高二上学期期末数学试卷(理科)第23套真题
高二上学期期末考试数学(理)试题 Word版含答案
数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线221168x y -=的虚轴长是( )A .8B .C ..2 2.在公差为d 的等差数列{}n a 中,“1d >”是“是递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.为了了解800名高三学生是否喜欢背诵诗词,从中抽取一个容量为20的样本,若采用系统抽样,则分段的间隔k 为( )A .50B .60C .30D .404.已知椭圆22:1169x y C +=的左、右焦点分别为12F F 、,过2F 的直线交椭圆C 于P Q 、两点,若1F P +110FQ =,则PQ 等于( ) A .8 B .6 C.4 D .25.从某项综合能力测试中抽取100人的成绩,统计如下,则这100个成绩的平均数为( )A .3B .2.5 C.3.5 D .2.756.某单位有员工120人,其中女员工有72人,为做某项调查,拟采用分层抽样法抽取容量为15的样本,则男员工应选取的人数是( ) A .5 B .6 C.7 D .87.已知椭圆()222:10525x y C b b +=<<的长轴长、短轴长、焦距成等差数列,则该椭圆的方程是( )A .221254x y +=B .221259x y += C.2212516x y += D .22125x y +=8.已知点()00,A x y 是抛物线()220y px p =>上一点,且它在第一象限内,焦点为,F O 坐标原点,若32pAF =,AO = ) A .B .3x =- C.2x =- D .1x =-9.某班m 名学生在一次考试中数学成绩的频率分布直方图如图,若在这m 名学生中,数学成绩不低于100分的人数为33,则等于( )A .45B .48 C.50 D .5510.已知定点()3,0M -,()2,0N ,如果动点P 满足2PM PN =,则点P 的轨迹所包围的图形面积等于( ) A .1009π B .1429π C.103πD .9π11.已知命题p :直线20x y +=与直线20x y +-=之间的距离不大于1,命题q :椭圆2222754x y +=与双曲线22916144x y -=有相同的焦点,则下列命题为真命题的是( )A .()p q ∧⌝B .()p q ⌝∧ C.()()p q ⌝∧⌝ D .p q ∧12.如图,12,F F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线分别交于点,A B ,且(A ,若2ABF ∆为等边三角形,则12BF F ∆的面积为( )A .1 BD .2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知0m >,0n >,向量(),1,3a m =-与()1,,2b n =垂直,则mn 的最大值为 .14.若[]x 表示不超过x 的最大整数,执行如图所示的程序框图,则输出S 的值为 .15.在区间2,43ππ⎡⎤-⎢⎥⎣⎦上任取一个数x ,则函数()3sin 26f x x π⎛⎫=- ⎪⎝⎭的值不小于0的概率为 .16.已知点A 是抛物线()2:20C x px p =>上一点,O 为坐标原点,若,A B 是以点为圆心,OA 的长为半径的圆与抛物线C 的两个公共点,且ABO ∆为等边三角形,则p 的值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在直角坐标系xOy 中,直线l 的参数方程为3x ty =+⎧⎪⎨=⎪⎩(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρθ=.(1)写出直线的普通方程及圆C 的直角坐标方程; (2)点P 是直线上的点,求点的坐标,使到圆心的距离最小.18. (本小题满分12分)已知p :方程()2220x mx m +++=有两个不等的正根;q :方程221321x ym m-=+-表示焦点在轴上的双曲线.(1)若为真命题,求实数m 的取值范围; (2)若“或”为真,“且”为假,求实数的取值范围.19. (本小题满分12分)某公司经营一批进价为每件4百元的商品,在市场调查时发现,此商品的销售单价x (百元)与日销售量(件)之间有如下关系:(1)求y 关于x 的回归直线方程;(2)借助回归直线方程请你预测,销售单价为多少百元(精确到个位数)时,日利润最大?相关公式:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. (本小题满分12分)如图所示的茎叶图记录了甲、乙两组各5名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中用x 表示.