =S △EFM , S △DCN =S △EFN ,所以空白部分总面积为四边形 EMFN 的面积 的 2 倍,为 52,所以阴影部分总面积=117-52=65.练习8. 右图由 4 个正六边形组成,每个面积是 6,以这 4 个正六边形的顶点为顶点,可以连接面积为 4 的等边三角形有 个.(2011 年 16 届) 【答案】8.【解答】如图,将原图按三角形格线分割,于是我们要找的其实是由 4 个小正三 角形组成的正三角形,注意顶点必须六边形顶点,箭头朝上的有四个(如图), 根据对称性,箭头朝下的也有 4 个,共 8 个.例题5. 如图,大小两个半圆,它们的直径在同一直线上,弦 AB 与小圆相切,且与直径平行,弦 AB 长12 厘米.图中阴影部分的面积是 平方厘米.(圆周率取 3.14)(2004 年 9 届)AB【答案】56.52.【解答】设大圆半径为 R ,小圆半径为 r ,那么阴影部分面积为 1 π R 2 - 1 π r 2 = 1π ( R 2 - r 2 ),所以关 2 2 2 键是求出半径的平方差.如图,过大圆圆心作 AB 的垂线,连接圆心与 B 点,由勾股定理可得,62 + r 2 = R 2 ,所以 R 2 - r 2 = 36 .A6 BrR那么阴影部分面积= 1⨯ 3.14 ⨯ 36=56.52 .2例题6. 一个长方体的长、宽、高恰好是 3 个连续的自然数,并且它的体积的数值等于它的所有棱长之和的数值的 2 倍,那么这个长方体的表面积是 .(2007 年 12 届)(A )74(B )148(C )150(D )154【答案】B.【解答】设这三个连续的自然数分别为x-1,x,x+1,那么可以列出方程:(x-1)x(x+1)=2(x-1+x +x +1)⨯ 4 ,化简后为:x(x2 -1)= 24x ,由于x 肯定不是0,所以两边同时约掉x 后,可得方程:x2 -1= 24 ,所以x = 5 ,这三个连续的自然数分别为4、5、6,那么表面积为:(4⨯5 +5⨯ 6 +4⨯6)⨯ 2=148 .练习9. 如图所示,是一个直圆柱形状的玻璃杯,一个长为12 厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2 厘米,最多能露出4 厘米.则这个玻璃杯的容积为立方厘米.(取π= 3.14 )(提示:直角三角形中“勾6、股8、弦10”)(2006 年11 届)CA B【答案】226.08.【解答】沿AC 放置时,另一端沿吸管露出最少,为2 厘米,说明AC=12-2=10 厘米,沿BC 放置时,另一端沿吸管露出最多,为4 厘米,说明BC=12-4=8 厘米,根据勾股定理,AB2 = 102 - 82 = 36 ,所=9π⨯8=72π=226.08 .以AB=6,底面半径为3,所以V杯练习10. 右图中,AB 是圆O 的直径,长6 厘米,正方形BCDE 的一个顶点E 在圆周上,∠ABE = 45︒.那么圆O 中非阴影部分的面积与正方形BCDE 中非阴影部分面积的差等于平方厘米(取π= 3.14 ).(2013 年18 届)【答案】10.26【解答】因为∠ABE = 45︒,∠EAB 所对的圆弧和∠ABE 所对的圆弧弧度相等,且圆弧的直径相同,故∠EAB = 45︒,三角形ABE 是直角三角形.由勾股定理:2BE2 =AB2 = 62 = 36 (平方厘米),正方形BCDE 的面积=BE2 =18 (平方厘米).圆O 的面积-正方形BCDE 的面积=(圆非阴影部分的面积+圆和正方形相交部分的面积)-(正方形BCDE 中非阴影部分面积+圆和正方形相交部分的面积)=圆非阴影部分面积-正方形非阴影部分面积=32 ⨯π-18 = 28.26 -18 =10.26 (平方厘米).练习11. 图中的方格纸中有五个编号为1,2,3,4,5 的小正方形,将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图,这两个正方形的编号可以是().(A)1,2 (B)2,3 (C)3,4 (D)4,5(2012 年17 届)【答案】D【解答】注意到展开图中不能出现“田”字结构,因此排除掉ABC,选D.练习12. 如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M 和BC 的中点N,减掉△MBN 得五边形AMNCD.