3.2.2概率的一般加法公式
(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)
(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算本章小结阅读与欣赏聪明在于学习,天才由于积累第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图象(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法本章小结阅读与欣赏函数概念的形成与发展第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)本章小结阅读与欣赏对数的发明必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积实习作业1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系本章小结阅读与欣赏散发着数学芳香的碑文第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式本章小结阅读与欣赏笛卡儿必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入和输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例本章小结阅读与欣赏我国古代数学家秦九韶附录1解三元一次方程组的算法、框图和程序附录2Scilab部分函数指令表第二章统计2.1随机抽样2.1.2系统抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关本章小结阅读与欣赏蚂蚁和大象谁的力气更大附录随机数表第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用本章小结阅读与欣赏概率论的起源必修四第一章基本初等函数(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图象与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角教学建模活动本章小结阅读与欣赏三角学的发展第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与轴上向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用本章小结阅读与欣赏向量概念的推广与应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积本章小结阅读与欣赏和角公式与旋转对称必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例本章小结阅读与欣赏亚历山大时期的三角测量第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和本章小结阅读与欣赏级数趣题无穷与悖论第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划本章小结选修1-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线级其标准方程2.3.2抛物线的几何性质本章小结阅读与欣赏圆锥面与圆锥曲线第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何意义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用本章小结阅读与欣赏微积分与极限思想选修1-2第一章统计案例1.1独立性检验1.2回归分析本章小结“回归”一词的由来附表相关性检验的临界值表第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法本章小结阅读与欣赏《原本》与公理化思想数学证明的机械化——机器证明第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法和减法3.2.2复数的乘法和除法本章小结复平面与高斯第四章框图4.1流程图4.2结构图本章小结阅读与欣赏冯·诺伊曼选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程、由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线本章小结阅读与欣赏圆锥面与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)本章小结阅读与欣赏向量的叉积及其性质选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常数函数与冥函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理本章小结阅读与欣赏微积分与极限思想第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例本意小结阅读与欣赏《原本》与公理化思想第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法本章小节阅读与欣赏复平面与高斯选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3二项式定理1.3.2杨辉三角本章小结第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布本章小结阅读与欣赏关于“玛丽莲问题”的争论第三章统计案例3.1独立性检验3.2回归分析本章小结阅读与欣赏“回归”一词的由来附表选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-2暂缺选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史选修3-4第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行摄影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式本章小结阅读与欣赏附录部分中英文词汇对照表后记选修4-6引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例说明:A版适用于文件生使用,B版适用于理科生使用,B 版比A版略难。
《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修3【配套备课资源】3.2.2
研一研·问题探究、课堂更高效
3.2.2
跟踪训练 2
本 课 时 栏 目 开 关
甲、 乙两人各射击 1 次, 命中率各为 0.8 和 0.5,
两人同时命中的概率为 0.4, 求“甲、 乙至少有 1 人命中” 的概率.
解 设事件 A 为“甲命中”,事件 B 为“乙命中”,
则“甲、乙两人至少有一人命中”为事件 A∪B,包含: “甲中乙不中”、“乙中甲不中”、“甲乙都中”三种 情况,
所以 P(A∪B)=P(A)+P(B)-P(A∩B) =0.8+0.5-0.4=0.9.
练一练·当堂检测、目标达成落实处
3.2.2
本 课 时 栏 目 开 关
1.抛掷一枚质地均匀的骰子, 向上的一面出现 1 点、 点、 2 1 3 点、4 点、5 点、6 点的概率都是 ,记事件 A 为“出 6 现奇数”,事件 B 为“向上的点数不超过 3”,求 P(A∪B).
(2)事件 A∩B={出现 3 点};事件 A∩C=∅; 事件 B∩C=∅. 小结 (1)根据定义判断事件的交.
(2)当 A∩C=∅时,A、C 为互斥事件.
研一研·问题探究、课堂更高效
3.2.2
跟踪训练 1 从 15 件产品(其中有 2 件次品)中任取 2 件产 品,记 A 为“至少有 1 件正品”,B 为“至少有 1 件次
所以 P(A∪B)=P(A)+P(B)-P(A∩B) =0.85+0.74-0.63=0.96.
小结
在求实际问题中有关事件 A 与事件 B 并的概率时,
首先要判断事件 A,B 是不是互斥事件.当 A,B 为互斥事 件时,P(A∪B)=P(A)+P(B);当 A,B 不是互斥事件时, P(A∪B)=P(A)+P(B)-P(A∩B).
大学概率论必背公式
,使对任意实数 x,都有
F ( x)=P( X x)=x f (u)du
则称 X 为连续型随机变量,f (x)为 X 的概率密度函数,简称概率密度或密度函数。 记为 X~ f (x) , (- < x <+)
2. 密度函数的性质
(3)
若
x是
f(x )
f (x)的连续点,
dF(x dx
)
.
(4)
P(a X b)= b f (u)du a
P{X xk } pk ,k 1,2,
数学期望 E(X)是一个常数,而非变量.它是一种以概率为权的加权平均值 (1)X ~(0—1)分布
(2)X~B(n,p)二项分布 (3)X~(或)Poisson 分布
2. 连续型随机变量的数学期望
(1)X~U(a,b)均匀分布 其概率密度函数为:
f(x )
5. 边缘分布 6. 二维连续型随机变量及其密度函数 联合密度 f (x , y )的性质
7. 边缘密度函数
8. 条件密度函数
1)fX|Y (x
y)
f (x, y) 称为Y fY ( y)
y下, X的条件密度函数
2)fY|X ( y
x)
f (x, y) 称为X fX (x)
x下,Y的条件密度函数
8、相关系数: 若 r.v. X,Y 的方差和协方差均存在, 且 D(X )> 0, D(Y )> 0,则
称为 X 与 Y 的相关系数. X 与 Y 不相关 Cov(X, Y )=0 E(XY )= E(X )E (Y )。
8、矩 (1)k 阶原点矩 E(X k ), k=1, 2, … 而 E(|X|k)称为 X 的 k 阶绝对原点矩; (2)k 阶中心矩 E[XE(X )]k, k=1, 2, … 而 E|X-E(X )|k 称为 X 的 k 阶绝对中心矩;
2020版高中数学第三章概率3.2.1古典概型3.2.2概率的一般加法公式(选学)课件新人教B版必修3 (1)
解 (1)用树状图表示所有的结果为:
所以所有不同的结果是 ab,ac,ad,ae,bc,bd,be,cd,ce,de. (2)记“恰好摸出 1 个黑球和 1 个红球”为事件 A, 则事件 A 包含的基本事件为 ac,ad,ae,bc,bd,be,共 6 个基本事件, 所以 P(A)=160=0.6, 即恰好摸出 1 个黑球和 1 个红球的概率为 0.6.