(1)若乙组同学投篮命中次数的平均数比甲组同学的平均数少1,求x 及乙组同学投篮命中次数的方差;(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为16的概率. 21. (本小题满分12分)如图,在三棱锥A BCD -中,AD ⊥平面BCD ,CB CD =,AD DB =,,P Q 分别在线段,AB AC 上,3AP PB =,2AQ QC =,M 是BD 的中点.(1)证明://DQ 平面CPM ; (2)若二面角C AB D --的大小为3π,求tan BDC ∠.22. (本小题满分12分)已知()222210x y a b a b+=>>的左、右焦点分别为12F F 、,1225F F =,点P 在椭圆上,21tan 2PF F ∠=,且的面积为4.(1)求椭圆的方程;(2)点M 是椭圆上任意一点,12A A 、分别是椭圆的左、右顶点,直线12MA MA ,与直线x =分别交于,E F 两点,试证:以EF 为直径的圆交x 轴于定点,并求该定点的坐标.试卷答案一、选择题1.B 因为28b =,所以虚轴长2b =.2.A 若1d >,则n N *∀∈,110n n a a d +-=>>,所以,{}n a 是递增数列;若{}n a 是递增数列,则n N *∀∈,10n n a a d +-=>,推不出1d >3.D 由于8002040÷=,即分段的间隔40k =.4.B 因为直线PQ 过椭圆的右焦点2F ,由椭圆的定义,在1F PQ ∆中,11416F P FQ PQ a ++==.又1110F P FQ +=,所以6PQ =. 5.A 设这100个成绩的平均数记为x ,则120210*********3100x ⨯+⨯+⨯+⨯+⨯==.6.B 男员工应抽取的人数为12072156120-⨯=. 7.C 设焦距为2c ,则有222552b c c b ⎧-=⎨+=⎩,解得216b =,所以椭圆22:12516x y C +=.8.D 因为0322p px +=,所以0x p =,0y =.又)2212p +=,所以2p =,准线方程为1x =-.9.D ()10.0150.025100.6P =-+⨯=,由0.633m =,得55m =.10.A 设(),P x y ,则由2PM PN =得()()2222342x y x y ⎡⎤++=-+⎣⎦,化简得223322x y x +-70+=,即221110039x y ⎛⎫-+=⎪⎝⎭,所以所求图形的面积1009S π=. 11.B 对于命题p ,将直线l 平移到与椭圆相切,设这条平行线的方程为20x y m ++=,联立方程组224120x y x y m ⎧+=⎨++=⎩,消去y 得222210x mx m ++-=.由0∆=得,所以m =,椭圆上的点到直线l最近距离为直线20x y +-=与l 的距离d =1>,所以命题p 为假命题,于是p ⌝为真命题.对于命题q ,椭圆2222754x y +=与双曲线22916144x y -=有相同的焦点()5,0±,故q 为真命题.从而()p q ⌝∧为真命题. 12.由已知212BF BF a -=,122AF AF a -=,又2ABF ∆为等边三角形,所以121AF AF BF -=2a =,所以24BF =.在12AF F ∆中,16AF a =,24AF a =,122F F c =,1260F AF ∠=︒,由余弦定理得,所以227c a =,22226b c a a =-=,所以双曲线方程为222216x y a a-=,又()1,3A 在双曲线上,所以,解得212a =,即22a =.所以122124sin1202BF F S a a ∆=⨯⨯⨯︒==. 二、填空题13.9 因为,所以,又,所以.14.7 第一次循环,0S =,2n =;第二次循环,1S =,4n =;第三次循环,3S =,6n =;第四次循环,5S =,8n =;第五次循环,7S =.因为8>6,所以输出S 的值为7. 15.611 当2,43x ππ⎡⎤∈-⎢⎥⎣⎦时,272,636x πππ⎡⎤-∈-⎢⎥⎣⎦.当[]20,6x ππ-∈,即7,1212x ππ⎡⎤∈⎢⎥⎣⎦时()0f x ≥,则所求概率为76121221134ππππ-=⎛⎫-- ⎪⎝⎭. 16.56如图,因为MA OA =,所以,点A 在线段OM 的中垂线上,又()0,10M ,所以可设(),5A x . 由tan 305x︒=,得x =,所以A ⎫⎪⎭的坐标代入方程22x px =,得56p =.三、解答题17.解:(1)由3,.x t y =+⎧⎪⎨=⎪⎩消去参数t ,得直线l0y --=,由ρθ=得2sin ρθ=,22x y +=,即圆C的直角坐标方程为(223x y +-=.(2)()3P t +,(C ,PC ==,0t =∴时PC 最小,此时()3,0P .18.解:(1)由已知方程221321x y m m -=+-表示焦点在y 轴上的双曲线,则()244202020m m m m ⎧∆=-+>⎪->⎨⎪+>⎩解得21m -<<-,即:21p m -<<-. 