广东省2019年中考数学试题及答案

合集下载

2019年广东省广州市中考数学试卷真题(附答案)

2019年广东省广州市中考数学试卷真题(附答案)

2019年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣6|=()A.﹣6B.6C.﹣D.2.(3分)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5B.5.2C.6D.6.43.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m4.(3分)下列运算正确的是()A.﹣3﹣2=﹣1B.3×(﹣)2=﹣C.x3•x5=x15D.•=a5.(3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条6.(3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=7.(3分)如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍8.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y3 9.(3分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.810.(3分)关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()A.0或2B.﹣2或2C.﹣2D.2二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,点A,B,C在直线l上,PB⊥l,P A=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是cm.12.(3分)代数式有意义时,x应满足的条件是.13.(3分)分解因式:x2y+2xy+y=.14.(3分)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为.15.(3分)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为.(结果保留π)16.(3分)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是.(填写所有正确结论的序号)三、解答题(共9小题,满分102分)17.(9分)解方程组:.18.(9分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE ≌△CFE.19.(10分)已知P=﹣(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x﹣的图象上,求P的值.20.(10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<12B组1≤t<2mC组2≤t<310D组3≤t<412E组4≤t<57F组t≥54请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.21.(12分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.22.(12分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.23.(12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.25.(14分)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.2019年广东省广州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣6|=()A.﹣6B.6C.﹣D.【点评】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5B.5.2C.6D.6.4【点评】本题主要考查众数的定义,是需要熟练掌握的概念.3.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)下列运算正确的是()A.﹣3﹣2=﹣1B.3×(﹣)2=﹣C.x3•x5=x15D.•=a【点评】此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.(3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.6.(3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.(3分)如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍【点评】本题考查平行四边形的面积、三角形的相似、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.8.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y3【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.9.(3分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8【点评】本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.10.(3分)关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()A.0或2B.﹣2或2C.﹣2D.2【点评】本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,求出k的值是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,点A,B,C在直线l上,PB⊥l,P A=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是5cm.【点评】本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.12.(3分)代数式有意义时,x应满足的条件是x>8.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.(3分)分解因式:x2y+2xy+y=y(x+1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为15°或60°.【点评】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.15.(3分)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为.(结果保留π)【点评】本题考查三视图,圆锥等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(3分)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是①④.(填写所有正确结论的序号)【点评】本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(共9小题,满分102分)17.(9分)解方程组:.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE ≌△CFE.【点评】本题考查了三角形全等的判定,熟练掌握三角形全等的判定方法是关键,三角形全等的判定方法有:AAS,SSS,SAS.19.(10分)已知P=﹣(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x﹣的图象上,求P的值.【点评】本题考查分式的化简,一次函数图象上点的特征;熟练掌握分式的化简,理解点与函数解析式的关系是解题的关键.20.(10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<12B组1≤t<2mC组2≤t<310D组3≤t<412E组4≤t<57F组t≥54请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.21.(12分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(12分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.【点评】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m,n的值;(2)利用菱形的性质,找出∠DCP=∠OAE,∠AEO=∠CPD=90°;(3)利用相似三角形的性质,找出∠CDP=∠AOE.23.(12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.【点评】本题考查作图﹣复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【点评】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.25.(14分)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.【点评】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.。

2019年广东省深圳中考数学试题(含解析)

2019年广东省深圳中考数学试题(含解析)

2019年深圳市初中毕业升学考试数学一、选择题(每小题3分,共12小题,满分36分) 1.51-的绝对值是( ) A. -5 B.51 C. 5 D.51-【答案】B【解析】考点绝对值.2.下列图形是轴对称图形的是( )【答案】A【考点】轴对称图形与中心对称图形3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A.4.6×109 B.46×107 C.4.6×108 D.0.46×109 【答案】C【考点】科学计数法4.下列哪个图形是正方体的展开图( )【答案】B【考点】立体图形的展开.5.这组数据20,21,22,23,23的中位数和众数分别是( ) A.20,23 B.21,23 C.21,22 D.22,23 【答案】D【解析】中位数:先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数.众数是出现次数最多的那个数就是众数,即是23.故选D 6.下列运算正确的是( )A.422a a a =+B.1243a a a =⋅ C.1243)(a a = D.22)(ab ab =【答案】C【解析】整式运算,A.2222a a a =+; B 743a a a =⋅ ;D 222)(b a ab =.故选C7.如图,已知AB l =1,AC 为角平分线,下列说法错误的是( ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】两直线平行,同位角相等,即∠2=∠3.故选B. 8.如图,已知AB=AC ,AB=5,BC=3,以AB 两点为圆心,大于21AB 的长为半径画圆,两弧相交于点M,N ,连接MN 与AC 相较于点D ,则△BDC 的周长为( ) A.8 B.10 C.11 D.13【答案】A【解析】尺规作图,因为MN 是线段AB 的垂直平分线,则AD=BD ,又因为AB=AC=5,BC=3,所以△BDC 的周长为8.9.已知)0(2≠++=a c bx ax y 的图象如图,则b ax y +=和xcy =的图象为( )【答案】C【解析】根据)0(2≠++=a c bx ax y 的图象可知抛物线开口向下,则0<a ,抛物线与y 轴交点在负半轴,故c <0,对称轴在y 轴的右边,则b >0. 10.下列命题正确的是( ) A.矩形对角线互相垂直 B.方程x x 142=的解为14=x C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等 【答案】D【解析】矩形的对角线互相平分且相等,故A 错;方程x x 142=的解为14=x 或0=x ,故B 错;六边形内角和为720°,故C 错.故选D 11.定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅k hh k xdx 222,若⎰-=--m522mdx x ,则m=( )A. -2B. 52-C. 2D.52 【答案】B 【解析】⎰-=-=-=----m51122511)5(mm m m m dx x ,则m=52-,故选B. 12.已知菱形ABCD ,E,F 是动点,边长为4,BE=AF ,∠BAD=120°,则下列结论正确的有几个( ) ①△BEC ≌△AFC ; ②△ECF 为等边三角形 ③∠AGE=∠AFC ④若AF=1,则31=GE GF A. 1 B. 2 C. 3 D. 4【解析】在四边形ABCD 是菱形,因为∠BAD=120°,则∠B=∠DAC=60°,则AC=BC ,且BE=AF ,故可得△BEC ≌△AFC ;因为△BEC ≌△AFC ,所以FC=EC ,∠FCA=∠ECB ,所以△ECF 为等边三角形;因为∠AGE=180°-∠BAC-∠AEG ;∠AFC=180°-∠FAC-∠ACF ,则根据等式性质可得∠AGE=∠AFC ;因为AF=1,则AE=3,所以根据相似可得31=GE GF . 二、填空题(每小题3分,共4小题,满分12分) 13.分解因式:=-a ab 2. 【答案】)1)(1(-+b b a【解析】)1)(1()1(22-+=-=-b b a b a a ab14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是 . 【答案】83 【解析】全部共有8张卡片,标有数字2的卡片有3张,随机抽取一张,故抽到2概率为83. 15.如图在正方形ABCD 中,BE=1,将BC 沿CE 翻折,使点B 对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使点D 对应点落在对角线AC 上,求EF= .【答案】6 【解析】16.如图,在Rt △ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xky =上,且y 轴平分∠ACB ,求【答案】774 【解析】三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.计算:01)14.3()81(60cos 2-9-++︒-π 【答案】解:原式=3-1+8+1 =11 【考点】实数运算 18.先化简441)231(2++-÷+-x x x x ,再将1-=x 代入求值. 【答案】解:原式=1)2(212-+⋅+-x x x x =2+x将1-=x 代入得:2+x =-1+2=1 【考点】分式的化简求值19.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取 学生进行调查,扇形统计图中的x = . (2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名. 【考点】数据统计、概率,条形统计图和扇形统计图. 【答案】(1)200,15%; (2)统计图如图所示:(3)36 (4)90020.如图所示,某施工队要测量隧道长度BC ,AD=600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角45°,再由D 走到E 处测量,DE ∥AC ,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【考点】直角三角形的边角关系的应用.【答案】21.有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度点,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发多少度电?(2)A、B两个发电厂共焚烧90吨垃圾,A焚烧的垃圾不多于B焚烧的垃圾的两倍,求A厂和B厂总发电量的最大值.【考点】二元一次方程的应用【答案】22.如图所示抛物线c bx ax y ++=2过点A (-1,0),点C (0,3),且OB=OC (1)求抛物线的解析式及其对称轴;(2)点D ,E 在直线x=1上的两个动点,且DE=1,点D 在点E 的上方,求四边形ACDE 的周长的最小值, (3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【考点】一次函数、二次函数综合、线段和最值,面积比例等. 【答案】23.已知在平面直角坐标系中,点A (3,0),B (-3,0),C (-3,8),以线段BC 为直径作圆,圆心为E ,直线AC 交⊙E 于点D ,连接OD. (1)求证:直线OD 是⊙E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交⊙E 于点G ,连接BG : ①当tan ∠ACF=71时,求所有F 点的坐标 (直接写出); ②求CFBG的最大值. 【考点】圆、切线证明、三角形相似,三角函数,二次函数最值问题等 【答案】。

2019年广东省中考数学试题及参考答案

2019年广东省中考数学试题及参考答案

2019年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分) 1、-2的绝对值是( ) A 、2 B 、-2 C 、12 D 、1-2答案:A解析:-2的绝对值是2,故选A 。

2、如图1所示,a 和b 的大小关系是( ) 图1 A 、a <b B 、a >b C 、a=b D 、b =2a 答案:A3、下列所述图形中,是中心对称图形的是( )A 、直角三角形B 、平行四边形C 、正五边形D 、正三角形 答案:B4、据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为( )A 、70.27710⨯ B 、80.27710⨯ C 、72.7710⨯ D 、82.7710⨯ 答案:C考点:本题考查科学记数法。

解析:科学记数的表示形式为10na ⨯形式,其中1||10a ≤<,n 为整数,27700000=72.7710⨯。

故选C 。

5、如图,正方形ABCD 的面积为1,则以相邻两边 中点连接EF 为边的正方形EFGH 的周长为( )A 2B 、22C 21D 、221 答案:B6、某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数为( )A 、4000元B 、5000元C 、7000元D 、10000元 答案:B7、在平面直角坐标系中,点P (-2,-3)所在的象限是( )baABD C HFEA、第一象限B、第二象限C、第三象限D、第四象限答案:C8、如图,在平面直角坐标系中,点A坐标为(4,3),那么cosα的值是()A、34B、43C、35D、45答案:D由勾股定理,得OA=5,所以,4cos5OBOAα==,选D。