(1)记事件 A 为“三次颜色恰有两次同色”. ∵A 中含有基本事件个数为 m=6, ∴P(A)=mn =68=0.75.
(2)记事件 B 为“三次颜色全相同”. ∵B 中含基本事件个数为 m=2, ∴P(B)=mn =28=0.25. (3)记事件 C 为“三次摸到的红球多于白球”. ∵C 中含有基本事件个数为 m=4, ∴P(C)=48=0.5.
教材整理 2 概率的一般加法公式(选学) 阅读教材,完成下列问题. 1.事件 A 与 B 的交(或积): 由事件 A 和 B 同时发生 所构成的事件 D,称为事件 A 与 B 的交(或积), 记作 D=A∩B(或D=AB) . 2.设 A,B 是 Ω 的两个事件,则有 P(A∪B)= P(A)+P(B)-P(A∩B) ,这就 是概率的一般加法公式.
率的古典定义.
随手练 1.判断(正确的打“√”,错误的打“×”) (1)若一次试验的结果所包含的基本事件的个数为有限个,则该试验符合古典 概型.( ) (2)“抛掷两枚硬币,至少一枚正面向上”是基本事件.( ) (3)从装有三个大球、一个小球的袋中,取出一球的试验是古典概型.( ) (4)一个古典概型的基本事件数为 n,则每一个基本事件出现的概率都是 1 n.( )
3.2.1 古典概型 3.2.2 概率的一般加法公式(选学)
1.理解古典概型及其概率计算公式,会判断古典概型.(难点) 2.会用列举法求古典概型的概率.(重点)
高中数学人教B版数学目录
必修一第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算本章小结阅读与欣赏聪明在于学习,天才由于积累第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图象(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质与图象2.2.3 待定系数法2.3 函数的应用(Ⅰ)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种计算方法——二分法本章小结阅读与欣赏函数概念的形成与发展第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.1.1 实数指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.4 函数的应用(Ⅱ)本章小结阅读与欣赏:对数的发明必修二第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积实习作业1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系本章小结阅读与欣赏散发着数学芳香的碑文第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的几种形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式本章小结阅读与欣赏笛卡儿必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例本章小结阅读与欣赏我国古代数学家秦九韶附录1 解三元一次方程组的算法、框图和程序附录2 Scilab部分函数指令表第二章统计2.1 随机抽样2.1.2 系统抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关本章小结阅读与欣赏蚂蚁和大象谁的力气更大附录随机数表第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用本章小结阅读与欣赏:概率论的起源必修四第一章基本初等函数(Ⅱ)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角教学建模活动本章小结阅读与欣赏三角学的发展第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用本章小结阅读与欣赏向量概念的推广与应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积本章小结阅读与欣赏和角公式与旋转对称必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例本章小结阅读与欣赏亚历山大时期的三角测量第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和本章小结阅读与欣赏级数趣题无穷与悖论第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划本章小结选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联结词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线级其标准方程2.3.2 抛物线的几何性质本章小结阅读与欣赏圆锥面与圆锥曲线第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用本章小结阅读与欣赏微积分与极限思想第一章统计案例1.1 独立性检验1.2 回归分析本章小结阅读与欣赏“回归”一词的由来附表相关性检验的临界值表第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法本章小结阅读与欣赏《原本》与公理化思想数学证明的机械化——机器证明第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法本章小结阅读与欣赏复平面与高斯第四章框图4.1 流程图4.2 结构图本章小结阅读与欣赏冯·诺伊曼第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联结词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线本章小结阅读与欣赏圆锥面与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 两个向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)本章小结阅读与欣赏:向量的叉积及其性质第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与冥函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章小结阅读与欣赏微积分与极限思想第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法2.3.1 数学归纳法2.3.2 数学归纳法应用举例本章小结阅读与欣赏《原本》与公理化思想第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章小节阅读与欣赏复平面与高斯第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角本章小结第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布本章小结阅读与欣赏关于“玛丽莲问题”的争论第三章统计案例3.1 独立性检验3.2 回归分析本章小结阅读与欣赏“回归”一词的由来选修4-1第一章相似三角形定理与圆幂定理1.1 相似三角形1.1.1 相似三角形判定定理1.1.2 相似三角形的性质1.1.3 平行截割定理1.1.4 锐角三角函数与射影定理1.2 圆周角与弦切角1.2.1 圆的切线1.2.2 圆周角定理1.2.3 弦切角定理1.3 圆幂定理与圆内接四边形1.3.1 圆幂定理1.3.2 圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1 平行投影与圆柱面的平面截线2.1.1 平行投影的性质2.1.2 圆柱面的平面截线2.2 用内切球探索圆锥曲线的性质2.2.1 球的切线与切平面2.2.2 圆柱面的内切球与圆柱面的平面截线2.2.3 圆锥面及其内切球2.2.4 圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记选修4-4第一章坐标系1.1 直角坐标系,平面上的伸缩变换1.2 极坐标系本章小结第二章参数方程2.1 曲线的参数方程2.2 直线和圆的参数方程2.3 圆锥曲线的参数方程2.4 一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。
概率的一般加法公式
5 概率为 36
显然,A与B不是互斥事件,我们把事 件A和事件B同时发生所构成的事件D, 称为事件A与事件B的交(或积),记作 D=A∩B(或D=AB) 事件A∩B是由事件A和B所共同含有的 基本事件组成的集合。如图中阴影部分 就是表示A∩B.
Ω A A∩B B
在本例中,A∩B为{(4,4),(4,5),(4, 6),(5,4),(5,5),(5,6),(6,4),不是 互斥事件,那么公式是否成立? 来看下面的例子: 例1. 掷红、蓝两颗骰子,事件A={红骰子 的点数大于3},事件B={蓝骰子的点数大 于3},求事件A∪B={至少有一颗骰子的 点数大于3}发生的概率。
1.事件的交: 显然,A与B不是互斥事 件,我们把事件A和事件B同时发生所构 成的事件D,称为事件A与事件B的交(或 积),记作D=A∩B(或D=AB) 事件A∩B是由事件A和B所共同含有的 基本事件组成的集合。如图中阴影部分 就是表示A∩B.