因p 或q 为真,所以p q 、至少有一个为真. 又且为假,所以至少有一个为假.因此,两命题应一真一假,当为真,为假时,213m m -<<-⎧⎨≥-⎩,解得21m -<<-;当为假,为真时,213m m m ≤≥-⎧⎨<-⎩或,解得.综上,21m -<<-或.19.解:(1)因为7x =,1089616.85y ++++==,所以,122121857 6.82255549ni ii ni i x y nx yb x nx==--⨯⨯===--⨯-∑∑,()6.82720.8a y bx =-=--⨯=,于是得到y 关于x 的回归直线方程220.8y x =-+.(2)销售价为时的利润为()()24220.8228.883.2x x x x ω=--+=-+-,当28.8722x =≈⨯时,日利润最大. 20.(1)解:依题意得:82910789112155x +⨯+++++⨯=-,解得6x =,41=5x 乙,22222141414141682910 1.7655555s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-⨯+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. (2)记甲组投篮命中次数低于10次的同学为123,,A A A ,他们的命中次数分别为9,8,7. 乙组投篮命中次数低于10次的同学为1234,,,B B B B ,他们的命中次数分别为6,8,8,9. 依题意,不同的选取方法有:()()()()()()()()()()()()111213142122232431323334,,,,,,,,,,,,,,,,,,,,,,,A B A B A B A B A B A B A B A B A B A B A B A B 共12种.设“这两名同学的投篮命中次数之和为16”为事件,则中恰含有()()()222334,,,,,A B A B A B 共3种.()31124P C ==∴. 21.(1)证明:取AB 的中点E ,连接ED EQ 、,则2AE AQEP QC==,所以//EQ PC . 又EQ ⊄平面CPM ,所以//EQ 平面CPM . 又PM 是BDE ∆的中位线,所以//DE PM , 从而//DE 平面CPM . 又DEEQ E =,所以平面//DEQ 平面CPM .因为DQ ⊂平面DEQ ,所以//DQ 平面.(2)解:法1:由AD ⊥平面BCD 知,AD CM ⊥, 由BC CD =,BM MD =,知BD CM ⊥, 故CM ⊥平面ABD .由(1)知//DE PM ,面DE AB ⊥,故PM AB ⊥. 所以CPM ∠是二面角的平面角,即3CPM π∠=.设PM a =,则CM =,又易知在Rt ABD ∆中,4B π∠=,可知DM BM ==,在Rt CMD ∆中,tan MC MDC MD ∠===法2:以M 为坐标原点,,,MC MD ME 所在的直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标.设MC a =,MD b =,则(),0,0C a ,()0,,0B b -,()0,,2A b b ,则,()0,2,2BA b b =,设()1,,n x y z =是平面ABC 的一个法向量,则110,0.n BC n BA ⎧=⎪⎨=⎪⎩即0,220.ax by by bz +=⎧⎨+=⎩取()1,,n b a a =-, 不难得到平面ABD 的一个法向量为()21,0,0n =,所以121cos ,2nn <>==,所以a b =, 在中,6tan 2MC a MDC MD b ∠===.22.解:(1)因为21tan 2PF F ∠=,所以21sin PF F ∠=,21cos PF F ∠=. 由题意得((2222122125542522PF PF PF PF ⎧⨯⨯=⎪⎪⎨⎪=+-⨯⎪⎩,解得1242PF PF ⎧=⎪⎨=⎪⎩. 从而1224263a PF PF a =+=+=⇒=,结合2c =,得24b =,故椭圆的方程为22194x y +=. (2)由(1)得()13,0A -,()23,0A ,设()00,M x y ,则直线1MA 的方程为()0033y y x x =++,它与直线x =的交点的坐标为0033y E x ⎫⎫+⎪⎪⎪⎪+⎭⎭, 直线2MA 的方程为()0033y y x x =--,它与直线的交点的坐标为003535,3232y F x ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪-⎝⎭⎭, 再设以EF 为直径的圆交x 轴于点(),0Q m ,则QE QF ⊥,从而1QE QF k k =-,即033y x ⎫+00353321352y x m ⎛⎫- -⎝⎭=--,即,解得3512m =±. 故以为直径的圆交x 轴于定点,该定点的坐标为351,02⎛⎫+ ⎪ ⎪⎭或351,02⎛⎫- ⎪ ⎪⎭.。