9、已知方程238x y-+=,则整式2x y-的值为()A、5B、10C、12D、15答案:A10、如图4,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系的图象大致是()答案:C当点P在AB上时,y=211()22a a a x-⨯⨯-=12ax,是一次函数,且a>0,所以,排除A、B、D,选C。

2019广东中考数学试卷及答案

2019广东中考数学试卷及答案

2019年广东省初中毕业生学业考试数 学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数是( ) A .2 B .-2C .21D .21-2.据中新社北京2019年12月8日电,2019年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨3.将左下图中的箭头缩小到原来的21,得到的图形是( )4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .51 B .31 C .85 D .835.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.已知反比例函数xky =的图象经过(1,-2),则=k ____________. 7.使2-x 在实数范围内有意义的x 的取值范围是______ _____. 8.按下面程序计算:输入3=x ,则输出的答案是_______________.9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A =40º,则∠C =_____.A .B .D .题3图题9图B CO A10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:20245sin 18)12011(-︒+-. 12.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.13.已知:如图,E ,F 在AC 上,AD //求证:AE =CF .14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).题13图 B CD A FE 题14图题10图(1) E 题10图(2) 题10图(3)15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1+=cx y 经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶? 17.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30º,∠ABD =45º,BC =50m . 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).18.李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题: (1)此次调查的总体是什么? (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.如图,直角梯形纸片ABCD 中,AD //BC ,∠A =90º,∠C =30º.折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且BF =CF =8. (1)求∠BDF 的度数; (2)求AB 的长.第17题图) 题19图 B C E D AF 题18图五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;(3)求第n 行各数之和. 21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =9,∠BAC =∠DEF =90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形. 22.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC轴,交直线AB 于点M ,交抛物线于点N . 设点P 求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O 何值时,四边形BCMN 请说明理由.题21图(1) BH F A (D ) G C EC (E ) B F A (D ) 题21图(2)2019年广东省初中毕业生学业考试数学参考答案一、1-5、DBACB 二、6、-27、___ x ≥2__8、___12__9、__25º__ 10、2561 三、11、原式=-6 12、x ≥3 13、由△ADF ≌△CB E ,得AF =C E ,故得:AE=CF 14、(1)⊙P 与⊙P 1外切。

2019年广东省广州市中考数学试卷(word版,含答案解析)

2019年广东省广州市中考数学试卷(word版,含答案解析)