8.从1,2,3,…,9 这9个数字中任取2个 数字,
5 (1)2个数字都是奇数的概率为______; 18 4 (2)2个数字之和为偶数的概率为_____. 9
9.连续掷3枚硬币,观察落地后这3枚硬币 出现正面还是反面. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件的总数; (3)“恰有两枚正面向上”这一事件包含 哪几个基本事件? 解:(1)这个试验的基本事件空间 Ω={(正,正,正),(正,正,反),(正,反,正), (正,反,反),(反,正,正),(反,正,反),(反,反, 正),(反,反,反)};
20 11 2 29 100 100
3.2.2概率的一般加法公式1
16 4 16 4 P(A)= = , P(A)= = , 36 9 36 9 27 3 = P(A∪B)= P(A∪ 36 4
P(A∪B) ≠ P(A)+P(B) P(A∪
P(A∪B) P(A∪
A ∪ B中包含的基本事件数 = Ω的基本事件总数
= A中基本事件的个数 + B中基本事件的个数 − A ∩ B中基本事件的个数 Ω的基本事件总数
练习: 练习: 射手甲一次击中目标的概率为0.7, 射手甲一次击中目标的概率为0.7,射手乙 一次击中目标的概率为0.5, 一次击中目标的概率为0.5,甲乙两人者击 中目标的概率为0.4,现在甲、 中目标的概率为0.4,现在甲、乙两人同时向 现在甲 一个目标射击一次, 一个目标射击一次,则: (1)目标被击中概率是 (1)目标被击中概率是 . . (2)甲、乙都击不中目标的概率是 (2)甲
3.2.2概率的一般加法公式 3.2.2概率的一般加法公式 (选学) 选学)
1.事件的交:如果事件A 1.事件的交:如果事件A与B不是互斥事 事件的交 我们把事件A 件,我们把事件A与B同时发生所构成的 事件D称为事件A 的交或积, 事件D称为事件A与B的交或积,记做 D=A∩B( D=AB)。 D=A∩B(或D=AB)。 事件A∩B是由事件 事件A∩B是由事件A和B所共同含有的基本 是由事件A 事件组成的集合。 事件组成的集合。
=P(A) +P(B) -P(A∩B) P(A∩ 概率的一般加法公式: 概率的一般加法公式: P(A∪B) =P(A) +P(B)-P(A∩B) P(A∪ +P(B)-P(A∩
例2.一个电路板上装有甲、乙两根熔丝, 2.一个电路板上装有甲 乙两根熔丝, 一个电路板上装有甲、 甲熔断的概率为0.85, 甲熔断的概率为0.85,乙熔断的概率为 0.75,两根同时熔断的概率为0.63, 0.75,两根同时熔断的概率为0.63,问至 少有一根熔断的概率是多少? 少有一根熔断的概率是多少?
概率的加法公式教案
概率的加法公式教案第一章:概率的加法公式简介1.1 概率的加法公式的概念引导学生回顾概率的基本概念,如事件、样本空间等。
介绍概率的加法公式:当有两个互斥的事件A和B时,事件A和B的概率之和等于事件A的概率加上事件B的概率。
1.2 概率的加法公式的证明通过具体的例子,解释概率的加法公式的推导过程。
使用集合论的方法,证明概率的加法公式。
第二章:两个互斥事件的概率加法2.1 两个互斥事件的定义解释互斥事件的含义:两个事件不可能发生。
举例说明互斥事件的性质。
2.2 两个互斥事件的概率加法公式推导两个互斥事件的概率加法公式:P(A ∪B) = P(A) + P(B)。
通过具体的例子,应用概率加法公式计算两个互斥事件的概率。
第三章:两个相互独立事件的概率加法3.1 相互独立事件的定义解释相互独立事件的含义:一个事件的发生不影响另一个事件的发生概率。
举例说明相互独立事件的性质。
3.2 两个相互独立事件的概率加法公式推导两个相互独立事件的概率加法公式:P(A ∪B) = P(A) + P(B) P(A ∩B)。
通过具体的例子,应用概率加法公式计算两个相互独立事件的概率。
第四章:概率的加法公式的应用4.1 计算复合事件的概率解释复合事件的含义:由多个简单事件组成的event。
利用概率的加法公式,计算复合事件的概率。
4.2 计算互斥事件和相互独立事件的概率引导学生运用概率的加法公式,解决实际问题。
提供一些练习题,让学生巩固概率的加法公式的应用。
第五章:概率的加法公式的拓展5.1 概率的加法公式的推广介绍概率的加法公式在多个事件的情况下的推广。
引导学生理解概率的加法公式在不同情境下的应用。
5.2 概率的加法公式与条件概率的关系解释条件概率的概念:在某个事件已经发生的条件下,另一个事件发生的概率。
探讨概率的加法公式与条件概率之间的关系。
第六章:概率的加法公式与组合数学6.1 组合数学的基本概念介绍组合数学中的一些基本概念,如组合、排列等。
新人教B版高中数学(必修3322概率的一般加法公式(选学)同步测试题
3.2.2概率的一般加法公式(选学)1.事件A 概率满足A . P(A)=0B . P(A)=1C . 0≤P(A)≤1D . P(A)<0或P(A)>12.下列说法:⑴频率反映随机事件的频繁程度,概率反映随机事件发生的可能性大小;⑵做n 次随机试验,事件A 发生次,则事件A 发生的频率nm 就是事件的概率;⑶频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;⑷频率是概率的近似值,而概率是频率的稳定值.其中正确的个数是A .1B .2C .3D .43.下列命题中错误的是A .对立事件一定互斥B .互斥事件不一定对立C .对立事件概率之和为1D .互斥事件一定对立4.已知事件M “3粒种子全部发芽”,事件N “3粒种子都不发芽”,那么事件M 和N 是A .等可能事件B .不互斥事件C .互斥但不是对立事件D .对立事件5.一箱产品中有正品4件,次品3件,从中任取2件,其中事件:⑴恰有1件次品和恰有2件次品;⑵至少有1件次品或全是次品;⑶至少有1件正品和至少1件次品;⑷至少有1件次品和全是正品.四组中有互斥事件的组数是A .1组B .2组C .3组D .4组6.袋中装有白球和黑球各3个,从中任取2球,在下列事件中是对立事件的是A .恰有1个白球和恰有2个黑球B .至少有1个白球和全是白球C .至少有1白球和至少有1个黑球D .至少有1个白球和全是黑球7.掷一颗色子,色子落地时向上的数是3的倍数的概率是__________.8.现在有语文、数学、英语、物理、化学共5本书,从中任取1本,取出的是理科书的概率为_________.9.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是________.10从一批乒乓球产品中任取1个,如果其质量小于2.45g 的概率是0.22,质量不小于0.50g 的概率是0.20,那么质量在[2.45,2.50]g 范围内的概率是多少?课外作业1.“某彩票的中奖概率为10001”意味着 A .买100张彩票就一定能中奖B .买1000张彩票中一次奖C .买1000张彩票一次奖也不中D .购买彩票中奖的可能性是10001 2.下列说法不正确的是A .不可能事件的概率为0,必然事件的概率为1B .某人射击10次,击中靶心8次,则他击中靶心的概率是0.8C .“直线y=k(x+1)过定点(-1,0)”是必然事件D .先后抛掷两枚均匀硬币,两次都出现反面的概率是31 3.设某厂产品的次品率为2%,估算该厂8000件产品中合格品的件数可能为A .160件B .7840件C .7998件D .7800件4.一人在打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是A .至多有一次中靶B .两次都中靶C .两次都不中靶D .只有一次中靶5.若书架上放有中文书a 本,英文书b 本,日文书c 本,则从中抽取1本外文书的概率是A a -1B .c b +C .c b a +-1D . cb ac b +++ 6.在5件产品中,有3件一级品和2件二级品,从中任取2件,则概率为107的事件是 A .都不是一级品 B .恰有一件一级品C .至少一件一级品D .至多一件一级品7.做所有的两位数(10~99)中,任取一个数恰好能被2或3整除的概率是A .65B . 54C . 32D . 21 8.从1~9这9个数中任取2个数,其中⑴恰有1个是奇数,恰有1个是偶数;⑵至少有1个是奇数,两个都是奇数;⑶至少有1个是奇数,两个都是偶数;⑷至少有1个是奇数,至少有1个是偶数.其中是对立事件的有A .⑴B .⑵⑷C .⑶D .⑴⑶9.甲乙两人下棋,两人下成和棋的概率是21,乙胜的概率是31,则乙不输的概率是___. 10某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对产品抽查一件,抽得正品的概率为_________.11.在10000张有奖储蓄的奖券中,设有1个一等奖,5个二等奖,10个三等奖,从中买一张奖券,中奖的概率是__________.12.若事件A、B满足A∩B=¢,A+B=Ω,且P(A)=0.3,则P(B)=________.13.1个盒内放有10个大小相同的小球,其中有7个红球,2个绿球,1个黄球,从中任取一个球,求:⑴得到红球的概率;⑵得到红球或绿球的概率;⑶得到黄球的概率.14.某射手在一次射击中击中10环、9环、8环的概率分别为0.24,0.28,0.19.计算这个射手在一次射击中:⑴射中10环或9环的概率;⑵不够8环的概率.15.同时掷两个色子,试求:⑴点数和不大于3的概率;⑵点数和恰为9的概率。