高二理科数学上学期期末试卷及答案
高二理科数学上学期期末试卷及答案数学期末考试卷一、 选择题(本大题共12小题,每小题4分,共48分) 1、与向量(1,3,2)a =-r平行的一个向量的坐标是( )A .(31,1,1)B .(-1,-3,2)C .(-21,23,-1) D .(2,-3,-22)2、设命题p :方程0132=-+x x的两根符号不同;命题q :方程0132=-+x x 的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( )A .0B .1C .2D .3 3、“a >b >0”是“ab <222b a+”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4、椭圆1422=+y m x 的焦距为2,则m 的值等于( ).A .5B .8C .5或 3D .5或85、已知空间四边形OABC 中,,,===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( )A .c b a 213221+- B .cb a 212132++-C .c b a 212121-+ D .213232-+ 6、抛物线2y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( )A .1716B .1516C .78D .0 7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x +2y -3=0,则该双曲线的离心率为( )A.5或54 55C. 33D.5或538、若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )A .a ≤1B .a ≤3C .a ≥1D .a ≥39、已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( )A .55B .555C .553D .511 10、已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y +2|,则动点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .抛物线 D .无法确定11、已知数列{a n }的通项公式为21log 2++=n n a n(n ∈N *),设其前n 项和为S n ,则使5-<nS 成立的自然数n( )A .有最大值63B .有最小值63C .有最大值32D .有最小值3212、设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若PA BP 2=,且1=⋅AB OQ ,则P 点的轨迹方程是( ) A. ()0,0132322>>=+y x y x B. ()0,0132322>>=-y x y x C.()0,0123322>>=-y x y x D.()0,0123322>>=+y x y x二、 填空题(本大题共4小题,每小题4分,共16分) 13、命题:01,2=+-∈∃x x R x 的否定是14、若双曲线4422=-y x 的左、右焦点是1F 、2F ,过1F 的直线交左支于A 、B 两点,若|AB|=5,则△AF 2B 的周长是 . 15、若)1,3,2(-=,)3,1,2(-=,则,为邻边的平行四边形的面积为 .16、以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为正常数,||||PA PB k+=u u u r u u u r,则动点P 的轨迹为椭圆;②双曲线221259x y -=与椭圆22135x y +=有相同的焦点; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④和定点)0,5(A 及定直线25:4l x =的距离之比为54的点的轨迹方程为221169x y -=.其中真命题的序号为 _________. 三、 解答题(本大题共5小题,共56分) 17、(本题满分10分)已知命题p :方程11222=--m y m x 表示焦点在y 轴上的椭圆,命题q :双曲线1522=-mx y 的离心率)2,1(∈e ,若q p ,只有一个为真,求实数m 的取值范围.18.在ABC ∆中,角,,A B C 的对边分别为,,,6a b c B π=,3cos ,25A b ==。
人教版高二上学期数学期末理试题(解析版)
则 , , ,
故 ,
故异面直线 与 所成角的余弦值为 .
故答案为: .
【点睛】本题主要考查了向量法异面直线夹角,解题关键是掌握向量法求异面直线夹角的方法,考查了分析能力和计算能力,属于中档题.
16.双曲线 的左、右焦点分别为 、 ,点 在 上且 , 为坐标原点,则 _______.