则将折叠的五边形AMNCD 纸片展开铺平后的图形是.(2006 年11 届)D C D CNNA MB A M【答案】D.【解答】注意对折方向,可以判断B 点是原正方形中心,因此是中心被掏空的形状,再注意减掉的形状是三角形,也就是展开后,横竖四等分以后,每一部分缺的都是三角形,结合这两点,答案为D.课后作业:1. 计算:⎡⎛0.8 +1 ⎫⨯ 24 + 6.6⎤÷9- 7.6 =().(2012 年17 届)⎢ 5 ⎪ ⎥14⎣⎝ ⎭ ⎦(A)30 (B)40 (C)50 (D)60【答案】B.【解答】原式= [1⨯ 24 +6.6]⨯14 - 7.6 = 30.6 ⨯14 - 7.6=47.6 - 7.6=40 .9 92. 算式1 -27+ 2 ⨯ 0.3的值为.(2010 年15 届)0.25 + 3 ⨯1 1.3 - 0.44【答案】1 8.211 -2 5 3【解答】7 +2 ⨯ 0.3= 7 + 5 =5+2=18.0.25 + 3 ⨯1 1.3 - 0.441+39 7 3 214 4 103. 下面有四个算式:①0.6 + 0.133=0.733 ;②0.625= 5 ;8③ 5+3=5 + 3=8=1;14 2 14 + 2 16 2④3 3 ⨯ 4 1 =14 2 .7 5 5其中正确的算式是()(2009 年14 届)(A)①和②(B)②和④(C)②和③(D)①和④【答案】B.【解答】①式错,因为0.6 并不循环,②式对,③式错,不符合分数加法规则,④式对,因此选B.4. 题目中的图是一个正方体木块的表面展开图.若在正方体的各面填上数,使得对面两数之和为7,则A、B、C 处填的数各是、、.(2004 年9 届)提示:注意相对两个面展开后的位置.C 2B 1A 4【答案】6、5、3.【解答】注意到,展开图中的形状,黑色两个面在合上后是相对的,所以在原图中,A 和1 相对,B 和2 相对,C 和4 相对,所以A=6,B=5,C=3.5. 如图,ABCD 是个直角梯形(∠DAB=∠ABC=90o).以AD 为一边向外作长方形ADEF,其面积为6.36 平方厘米,连接BE 交AD 于P,再连接PC.则图中阴影部分的面积是平方厘米.(2006年11 届)提示:等积变换.(A)6.36 (B) 3.18 (C)2.12 (D)1.59 【答案】B.【解答】连接BD、AE,利用等积变换,S△PDC =S△PDB,所以S阴=S△EDB,再次利用等积变换,可以得到S△EDB =S△EDA,而三角形EDA 面积是长方形ADEF 的一半,为3.18,所以以S阴=S△EDB=S△EDA=3.18 .6. 一块长方形的木板,长为90 厘米,宽为40 厘米,将它锯成2 块,然后拼成一个正方形,你能做到吗?请画出分割线.(2004 年9 届)提示:阶梯形.【答案】如图,沿粗线剪开即可..【解答】图形面积为90×40=3600 平方厘米,因此拼成的正方形边长为60 厘米,我们把这个图形画出来与原图形进行比较:3020两条边的差分别为30 和20,因此把90 厘米那边30 厘米一截,40 厘米那边20 厘米一截,分成6 块之后,稍作尝试即可.7. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有()条直线互相平行.(A)0 (B)2(C)3 (D)4(2014 年19 届)【答案】C.【解答】当4 条直线都互相平行时,平面被分成5 个部分,不满足要求,因此最多只能3 条直线互相平行.构造:有3 条直线互相平行,另外一条直线与它们都互相垂直,此时平面被分成8 个部分.8. 如右图所示,AF = 7 cm,DH = 4 cm,BG = 5 cm,AE =1c m.若正方形ABCD内的四边形EFGH 的面积为78 cm2,则正方形的边长为()cm.(A)10 (B)11 (C)12 (D)13(2014 年19 届)提示:类比弦图.【答案】C.【解答】用竖直线和水平线将正方形ABCD 分割为如右图所示的5 个长方形,中间长方形的面积是4⨯ 3=12 ,所以,正方形的面积= (78-12)⨯ 2 +12=144 ,正方形的边长是12.9. 如图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的( ).