2019年广东省广州市中考数学试卷副标题题号 一 二 三 总分 得分一、选择题(本大题共10小题,共30.0分) 1. |−6|=( )A. −6B. 6C. −16D. 162. 广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是( ) A. 5 B. 5.2 C. 6 D. 6.4 3. 如图,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若tan∠BAC =25,则此斜坡的水平距离AC 为( )A. 75mB. 50mC. 30mD. 12m4. 下列运算正确的是( )A. −3−2=−1B. 3×(−13)2=−13 C. x 3⋅x 5=x 15D. √a ⋅√ab =a √b5. 平面内,⊙O 的半径为1,点P 到O 的距离为2,过点P 可作⊙O 的切线条数为( )A. 0条B. 1条C. 2条D. 无数条6. 甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A.120x=150x−8B. 120x+8=150xC. 120x−8=150xD.120x=150x+87. 如图,▱ABCD 中,AB =2,AD =4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是( )A. EH =HGB. 四边形EFGH 是平行四边形C. AC ⊥BDD. △ABO 的面积是△EFO 的面积的2倍8. 若点A(−1,y 1),B(2,y 2),C(3,y 3)在反比例函数y =6x 的图象上,则y 1,y 2,y 3的大小关系是( )A. y 3<y 2<y 1B. y 2<y 1<y 3C. y 1<y 3<y 2D. y 1<y 2<y 39. 如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,若BE =3,AF =5,则AC 的长为( )A. 4√5B. 4√3C. 10D. 810. 关于x 的一元二次方程x 2−(k −1)x −k +2=0有两个实数根x 1,x 2,若(x 1−x 2+2)(x 1−x 2−2)+2x 1x 2=−3,则k 的值( ) A. 0或2 B. −2或2 C. −2 D. 2 二、填空题(本大题共6小题,共18.0分)11. 如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA =6cm ,PB =5cm ,PC =7cm ,则点P 到直线l 的距离是______cm . 12. 代数式1√x−8有意义时,x 应满足的条件是 . 13. 分解因式:x 2y +2xy +y =______.14. 一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.15. 如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为______.(结果保留π)16. 如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =√2BE ,CF 与AD 相交于点G ,连接EC ,EF ,EG ,则下列结论: ①∠ECF =45°;②△AEG 的周长为(1+√22)a ;③BE 2+DG 2=EG 2;④△EAF 的面积的最大值18a 2. 其中正确的结论是______.(填写所有正确结论的序号)三、解答题(本大题共9小题,共102.0分)17. 解方程组:{x −y =1x +3y =9.18.如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,求证:△ADE≌CFE.19.已知P=2aa2−b2−1a+b(a≠±b).(1)化简P;(2)若点(a,b)在一次函数y=x−√2的图象上,求P的值.20.某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<12B组1≤t<2mC组2≤t<310D组3≤t<412E组4≤t<57F组t≥54(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.21.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.22.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(−1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=n−3的图象相交于A,xP两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.23.如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.24.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF//AB;(2)设△ABC的面积为S1,△ABF的面积为S2,记S=S1−S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.25.已知抛物线G:y=mx2−2mx−3有最低点.(1)求二次函数y=mx2−2mx−3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.答案和解析1.【答案】B【解析】【分析】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 根据负数的绝对值等于它的相反数解答. 【解答】解:−6的绝对值是|−6|=6. 故选:B . 2.【答案】A【解析】解:5出现的次数最多,是5次,所以这组数据的众数为5 故选:A .众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 本题主要考查众数的定义,是需要熟练掌握的概念. 3.【答案】A【解析】【分析】本题考查解直角三角形的应用−坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.根据题目中的条件和图形,利用锐角三角函数即可求得AC 的长,本题得以解决. 【解答】解:∵∠BCA =90°,tan∠BAC =25,BC =30m , ∴tan∠BAC =25=BCAC =30AC , 解得,AC =75(m), 故选A . 4.【答案】D【解析】解:A 、−3−2=−5,故此选项错误; B 、3×(−13)2=13,故此选项错误; C 、x 3⋅x 5=x 8,故此选项错误; D 、√a ⋅√ab =a √b ,正确. 故选:D .直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.【答案】C【解析】解:∵⊙O 的半径为1,点P 到圆心O 的距离为2, ∴d >r ,∴点P 与⊙O 的位置关系是:P 在⊙O 外, ∵过圆外一点可以作圆的2条切线, 故选:C .先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.6.【答案】D【解析】解:设甲每小时做x个零件,可得:120x =150x+8,故选:D.设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.【答案】B【解析】【分析】本题考查平行四边形的面积、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=12AD=2,HG=12CD=12AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=12AD=12BC=FG,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF//AB,,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.8.【答案】C【解析】解:∵点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=6x的图象上,∴y1=6−1=−6,y2=62=3,y3=63=2,又∵−6<2<3,∴y1<y3<y2.故选:C.根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.9.【答案】A【解析】解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD//BC,∴∠OAF=∠OCE,在△AOF和△COE中,{∠AOF=∠COEOA=OC∠OAF=∠OCE,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB=√AE2−BE2=√52−32=4,∴AC=√AB2+BC2=√42+82=4√5;故选:A.连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=√AE2−BE2=4,再由勾股定理求出AC即可.本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.10.【答案】D【解析】解:∵关于x的一元二次方程x2−(k−1)x−k+2=0的两个实数根为x1,x2,∴x1+x2=k−1,x1x2=−k+2.∵(x1−x2+2)(x1−x2−2)+2x1x2=−3,即(x1+x2)2−2x1x2−4=−3,∴(k−1)2+2k−4−4=−3,解得:k=±2.∵关于x的一元二次方程x2−(k−1)x−k+2=0有实数根,∴Δ=[−(k−1)]2−4×1×(−k+2)≥0,解得:k≥2√2−1或k≤−2√2−1,∴k=2.故选:D.由根与系数的关系可得出x1+x2=k−1,x1x2=−k+2,结合(x1−x2+2)(x1−x2−2)+2x1x2=−3可求出k的值,根据方程的系数结合根的判别式Δ≥0可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而可确定k的值,此题得解.本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x1−x2+2)(x1−x2−2)+2x1x2=−3,求出k的值.11.【答案】5【解析】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.12.【答案】x>8【解析】【分析】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,属于基础题.直接利用分式、二次根式的定义求出x的取值范围.【解答】有意义时,解:代数式√x−8x−8>0,解得:x>8.故答案为:x>8.13.【答案】y(x+1)2【解析】解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.首先提取公因式y,再利用完全平方进行二次分解即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】15°或60°【解析】【分析】分情况讨论:①DE⊥BC;②AD⊥BC.本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.【解答】解:分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°−∠BAD=15°;②当AD⊥BC时,∠BAD=30°,即α=60°.故答案为15°或60°.15.【答案】2√2π【解析】解:∵某圆锥的主视图是一个腰长为2的等腰直角三角形,∴斜边长为2√2,则底面圆的周长为2√2π,∴该圆锥侧面展开扇形的弧长为2√2π,故答案为2√2π.根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题.本题考查三视图,圆锥等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】①④【解析】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=√2BE,∵AF=√2BE,∴AF=EH,∵∠DAM =∠EHB =45°,∠BAD =90°, ∴∠FAE =∠EHC =135°, ∵BA =BC ,BE =BH , ∴AE =HC ,∴△FAE≌△EHC(SAS),∴EF =EC ,∠AEF =∠ECH , ∵∠ECH +∠CEB =90°, ∴∠AEF +∠CEB =90°, ∴∠FEC =90°,∴∠ECF =∠EFC =45°,故①正确,如图2中,延长AD 到H ,使得DH =BE ,则△CBE≌△CDH(SAS),∴∠ECB =∠DCH ,∴∠ECH =∠BCD =90°, ∴∠ECG =∠GCH =45°, ∵CG =CG ,CE =CH , ∴△GCE≌△GCH(SAS), ∴EG =GH ,∵GH =DG +DH ,DH =BE , ∴EG =BE +DG ,故③错误,∴△AEG 的周长=AE +EG +AG =AG +GH =AD +DH +AE =AE +EB +AD =AB +AD =2a ,故②错误,设BE =x ,则AE =a −x ,AF =√2x ,∴S △AEF =12⋅(a −x)×x =−12x 2+12ax =−12(x 2−ax +14a 2−14a 2)=−12(x −12a)2+18a 2,∵−12<0,∴x =12a 时,△AEF 的面积的最大值为18a 2.故④正确,故答案为①④.①正确.如图1中,在BC 上截取BH =BE ,连接EH.证明△FAE≌△EHC(SAS),即可解决问题.②③错误.如图2中,延长AD 到H ,使得DH =BE ,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.④正确.设BE =x ,则AE =a −x ,AF =√2x ,构建二次函数,利用二次函数的性质解决最值问题.本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题. 17.【答案】解:{x −y =1 ①x +3y =9 ②,②−①得,4y =8,解得y =2,把y =2代入①得,x −2=1,解得x =3,故原方程组的解为{x =3y =2.【解析】运用加减消元解答即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】证明:∵FC//AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵{∠A=∠FCF ∠ADE=∠F DE=EF,∴△ADE≌△CFE(AAS).【解析】利用AAS证明:△ADE≌CFE.本题考查了三角形全等的判定,熟练掌握三角形全等的判定方法是关键,三角形全等的判定方法有:AAS,SSS,SAS.19.【答案】解:(1)P=2aa2−b2−1a+b=2a(a+b)(a−b)−1a+b=2a−a+b(a+b)(a−b)=1a−b;(2)∵点(a,b)在一次函数y=x−√2的图象上,∴b=a−√2,∴a−b=√2,∴P=√22;【解析】本题考查分式的化简,一次函数图象上点的特征;熟练掌握分式的化简,理解点与函数解析式的关系是解题的关键.(1)P=2aa2−b2−1a+b=2a(a+b)(a−b)−1a+b=2a−a+b(a+b)(a−b)=1a−b;(2)将点(a,b)代入y=x−√2得到a−b=√2,再将a−b=√2代入化简后的P,即可求解;20.【答案】解:(1)m=40−2−10−12−7−4=5;(2)B组的圆心角=360°×540=45°,C组的圆心角=360°×1040=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为612=12.【解析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.21.【答案】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G 基站的数量是6万座.(2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x ,依题意,得:6(1+x)2=17.34,解得:x 1=0.7=70%,x 2=−2.7(舍去).答:2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)2020年全省5G 基站的数量=目前广东5G 基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x ,根据2020年底及2022年底全省5G 基站数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.22.【答案】(1)解:将点P(−1,2)代入y =mx ,得:2=−m ,解得:m =−2,∴正比例函数解析式为y =−2x ;将点P(−1,2)代入y =n−3x ,得:2=−(n −3), 解得:n =1,∴反比例函数解析式为y =−2x .联立正、反比例函数解析式成方程组,得:{y =−2xy =−2x, 解得:{x 1=−1y 1=2,{x 2=1y 2=−2, ∴点A 的坐标为(1,−2).(2)证明:∵四边形ABCD 是菱形,∴AC ⊥BD ,AB//CD ,∴∠DCP =∠BAP ,即∠DCP =∠OAE .∵AB ⊥x 轴,∴∠AEO =∠CPD =90°,∴△CPD∽△AEO .(3)解:∵点A 的坐标为(1,−2),∴AE =2,OE =1,AO =√AE 2+OE 2=√5.∵△CPD∽△AEO ,∴∠CDP =∠AOE ,∴sin∠CDB =sin∠AOE =AEAO =√5=2√55.【解析】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m ,n 的值;(2)利用菱形的性质,找出∠DCP =∠OAE ,∠AEO =∠CPD =90°;(3)利用相似三角形的性质,找出∠CDP =∠AOE .(1)根据点P 的坐标,利用待定系数法可求出m ,n 的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A 的坐标(利用正、反比例函数图象的对称性结合点P 的坐标找出点A 的坐标亦可);(2)由菱形的性质可得出AC ⊥BD ,AB//CD ,利用平行线的性质可得出∠DCP =∠OAE ,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.23.【答案】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC=√AB2−AC2=√102−82=6,∵BC=CD,∴BC⏜=CD⏜,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2−EC2=OB2−OE2,∴62−(5−x)2=52−x2,解得x=75,∵BE=DE,BO=OA,∴AD=2OE=145,∴四边形ABCD的周长=6+6+10+145=1245.【解析】本题考查作图−复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.24.【答案】证明:(1)∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,由折叠可知:DF=DC,当点F在AC上时,有∠DFC=∠C=60°,∴∠DFC=∠A,∴DF//AB;解:(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2,∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°,∴MD=2√3,∴S△ABF的最小值=12×6×(2√3−2)=6√3−6,∴S最大值=√34×62−(6√3−6)=3√3+6;(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE,∴DF=DC=2,∠EFD=∠C=60°,∵GD⊥EF,∠EFD=60°,∴FG=1,DG=√3FG=√3,∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=√13−1,∴BG=√13,∵EH⊥BC,∠C=60°,∴CH=EC2,EH=√3HC=√32EC,∵∠GBD=∠EBH,∠BGD=∠BHE=90°,∴△BGD∽△BHE,∴DGBG =EHBH,∴√3√13=√32EC6−EC2,∴EC=√13−1,∴AE=AC−EC=7−√13.【解析】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.(1)由折叠的性质和等边三角形的性质可得∠DFC =∠A ,可证DF//AB ;(2)过点D 作DM ⊥AB 交AB 于点M ,由题意可得点F 在以D 为圆心,DF 为半径的圆上,由△ABC 的面积为S 1的值是定值,则当点F 在DM 上时,S △ABF 最小时,S 最大;(3)过点D 作DG ⊥EF 于点G ,过点E 作EH ⊥CD 于点H ,由勾股定理可求BG 的长,通过证明△BGD∽△BHE ,可求EC 的长,即可求AE 的长.25.【答案】解:(1)∵y =mx 2−2mx −3=m(x −1)2−m −3,抛物线有最低点, ∴二次函数y =mx 2−2mx −3的最小值为−m −3;(2)∵抛物线G :y =m(x −1)2−m −3∴平移后的抛物线G 1:y =m(x −1−m)2−m −3∴抛物线G 1顶点坐标为(m +1,−m −3)∴x =m +1,y =−m −3∴x +y =m +1−m −3=−2即x +y =−2,变形得y =−x −2∵m >0,m =x −1∴x −1>0∴x >1∴y 与x 的函数关系式为y =−x −2(x >1);(3)法一:如图,函数H :y =−x −2(x >1)图象为射线x =1时,y =−1−2=−3;x =2时,y =−2−2=−4∴函数H 的图象恒过点B(2,−4)∵抛物线G :y =m(x −1)2−m −3x =1时,y =−m −3;x =2时,y =m −m −3=−3∴抛物线G 恒过点A(2,−3)由图象可知,若抛物线与函数H 的图象有交点P ,则y B <y P <y A ,∴点P 纵坐标的取值范围为−4<y P <−3;法二:{y =−x −2y =mx 2−2mx −3整理的:m(x 2−2x)=1−x∵x >1,且x =2时,方程为0=−1不成立∴x ≠2,即x 2−2x =x(x −2)≠0∴m =1−x x(x −2)>0 ∵x >1∴1−x <0∴x(x −2)<0∴x −2<0∴x <2即1<x <2∵y P =−x −2∴−4<y P <−3.【解析】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.(1)抛物线有最低点即开口向上,m >0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G 的顶点式,根据平移规律即得到抛物线G 1的顶点式,进而得到抛物线G 1顶点坐标(m+1,−m−3),即x=m+1,y=−m−3,x+y=−2即消去m,得到y 与x的函数关系式.再由m>0,即求得x的取值范围.(3)法一:求出抛物线恒过点B(2,−4),函数H图象恒过点A(2,−3),由图象可知两图象交点P应在点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m的范围讨论x的具体范围,即求得函数H对应的交点P纵坐标的范围.。

广东省2019年中考数学试卷(解析版)

广东省2019年中考数学试卷(解析版)