【答案】
【解析】
12.已知椭圆 ,直线 ,若椭圆C上存在两点关于直线l对称,则m的取值范围是( )
A. B. C. D.
【答案】C
【解析】
【分析】
设 , 是椭圆C上关于l对称的两点,AB的中点为 ,根据椭圆C上存在两点关于直线 对称,将A,B两点代入椭圆方程,两式作差可得 ,点M在椭圆C内部,可得 ,解不等式即可.
1.命题“ , ”的否定是().
A. , B. ,
C. , D. ,
【答案】C
【解析】
【分析】
根据命题否定形式,即可求解.
【详解】命题“ , ”的否定是
“ , ”.
故选:C.
【点睛】本题考查命题的否定,要注意量词之间的转换,属于基础题.
2.准线方程为 的抛物线的标准方程是( )
A. B. C. D.
【解析】
【分析】
(1)根据椭圆的性质得出方程即可;
(2)设出双曲线的方程,根据椭圆的焦点坐标得出 ,将点 代入双曲线方程,联立方程求解即可得出双曲线的标准方程.
【详解】解:(1)由题意知, ,
所以 , ,所以
又因为双曲线E的焦点在x轴上,所以椭圆C的方程为
(2)双曲线E的标准方程为
由题可知双曲线E的焦点坐标为 , ,所以
(1)证明: 平面PAC.
(2)求直线BC与平面PAC的所成角的大小.
2022-2023学年四川省达州市高二(上)期末数学试卷(理科)(含答案解析)
2022-2023学年四川省达州市高二(上)期末数学试卷(理科)1. 小明家种植的芝麻晾晒后,黑芝麻和白芝麻均匀地混在一起,从中随机取出一部分,数得500粒芝麻内含有10粒白芝麻,则小明家的芝麻100kg 含有白芝麻约为( )A. 1kgB. 2kgC. 3kgD. 4kg2. 某班学生小李参加了2022年市举办的高中数学竞赛和高中物理竞赛.与事件“小李至少有一门学科竞赛获一等奖”互斥的事件是( )A. 小李两门学科竞赛都没有获一等奖B. 小李两门学科竞赛都获一等奖C. 小李至多有一门学科竞赛获一等奖D. 小李只有一门学科竞赛获一等奖3. 设k ,l 是两条不同的直线,α,β是两个不同的平面,且k ⊂α,l ⊂β,下列说法正确的是( )A. 如果k ⊥β,那么α⊥βB. 如果α⊥β,那么k ⊥βC. 如果k//β,那么α//βD. 如果α//β,那么k//l4. 执行如图所示的程序框图.如果输入的a 为2,输出的S 为3,那么p =( )A. 9B. 8C. 7D. 65. 双曲线x 2a 2−4y 2a 2=λ(λa ≠0)的渐近线方程为( )A. y =±2xB. y =±12xC. y =±4xD. y =±√2x6. 为了了解客流量x(单位:人)对纯收入y(单位:元)的影响,对某面馆5天的客流量和纯收入统计如表.已知x 和y 具有线性相关关系,且回归直线方程为y ̂=5.02x +7.6(参考公式:y −=b ̂x −+a ̂),那么a 的值为( ) x 100 115 120 130 135 y507589a662682A. 610B. 620C. 636D. 666 7. 若数据x 1,x 2,…,x n 的方差为25,则数据3x 1+1,3x 2+1,…,3x n +1的标准差为( ) A. 225 B. 76C. 75D. 158. 已知某几何体的三视图如图所示,则该几何体的表面积是( )A. √10πB. 52πC. √10π+πD. 4π9. 直线x −y −2=0上两点A ,B 到直线x =−1的距离分别等于它们到F(1,0)的距离,则|AF|+|BF|=( )A. 8B. 9C. 10D. 1110. 如图,三棱柱ABC −A 1B 1C 1的所有棱长都相等,AA 1⊥平面ABC ,M 为AB 的中点,N为CC 1的中点.则MN 与平面BCC 1B 1所成角的正弦值为( )A. √33B. √34C.√155D.√331111. 在梯形ABCD 中,AB ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,AC ∩BD =O.