提示:分割图形.(A)1 (B)2 (C)2 (D)52 3 5 12(2010 年15 届)【答案】A.【解答】由图可知,左上角和右上角的阴影部分的面积分别恰等于一个平行四边形内正六边形的面积,因此阴影部分的面积占平行四边形面积的1 . 2第二节数论、应用题精讲考点概述数论考点五、数的整除性相关知识六、质数合数七、约数与倍数八、余数问题应用题考点一、常考应用题类型(和差倍应用题,比例应用题,经济问题,浓度问题等)1. 画线段图帮助解题2. 列方程解应用题二、行程问题:1. 行程问题常见类型(相遇问题,追及问题,火车问题,流水行船问题,环形路线问题,多次相遇与追及问题等)2. 画线段图(形象直观地呈现题意,便于对题目条件进行分解与组合,挖掘隐含条件)3. 方程与比例解行程问题真题精讲例1.在一个圆周上有70 个点,任选其中一个点标上1,按顺时针方向隔一个点的点上标2,隔两个点的点上标3,再隔三个点的点上标4,继续这个操作,直到1,2,3,…,2014 都被标记在点上.每个点可能不只标有一个数,那么标记了2014 的点上标记的最小整数是.(2014 年19 届)【答案】5【解析】将70 个点中某个点为起始点,然后按顺时针方向依次将这70 个点记为第1 个,第2 个,第3 个,…,第70 个,用a 表示第a 个点上标记的数字是i.i i依题意a1= 1 ,a2 = 3 ,a3 = 6 ,a4 = 10 ,…,且按规律得:a 2014 =1+ 2 + 3 + + 2014 =2014 ⨯ 2015=202910522029105 = 28987 ⨯ 70 +15 ,而a5 = 15 ,因此第15 个点上标记的最小整数为5.例2.若a = 1515 15 ⨯ 333 3 ,则整数a 的所有数位上的数字和等于.(2008 年13 届)1004个15 2008个3(A)18063 (B)18072 (C)18079 (D)18054【答案】B【解析】a = 505 05 ⨯ 999 9 ,利用结论A⨯ 999 9 的数字和为9n ,可知a 的数字和为18072,选B.1004个5 2008个9 n个9练习1.恰有20 个因数的最小自然数是().(2010 年15 届)(A)120 (B)240 (C)360 (D)432【答案】B.【解析】因为20=2×10=4×5=2×2×5,因此,具有20 个因数的自然数的质因数分解形式只有19 ,⨯9 ,3 ⨯4 ,⨯⨯ 4 这4 种,对应类型的最小自然数分别为219 ,3⨯ 29 ,33 ⨯ 24 ,3⨯5⨯ 24 ,其中最小的是240,选B.练习2.在19、197、2009 这三个数中,质数的个数是().(2009 年14 届)(A)0 (B)1 (C)2 (D)3【答案】C【解析】质数判定,检验所有平方小于2009 的质数即可.练习3.若连续的四个自然数都为合数,那么这四个数之和的最小值为().(2011 年16 届)(A)100 (B)101 (C)102 (D)103【答案】C【解析】最小连续4 个合数为24,25,26,27,它们之和为102.例3.一个奇怪的动物庄园里住着猫和狗,狗比猫多180 只.有20%的狗错认为自己是猫;有20%的猫错认为自己是狗.在所有的猫和狗中,有32%认为自己是猫,那么狗有()只.(2012 年17 届)(A)240 (B)248 (C)420 (D)842【答案】A【解析】设猫有x 只,狗有y 只,则认为自己是猫的动物共有80%x + 20% y 只,从而80%x + 20%y = 32%(x +y) ,可以得到4x =y ,再结合狗比猫多少180 只,可得x = 60 ,y = 240 ,从而狗有240 只,选A.例4.一只青蛙8 点从深为12 米的井底向上爬,它每向上爬3 米,因为井壁打滑,就会下滑1 米,下滑1 米的时间是向上爬3 米所用时间的三分之一.8 点17 分时,青蛙第二次爬至离井口3 米之处,那么青蛙从井底爬到井口时所花的时间为()分钟.(2013 年18 届)(A)22 (B)20 (C)17 (D)16【答案】A【解析】记青蛙每向上爬行1 米,所用时间为t 分钟,则下滑1 米的时间是向上爬3 米所用时间的三分之一,也为t 分钟.当青蛙刚爬至离井口3 米时,离井底9 米,所用时间是17 分钟.