广东省2019年中考数学试卷(解析版)说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×106【答案】B【解析】a×10n 形式,其中0≤|a|<10.【考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2B.b3·b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a| < |b|C .a+b>0D .ba <0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简24的结果是A .﹣4B .4C .±4D .2【答案】B 【解析】公式a a 2.【考点】二次根式9.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1·x 2=2【答案】D【解析】因式分解x (x-2)=0,解得两个根分别为0和2,代入选项排除法.【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN : S △ADM =1 : 4.其中正确的结论有A .1个B .2个C .3个D .4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF ,∠AHN=∠GFN ,△ANH ≌△GNF (AAS ),①正确;由①得AN=GN=1,∵NG ⊥FG ,NA 不垂直于AF ,∴FN 不是∠AFG 的角平分线,∴∠AFN ≠∠HFG ,②错误;由△AKH ∽△MKF ,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN ,∴K 为NH 的中点,即FN=2NK ,③正确;S △AFN =21AN·FG=1,S △ADM =21DM·AD=4,∴S △AFN : S △ADM =1 : 4,④正确. 【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 【答案】4【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a∥b,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x﹣8y+9的值是___________.【答案】21【解析】由已知条件得x-2y=3,原式=4(x-2y)+9=12+9=21.【考点】代数式的整体思想15米,在实验楼的顶部B点测15.如图,某校教学楼AC与实验楼BD的水平间距CD=3得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是_________________米(结果保留根号).【答案】15+153【解析】AC=CD·tan30°+CD·tan45°=15+153.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a、b 代数式表示).【答案】a+8b【解析】每个接触部分的相扣长度为(a-b),则下方空余部分的长度为a-2(a-b)=2b-a,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a)=a+2b;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a)=a+4b;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a)=a+6b;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a)=a+8b. 【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 【答案】解:原式=2-x 1-x 4-x x -x 22÷ =2-x 1-x ×()()()1-x x 2-x 2x + =x2x + 当x=2,原式=222+=2222+=1+2. 【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD =2,求ECAE 的值.【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC ∴EC AE =DBAD ∵DBAD =2 ∴EC AE =2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×404=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种 ∴P (甲乙)=62=31 答:同时抽到甲、乙两名学生的概率为31. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x个,则足球(60-x)个.由题意得70x+80(60-x)=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y个.由题意得70y≤80(60-x),解得y≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的⌒EF与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及⌒FE所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB=2262+=102,AC=2262+=102, BC=2284+=54(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=21BC=52 (或用等面积法AB·AC=BC·AD 求出AD 长度) ∵S 阴影=S △ABC -S 扇形EAFS △ABC =21×102×102=20 S 扇形EAF =()25241π =5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=x k 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ). (1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP : S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=xk 2图象过点A (﹣1,4) ∴4=1-k 2,解得k 2=﹣4 ∴反比例函数表达式为x 4-y = ∵反比例函数x4-y =图象过点B (4,n ) ∴n=44-=﹣1,∴B (4,﹣1)∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1)∴⎩⎨⎧+=+=bk 41-b -k 411,解得⎩⎨⎧==3b 1-k 1 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP : S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC ∴BNMN BP AP = ∵MN=a+1,BN=4-a ∴21a -41a =+,解得a=32 ∴-a+3=37 ∴点P 坐标为(32,37)(或用两点之间的距离公式AP=()()224-3a -1a +++,BP=()()223-a 1-a -4++,由21BP AP =解得a 1=32,a 2=-6舍去) 【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC·BE=25,求BG 的长.【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D∴ED=EC(2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A 在⊙O 上∴AF 是⊙O 的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA ∴BCAB AB BE ∵BC·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832+与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标; (2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥ x轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y=837 -x 433x 832+=()32-3x 83+得点D 坐标为(﹣3,32) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:过点D 作DG ⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC ∽△FOC ∴COCG FO DG = 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF ,OA=1,DG=3,CG=m+32∵CO ⊥FA∴FO=OA=1 ∴m32m 13+=,解得m=3 (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=3x+3,再求出点C 的坐标)∴点C 坐标为(0,3)∴CD=CE=()223233++=6∵tan ∠CFO=FOCO =3 ∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC ∥BA∵BF=BO -FO=6∴CE=BF∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,837-m 433m 832+),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=32(A )当P 在点A 右侧时,m >1(a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在 (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-(舍去),m 2=1(舍去),这种不存在 (B )当P 在线段AB 之间时,﹣7<m <1(a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在 (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM =∴3241-m 837-m 433m 832=+,解得m 1=35-,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时11AD DD AM PM = ∴﹣3241-m 837-m 433m 832=+432,解得m 1=﹣11,m 2=1(舍去) (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴﹣3241-m 837-m 433m 832=+,解得m 1=337-,m 2=1(舍去) 综上所述,点P 的横坐标为35-,﹣11,337-,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想。

2019年广东省中考数学真题试题(含答案)

2019年广东省中考数学真题试题(含答案)

2019年广东省初中学业水平考试数学(含答案)说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A .b 6÷b 3=b 2B .b 3·b 3=b 9C .a 2+a 2=2a 2D .(a 3)3=a 65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .ba <08.化简24的结果是A .﹣4B .4C .±4D .29.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1·x 2=210.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 12.如图,已知a ∥b ,∠l=75°,则∠2 =________.13.一个多边形的内角和是1080°,这个多边形的边数是_________.14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=315米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD =2,求ECAE 的值.四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C的圆心角的度数为_______度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832 与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?解析卷1.﹣2的绝对值是A .2B .﹣2C .D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×106【答案】B【解析】a ×10n 形式,其中0≤|a|<10.【考点】科学记数法213.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2 B.b3·b3=b9 C.a2+a2=2a2 D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .<0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简的结果是A .﹣4B .4C .±4D .2【答案】B【解析】公式.【考点】二次根式9.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0 C .x 1+x 2=2 D .x 1·x 2=2【答案】Db a24a a 2【解析】因式分解x (x-2)=0,解得两个根分别为0和2,代入选项排除法.【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF ,∠AHN=∠GFN ,△ANH ≌△GNF (AAS ),①正确;由①得AN=GN=1,∵NG ⊥FG ,NA 不垂直于AF ,∴FN 不是∠AFG 的角平分线,∴∠AFN ≠∠HFG ,②错误;由△AKH ∽△MKF ,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN ,∴K 为NH 的中点,即FN=2NK ,③正确;S △AFN =AN ·FG=1,S △ADM =DM ·AD=4,∴S △AFN :S △ADM =1:4,④正确. 【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+()﹣1=____________. 【答案】4212131【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a ∥b ,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n 边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.【答案】21【解析】由已知条件得x-2y=3,原式=4(x-2y )+9=12+9=21.【考点】代数式的整体思想15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).315【答案】15+15【解析】AC=CD ·tan30°+CD ·tan45°=15+15.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).【答案】a+8b【解析】每个接触部分的相扣长度为(a-b ),则下方空余部分的长度为a-2(a-b )=2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a )=a+2b ;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a )=a+4b ;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a )=a+6b ;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a )=a+8b.【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)3317.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值: ,其中x=.【答案】解:原式==×=当x=,原式===1+.【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.4-x x-x 2-x 1-2-x x22÷⎪⎭⎫⎝⎛22-x 1-x 4-x x-x 22÷2-x 1-x ()()()1-x x 2-x 2x +x 2x +2222+2222+2DB ADEC AE【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC∴= ∵=2 ∴=2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将EC AE DB AD DB AD EC AE测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种404∴P (甲乙)== 答:同时抽到甲、乙两名学生的概率为. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的623131三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB==,AC==,BC==(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=BC= (或用等面积法AB ·AC=BC ·AD 求出AD 长度)∵S 阴影=S △ABC -S 扇形EAFS △ABC =××=202262+1022262+1022284+54215221102102S 扇形EAF ==5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=图象过点A (﹣1,4) ()25241π xk 2xk2xk 2∴4=,解得k 2=﹣4∴反比例函数表达式为∵反比例函数图象过点B (4,n )∴n==﹣1,∴B (4,﹣1)∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1) ∴,解得 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP :S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC1-k 2x 4-y =x 4-y =44-⎩⎨⎧+=+=b k 41-b -k 411⎩⎨⎧==3b1-k1∴ ∵MN=a+1,BN=4-a∴,解得a= ∴-a+3= ∴点P 坐标为(,) (或用两点之间的距离公式AP=,BP=,由解得a 1=,a 2=-6舍去) 【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.BNMN BP AP =21a -41a =+32373237()()224-3a -1a +++()()223-a 1-a -4++21BP AP =32【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D∴ED=EC(2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA∴ ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识 25.如题25-1图,在平面直角坐标系中,抛物线y=与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;BCAB AB BE =837 -x 433x 832+(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y==得点D 坐标为(﹣3,) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:837 -x 433x 832+()32-3x 83+32过点D 作DG⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC∽△FOC∴ 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF,OA=1,DG=3,CG=m+∵CO⊥FA ∴FO=OA=1∴,解得m= (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=x+,再求出点C 的坐标)∴点C 坐标为(0,) ∴CD=CE==6∵tan∠CFO== ∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC∥BA∵BF=BO-FO=6∴CE=BFCOCG FO DG =32m32m 13+=3333()223233++FOCO 3∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=(A )当P 在点A 右侧时,m >1 (a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在 (b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴,解得m 1=(舍去),m 2=1(舍去),这种不存在 (B )当P 在线段AB 之间时,﹣7<m <1(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴,解得m 1=,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时 ∴﹣,解得m 1=﹣11,m 2=1(舍去) 837-m 433m 832+3211DD AD AM PM =3241-m 837-m 433m 832=+35-11DD AD AM PM =3241-m 837-m 433m 832=+35-11AD DD AM PM =3241-m 837-m 433m 832=+432(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴﹣,解得m 1=,m 2=1(舍去) 综上所述,点P 的横坐标为,﹣11,,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想11DD AD AM PM =3241-m 837-m 433m 832=+337-35-337-。

2019年广东省中考数学试卷(解析版)

2019年广东省中考数学试卷(解析版)