人教B版高中数学教材目录(2011-2013辽宁省适用 分栏紧凑排版有数学水印便于打印)
必修一第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算本章小结阅读与欣赏聪明在于学习,天才由于积累第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图象(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质与图象2.2.3 待定系数法2.3 函数的应用(Ⅰ)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种计算方法——二分法本章小结阅读与欣赏函数概念的形成与发展第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.1.1 实数指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.4 函数的应用(Ⅱ)本章小结阅读与欣赏对数的发明必修二第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积实习作业1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系本章小结阅读与欣赏散发着数学芳香的碑文第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的几种形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式本章小结阅读与欣赏笛卡儿必修三第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例本章小结阅读与欣赏我国古代数学家秦九韶附录1 解三元一次方程组的算法、框图和程序附录2 Scilab部分函数指令表第二章统计2.1 随机抽样2.1.2 系统抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关本章小结阅读与欣赏蚂蚁和大象谁的力气更大附录随机数表第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用本章小结阅读与欣赏概率论的起源必修四第一章基本初等函数(Ⅱ)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角教学建模活动本章小结阅读与欣赏三角学的发展第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用本章小结阅读与欣赏向量概念的推广与应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积本章小结阅读与欣赏和角公式与旋转对称必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例本章小结阅读与欣赏亚历山大时期的三角测量第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和本章小结阅读与欣赏级数趣题无穷与悖论第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划本章小结选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑联结词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线本章小结阅读与欣赏圆锥面与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 两个向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)本章小结阅读与欣赏向量的叉积及其性质选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与冥函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章小结阅读与欣赏微积分与极限思想第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法2.3.1 数学归纳法2.3.2 数学归纳法应用举例本章小结阅读与欣赏《原本》与公理化思想第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章小节阅读与欣赏复平面与高斯选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角本章小结第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布本章小结阅读与欣赏关于“玛丽莲问题”的争论第三章统计案例3.1 独立性检验3.2 回归分析本章小结阅读与欣赏“回归”一词的由来选修4-1第一章相似三角形定理与圆幂定理1.1 相似三角形1.1.1 相似三角形判定定理1.1.2 相似三角形的性质1.1.3 平行截割定理1.1.4 锐角三角函数与射影定理1.2 圆周角与弦切角1.2.1 圆的切线1.2.2 圆周角定理1.2.3 弦切角定理1.3 圆幂定理与圆内接四边形1.3.1 圆幂定理1.3.2 圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1 平行投影与圆柱面的平面截线2.1.1 平行投影的性质2.1.2 圆柱面的平面截线2.2 用内切球探索圆锥曲线的性质2.2.1 球的切线与切平面2.2.2 圆柱面的内切球与圆柱面的平面截线2.2.3 圆锥面及其内切球2.2.4 圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记选修4-4第一章坐标系1.1 直角坐标系,平面上的伸缩变换1.2 极坐标系本章小结第二章参数方程2.1 曲线的参数方程2.2 直线和圆的参数方程2.3 圆锥曲线的参数方程2.4 一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。
高中数学 第三章 概率 3.2.2 概率的一般加法公式素材 新人教B版必修3
3.2.2 概率的一般加法公式
加法公式
定理1 若事件A 、B 互不相容,则 ()()().P A B P A P B +=+
解释:如右图,A+B :12m m +个等概基本事件
1212()()().m m m m P A B P A P B n n n
++==+=+ 推论1 若有限个事件12,,,n A A A L 互不相容,则
1212()()()()n n P A A A P A P A P A +++=+++L L
推论2 若事件 12,,,n A A A L 互不相容,且12n A A A U +++=L ,则
12()()()1n P A P A P A +++=L
推论3 对立事件的概率满足 ()1()P A P A =-
例1 袋中装有2个红球,3个白球,4个黑球. 从中每次任取一个,并放回,连取两次,求
(1) 取得的两球中无红球的概率.
(2) 取得的两球中无白球的概率.
(3) 取得的两球中无红球或无白球的概率.