将2 米分为1 段,则一段所需时间为4t,第一次离井口3 米的时候是,向上爬了3 段之后再向上爬了3 米,第二次离井口3 米的时候是,向上爬了4 段之后再向上爬了1 米,此时总共花了17t 的时间,此时为8 点17,过了17 分钟,所以t=1,即每分钟1 米.向上爬出井口的时候,总共是向上爬了5 段,然后向上爬了2 米,总共花了22 分钟.练习5.两条纸带,较长的一条为23cm,较短的一条为15cm.把两条纸带剪下同样长的一段后,剩下的两条纸带中,要求较长的纸带的长度不少于较短的纸带长度的两倍,那么剪下的长度至少是( )cm.(2010 年15 届)(A)6 (B)7 (C)8 (D)9【答案】B.【解析】设剪下的长度为x cm,那么有:23 -x ≥ 2(15 -x) ,解得x ≥ 7 ,因此剪下的长度至少为7cm,选B.练习6.某次考试有50 道试题,答对一道题得3 分,答错一道题扣1 分,不答题不得分.小龙得分120 分,那么小龙最多答对了()道试题.(2014 年19 届)(A)40 (B)42 (C)48 (D)50【答案】B【解析】得分120 分,说明至少需要答对40 道题,其余10 道题不答,满足题意.若答对41 道题,答错3 道题,其余题不答,此时得分也是120 分.若答对42 道题,答错6 道题,其余题不答,此时得分也是120 分.若答对43 道题,得分依然为120 分,需要再答错9 道题,此时至少需要有52 道题,52>50,因此不满足题意.解法二:设作对x 题,做错y 题,未答z 题,则有:3x - y =120, x +y +z = 50,合并两个等式,得到:4x =170 - z, x = 42 +2- z ,x 是非负整数,尽可能大,故z = 2, x = 42 ,即小4龙最多答对42 道试题.练习7.两个水池内有金鱼若干条,数目相同.亮亮和红红进行捞鱼比赛,第一个水池内的金鱼被捞完时,亮亮和红红所捞到的金鱼数目比是3:4;捞完第二个水池内的金鱼时,亮亮比第一次多捞33 条,与红红捞到的金鱼数目比是5:3.那么每个水池内有金鱼()条.(2010 年15 届)(A)112 (B)168 (C)224 (D)336【答案】B【解析】这是一道工程问题的变形,每个水池内有金鱼33 ÷ ( 5-3) =168 (条).5 + 3 4 + 3解法2:可以认为是比例应用题,设亮亮第一次捞到3n 条,则红红第一次捞到4n 条,依题意,有3n + 33=5,解得n=24,因此水池内共有金鱼7n=168 条.4n - 33 3练习8.用若干台计算机同时录入一部书稿,计划若干小时完成.如果增加3 台计算机,则只需原定时间的75%;如果减少3 台计算机,则比原定时间多用5小时.那么原定完成录入这部书稿的时间是()6小时.(2011 年16 届)(A)5 3【答案】A (B)103(C)56(D)116【解析】增加3 台计算机,则只需原定时间的75%,所以原先有9 台计算机;如果减少3 台计算机,则所需时间为原定时间的9=3,比原定时间多用了5小时,所以原定要5÷⎛3-1⎫=5小时.9 -32 6 6 2 ⎪ 32⎝ ⎭例6. 图中是一个玩具火车轨道,A 点有个变轨开关,可以连接 B 或者 C .小圈轨道的周长是 1.5 米,大圈轨道的周长是 3 米.开始时, A 连接 C ,火车从 A 点出发,按照顺时针方向在轨道上移动,同时 变轨开关每隔 1 分钟变换一次轨道连接.若火车的速度是每分钟 10 米,则火车第 10 次回到 A 点时用了 分钟.(2010 年 15 届)【答案】2.1【解析】根据条件,在小圈火车行驶一圈用时1.5 ÷10 = 0.15 分钟,在大圈火车行驶一圈用时3 ÷10 = 0.3 分钟.设回到 A 点时用时为 t 分钟,这样我们有下表:回到 A 的次数 1 2 3 4 5 6 7 8 910到 A 点用时 0.3 0.6 0.9 1.2 1.35 1.5 1.65 1.8 1.95 2.1经过的轨道ACACACABABABABABABAC下面我们给出一个一般的解答:设玩具火车绕小圈轨道 m 圈,绕大圈轨道 n 圈,则玩具火车运动路程是 S = 1.5m + 3n ,时间是1.5m + 3n .如果 ⎡1.5m + 3n ⎤ 是偶数,则变轨开关 AC 连通,如果 ⎡1.5m + 3n ⎤是奇数,则变轨开关 AC 10 ⎢ 10⎥ ⎢ 10⎥⎣⎦⎣⎦连通.