2019年广东省中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.﹣2的绝对值是()A.2 B.﹣2 C.D.±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106 B.2.21×105C.221×103D.0.221×1063.如图,由4个相同正方体组合而成的儿何体,它的左视图是()A.B.C.D.4.下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.6.数据3,3,5,8,11的中位数是()A.3 B.4 C.5 D.67.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.<08.化简的结果是()A.﹣4 B.4 C.±4 D.29.已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1•x2=210.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共6小题)11.计算:20190+()﹣1=.12.如图,已知a∥b,∠1=75°,则∠2=.13.一个多边形的内角和是1080°,这个多边形的边数是.14.已知x=2y+3,则代数式4x﹣8y+9的值是.15.如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).16.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三、解答题(共9小题)17.解不等式组:18.先化简,再求值:(﹣)÷,其中x=.19.如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级频数A24B10C xD2合计y(1)x=,y=,扇形图中表示C的圆心角的度数为度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.23.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足kx+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.24.如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.25.如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△P AM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?2019年广东省中考数学试卷(解析版)参考答案一、单选题(共10小题)1.【分析】根据负数的绝对值是它的相反数,即可解答.【解答】解:|﹣2|=2,故选:A.【知识点】绝对值2.【分析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将221000用科学记数法表示为:2.21×105.故选:B.【知识点】科学记数法—表示较大的数3.【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:从左边看得到的是两个叠在一起的正方形,如图所示.故选:A.【知识点】简单组合体的三视图4.【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【解答】解:A、b6+b3,无法计算,故此选项错误;B、b3•b3=b6,故此选项错误;C、a2+a2=2a2,正确;D、(a3)3=a9,故此选项错误.故选:C.【知识点】合并同类项、幂的乘方与积的乘方、同底数幂的乘法5.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【知识点】轴对称图形、中心对称图形6.【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是,5.故选:C.【知识点】中位数7.【分析】先由数轴可得﹣2<a<﹣1,0<b<1,且|a|>|b|,再判定即可.【解答】解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;<0,故D正确;故选:D.【知识点】实数与数轴、绝对值8.【分析】根据算术平方根的含义和求法,求出16的算术平方根是多少即可.【解答】解:==4.故选:B.【知识点】算术平方根9.【分析】由根的判别式△=4>0,可得出x1≠x2,选项A不符合题意;将x1代入一元二次方程x2﹣2x=0中可得出x12﹣2x1=0,选项B不符合题意;利用根与系数的关系,可得出x1+x2=2,x1•x2=0,进而可得出选项C不符合题意,选项D符合题意.【解答】解:∵△=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.【知识点】根与系数的关系10.【分析】由正方形的性质得到FG=BE=2,∠FGB=90°,AD=4,AH=2,∠BAD=90°,求得∠HAN=∠FGN,AH=FG,根据全等三角形的定理定理得到△ANH≌△GNF(AAS),故①正确;根据全等三角形的性质得到∠AHN=∠HFG,推出∠AFH≠∠AHF,得到∠AFN≠∠HFG,故②错误;根据全等三角形的性质得到AN=AG=1,根据相似三角形的性质得到∠AHN=∠AMG,根据平行线的性质得到∠HAK=∠AMG,根据直角三角形的性质得到FN=2NK;故③正确;根据矩形的性质得到DM=AG=2,根据三角形的面积公式即可得到结论.【解答】解:∵四边形EFGB是正方形,EB=2,∴FG=BE=2,∠FGB=90°,∵四边形ABCD是正方形,H为AD的中点,∴AD=4,AH=2,∠BAD=90°,∴∠HAN=∠FGN,AH=FG,∵∠ANH=∠GNF,∴△ANH≌△GNF(AAS),故①正确;∴∠AHN=∠HFG,∵AG=FG=2=AH,∴AF=FG=AH,∴∠AFH≠∠AHF,∴∠AFN≠∠HFG,故②错误;∵△ANH≌△GNF,∴AN=AG=1,∵GM=BC=4,∴==2,∵∠HAN=∠AGM=90°,∴△AHN∽△GMA,∴∠AHN=∠AMG,∵AD∥GM,∴∠HAK=∠AMG,∴∠AHK=∠HAK,∴AK=HK,∴AK=HK=NK,∵FN=HN,∴FN=2NK;故③正确;∵延长FG交DC于M,∴四边形ADMG是矩形,∴DM=AG=2,∵S△AFN=AN•FG=2×1=1,S△ADM=AD•DM=×4×2=4,∴S△AFN:S△ADM=1:4故④正确,故选:C.【知识点】相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质二、填空题(共6小题)11.【分析】分别计算负整数指数幂、零指数幂,然后再进行实数的运算即可.【解答】解:原式=1+3=4.故答案为:4.【知识点】负整数指数幂、有理数的加法、零指数幂12.【分析】根据平行线的性质及对顶角相等求解即可.【解答】解:∵直线L直线a,b相交,且a∥b,∠1=75°,∴∠3=∠1=75°,∴∠2=180°﹣∠3=180°﹣75°=105°.故答案为:105°【知识点】平行线的性质13.【分析】根据多边形内角和定理:(n﹣2)•180 (n≥3)可得方程180(x﹣2)=1080,再解方程即可.【解答】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.【知识点】多边形内角与外角14.【分析】直接将已知变形进而代入原式求出答案.【解答】解:∵x=2y+3,∴x﹣2y=3,则代数式4x﹣8y+9=4(x﹣2y)+9=4×3+9=21.故答案为:21.【知识点】整式的加减、代数式求值15.【分析】首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△BEC、△ABE,进而可解即可求出答案.【解答】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.【知识点】解直角三角形的应用-仰角俯角问题16.【分析】用9个这样的图形的总长减去拼接时的重叠部分,即可得到拼出来的图形的总长度.【解答】解:由图可得,拼出来的图形的总长度=9a﹣8(a﹣b)=a+8b.故答案为:a+8b.【知识点】利用轴对称设计图案三、解答题(共9小题)17.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解不等式组①,得x>3解不等式组②,得x>1则不等式组的解集为x>3【知识点】解一元一次不等式组18.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式==当x=时,原式==【知识点】分式的化简求值19.【分析】(1)利用基本作图(作一个角等于已知角)作出∠ADE=∠B;(2)先利用作法得到∠ADE=∠B,则可判断DE∥BC,然后根据平行线分线段成比例定理求解.【解答】解:(1)如图,∠ADE为所作;(2)∵∠ADE=∠B∴DE∥BC,∴==2.【知识点】相似三角形的判定与性质、作图—基本作图20.【分析】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×=36°;(2)先画树状图,然后求得P(同时抽到甲,乙两名学生)==.【解答】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×=36°.故答案为4,40,36;(2)画树状图如下:P(同时抽到甲,乙两名学生)==.【知识点】列表法与树状图法、频数(率)分布表、扇形统计图21.【分析】(1)设购买篮球x个,购买足球y个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a个篮球,则购买(60﹣a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x的最大整数解即可.【解答】解:(1)设购买篮球x个,购买足球y个,依题意得:.解得.答:购买篮球20个,购买足球40个;(2)设购买了a个篮球,依题意得:70a≤80(60﹣a)解得a≤32.答:最多可购买32个篮球.【知识点】二元一次方程组的应用、一元一次不等式的应用22.【分析】(1)根据勾股定理即可求得;(2)根据勾股定理求得AD,由(1)得,AB2+AC2=BC2,则∠BAC=90°,根据S阴=S△ABC﹣S扇形AEF即可求得.【解答】解:(1)AB==2,AC==2,BC==4;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD==2,∴S阴=S△ABC﹣S扇形AEF=AB•AC﹣π•AD2=20﹣5π.【知识点】切线的性质、勾股定理、扇形面积的计算23.【分析】(1)根据一次函数图象在反比例图象的上方,可求x的取值范围;(2)将点A,点B坐标代入两个解析式可求k2,n,k1,b的值,从而求得解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)∵点A的坐标为(﹣1,4),点B的坐标为(4,n).由图象可得:kx+b>的x的取值范围是x<﹣1或0<x<4;(2)∵反比例函数y=的图象过点A(﹣1,4),B(4,n)∴k2=﹣1×4=﹣4,k2=4n∴n=﹣1∴B(4,﹣1)∵一次函数y=kx+b的图象过点A,点B∴,解得:k=﹣1,b=3∴直线解析式y=﹣x+3,反比例函数的解析式为y=﹣;(3)设直线AB与y轴的交点为C,∴C(0,3),∵S△AOC=×3×1=,∴S△AOB=S△AOC+S△BOC=×3×1+×4=,∵S△AOP:S△BOP=1:2,∴S△AOP=×=,∴S△COP=﹣=1,∴×3•x P=1,∴x P=,∵点P在线段AB上,∴y=﹣+3=,∴P(,).【知识点】反比例函数与一次函数的交点问题24.【分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CF A知∠ACD=∠CAF+∠CF A=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证;(3)证△ABE∽△CBA得AB2=BC•BE,据此知AB=5,连接AG,得∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,由点G为内心知∠DAG=∠GAC,结合∠BAD+∠DAG=∠GDC+∠ACB得∠BAG=∠BGA,从而得出BG=AB=5.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠BCD,∠ABC=∠ADC,∴∠BCD=∠ADC,∴ED=EC;(2)如图1,连接OA,∵AB=AC,∴=,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CF A,∴∠ACD=∠CAF+∠CF A=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴=,∴AB2=BC•BE,∴BC•BE=25,∴AB=5,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GDC+∠ACB,∴∠BAG=∠BGA,∴BG=AB=5.【知识点】圆的综合题25.【分析】(1)利用抛物线解析式求得点A、B、D的坐标;(2)欲证明四边形BFCE是平行四边形,只需推知EC∥BF且EC=BF即可;(3)①利用相似三角形的对应边成比例求得点P的横坐标,没有指明相似三角形的对应边(角),需要分类讨论;②根据①的结果即可得到结论.【解答】解:(1)令x2+x﹣=0,解得x1=1,x2=﹣7.∴A(1,0),B(﹣7,0).由y=x2+x﹣=(x+3)2﹣2得,D(﹣3,﹣2);(2)证明:∵DD1⊥x轴于点D1,∴∠COF=∠DD1F=90°,∵∠D1FD=∠CFO,∴△DD1F∽△COF,∴=,∵D(﹣3,﹣2),∴D1D=2,OD=3,∵AC=CF,CO⊥AF∴OF=OA=1∴D1F=D1O﹣OF=3﹣1=2,∴=,∴OC=,∴CA=CF=F A=2,∴△ACF是等边三角形,∴∠AFC=∠ACF,∵△CAD绕点C顺时针旋转得到△CFE,∴∠ECF=∠AFC=60°,∴EC∥BF,∵EC=DC==6,∵BF=6,∴EC=BF,∴四边形BFCE是平行四边形;(3)∵点P是抛物线上一动点,∴设P点(x,x2+x﹣),①当点P在B点的左侧时,∵△P AM与△DD1A相似,∴或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣11或x1=1(不合题意舍去)x2=﹣;当点P在A点的右侧时,∵△P AM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣(不合题意舍去);当点P在AB之间时,∵△P AM与△DD1A相似,∴=或=,∴=或=,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=﹣;综上所述,点P的横坐标为﹣11或﹣或﹣;②由①得,这样的点P共有3个.【知识点】二次函数综合题。

2019年广东中考真题数学试题(解析版)(含考点分析)

2019年广东中考真题数学试题(解析版)(含考点分析)