解: 设A =“无红球”,B =“无白球”,则 (1) 22749()981
P A == (2) 22636()981
P B == (3) A B + =“无红球或无白球”
()()()P A B P A P B +==+ 定理2 设A 、B
解释:看右图,AB 基本事件个数为k ,A B +基本事件个数为12m m k +-。
因此()P A B +=1212m m k m m k n n n n +-=+-()()()P A P B P AB =+- ?。
数理统计中的重要公式整理
数理统计中的重要公式整理正文:数理统计是一门研究统计学原理和方法的学科,其重要性不可忽视。
在数理统计中,有一些重要的公式被广泛应用于各类统计问题的求解和分析。
本文将对数理统计中的重要公式进行整理,以帮助读者更好地掌握和应用这些公式。
1. 概率论与数理统计基本公式1.1 概率论基本公式:(1) 加法法则:P(A ∪ B) = P(A) + P(B) − P(A ∩ B)(2) 乘法法则:P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B)(3) 全概率公式:P(A) = ∑ P(A ∩ Bᵢ) = ∑ P(Bᵢ)P(A|Bᵢ)(4) 贝叶斯公式:P(A|B) = P(B|A)P(A) / P(B)1.2 数理统计基本公式:(1) 期望值公式:E(X) = ∑ XᵢP(Xᵢ)(2) 方差公式:Var(X) = E[(X - E(X))²] = E(X²) - [E(X)]²(3) 协方差公式:Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = E(XY) -E(X)E(Y)(4) 相关系数公式:ρ(X, Y) = Cov(X, Y) / σ(X)σ(Y)2. 统计推断中的重要公式2.1 参数估计公式:(1) 矩估计:θ̂= ḡ(m₁, m₂, ..., mₖ)(2) 最大似然估计:θ̂= argmax[∏ f(x; θ)](3) 最小二乘估计:θ̂= argmin[∑ (yᵢ - g(xᵢ; θ))²]2.2 假设检验公式:(1) z检验:z = (x - μ) / (σ/√n)(2) t检验:t = (x - μ) / (s/√n)(3) 卡方检验:χ² = ∑ (Oᵢ - Eᵢ)² / Eᵢ3. 抽样理论中的重要公式3.1 随机变量公式:(1) 期望值公式:E(X) = μ(2) 方差公式:Var(X) = σ²/n(3) 中心极限定理:Z = (X - μ) / (σ/√n) 服从标准正态分布3.2 总体参数估计公式:(1) 基本抽样分布(z分布):z = (X - μ) / (σ/√n)(2) t分布:t = (X - μ) / (s/√n)(3) X²分布:χ² = ∑ (Xᵢ - Eᵢ)² / Eᵢ4. 方差分析中的重要公式4.1 单因素方差分析公式:(1) 总平方和公式:SST = ∑ (xᵢj - x)²(2) 因素平方和公式:SFA = n ∑ (xₖ - x)²(3) 误差平方和公式:SSE = ∑ (xᵢj - xₖ)²4.2 F检验公式:F = (SFA / (k - 1)) / (SSE / (n - k))5. 相关分析中的重要公式5.1 简单线性回归公式:(1) 回归模型:Y = β₀ + β₁X + ε(2) 最小二乘估计公式:β̂₁ = ∑((Xᵢ - X)(Yᵢ - Ȳ)) / ∑((Xᵢ - X)²)β̂₀ = Ȳ - β̂₁X(3) 相关系数公式:r = Cov(X, Y) / (σ(X)σ(Y))6. 抽样调查中的重要公式6.1 简单随机抽样公式:(1) 抽样率:p = n / N(2) 估计总量公式:T = N * (X / n)(3) 估计方差公式:Var(T) = N² * ((1 - p/n) / n) * σ²7. 时间序列分析中的重要公式7.1 平稳时间序列公式:(1) 自协方差公式:γ(h) = Cov(Xₖ, Xₖ₋ₖ) = γ(-h)(2) 自相关系数公式:ρ(h) = Cov(Xₖ, Xₖ₋ₖ) / (σ(Xₖ)σ(Xₖ₋ₖ))通过对这些数理统计中的重要公式的整理,我们可以更加方便地在实际问题中应用这些公式,进行数据分析、参数估计、假设检验等统计推断工作。
高中数学必修三讲义:古典概型 概率的一般加法公式Word版含答案
3.2.1 & 3.2.2 古典概型 概率的一般加法公式(选学)预习课本P102~107,思考并完成以下问题 (1)古典概型的特征是什么?(2)古典概型的概率计算公式是什么?[新知初探]1.古典概型的概念(1)定义:如果一个概率模型满足:①试验中所有可能出现的基本事件只有有限个; ②每个基本事件发生的可能性是均等的.那么这样的概率模型称为古典概率模型,简称古典概型. (2)计算公式:对于古典概型,任何事件A 的概率 P (A )=事件A 包含的基本事件数试验的基本事件总数.2.概率的一般加法公式(选学) (1)事件A 与B 的交(或积):由事件A 和B 同时发生所构成的事件D ,称为事件A 与B 的交(或积),记作D =A ∩B (或D =AB ).(2)概率的一般加法公式:设A ,B 是Ω的两个事件,则有P (A ∪B )=P (A )+P (B )-P (A ∩B ).[小试身手]1.下列关于古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n ,随机事件A 若包含k 个基本事件,则P (A )=k n .A .②④B .①③④C .①④D .③④解析:选B 根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B. 2.下列试验是古典概型的是( )A .口袋中有2个白球和3个黑球,从中任取一球,基本事件为{}取中白球和{}取中黑球B .在区间[-1,5]上任取一个实数x ,使x 2-3x +2>0C .抛一枚质地均匀的硬币,观察其出现正面或反面D .某人射击中靶或不中靶解析:选C A 中两个基本事件不是等可能的;B 中基本事件的个数是无限的;D 中“中靶”与“不中靶”不是等可能的;C 符合古典概型的两个特征,故选C.3.从甲、乙、丙三人中任选两人担任课代表,甲被选中的概率为( ) A.12B.13 C.23D .1解析:选C 从甲、乙、丙三人中任选两人有:(甲、乙)、(甲、丙)、(乙、丙)共3种情况,其中,甲被选中的情况有2种,故甲被选中的概率为P =23.4.两个骰子的点数分别为b ,c ,则方程x 2+bx +c =0有两个实根的概率为( ) A.12 B.1536 C.1936D.56解析:选C (b ,c )共有36个结果,方程有解,则Δ=b 2-4c ≥0,∴b 2≥4c ,满足条件的数记为(b 2,4c ),共有(4,4),(9,4),(9,8),(16,4),(16,8),(16,12),(16,16),(25,4),(25,8),(25,12),(25,16),(25,20),(25,24),(36,4),(36,8),(36,12),(36,16),(36,20),(36,24),19个结果,P =1936.[典例] (1)42张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为( )A .2B .3C .4D .6(2)连续掷3枚硬币,观察这3枚硬币落在地面上时是正面朝上还是反面朝上.①写出这个试验的所有基本事件;②求这个试验的基本事件的总数;③“恰有两枚硬币正面朝上”这一事件包含哪些基本事件?[解析](1)用列举法列举出“数字之和为奇数”的可能结果为:(1,2),(1,4),(2,3),(3,4),共4种可能.[答案] C(2)解:①这个试验包含的基本事件有:(正,正,正),(正,正,反),(正,反,正)(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).②这个试验包含的基本事件的总数是8;③“恰有两枚硬币正面朝上”这一事件包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).基本事件的三个探求方法(1)列举法:把试验的全部结果一一列举出来.此方法适合于较为简单的试验问题.(2)树状图法:树状图法是使用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段,树状图法适用于较复杂的试验的题目.