我们寻找最小的 m + n ,使1.5m + 3n是偶数.无妨设 101.5m + 3n = 10K ,或 3m + 6n = 20K ,这里 K 是偶数,并且有 3 为约数,是玩具火车运动的时间,因此最小的 K 是 6.即求 m 和 n 使m + 2n = 40 .12 当 n =3,S AA C = 2S ABC = 12 ,故开始玩具火车绕大圈轨道 4 圈之后进入小圈,时间是 10= 1.2(分钟);当 n =4, m =5 时,⎡ 7.5 + 12 ⎤ = 1 , ⎡ 9 + 12 ⎤= 2 ,故玩具火车绕小圈轨道 6 之后再次进入大圈轨道, ⎢ 10 ⎥ ⎢ 10 ⎥3⎣⎦ ⎣ ⎦此时1.5m + 3n=1.5 ⨯ 6 + 3 ⨯ 4= 2.1 (分钟)(可以称为一个拟循环)1010将玩具火车再次进入大圈运行,运行圈数记为 n . n =3 时, 1.5 ⨯ 6 + 3 ⨯ 7= 3 (分钟),玩具火车应2210当再次进入小圈运行,运行圈数记为 m ,既然1.5 ⨯ 7> 1 > 1.5 ⨯ 6,故玩具火车绕小圈运行 7 圈后,应 210 10再次进入大圈运行,此时 1.5m + 3n = 1.5 ⨯13 + 3 ⨯ 7= 4.05 (分钟).10 10 将玩具火车再次进入大圈运行, 运行圈数记为 n .既然1.5 ⨯13 + 3 ⨯11 > 5 > 1.5 ⨯13 + 3 ⨯10 ,10 10故玩具火车绕大圈运行 4 圈后,应再次进入小圈运行,此时1.5m + 3n = 1.5 ⨯13 + 3 ⨯11 = 5.25 (分钟), 10 10则玩具火车绕大圈运行 5 圈后,1.5m + 3n = 1.5 ⨯18 + 3 ⨯11= 6 (分钟). 10 10结论玩具火车第 29 次回到 A 时, 变轨开关 AC 连通,即回到原始状态.练习9. 4 个整数中任意选出 3 个,求出它们的平均值,然后再求这个平均值和余下 1 个数的和,这样可以得到 4 个数:4、6、 5 1 和 4 2,则原来给定的 4 个整数的和为.(2009 年 14 届)3 3 【答案】10【解析】设 4 个整数分别为 a 、b 、c 、d ,则有a +b +c +d = 4 、 a + b + d + c = 6 、a + c + d + b = 5 1、 3 3 3 3b +c +d + a = 4 2,四式相加可得 2(a + b + c + d ) = 20 ,从而 a + b + c + d = 10 .3 3练习10. A 、B 、C 、D 、E 五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A →C ,B →E ,C →A ,D →B ,E →D .开始时 A 、B 拿着福娃,C 、D 、E 拿着福牛,传递完5 轮时,拿着福娃的小朋友是().(2009 年14 届)(A)C 与D (B)A 与D (C)C 与E (D)A 与B【答案】A【解析】A 和C 之间的传递以2 为周期,B、E、D 之间的传递以3 为周期,所以5 轮之后,A 和C 之间的福娃最后在C 手中,B、E、D 之间的福娃最后在D 手中,所以最后拿着福娃的是C 与D.练习11. 某学校组织一次远足活动,计划10 点10 分从甲地出发,13 点10 分到达乙地,但出发晚了5 分钟,却早到达了 4 分钟.甲乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是().(2014 年19 届)(A)11 点40 分(B)11 点50 分(C)12 点(D)12 点10 分【答案】B【解析】从10 点10 分到13 点10 分共有3 个小时,比计划时间少用9 分钟,即每小时少用3 分钟,少用5 分钟的时候即是到达B 点的时间.此时需要5÷(3÷60)=100 分钟,即1 小时40 分钟,所以到达B 点的时间是11 点50 分.练习12. 甲、乙两车分别从A,B 两地同时出发,且在A,B 两地往返来回匀速行驶.若两车第一次相遇后,甲车继续行驶4 小时到达B,而乙车只行驶了1 小时就到达A,则两车第15 次(在A,B 两地相遇次数不计)相遇时,它们行驶了小时.