{来源}2019年广东省中考数学试卷 {适用范围:3. 九年级}{标题}2019年广东省中考数学试卷考试时间:100分钟 满分:120分{题型:1-选择题}一、选择题:本大题共10 小题,每小题 3 分,合计30分.{题目}1.(2019年广东第1题)-2的绝对值是 A.2 B.-2 C.21D.2{答案}A{解析}本题考查了绝对值的性质,根据绝对值的性质,-2的绝对值是2,因此本题选A . {分值}3{章节:[1-1-2-4]绝对值 } {考点:绝对值的性质} {类别:常考题} {难度:1-最简单}{题目}2.(2019年广东第2题)某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A.2.21×106B.2.21×105C.221×103D.0.221×106{答案}B{解析}本题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.因此本题选B . {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}3.(2019年广东第3题)如图,由4个相同正方体组合而成的几何体,它的左视图是{答案}A{解析}本题考查了三视图的知识,理解左视图是从物体的左边看得到的视图是解题的关键了,因此本题选A . {分值}3{章节: :[1-29-2]三视图} {考点:简单组合体的三视图} {类别:常考题} {难度:1-最简单}{题目}4.(2019年广东第4题)下列计算正确的是主视方向 A B C DA.b 6÷b 3=b 2B.b 3·b 3=b 9C.a 2+a 2=2a 2D.(a 3)3=a 6{答案}C{解析}本题考查整式的运算,根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;合并同类项法则,幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解. 本题选C{分值}3{章节:[1-15-2-3]整数指数幂}{考点:同底数幂的除法}{考点:同底数幂的乘法}{考点:合并同类项}{考点:幂的乘方} {类别:常考题} {难度:2-简单}{题目}5.(2019年广东第题)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是{答案}C{解析}本题考查了中心对称图形,轴对称图形,根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.因此本题选C . {分值}3{章节:[1-23-2-2]中心对称图形}{考点:轴对称图形}{考点:中心对称图形} {类别:常考题} {难度:1-最简单}{题目}6.(2019年广东第6题)数据3、3、5、8、11的中位数是A.3B.4C.5D.6{答案}C{解析}本题考查了中位数的定义,根据中位数的定义可知中位数是5,因此本题选C . {分值}3{章节:[1-20-1-2]中位数和众数} {考点:中位数} {类别:常考题} {难度:1-最简单}{题目}7.(2019年广东第7题)实教a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是 A.a>bB.|a|<|b|C. a+b>0D.ba <0A B C D{答案}D{解析}本题考查了实数与数轴,实数的大小比较,通过数轴可知a<b,|a|>|b|,a+b<0,因此本题选D.{分值}3{章节:[1-6-3]实数}{考点:实数与数轴}{考点:实数与绝对值、相反数}{考点:实数的大小比较}{类别:常考题}{难度:3-中等难度}{题目}8.(2019年广东第8题)化简24的结果是A.-4B.4C.D.2{答案}B42 ,因此本题选B.{解析}本题考查了二次根式的化简,根据二次根式的性质化简可得4{分值}3{章节:[1-16-1]二次根式}{考点:二次根式的定义}{类别:常考题}{难度:2-简单}{题目}9.(2019年广东第9题)已知x1、x2是一元二次方程了x2-2x=0的两个实数根,下列结论错误..的是A.x1≠x2B.x12-2x1=0C.x1+x2=2D.x1·x2=2{答案}D{解析}本题考查了一元二次方程根及根与系数的关系,根据一元二次方程根与系数的关系可得x1+x2=2,x1·x2=0,因此本题选D.{分值}3{章节:[1-21-3] 一元二次方程根与系数的关系}{考点:根与系数关系}{类别:常考题}{难度:2-简单}{题目}10.(2019年广东第10题)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K.S △则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④AFN:S△ADM =1:4.其中正确的结论有 A.1个 B.2个C.3个D.4个{答案}C{解析}本题考查了正方形的性质、全等三角形的性质和判定、相似三角形的性质和判定、对顶角、内错角,根据正方形的性质、中点性质及对顶角易证:①△ANH≌△GNF,若②∠AFN=∠HFG,因为∠HFG=∠AHF,所以∠AFN=∠AHF,所以AF=AH,又因为AG=AH=2,则AG=AF=FG=2,而△AGF是等腰直角三角形,所以结论不成立;根据正方形的性质、中点性质及对顶角易证:△AHK∽△MFK,31==KF HK MF AH ,易得③FN=2NK ;因为S △AFN 2FGAN ⋅=,S △ADM=2DM AD ⋅,AN=1,FG=DM=2,AD=4,得④S △AFN :S △ADM =1:4.因此本题选C{分值}3{章节:[1-18-2-3] 正方形}{考点:全等三角形的性质}{考点:全等三角形的判定ASA,AAS}{考点:相似三角形的性质} {考点:相似三角形的判定(两角相等)}{考点:正方形的性质} {类别:易错题} {难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题4分,合计24分.{题目}11.(2019年广东第11题)计算10120193-⎛⎫+= ⎪⎝⎭.{答案}4{解析}本题考查了整式的乘法中的零指数幂和负指数幂,根据任何不为零的数的零次方等于1和-1次方等于底数的倒数可得原式134=+=. {分值}4{章节: [1-15-2-3]整数指数幂}{考点: 零次幂}{考点:同底数幂的除法} {类别:常考题} {难度:1-最简单}{题目}12.(2019年广东第12题)如图,已知a//b ,∠l=75°,则∠2 = .{答案}105°{解析}本题考查了对顶角相等和平行线的性质,根据a//b ,则∠1的对顶角与∠2互补,因此∠2=180°-∠1=105°. {分值}4{章节:[1-5-3]平行线的性质}{考点:相交}{考点:两直线平行同旁内角互补} {类别:常考题} {难度:2-简单}{题目}13.(2019年广东第13题)一个多边形的内角和是1080°,这个多边形的边数是 .{答案}8{解析}本题考查了多边形的内角和求解公式,根据多边形内角和公式()21801080n -=g ,可求得8n =,因此边数为8.{分值}4{章节:[1-11-3]多边形及其内角和} {考点:多边形的内角和} {类别:常考题} {难度:2-简单}{题目}14.(2019年广东第14题)已知x=2y+3,则代数式4x-8y+9的值是 .{答案}21{解析}本题考查了等式的性质和代数式求值,先通过23x y =+可得23x y -=,再通过等式的性质,两边同时乘以4得:()4212x y -=,即4812x y -=,48912921x y -+=+=. {分值}4{章节:[1-3-1-2]等式的性质}{考点:等式的性质}{考点:代数式求值} {类别:整体代入思想方法}{类别:常考题} {难度:3-中等难度}{题目}15.(2019年广东第15题)如图,某校教学楼AC 与实验楼BD 的水平间距CD=153米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 米(结果保留根号)。

广东省广州市2019年中考数学试卷(含解析)

广东省广州市2019年中考数学试卷(含解析)

广东省广州市2019年中考数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣6|=()A.﹣6 B.6 C.﹣D.2.(3分)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5 B.5.2 C.6 D.6.43.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m4.(3分)下列运算正确的是()A.﹣3﹣2=﹣1 B.3×(﹣)2=﹣C.x3•x5=x15D.•=a5.(3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条6.(3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=7.(3分)如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍8.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y3 9.(3分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10 D.810.(3分)关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()A.0或2 B.﹣2或2 C.﹣2 D.2二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,点A,B,C在直线l上,PB⊥l,P A=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是cm.12.(3分)代数式有意义时,x应满足的条件是.13.(3分)分解因式:x2y+2xy+y=.14.(3分)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为.15.(3分)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为.(结果保留π)16.(3分)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是.(填写所有正确结论的序号)三、解答题(共9小题,满分102分)17.(9分)解方程组:.18.(9分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌CFE.19.(10分)已知P=﹣(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x﹣的图象上,求P的值.20.(10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<1 2B组1≤t<2 mC组2≤t<3 10D组3≤t<4 12E组4≤t<5 7F组t≥5 4请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.21.(12分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.22.(12分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.23.(12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.25.(14分)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.广东省广州市2019年中考数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣6|=()A.﹣6 B.6 C.﹣D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣6的绝对值是|﹣6|=6.故选:B.【点评】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5 B.5.2 C.6 D.6.4【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:5出现的次数最多,是5次,所以这组数据的众数为5故选:A.【点评】本题主要考查众数的定义,是需要熟练掌握的概念.3.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)下列运算正确的是()A.﹣3﹣2=﹣1 B.3×(﹣)2=﹣C.x3•x5=x15D.•=a【分析】直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、﹣3﹣2=﹣5,故此选项错误;B、3×(﹣)2=,故此选项错误;C、x3•x5=x8,故此选项错误;D、•=a,正确.故选:D.【点评】此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.(3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:∵⊙O的半径为1,点P到圆心O的距离为2,∴d>r,∴点P与⊙O的位置关系是:P在⊙O外,∵过圆外一点可以作圆的2条切线,故选:C.【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.6.(3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【分析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.(3分)如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=AD=2,HG=AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=,EF∥AB,∴△OEF∽△OAB,∴,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.【点评】本题考查平行四边形的面积、三角形的相似、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.8.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y3【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,∴y1==﹣6,y2==3,y3==2,又∵﹣6<2<3,∴y1<y3<y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.9.(3分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10 D.8【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.【解答】解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.【点评】本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.10.(3分)关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()A.0或2 B.﹣2或2 C.﹣2 D.2【分析】由根与系数的关系可得出x1+x2=k﹣1,x1x2=﹣k+2,结合(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3可求出k的值,根据方程的系数结合根的判别式△≥0可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而可确定k的值,此题得解.【解答】解:∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0的两个实数根为x1,x2,∴x1+x2=k﹣1,x1x2=﹣k+2.∵(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,即(x1+x2)2﹣2x1x2﹣4=﹣3,∴(k﹣1)2+2k﹣4﹣4=﹣3,解得:k=±2.∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有实数根,∴△=[﹣(k﹣1)]2﹣4×1×(﹣k+2)≥0,解得:k≥2﹣1或k≤﹣2﹣1,∴k=2.故选:D.【点评】本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,求出k的值是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,点A,B,C在直线l上,PB⊥l,P A=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是5cm.【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【解答】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.【点评】本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.12.(3分)代数式有意义时,x应满足的条件是x>8.【分析】直接利用分式、二次根式的定义求出x的取值范围.【解答】解:代数式有意义时,x﹣8>0,解得:x>8.故答案为:x>8.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.(3分)分解因式:x2y+2xy+y=y(x+1)2.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.【解答】解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为15°或45°.【分析】分情况讨论:①DE⊥BC;②AD⊥BC.【解答】解:分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°﹣∠BAD=15°;②当AD⊥BC时,∠BAD=45°,即α=45°.故答案为:15°或45°【点评】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.15.(3分)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为.(结果保留π)【分析】根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题.【解答】解:∵某圆锥的主视图是一个腰长为2的等腰直角三角形,∴斜边长为2,则底面圆的周长为2π,∴该圆锥侧面展开扇形的弧长为2π,故答案为2π.【点评】本题考查三视图,圆锥等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(3分)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是①④.(填写所有正确结论的序号)【分析】①正确.如图1中,在BC上截取BH=BE,连接EH.证明△F AE≌△EHC(SAS),即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.④正确.设BE=x,则AE=a﹣x,AF=x,构建二次函数,利用二次函数的性质解决最值问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=BE,∵AF=BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠F AE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△F AE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=x,∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,∵﹣<0,∴x=a时,△AEF的面积的最大值为a2.故④正确,故答案为①④.【点评】本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(共9小题,满分102分)17.(9分)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=2,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌CFE.【分析】利用AAS证明:△ADE≌CFE.【解答】证明:∵FC∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵,∴△ADE≌△CFE(AAS).【点评】本题考查了三角形全等的判定,熟练掌握三角形全等的判定方法是关键,三角形全等的判定方法有:AAS,SSS,SAS.19.(10分)已知P=﹣(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x﹣的图象上,求P的值.【分析】(1)P=﹣===;(2)将点(a,b)代入y=x﹣得到a﹣b=,再将a﹣b=代入化简后的P,即可求解;【解答】解:(1)P=﹣===;(2)∵点(a,b)在一次函数y=x﹣的图象上,∴b=a﹣,∴a﹣b=,∴P=;【点评】本题考查分式的化简,一次函数图象上点的特征;熟练掌握分式的化简,理解点与函数解析式的关系是解题的关键.20.(10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<1 2B组1≤t<2 mC组2≤t<3 10D组3≤t<4 12E组4≤t<5 7F组t≥5 4请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.【分析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解答】解:(1)m=40﹣2﹣10﹣12﹣7﹣4=5;(2)B组的圆心角=360°×=45°,C组的圆心角=360°或=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.21.(12分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(12分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.【分析】(1)根据点P的坐标,利用待定系数法可求出m,n的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A的坐标(利用正、反比例函数图象的对称性结合点P的坐标找出点A的坐标亦可);(2)由菱形的性质可得出AC⊥BD,AB∥CD,利用平行线的性质可得出∠DCP=∠OAE,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.【解答】(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.【点评】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m,n的值;(2)利用菱形的性质,找出∠DCP=∠OAE,∠AEO=∠CPD=90°;(3)利用相似三角形的性质,找出∠CDP=∠AOE.23.(12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.【分析】(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.【解答】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC===6,∵BC=CD,∴=,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2﹣EC2=OB2﹣OE2,∴62﹣(5﹣x)2=52﹣x2,解得x=,∵BE=DE,BO=OA,∴AD=2OE=,∴四边形ABCD的周长=6+6+10+=.【点评】本题考查作图﹣复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A∴DF∥AB;(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=×2×3﹣(6﹣6)=﹣3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∴BG=∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣【点评】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.25.(14分)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.【分析】(1)抛物线有最低点即开口向上,m>0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G的顶点式,根据平移规律即得到抛物线G1的顶点式,进而得到抛物线G1顶点坐标(m+1,﹣m﹣3),即x=m+1,y=﹣m﹣3,x+y=﹣2即消去m,得到y 与x的函数关系式.再由m>0,即求得x的取值范围.(3)法一:求出抛物线恒过点B(2,﹣4),函数H图象恒过点A(2,﹣3),由图象可知两图象交点P应在点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m的范围讨论x的具体范围,即求得函数H对应的交点P纵坐标的范围.【解答】解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1)(3)法一:如图,函数H:y=﹣x﹣2(x>1)图象为射线x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4∴函数H的图象恒过点B(2,﹣4)∵抛物线G:y=m(x﹣1)2﹣m﹣3x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3∴抛物线G恒过点A(2,﹣3)由图象可知,若抛物线与函数H的图象有交点P,则y B<y P<y A∴点P纵坐标的取值范围为﹣4<y P<﹣3法二:整理的:m(x2﹣2x)=1﹣x∵x>1,且x=2时,方程为0=﹣1不成立∴x≠2,即x2﹣2x=x(x﹣2)≠0∴m=>0∵x>1∴1﹣x<0∴x(x﹣2)<0∴x﹣2<0∴x<2即1<x<2∵y P=﹣x﹣2∴﹣4<y P<﹣3【点评】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.。