在梯形ABCD 内(包括边界)随机取一点M ,则点M 在△ADO 内(包括边界)的概率为( )A. 15B. 13C. 49D. 2912. 已知直线l :y =x +√m 上存在点P ,使得P 到点A(−1,0)和B(1,0)为的距离之和为4.若n =mm−1为正数,则49m−1+1n−1的取值范围是( )A. [14,856)B. [14,+∞)C. [856,+∞)D. [433,+∞)13. 棱长为4的正方体的所有顶点都在球O 的表面上,则球O 的体积为______. 14. 如图是某核酸采集点6次核酸采集人数的茎叶图,则这6次核酸采集人数的方差为______.15. 已知F是双曲线C:x2a2−y2b2=1(a>0,b>0)的一个焦点,C的离心率为53,M,N是C上关于原点对称的两点,|FM|−|FN|=6.则双曲线C的标准方程为______.16. 已知P是椭圆C:x24+y24−4e2=1(0<e<1)上的动点,C的焦点为F1,F2,设|PF1|=r1,|PF2|=r2,(2r1+r2)(2r2+r1)的最小值为f(e),则f(e)=______.17. 已知圆C过原点,圆心C在射线y=x(x≥0)上,圆心C到y轴距离为2.(1)求圆C的标准方程;(2)直线x+y−6=0与圆C交于A,B两点,求|AB|.18. 在某校2022年春季的高一学生期末体育成绩中随机抽取50个,并将这些成绩共分成五组:[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图.在[50,70)的成绩为不达标,在[70,100]的成绩为达标.(1)根据样本频率分布直方图求a的值,并估计样本的众数和中位数(中位数精确到个位);(2)以体育成绩是否达标为依据,用分层抽样的方法在该校2022年春季的高一学生中选出5人,再从这5人中随机选2人,那么这两人中至少有一人体育成绩达标的概率是多少?19. 在等比数列{a n}中,a1=1,a2⋅a3=e3,{a n}的前n项和为S n.(1)求a n和S n;(2)b n=lna n,T n=b1+b2+…+b n,求T n.20. 如图,在四棱锥P−ABCD中,PA⊥底面ABCD,AB⊥AD,AD//BC,点E,F分别为PA,PD的中点,AB=BC=2,AD=AP=4.(1)证明:直线EF//平面PBC;(2)求二面角F−CD−B的余弦值.21. 已知过圆O:x2+y2=r2(r>0)上一点A(0,5)的直线l与该圆另一交点为B,O为原点,记∠AOB=α,α∈[0,π].(1)当|AB|=5√3时,求α的值和l的方程;(2)当|AB|=5时,f(x)=−sinx+2cosx⋅sinα+2cos2α−1,求f(x)的单调递增区间.22. 古希腊数学家阿基米德利用“逼近法”得到椭圆的面积等于圆周率π与椭圆的长半轴长、,面积短半轴长的乘积.已知椭圆Γ的中心为原点O,焦点F1,F2均在x轴上,离心率等于45为15π.(1)求Γ的标准方程;(2)若直线l与圆M:x2+y2=16相切,且直线l与Γ交于C,D两点,求△COD面积的最大值.答案和解析1.【答案】B【解析】解:根据题意,设100kg芝麻中含有白芝麻约为xkg,又由从中随机取出一部分,数得500粒芝麻内含有10粒白芝麻,则有x100=10500,解可得:x=2,即小明家的芝麻100kg含有白芝麻约为2kg,故选:B.根据题意,设100kg芝麻中含有白芝麻约为xkg,分析可得x100=10500,解可得答案.本题考查概率的计算,注意模拟方法估算概率的方法,属于基础题.2.【答案】A【解析】解:根据题意,事件“小李至少有一门学科竞赛获一等奖”,即“小李有一门学科竞赛获一等奖”或“小李两门学科竞赛获一等奖”,其互斥事件为:小李两门学科竞赛都没有获一等奖,故选:A.根据题意,由互斥事件的定义分析可得答案.本题考查互斥事件的定义,注意事件之间的关系,属于基础题.3.