(2012 年17 届)【答案】B【解析】设甲、乙的速度分别为V甲、V乙,则甲、乙相遇时,他们行驶的路程比为V甲:V乙;另一方面,第一次相遇后,甲车继续行驶4 小时到达B,乙车继续行驶了1 小时到达A,所以这两段的路程比也为V乙: 4V甲,从而V甲:V乙=V乙: 4V甲,进而有V甲:V乙= 1: 2 ,进而可以得到甲从A 到B 需要6 小时,乙需要3 小时,一个周期为12 小时且周期内相遇两次,7 个周期后,甲、乙相遇14 次,且分别回到A 和B,2 小时后,甲、乙第15 次相遇,总共用时7 ⨯12 + 2 = 86 小时.课后练习1. 任意写一个两位数,再将它依次重复3 遍成一个8 位数.将此8 位数除以该两位数所得到的商再除以9,问:得到的余数是.(2004 年9 届)【答案】4【解析】abababab ÷ab =1010101,1010101 除以9 的余数为4.2. 2008006 共有个质因数.(2006 年11 届)(A)4 (B)5 (C)6 (D)7【答案】C【解析】2008006 = 2 ⨯ 7 ⨯11⨯13⨯17 ⨯ 59 .3. 小明所在班级的人数不足40 人,但比30 人多,那么这个班男、女生人数的比不可能是().(2014 年19 届)(A)2:3 (B)3:4 (C)4:5 (D)3:7【答案】D【解析】如果男、女生人数的比是2:3,那么全班人数一定是5 的倍数,男生14 人,女生21 人,满足题意.如果男、女生人数的比是3:4,那么全班人数一定是7 的倍数,男生15 人,女生20 人,满足题意.如果男、女生人数的比是4:5,那么全班人数一定是9 的倍数,男生16 人,女生20 人,满足题意.如果男、女生人数的比是3:7,那么全班人数一定是10 的倍数,但本班人数不足40 人,但比30 人多,所以男、女生人数的比不可能是3:7.4. 开学前6 天,小明还没做寒假数学作业,而小强已完成了60 道题,开学时,两人都完成了数学作业.在这6 天中,小明做的题的数目是小强的3 倍,他平均每天做()道题.(2009 年14 届)y 7 ⎩(A )6 (B )9 (C )12 (D )15【答案】D【解析】这 6 天小明比小强多做了 60 道,平均每天多做 10 道,小明每天做题量是小强的 3 倍,所以 小强每天做 5 道,小明每天做 15 道.5. 一个盒子里有黑棋子和白棋子若干粒,若取出一粒黑子,则余下的黑子数与白子数之比为 9:7,若放回黑子,再取出一粒白子,则余下的黑子数与白子数之比为 7:5,那么盒子里原有的黑子数比白子数 多( )个.(2013 年 18 届)(A )5 (B )6(C )7(D )8【答案】C【解析】设原有黑子数为 x ,白子数为 y ,得方程⎧ x - 1 = 9⎧7 x - 9y = 7⎪ ⎪ ⎪ ⎨x 7 即 ⎨⎪ = ⎪⎩ y - 1 5⎪5x - 7y = - 7由此解得x = 28 , y = 21 .故 x - y = 7 .解法二:前后两次均取出一枚棋子,剩下棋子的总数不变,而 9 + 7 = 16 ,7 + 5 = 12 ,16 与 12 的最小 公倍数为 48 ,因此设取出一枚棋子后,剩下棋子的总数为 48 份.第一次余下的黑子数为 48 ÷ (9 + 7) ⨯ 9 = 27 份;第二次余下的黑子数为 48 ÷ (7 + 5) ⨯ 7 = 28 份;两次相差 1 份.而前后两次余 下的黑子数相差 1,因此 1 份对应 1 枚棋子.原有黑子 28 个,原有的白子数为 28 ÷ 7 ⨯ 5 + 1 = 21个, 黑子比白子多 28 - 21 = 7 个6. 水池 A 和 B 同为长 3 米,宽 2 米,深 1.2 米的长方体.1 号阀门用来向 A 池注水,18 分钟可将无水的A 池注满;2 号阀门用来从 A 池向B 池放水,24 分钟可将 A 池中满池水放入 B 池.若同时打开 1 号和 2 号阀门,那么当 A 池水深 0.4 米时,B 池有( )立方米的水.(2013 年 18 届) 【答案】D【解析】由已知, 1 号阀门每分钟注入 1 18池水,而 2 号阀门放出 1 24池水.到A 池深 0.4 米时,正好在 A 池中留存了 1池水,31 ÷ ⎡ 1 -1 ⎤ = 24 (分钟).⎣ ⎦3 ⎢18 24 ⎥故此时恰好放了24 分钟,正好把B 池放满,进而B 水池中有水3⨯ 2 ⨯1.2 = 7.2 (立方米).7. “低碳生活”从现在做起,从我做起.