(完整版)2019广东省中考数学试卷及答案

(完整版)2019广东省中考数学试卷及答案

2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的绝对值是 A .2B .-2C .12D .±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为 A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是 A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是 A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a b >B .a b <C .0a b +>D .0ab<8的结果是 A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是 A .12x x ≠ B .2112=0x x - C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFNADMSS=④.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .12.如图,已知a b ,175∠=°,则∠2= .13.一个多边形的内角和是1080︒ ,这个多边形的边数是 . 14.已知23x y =+ ,则代数式489x y -+ 的值是 .15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 米(结果保留根号) .16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解不等式组:()12214x x ->⎧⎨+>⎩①②18.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中x19.如图,在ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC 内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB ,求AEEC的值.四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC 的三个顶点均在格点上,以点A 为圆心的EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及FE 所围成的阴影部分的面积.五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图,一次函数y =k 1x +b 的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为(-1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.24.如题24-1图,在ABC 中,AB =AC ,⊙O 是ABC 的外接圆,过点C 作∠BCD =∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF =AC ,连接AF .(1)求证:ED =EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是ACD 的内心,25BC BE ⋅=,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线2y x 与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,CAD 绕点C 顺时针旋转得到CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作1DD x ⊥轴于点D 1,点P 是抛物线上一动点,过点P 作PM x ⊥轴,点M 为垂足,使得PAM 与1DD A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答....这样的点P 共有几个?2019广东省中考数学答案一、选择题二、填空题 11、答案:4解析:本题考查了零次幂和负指数幂的运算 12、答案:︒105解析:本题考查了平行线的性质,互为补角的计算 13、答案:8解析:本题考查了多边形内角和的计算公式 14、答案:21解析:整体思想,考查了整式的运算 15、答案:31515+解析:本题利用了特殊三角函数值解决实际问题16、答案:b a 8+三 解答题(一)17、解: ①得:3>x ①得:1>x①不等式组的解集为:3>x18、解: 原式=)1()2)(2(21--+⋅--x x x x x x =xx 2+ 当2=x 时 原式=222+ =2222+ =21+19、解:(1)如图所示:①ADE 即为所求。