[活学活用]将一枚骰子先后抛掷两次,则:(1)一共有几个基本事件?(2)“出现的点数之和大于8”包含几个基本事件?解:(树状图法):一枚骰子先后抛掷两次的所有可能结果用树状图表示.如图所示:(1)由图知,共36个基本事件.(2)“点数之和大于8”包含10个基本事件(已用“√”标出).[典例]事件的概率:(1)A:取出的两球都是白球;(2)B:取出的两球1个是白球,另1个是红球.[解]设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.(1)从袋中的6个球中任取两个,所取的两球全是白球的取法总数有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个.∴取出的两个球全是白球的概率为P(A)=615=25.(2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种.∴取出的两个球1个是白球,1个是红球的概率为P(B)=8 15.求解古典概型的概率“四步”法[活学活用]某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,1所大学记为A6,则抽取2所学校的所有可能结果为(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6),共15种.②从这6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为(A1,A2),(A1,A3),(A2,A3),共3种,所以P(B)=315=15.[典例]有A均未留意,在四个席位上随便就座.(1)求这四人恰好都坐在自己的席位上的概率;(2)求这四人恰好都没坐在自己的席位上的概率;(3)求这四人恰有一位坐在自己的席位上的概率.[解]将A,B,C,D四位贵宾就座情况用如图所示的图形表示出来.a席位b席位c席位d席位a席位b席位c席位d席位a 席位b 席位c 席位d 席位 a 席位b 席位c 席位d 席位 由图可知,所有的等可能基本事件共有24个.(1)设事件A 为“这四人恰好都坐在自己的席位上”,则事件A 只包含1个基本事件,所以P (A )=124. (2)设事件B 为“这四人恰好都没坐自己的席位上”,则事件B 包含9个基本事件,所以P (B )=924=38. (3)设事件C 为“这四人恰有一位坐在自己的席位上”,则事件C 包含8个基本事件,所以P (C )=824=13.对于一些比较复杂的古典概型问题,一般可以通过分类,有序地把事件包含的情况分别罗列出来,从而清晰地找出满足条件的情况.在列举时一定要注意合理分类,才能做到不重不漏,结果明了,而树状图则是解决此类问题的较好方法.[活学活用]把一枚骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,试就方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2解的情况,解答下列各题:(1)求方程组只有一个解的概率; (2)求方程组只有正数解的概率.解:若第一次出现的点数为a ,第二次出现的点数为b 记为有序数值组(a ,b ),则所有可能出现的结果有:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6), (2,1)(2,2)(2,3)(2,4)(2,5)(2,6), (3,1)(3,2)(3,3)(3,4)(3,5)(3,6), (4,1)(4,2)(4,3)(4,4)(4,5)(4,6), (5,1)(5,2)(5,3)(5,4)(5,5)(5,6), (6,1)(6,2)(6,3)(6,4)(6,5)(6,6),共36种.由方程组⎩⎪⎨⎪⎧ ax +by =3,x +2y =2,可得⎩⎪⎨⎪⎧(2a -b )x =6-2b ,(2a -b )y =2a -3,(1)若方程组只有一个解,则b ≠2a ,满足b =2a 的有(1,2),(2,4),(3,6),故适合b ≠2a 的有36-3=33个.其概率为:P 1=3336=1112. (2)方程组只有正数解,需满足b -2a ≠0且⎩⎪⎨⎪⎧x =6-2b 2a -b>0,y =2a -32a -b>0.分两种情况:当2a >b 时,得⎩⎪⎨⎪⎧a >32,b <3,当2a <b 时,得⎩⎪⎨⎪⎧a <32,b >3.易得包含的基本事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6),因此所求的概率P 2=1336.[层级一 学业水平达标]1.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( )A.13 B.14 C.16D.112解析:选D 由题意(m ,n )的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6),共36种,而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种.故所求概率为336=112,故选D.2.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 3.设a 是从集合{}1,2,3,4中随机取出的一个数,b 是从集合{}1,2,3中随机取出的一个数,构成一个基本事件(a ,b ).记“这些基本事件中,满足log b a ≥1”为事件E ,则E 发生的概率是( )A.12B.512C.13D.14解析:选B 试验发生包含的事件是分别从两个集合中取1个数字,共有4×3=12种结果,满足条件的事件是满足log b a ≥1,可以列举出所有的事件,当b =2时,a =2,3,4,当b =3时,a =3,4,共有3+2=5个,∴根据古典概型的概率公式得到概率是512.4.一个袋子中装有编号分别为1,2,3,4的4个小球,现有放回地摸球,规定每次只能摸一个球,若第一次摸到的球的编号为x ,第二次摸到的球的编号为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( )A.316B.18C.118D.16解析:选A 由题意可知两次摸球得到的所有数对(x ,y )有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个,其中满足xy =4的数对有(1,4),(2,2),(4,1),共3个.故所求事件的概率为316.5.为迎接2016奥运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如下的频率分布表:(1)求a ,b (2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.解:(1)a =50×0.1=5,b =2550=0.5,c =50-5-15-25=5,d =1-0.1-0.3-0.5=0.1. (2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3.事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.所以,获得一等奖的全部为女生的概率为P =310.[层级二 应试能力达标]1.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为( )A.16 B.13 C.12D.23解析:选B 所有基本事件为:123,132,213,231,312,321.其中从左到右或从右到左恰好为第1,2,3册包含2个基本事件,∴P =26=13.故选B.2.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则89是下列哪个事件的概率( )A .颜色全同B .颜色不全同C .颜色全不同D .无红球解析:选B 有放回地取球3次,共27种可能结果,其中颜色全相同的结果有3种,其概率为327=19;颜色不全相同的结果有24种,其概率为2427=89;颜色全不同的结果有3种,其概率为327=19;无红球的情况有8种,其概率为827,故选B.3.