据测算,1 公顷落叶阔叶林每年可吸收二氧化碳14 吨.如果每台空调制冷温度在国家提倡的26℃基础上调到27℃,相应每年减排二氧化碳21 千克.某市仅此项减排就相当于25000 公顷落叶阔叶林全年吸收的二氧化碳;若每个家庭按3 台空调计,该市家庭约有万户.(保留整数)(2010 年15 届)【答案】556【解析】25000⨯14⨯1000÷(21⨯3)≈5555555.6.8. 甲乙同时出发,他们的速度如下图所示,30 分钟后,乙比甲一共多行走了米.(2014 年19 届)10080604020米/分5分10 15 20 25 30甲10080604020米/分分5 10 15 20 25 30乙【答案】300【解析】由图所示,前10 分钟,甲和乙速度相同;第10 分钟至第20 分钟,乙速度是100 米/分,甲的速度是80 米/分,故乙多走了200 米;第20 分钟至第25 分钟,甲乙速度相同;第25 分钟至30 分钟,乙的速度是80 米/分,甲的速度是60 米/分,故乙多走了100 米;乙共计多走了300 米.9. 甲、乙两车分别从A,B 两地同时出发,相向而行,3 小时相遇后,甲掉头返回A 地,乙继续前行.甲到达A 地后掉头往B 行驶,半小时后和乙相遇.那么乙从A 到B 共需小时.(2011 年16 届)【答案】7.2【解析】甲、乙相遇后,同时向B 行驶,甲先是花了3 小时到达A 地,然后甲掉头行驶了半小时和乙相遇,从而甲乙相遇后,乙行驶了3.5 小时,且这段路甲只需要2.5 小时,所以甲、乙的速度比为7:5,从而甲花了3 小时的这段路,乙需要3⨯ 7 ÷ 5 = 4.2 小时,所以乙从A 到B 共需3 + 4.2 = 7.2 小时.第三节数字谜、计数、组合精讲考点概述数字谜考点:竖式问题常用方法:(1)加数相加时每进1 位,和的数字和将比加数的数字和之和减少9.(2)与各个数位上的数字有关的问题,往往需要多次尝试才能得到结果.(3)与整除相关的问题,注意运用以前学过的整除知识.计数问题考点:1. 枚举法(有序、分类)2. 加乘原理(分类,加法;分步,乘法)3. 排列组合(排列,有序;组合,无序;常用方法,插空、捆绑、插板、排除等)4. 综合运用(结合几何、数论等知识)组合问题考点:1. 最值问题:(1)满足题目条件的情况不多时,可以用枚举法把可能的情况一一列举出来,再找出最大值或最小值.(2)两个数的和一定,当它们越接近时乘积越大.(3)极端思考与局部调整也是解决最值问题的常用方法.2. 逻辑推理、统筹对策、抽屉原理等.真题精讲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字和 28 的数只有 1999; 数字和 27 的数有 999、1899、1989、1998; 数字和 1 的数有 1、10、100、1000; 数字和 2~26 的数都至少有 5 个 最坏情况:取数字和 1 到 27 的数各 4 个,以及 1999,共 109 个数。 再多取一个数就保证有 5 个数字和相等, n 110
相遇;如果乙每秒多行 1 米,则两人相遇处距 B 地 180 米.那么乙原来的速度是每秒( )米.
A. 2 3
B. 2 4
C.3
5
5
D. 3 1 5
【考点】行程,比例方程解行程
【难度】☆
【答案】D
【分析】设甲速 v1 乙速 v2 ,有

v1 v2 v1 v2
1
140 300 140 300 180
n(2x 1) x 2015
帅帅思维公众号:shuaiteacher
第3页
兴趣是最好的老师
学习有意思
n 2015 x 2015.5 0.5 2015.5 0.5 2015
2x 1 2x 1
1
∴n 的最大值是 2014,最多可以剪出 4029 个
x
x

x+1
2n个
x+1
快乐思维
师 老 帅 帅
D.288
【考点】计数,加乘原理与排列组合 【难度】☆☆
【答案】A
帅帅思维公众号:shuaiteacher
第1页
兴趣是最好的老师
学习有意思 【分析】1 2 3 7 28 ,8 的两边之和都是 14
快乐思维
研究有 7 的一边,14 7 6 1 7 5 2 7 4 3 7 4 2 1
剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,
则最多可以剪出
个同样的等腰梯形.