完整版)2019广东省中考数学试卷及答案

完整版)2019广东省中考数学试卷及答案

完整版)2019广东省中考数学试卷及答案2019年广东省初中学业水平考试数学本次考试共4页,满分120分,考试时间100分钟。

在答题卡上填写准考证号、姓名、考场号和座位号,使用黑色字迹的签字笔或钢笔。

用2B铅笔涂黑对应题号的标号。

选择题答案涂在答题卡上,用2B铅笔涂黑。

如需更改答案,先用橡皮擦干净,再涂上新答案。

非选择题必须使用黑色字迹的钢笔或签字笔作答,写在答题卡指定区域内。

如需更改答案,先划掉原答案,再写上新答案。

不得使用铅笔或涂改液。

不按要求作答的答案无效。

保持答题卡整洁,考试结束时将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)1.求-2的绝对值。

A。

2B。

-2C。

1D。

±22.某网店2019年母亲节当天的营业额为元,将数用科学记数法表示为A。

2.21×106B。

2.21×105C。

221×103D。

0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A。

b6÷b3=b2B。

b3×b3=b9C。

a2+a2=2a2D。

(a3) =a65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A。

3B。

4C。

5D。

67.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A。

a>bB。

a<bC。

a+b>a-bD。

a-b<b-a8.化简42的结果是A。

-4B。

4C。

±4D。

29.已知x1、x2是一元二次方程x2-2x=0的两个实数根,下列结论错误的是A。

x1≠x2B。

x12-2x1=0C。

x1+x2=2D。

x1×x2=210.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K。

2019年广东省广州市中考数学试卷及答案【精编】

2019年广东省广州市中考数学试卷及答案【精编】

2019年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣6|=()A.﹣6B.6C.﹣D.2.(3分)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5B.5.2C.6D.6.43.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan ∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m4.(3分)下列运算正确的是()A.﹣3﹣2=﹣1B.3×(﹣)2=﹣C.x3•x5=x15D.•=a5.(3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条6.(3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=7.(3分)如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍8.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y39.(3分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE =3,AF=5,则AC的长为()A.4B.4C.10D.810.(3分)关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()A.0或2B.﹣2或2C.﹣2D.2二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,点A,B,C在直线l上,PB⊥l,P A=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是cm.12.(3分)代数式有意义时,x应满足的条件是.13.(3分)分解因式:x2y+2xy+y=.14.(3分)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为.15.(3分)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为.(结果保留π)16.(3分)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM =45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是.(填写所有正确结论的序号)三、解答题(共9小题,满分102分)17.(9分)解方程组:.18.(9分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌CFE.19.(10分)已知P=﹣(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x﹣的图象上,求P的值.20.(10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<12B组1≤t<2mC组2≤t<310D组3≤t<412E组4≤t<57F组t≥54请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.21.(12分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.22.(12分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.23.(12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.25.(14分)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣6|=()A.﹣6B.6C.﹣D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣6的绝对值是|﹣6|=6.故选:B.【点评】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5B.5.2C.6D.6.4【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:5出现的次数最多,是5次,所以这组数据的众数为5故选:A.【点评】本题主要考查众数的定义,是需要熟练掌握的概念.3.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan ∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)下列运算正确的是()A.﹣3﹣2=﹣1B.3×(﹣)2=﹣C.x3•x5=x15D.•=a【分析】直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、﹣3﹣2=﹣5,故此选项错误;B、3×(﹣)2=,故此选项错误;C、x3•x5=x8,故此选项错误;D、•=a,正确.故选:D.【点评】此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.(3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:∵⊙O的半径为1,点P到圆心O的距离为2,∴d>r,∴点P与⊙O的位置关系是:P在⊙O外,∵过圆外一点可以作圆的2条切线,故选:C.【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.6.(3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【分析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.(3分)如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=AD=2,HG=AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=,EF∥AB,∴△OEF∽△OAB,∴,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.【点评】本题考查平行四边形的面积、三角形的相似、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.8.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y3【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,∴y1==﹣6,y2==3,y3==2,又∵﹣6<2<3,∴y1<y3<y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.9.(3分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE =3,AF=5,则AC的长为()A.4B.4C.10D.8【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.【解答】解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.【点评】本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.10.(3分)关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()A.0或2B.﹣2或2C.﹣2D.2【分析】由根与系数的关系可得出x1+x2=k﹣1,x1x2=﹣k+2,结合(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3可求出k的值,根据方程的系数结合根的判别式△≥0可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而可确定k的值,此题得解.【解答】解:∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0的两个实数根为x1,x2,∴x1+x2=k﹣1,x1x2=﹣k+2.∵(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,即(x1+x2)2﹣2x1x2﹣4=﹣3,∴(k﹣1)2+2k﹣4﹣4=﹣3,解得:k=±2.∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有实数根,∴△=[﹣(k﹣1)]2﹣4×1×(﹣k+2)≥0,解得:k≥2﹣1或k≤﹣2﹣1,∴k=2.故选:D.【点评】本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,求出k的值是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,点A,B,C在直线l上,PB⊥l,P A=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是5cm.【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【解答】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.【点评】本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.12.(3分)代数式有意义时,x应满足的条件是x>8.【分析】直接利用分式、二次根式的定义求出x的取值范围.【解答】解:代数式有意义时,x﹣8>0,解得:x>8.故答案为:x>8.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.(3分)分解因式:x2y+2xy+y=y(x+1)2.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.【解答】解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为15°或60°.【分析】分情况讨论:①DE⊥BC;②AD⊥BC.【解答】解:分情况讨论:①当DE⊥BC时,∠BAD=180°﹣60°﹣45°=75°,∴α=90°﹣∠BAD=15°;②当AD⊥BC时,α=90°﹣∠C=90°﹣30°=60°.故答案为:15°或60°【点评】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.15.(3分)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为.(结果保留π)【分析】根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题.【解答】解:∵某圆锥的主视图是一个腰长为2的等腰直角三角形,∴斜边长为2,则底面圆的周长为2π,∴该圆锥侧面展开扇形的弧长为2π,故答案为2π.【点评】本题考查三视图,圆锥等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(3分)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM =45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是①④.(填写所有正确结论的序号)【分析】①正确.如图1中,在BC上截取BH=BE,连接EH.证明△F AE≌△EHC(SAS),即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.④正确.设BE=x,则AE=a﹣x,AF=x,构建二次函数,利用二次函数的性质解决最值问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=BE,∵AF=BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠F AE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△F AE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=x,∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,∵﹣<0,∴x=a时,△AEF的面积的最大值为a2.故④正确,故答案为①④.【点评】本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(共9小题,满分102分)17.(9分)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=2,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌CFE.【分析】利用AAS证明:△ADE≌CFE.【解答】证明:∵FC∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵,∴△ADE≌△CFE(AAS).【点评】本题考查了三角形全等的判定,熟练掌握三角形全等的判定方法是关键,三角形全等的判定方法有:AAS,SSS,SAS.19.(10分)已知P=﹣(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x﹣的图象上,求P的值.【分析】(1)P=﹣===;(2)将点(a,b)代入y=x﹣得到a﹣b=,再将a﹣b=代入化简后的P,即可求解;【解答】解:(1)P=﹣===;(2)∵点(a,b)在一次函数y=x﹣的图象上,∴b=a﹣,∴a﹣b=,∴P=;【点评】本题考查分式的化简,一次函数图象上点的特征;熟练掌握分式的化简,理解点与函数解析式的关系是解题的关键.20.(10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<12B组1≤t<2mC组2≤t<310D组3≤t<412E组4≤t<57F组t≥54请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.【分析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解答】解:(1)m=40﹣2﹣10﹣12﹣7﹣4=5;(2)B组的圆心角=360°×=45°,C组的圆心角=360°或=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.21.(12分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(12分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.【分析】(1)根据点P的坐标,利用待定系数法可求出m,n的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A的坐标(利用正、反比例函数图象的对称性结合点P的坐标找出点A的坐标亦可);(2)由菱形的性质可得出AC⊥BD,AB∥CD,利用平行线的性质可得出∠DCP=∠OAE,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.【解答】(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.【点评】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m,n的值;(2)利用菱形的性质,找出∠DCP=∠OAE,∠AEO=∠CPD=90°;(3)利用相似三角形的性质,找出∠CDP=∠AOE.23.(12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.【分析】(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.【解答】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC===6,∵BC=CD,∴=,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2﹣EC2=OB2﹣OE2,∴62﹣(5﹣x)2=52﹣x2,解得x=,∵BE=DE,BO=OA,∴AD=2OE=,∴四边形ABCD的周长=6+6+10+=.【点评】本题考查作图﹣复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A∴DF∥AB;(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=×2×3﹣(6﹣6)=﹣3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∴BG=∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣【点评】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.25.(14分)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.【分析】(1)抛物线有最低点即开口向上,m>0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G的顶点式,根据平移规律即得到抛物线G1的顶点式,进而得到抛物线G1顶点坐标(m+1,﹣m﹣3),即x=m+1,y=﹣m﹣3,x+y=﹣2即消去m,得到y与x的函数关系式.再由m>0,即求得x的取值范围.(3)法一:求出抛物线恒过点B(2,﹣4),函数H图象恒过点A(2,﹣3),由图象可知两图象交点P应在点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m 的范围讨论x的具体范围,即求得函数H对应的交点P纵坐标的范围.【解答】解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1)(3)法一:如图,函数H:y=﹣x﹣2(x>1)图象为射线x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4∴函数H的图象恒过点B(2,﹣4)∵抛物线G:y=m(x﹣1)2﹣m﹣3x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3∴抛物线G恒过点A(2,﹣3)由图象可知,若抛物线与函数H的图象有交点P,则y B<y P<y A ∴点P纵坐标的取值范围为﹣4<y P<﹣3法二:整理的:m(x2﹣2x)=1﹣x∵x>1,且x=2时,方程为0=﹣1不成立∴x≠2,即x2﹣2x=x(x﹣2)≠0∴m=>0∵x>1∴1﹣x<0∴x(x﹣2)<0∴x﹣2<0∴x<2即1<x<2∵y P=﹣x﹣2∴﹣4<y P<﹣3【点评】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.。

2019年广东省广州市中考数学试卷(含答案)

2019年广东省广州市中考数学试卷(含答案)

2019年广州市初中毕业生学业考试数 学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1. 6-=( ) (A )—6 (B)6 (C)61- (D )61 2。

广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处,到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5。

2,5,5,5,6。

4,6,5,6.68,48。

4,6。

3,这组数据的众数是( )(A )5 (B)5.2 (C)6 (D )6.43。

如图1,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若52tan =∠BAC ,则次斜坡的水平距离AC 为( )(A)75m (B )50m (C)30m (D )12m4. 下列运算正确的是( ) (A)—3—2=—1 (B )313132-=⎪⎭⎫ ⎝⎛-⨯ (C)1553x x x =⋅ (D)b a ab a =⋅ 5. 平面内,⊙O 的半径为1,点P 到O 的距离为2,过点P 可作⊙O 的切线条数为( )(A )0条 (B )1条 (C )2条 (D)无数条6。

甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )(A )8150120-=x x (B)x x 1508120=+ (C )x x 1508120=- (D)8150120+=x x 7.如图2,平行四边形ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O,且E ,F ,G ,H 分别是AO ,BO,CO ,DO 的重点,则下列说法正确的是( )(A )EH=HG (B)四边形EFGH 是平行四边形(C)AC ⊥BD (D)ABO ∆的面积是EFO ∆的面积的2倍8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省2019年中考数学试题及答案说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按上 要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A .b 6÷b 3=b 2B .b 3·b 3=b 9C .a 2+a 2=2a 2D .(a 3)3=a 65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a| < |b|C .a+b>0D .ba <08.化简24的结果是A .﹣4B .4C .±4D .29x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1·x 2=210.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN : S △ADM =1 :4.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 12.如图,已知a ∥b ,∠l=75°,则∠2 =________.13.一个多边形的内角和是1080°,这个多边形的边数是_________.14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=315米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD =2,求ECAE 的值.四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C的圆心角的度数为_______度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ). (1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP : S △BOP =1 : 2,求点P 的坐标.24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832 与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?参考答案一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.A2.B3.A4.C5.C6.C7.D8.B9.D 10.C二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.4 12. 105° 13. 8 14. 21 15.15+153 16. a+8b三、解答题(一)(本大题3小题,每小题6分,共18分)17.解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.18.解:原式=2-x 1-x 4-x x -x 22÷ =2-x 1-x ×()()()1-x x 2-x 2x + =x 2x + 当x=2,原式=222+=2222+=1+2. 19.解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC∴EC AE =DBAD∵DBAD =2 ∴EC AE =2 四、解答题(二)(本大题3小题,毎小题7分,共21分)20.解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×404=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种 ∴P (甲乙)=62=31 答:同时抽到甲、乙两名学生的概率为31. 21.解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.22.解:(1)由题意可知,AB=2262+=102,AC=2262+=102,BC=2284+=54(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的与BC 相切于点D∴AD ⊥BC∴AD=21BC=52 (或用等面积法AB ·AC=BC ·AD 求出AD 长度) ∵S阴影=S S △ABC =21S 扇形EAF =41∴S 阴影23.解:((2∴4=1-k 2∴n=44-=﹣1,∴B (4,﹣1) ∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1)∴⎩⎨⎧+=+=bk 41-b -k 411,解得⎩⎨⎧==3b 1-k 1∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP : S △BOP =1 : 2∴AP : BP=1 : 2过点B BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥,PN ⊥BC∴BNMN BP AP = ∵MN=a+1,BN=4-a∴21a -41a =+,解得a=32 ∴37 ∴点P 坐标为(32,37)(或用两点之间的距离公式AP=()()224-3a -1a +++,BP=()()223-a 1-a -4++,由21BP AP =解得a 1=32,a 2=-6舍去) 24.(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵=∴∠B=∠D∴∠BCD=∠D∴ED=EC(2)证明:连接AO 并延长交⊙O 于点G ,连接CG由(1)得∠B=∠BCD∴AB ∥DF∵AB=AC ,CF=AC∴AB=CF∴四边形ABCF 是平行四边形∴∠CAF=∠ACB∵AG 为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B ,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A 在⊙O 上∴AF 是⊙O 的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA∴BCAB AB BE ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=525.(1)解:由y=837 -x 433x 832+=()32-3x 83+得点D 坐标为(﹣3,32) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:过点D 作DG ⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC ∽△FOC∴COCG FO DG = 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF ,OA=1,DG=3,CG=m+32∵CO ⊥FA∴FO=OA=1∴m32m 13+=,解得m=3 (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=3x+3,再求出点C 的坐标)∴点C 坐标为(0,3)∴CD=CE=()223233++=6∵tan ∠CFO=FOCO =3 ∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∴EC ∥∵BF=BO ∴CE=BF∴四边形(3与△DD 1A (A )当(a (b∴3241-m 837-m 433m 832=+,解得m 1=35-(舍去),m 2=1(舍去),这种不存在 (B )当P 在线段AB 之间时,﹣7<m <1(a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在 (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a (b。

相关文档
最新文档