电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为( )A.1180B.1288C.1360D.1480解析:选C 当“时”的两位数字的和小于9时,则“分”的那两位数字和要求超过14,这是不可能的.所以只有“时”的和为9(即“09”或“18”),“分”的和为14(“59”);或者“时”的和为10(即“19”),“分”的和为13(“49”或“58”).共计有4种情况.因一天24小时共有24×60分钟,所以概率P =424×60=1360.故选C.4.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土、土克水、水克火、火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )A.310B.25C.12D.35解析:选C 从五种不同属性的物质中随机抽取两种,有(金,木)、(金,水)、(金,火)、(金,土)、(木,水)、(木,火)、(木,土)、(水,火)、(水,土)、(火,土),共10种等可能发生的结果.其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为12.5.有四个大小、形状完全相同的小球,分别编号为1,2,3,4,现从中任取两个,则取出的小球中至少有一个号码为奇数的概率为________.解析:从四个小球中任取两个,有6种取法,其中两个号码都为偶数只有(2,4)这一种取法,故其对立事件,即至少有一个号码为奇数的概率为1-16=56.答案:566.在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为________.解析:设过保质期的2瓶记为a ,b ,没过保质期的3瓶用1,2,3表示,试验的结果为: (1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),(a ,b )共10种结果,2瓶都过保质期的结果只有1个,∴P =110. 答案:1107.设a ,b 随机取自集合{1,2,3},则直线ax +by +3=0与圆x 2+y 2=1有公共点的概率是________.解析:将a ,b 的取值记为(a ,b ),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种可能.当直线与圆有公共点时,可得3a 2+b 2≤1,从而符合条件的有(1,3),(2,3),(3,1),(3,2),(3,3),共5种可能,故所求概率为59. 答案:598.小李在做一份调查问卷,共有5道题,其中有两种题型,一种是选择题,共3道,另一种是填空题,共2道.(1)小李从中任选2道题解答,每一次选1题(不放回),求所选的题不是同一种题型的概率;(2)小李从中任选2道题解答,每一次选1题(有放回),求所选的题不是同一种题型的概率.解:将3道选择题依次编号为1,2,3;2道填空题依次编号为4,5.(1)从5道题中任选2道题解答,每一次选1题(不放回),则所有基本事件为(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20种,而且这些基本事件发生的可能性是相等的.设事件A 为“所选的题不是同一种题型”,则事件A 包含的基本事件有(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共12种,所以P (A )=1220=0.6.(2)从5道题中任选2道题解答,每一次选1题(有放回),则所有基本事件为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种,而且这些基本事件发生的可能性是相等的.设事件B为“所选的题不是同一种题型”,由(1)知所选题不是同一种题型的基本事件共12种,所以P(B)=1225=0.48.9.(山东高考)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为310.(2)记F为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为815.。
概率的加法公式范文
概率的加法公式范文一、定义P(A∪B)=P(A)+P(B)-P(A∩B)其中,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A∪B)表示事件A和事件B同时发生的概率,P(A∩B)表示事件A和事件B的交集发生的概率。
二、数学表达概率的加法公式可以通过一个简单的例子来解释。
假设有一个袋子里有10个红球和10个蓝球,从中随机抽取一个球。
事件A表示抽到红球,事件B表示抽到蓝球。
我们想要计算抽到红球或抽到蓝球的概率。
根据概率的加法公式,我们有:P(A∪B)=P(A)+P(B)-P(A∩B)=P(A)+P(B)-0=P(A)+P(B)因为事件A和事件B是互斥事件(即事件A和B不可能同时发生),所以它们的交集概率为0。
三、应用1.投掷一枚硬币,事件A表示正面朝上,事件B表示反面朝上。
根据概率的加法公式,P(A∪B)=P(A)+P(B)=1/2+1/2=1、因为硬币必定会正面或反面朝上,所以这两个事件的联合概率为12.商品的退货率为5%,其中1%是因为质量问题而退货,4%是因为其他原因而退货。
事件A表示退货,事件B表示退货原因是因为质量问题。
根据概率的加法公式,P(A∪B)=P(A)+P(B)-P(A∩B)=0.05+0.01-0.01=0.05、因为退货率是5%,所以退货的概率为0.053.甲、乙、丙三个人分别参加了一场考试,考试合格率分别为50%,60%和70%。
事件A表示甲合格,事件B表示乙合格。
根据概率的加法公式,P(A∪B)=P(A)+P(B)-P(A∩B)=0.5+0.6-0.3=0.8、因为甲和乙的合格率加起来大于1,所以两个人中至少有一个合格的概率为0.8概率的加法公式的应用不仅仅局限于以上几个例子,它可以帮助我们计算更复杂的事件概率。
在进行概率计算时,我们可以利用概率的加法公式将问题拆解成多个简单事件,然后分别计算每个事件的概率,最后再进行求和运算,得到所求的概率。
因此,熟练掌握和灵活运用概率的加法公式对于理解和解决概率问题非常重要。
高中数学教材人教B版目录(详细版)
数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
高中数学教材人教B版目录(详细版)
数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
高中数学必修3第三章:概率3.2古典概型
验,如果这2个元素没有顺序,那么这次试验共有
nn-1 2
个
基本事件;如果这2个元素有顺序,那么这次试验有n(n-1)
个基本事件.可以作为结论记住(不要求证明),在选择题或
填空题中可以直接应用.
计算基本事件个数的常用法
1.列举法 列举法也称枚举法.对于一些情境比较简单,基本事件 个数不是很多的概率问题,计算时只需一一列举即可得出随 机事件所含的基本事件数.但列举时必须按一定顺序,做到 不重不漏.
球,d,e为黑球.
列表如下:
a
b
c
d
e
a
(a,b) (a,c) (a,d) (a,e)
b (b,a)
(b,c) (b,d) (b,e)
c (c,a) (c,b)
(c,d) (c,e)
d (d,a) (d,b) (d,c)
(d,e)
e (e,a) (e,b) (e,c) (e,d)
由于每次取两个球,每次所取两个球不相同,而摸(b,a) 与(a,b)是相同的事件,故共有10个基本事件.
新课引入 “三门问题”是美国一个经典的电视游戏节目,内容如 下:现有三扇门,其中一扇后面有一辆汽车,另外两扇门后 各有一只羊,参赛者选中车门就得车,选中羊门就得羊,首 先参赛者选一扇门,然.后主持人故意打开剩下两门中的一 扇羊门(主持人知道车在何处),接着主持人给参赛者选择机 会,是坚持原门还是换另一扇门?
[解析] 第1个概率模型不是古典概型,因为从区间[1,10] 内任意取出一个数,有无数个对象可取,所以不满足“有限 性”.
第2个概率模型是古典概型,因为试验结果只有10个, 而且每个数被抽到的可能性相等,即满足有限性和等可能 性;
第3个概率模型不是古典概型,而是以后将学的几何概 型;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=0.96.