【考点】组合,最值
【难度】☆☆☆
【答案】4029
【分析】如图,将大等腰梯形分成 2n 1 个等腰梯形,由于底角相等,大小等腰梯形的上下底之差也相
等(相差一个平行四边形),设小等腰梯形上底为 x,有
9. 设 q 是一个平方数.如果 q 2 和 q 2 都是质数,就称 q 为 P 型平方数,例如,9 就是一个 P 型平
帅 方数,那么小于 1000 的最大 P 型平方数是

【考点】数论,同余
【难度】☆☆☆
【答案】441
【分析】显然,q 是奇数,且 q 2 和 q 2 都不是 3 的倍数,而平方数除以 3 只能余 0 或 1,若 q 除以
3 余 1 则 q 2 是 3 的倍数,所以 q 只能除以 3 余 0,即 q 是 3 的倍数,
帅 极端分析, 332 1000 , 272 2 731 17 43 , 212 2 439 , 212 2 443 都是质数
10. 有一个等腰梯形的纸片,上底长度为 2015,下底长度为 2016,用该纸片剪出一些等腰梯形,要求
【分析】 a2 b2 (a b)(a b) 2016
a b 与 a b 奇偶性相同,乘积是偶数,必然都是偶数,且和大于差,
2016 4 504 23 32 7 的因数有 24 个,即 12 组不同的分拆,故有 12 组解.
8. 如下图, O, P, M 是线段 AB 上的三个点, AO 4 AB,BP 2 AB, M 是 AB 的中点,且 OM 2 ,
逐步极端分析,得 988 13 76 , 884 13 68 , 847 11 77 , 473 11 43 , 737 11 67
4. 将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么共有( ) 种不同的排行.
A.1152
B.864
C.576
A
老E
B
6.
帅D
G
F
C
从自然数 1,2,3,…,2015,2016 中,任意取 n 个不同的数,要求总能在这 n 个不同的数中找到
5 个数,它们的数字和相等.那么 n 的最小值等于( )
A.109
B.110
C.111
D.112
帅 【考点】组合,最不利原则
【难度】☆☆☆ 【答案】B 【分析】1 到 2016 中,数字和最大 28。
数的两侧分法有 4 种,两侧可互换,每个分法都是一边四个数另一边三个数,两边内部可互
换(全排列),共
4
2
A
4 4
A33
1152
种排法
5. 在等腰梯形 ABCD 中, AB 平行于 CD , AB 6 , CD 14 , AEC 是直角, CE CB ,则 AE2 等 于( )
E
ABΒιβλιοθήκη DCA.84
B.80
C.75
D.64
【考点】几何,勾股定理
师 【难度】☆☆
【答案】A 【分析】做出两侧的高,连结 AC,有
FG AB 6 , CF 1 (CD FG) 4 , CG 10 ,令 AG BF h ,由勾股定理, 2
AC 2 AG2 CG2 h2 100 CE2 BC 2 BF 2 CF 2 h2 16 AE2 AC2 CE2 84
5
3
那么 PM 长为

A
【考点】应用题,分数应用题 【难度】☆ 【答案】 10
9
P
M
师 O
B
老 【分析】 OM AO AM 4 AB 1 AB 3 AB , AB 2 3 20
5 2 10
10 3
PM BP MB 2 AB 1 AB 1 AB 1 20 10
3
2
6
63 9
180
7 8
2 3
解得
v1
v2
14 5 16 5
3. 在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,则这个七
帅 位数最大是( )
A.9981733
B.9884737
C.9978137
D.9871773
帅 【考点】数论,整除
【难度】☆ 【答案】B 【分析】注意到由于任意三个连续排列的数字都能构成三位数,所以这个七位数的前五个数字不能是 0,
学习有意思
快乐思维
2016年第二十一届华杯赛小高组初赛详解
一、选择题(每小题 10 分,共 60 分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答 案的英文字母写在每题的圆括号内.)
1. 算式 9999 9999 的结果中含有(
2016个
2016个
A.2017
B.2016
)个数字 0. C.2015
帅帅思维公众号:shuaiteacher
第4页
兴趣是最好的老师
D.2014
【考点】计算,多位数计算
【难度】☆
【答案】C
【分析】 (102016 1)2 (102016 2) 102016 1 999...998000...001
2015个
2015个
2.
师 已知 A,B 两地相距 300 米.甲、乙两人同时分别从 A, B 两地出发,相向而行,在距 A 地 140 米处
二、填空题(每小题 10 分,共 40 分)
帅帅思维公众号:shuaiteacher
第2页
兴趣是最好的老师
学习有意思
快乐思维
7. 两个正方形的面积之差为 2016 平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足
上述条件的所有正方形共有
对.
【考点】数论,因数个数定理
【难度】☆☆
【答案】12
相关文档
最新文档