【答案】A【解析】解:根据题意,依次分析选项:对于A,由面面垂直的判断方法,k⊂α,l⊂β,若k⊥β,那么α⊥β,A正确;对于B,如果α⊥β,k与β可能平行或斜交,B错误;对于C,如果k//β,则α、β可能相交,C错误;对于D,如果α//β,k,l可能异面,D错误;故选:A.根据题意,依次分析选项是否正确,即可得答案.本题直线与平面的位置关系,涉及直线与平面垂直的证明,属于基础题.4.【答案】C【解析】解:由题意可得,S=log221+log232+⋅⋅⋅+log287=log28=3,当i=7时,满足判断框i≥p,即p=7.故选:C.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.5.【答案】B【解析】解:双曲线x 2a 2−4y 2a2=λ(λa ≠0)的渐近线方程:y =±12x.故选:B.直接利用双曲线方程求解渐近线方程即可. 本题考查双曲线的简单性质的应用,是基础题.6.【答案】A【解析】解:x −=15×(100+115+120+130+135)=120, y −=15×(507+589+a +662+682)=488+15a , ∵根据线性回归方程必过样本的中心, ∴488+15a =5.02×120+7.6, 解得a =610. 故选:A.计算样本中心点,根据线性回归方程恒过样本中心点,列出方程,求解即可得到结论. 本题考查线性回归方程的运用,解题的关键是利用线性回归方程恒过样本中心点,这是线性回归方程中最常考的知识点,属于基础题.7.【答案】D【解析】解:数据x 1,x 2,…,x n 的方差为25,则数据3x 1+1,3x 2+1,…,3x n +1的方差32×25=225,标准差为15. 故选:D.根据已知条件,结合方差的线性公式,以及标准差的定义,即可求解. 本题主要考查方差的线性公式,以及标准差的定义,属于基础题.8.【答案】C【解析】解:由几何体的三视图可知该几何体是底面半径为1,高为3的圆锥, 则该几何体的表面积为:S =πrl +πr 2=π×1×√12+32+π×12=√10π+π.故选:C.利用圆锥的三视图、表面积公式直接求解.本题考查圆锥的三视图、表面积公式等基础知识,考查运算求解能力,是中档题.9.【答案】C【解析】解:A,B两点在直线x−y−2=0,则可设A(x1,x1−2),B(x2,x2−2),A,B两点到直线x=−1的距离分别为|x1+1|,|x2+1|,F(1,0),A(x1,x1−2),则|AF|=√(1−x1)2+(−x1+2)2=√2x12−6x1+5,同理可得,|BF|=√2x22−6x2+5,由题意可知,|x1+1|=√2x12−6x1+5,|x2+1|=√2x22−6x2+5,解得x1=4+2√3,x2=4−2√3或x1=4−2√3,x2=4+2√3,故|AF|+|BF|=|x1+1|+|x2+1|=10.故选:C.根据已知条件,设出A,B,再结合两点之间的距离公式,即可求解.本题主要考查两点间的距离公式,属于基础题.10.【答案】B【解析】解:三棱柱ABC−A1B1C1的所有棱长都相等,AA1⊥平面ABC,M为AB的中点,N为CC1的中点,∴MC⊥AB,AA1⊥平面ABC,∵平面ABC⊥平面A1B1BA,平面ABC∩平面A1B1BA=AB,∴MC⊥平面A1B1BA,以M为坐标原点,MA所在直线为x轴,过M作AA1的平行线为y轴,MC为z轴,建立空间直角坐标系,设AB=2,则M(0,0,0),N(0,1,√3),B(−1,0,0),B1(−1,2,0),C(0,0,√3),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),BC ⃗⃗⃗⃗⃗ =(1,0,√3),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,0), 设平面BCC 1B 1的法向量为n ⃗ =(x,y,z),则{n ⃗ ⋅BC ⃗⃗⃗⃗⃗ =x +√3z =0n ⃗ ⋅BB 1⃗⃗⃗⃗⃗⃗⃗ =2y =0,取x =√3,得n ⃗ =(√3,0,−1), 设MN 与平面BCC 1B 1所成角为θ, 则MN 与平面BCC 1B 1所成角的正弦值为:sinθ=|n ⃗⃗ ⋅MN ⃗⃗⃗⃗⃗⃗⃗⃗ ||n ⃗⃗ |⋅|MN⃗⃗⃗⃗⃗⃗⃗⃗ |=√32×2=√34.