例3. 从1~100的整数中任取一个数,试求 取到的数能被5或9整除的概率。 解:设A={取到的整数能被5整除},B={取 到的整数能被9整除}。 A中含有20个基本事件;B中含有11个基 本事件; A∩B含有2个基本事件。 P(取到的整数能被5或9整除) =P(A)+P(B)-P(A∩B)
20 11 2 29 100 100
例4. 甲、乙等四人参加4×100米接力赛, 求甲跑第一棒或乙跑第四棒的概率。 解:设事件A为“甲跑第一棒”,事件B 为“乙跑第四棒”, 1 1 则P(A)= ,P(B)= 4 。
4
计算P(A∩B),记x为甲跑的棒数,y为乙 跑的棒数,记为(x,y), 则共有可能结果12种:(1, 2),(1, 3),(1, 4),(2, 1),(2, 3),(2, 4),(3, 1),(3, 2), (3, 4),(4, 1),(4, 2),(4, 3),
8.从1,2,3,…,9 这9个数字中任取2个 数字,
5 (1)2个数字都是奇数的概率为______; 18 4 (2)2个数字之和为偶数的概率为_____. 9
9.连续掷3枚硬币,观察落地后这3枚硬币 出现正面还是反面. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件的总数; (3)“恰有两枚正面向上”这一事件包含 哪几个基本事件? 解:(1)这个试验的基本事件空间 Ω={(正,正,正),(正,正,反),(正,反,正), (正,反,反),(反,正,正),(反,正,反),(反,反, 正),(反,反,反)};
例6. 100个产品中有93个产品长度合格, 90个产品重量合格,其中长度、重量都合 格的有85个。现从中任取一产品,记 A=“产品长度合格”,B=“产品重量合 格”,求产品的长度、重量至少有一个合 格的概率。
P(A∪B)=P(A)+P(B)-P(A∩B)
练习题:(古典概型)
1.一枚硬币连掷3次,只有一次出现正面
教学目标
知识与能力
掌握概率的一般加法公式,会用概率的一般加法公
式求有关概率的事件。
教学重难点
重点
概率的一般加法公式及其 应用
难点
概率的一般加法公式与互斥事件 的概率加法公式的区别
过程与方法
通过学习概率的一般加法公式的过程,增 强学生的鉴别能力,提高学生的理解能力
情感、态度与价值观
通过对概率的一般加法公式与互斥事件的概率 加法公式学习比较,使学生养成观察、分析、 比较的习惯,体验探究的乐趣。
的概率是( A ) 3 2 A. B. 8 3
1 C. 3 1 D. 4
2.从分别写有A、B、C、D、E的5张卡片 中,任取2张,这2张卡片上的字母恰好是
按字母顺序相邻的概率为( B )
1 A. 5 3 C. 10 2 B. 5 7 D. 10
3.在第1、3、4、5、8路公共汽车都要停靠 的一个站(假定这个站只能停靠一辆汽 车),有一位乘客等候第4路或第8路汽车.
假定当时各路汽车首先到站的可能性相等,
则首先到站正好是这位乘客所需乘的汽车 的概率等于(
1 A. 2 2 B. 3
) D
3 C. 5
2 D. 5
4.某小组共有10名学生,其中女生3名, 现选举2名代表,至少有1名女生当选的 概率为( B )
7 A. 15 3 C. 5 8 B. 15
D. 1
5.从全体3位正整数中任取一数,则此数 以2为底的对数也是正整数的概率为( B )
在概率的加法公式中,如果A,B不是 互斥事件,那么公式是否成立? 来看下面的例子: 例1. 掷红、蓝两颗骰子,事件A={红骰子 的点数大于3},事件B={蓝骰子的点数大 于3},求事件A∪B={至少有一颗骰子的 点数大于3}发生的概率。
显然,A与B不是互斥事件,我们把事 件A和事件B同时发生所构成的事件D, 称为事件A与事件B的交(或积),记作 D=A∩B(或D=AB) 事件A∩B是由事件A和B所共同含有的 基本事件组成的集合。如图中阴影部分 就是表示A∩B.
解:(1)甲有6种不同的结果,乙也有6种
不同的结果,故基本事件总数为6×6=36
个.
其中十位数字共有6种不同的结果,若十 位数字与个位数字相同,十位数字确定后, 个位数字也即确定.故共有6×1=6种不同的 结果,即概率为
6 1 36 6
(2)两个玩具同时掷的结果可能出现的 情况有36种. 但数字之和却只有2,3,4, 5,6,7,8,9,10,11,12共11种不同 结果. 而出现12的只有一种情况,它们的 1 概率均为 ,36
(2)基本事件的总数是8.
(3)“恰有两枚正面向上”包含以下3个 基本事件:(正,正,反),(正,反,正), (反,正,正).
10.甲、乙两个均匀的正方体玩具,各 个面上分别刻有1,2,3,4,5,6六个 数字,将这两个玩具同时掷一次. (1)若甲上的数字为十位数,乙上的数 字为个位数,问可以组成多少个不同的 数,其中个位数字与十位数字均相同的 数字的概率是多少? (2)两个玩具的数字之和共有多少种不 同结果?其中数字之和为12的有多少种情 况?数字之和为6的共有多少种情况?分别 计算这两种情况的概率.
显然,A与B不是互斥事件,我们把事 件A和事件B同时发生所构成的事件D, 称为事件A与事件B的交(或积),记作 D=A∩B(或D=AB) 事件A∩B是由事件A和B所共同含有的 基本事件组成的集合。如图中阴影部分 就是表示A∩B.
Ω A A∩B B
我们在古典概型的情况下推导概率的一 般加法公式。 设A,B是Ω的两个事件,容易看出 A∪B中基本事件的个数等于A中基本事 件的个数加上B中基本事件的个数减去 A∩B中基本事件的个数。所以 A∪B中基本事件的个数 P(A∪B)= ———————————— Ω中基本事件的总数 A中基本事件的个数+B中基本事件的个数-A∩B中基本事件的个数 = ——————————————————
而甲跑第一棒,乙跑第四棒只有一种可能
1 (1, 4),故P(A∩B)= 12
所以,甲跑第一棒或乙跑第四棒的概率为:
P(A∪B)=P(A)+P(B)-P(A∩B) 1 1 1 5 4 4 12 12
例5.一个旅行社有30名翻译,其中英语 翻译12名,日语翻译10名,既会英语又 会日语的有3名,其余的人是其他语种的 翻译。 从中任意选出一名去带旅行团, 求以下事件的概率: 2 (1)是英语翻译; —— 1 5 —— (2)是日语翻译; 3 1 —— (3)既是英语翻译又是日语翻译;( 4) 10 19 是英语翻译或是日语翻译。 —— 30
1 A. 225 1 C. 450 1 B. 300
D.以上全不对
6.在20瓶墨水中,有5瓶已经变质不能使 用,从这20瓶墨水中任意选出1瓶,取出
1 的墨水是变质墨水的概率为______ቤተ መጻሕፍቲ ባይዱ__. 4
7.从1,2,3,4,5五个数字中,任意有放
回地连续抽取三个数字,则三个数字完全
12 不同的概率是_________. 25
出现数字之和为6的共有(1,5),(2,4), (3,3),(4,2),(5,1)五种情况,所以其
5 概率为 36
课堂小结:
1.概率的一般加法公式与互斥事件的概率加 法公式的区别。 2.方法:韦恩图
作业布置:
教材习题3-2A第7题
Ω中基本事件的总数
P(A∪B)=P(A)+P(B)-P(A∩B).
例2. 一个电路板上装有甲、一两根熔丝, 甲熔断的概率为0.85,乙熔断的概率为 0.74,两根同时熔断的概率为0.63,问至 少有一根熔断的概率是多少? 解:设A=“甲熔丝熔断”,B=“乙熔丝熔 断”,则“甲、乙两个熔丝至少一根熔断” 为事件A∪B. P(A∪B)=P(A)+P(B)-P(A∩B) =0.85+0.74-0.63