故选:B.推导出MC ⊥平面A 1B 1BA ,以M 为坐标原点,MA 所在直线为x 轴,过M 作AA 1的平行线为y 轴,MC 为z 轴,建立空间直角坐标系,利用向量法能求出MN 与平面BCC 1B 1所成角的正弦值. 本题考查线面角的正弦值、线面垂直的判定与性质等基础知识,考查运算求解能力,是中档题.11.【答案】D【解析】解:根据题意,如图:在梯形ABCD 中,若AB ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,则AB//CD ,且AB =2CD ,设该梯形ABCD 的面积为S , 则S △ADB =2S △BCD ,则S △ADB =2S3, 又由AB//CD ,且AB =2CD ,则O 到AB 的距离为2ℎ3, 则S △ABO =23×S △ADB =4S9,则S △ADO =S △ADB −S △ABO =2S 3−4S 9=2S9, 故要求概率P =29S S =29; 故选:D.根据题意,分析可得梯形ABCD 中,AB//CD ,且AB =2CD ,设该梯形ABCD 的面积为S ,由通项的性质求出 △ADO ,由几何概型公式计算可得答案.本题考查几何概型的计算,注意几何概型的计算公式,属于基础题.12.【答案】C【解析】解:因为点P 到点A(−1,0)和B(1,0)的距离之和为4, 所以点P 的轨迹为椭圆,椭圆的方程为x 2a 2+y 2b2=1,其中a >b >0,所以2a =4,解得a =2,又c =1,所以b 2=a 2−c 2=4−1=3, 所以椭圆的方程为x 24+y 23=1.又直线l :y =x +√m 与椭圆x 24+y 23=1有交点,所以{y =x +√mx 24+y 23=1,消去y 得7x 2+8√mx +4m −12=0,所以Δ=64m −4×7×(4m −12)≥0,解得m ≤7, 又m ≥0,所以m 的取值范围是[0,7];又因为n =mm−1为正数,所以m >1,所以m ∈(1,7], 所以49m−1+1n−1=49m−1+1mm−1−1=49m−1+(m −1)≥2√49m−1⋅(m −1)=14,当且仅当49m−1=m −1,即m =8时取“=”,又因为m ∈(0,7],49m−1+(m −1)的最小值为497−1+(7−1)=856, 所以49m−1+1n−1的取值范围是[856,+∞). 故选:C.根据椭圆的定义得出P 的轨迹是椭圆,写出椭圆的方程,求出m 的取值范围,再求49m−1+1n−1的取值范围.本题考查了直线与椭圆的方程应用问题,也考查了运算求解能力,是中档题.13.【答案】32√3π【解析】解:因为一个正方体的顶点都在球面上,它的棱长为4, 所以正方体的外接球的直径就是正方体的对角线的长度:4√3. 所以球的半径为:2√3. 所求球的体积为:4π3×(2√3)3=32√3π.故答案为:32√3π.求出正方体的对角线的长度,得到外接球的直径,利用球的体积公式求解即可. 本题考查球的内接体,球的体积的求法,求出球的半径是解题的关键,考查计算能力.14.【答案】3【解析】解:x −=16×(1117+1119+1120+1120+1122+1122)=1120,s 2=16×[(1117−1120)2+(1119−1120)2+2×(1120−1120)2+2×(1122−1120)2]=3. 故答案为:3.根据方差公式计算即可求解.本题考查茎叶图,考查方差的计算,是基础题.15.【答案】x29−y216=1【解析】解:设F1为双曲线的另外一个焦点,由双曲线图象的对称性可得|NF|=|MF1|,又|FM|−|FN|=6,则|FM|−|MF1|=6,则2a=6,则a=3,又C的离心率为53,则ca =53,即c=5,则b=√c2−a2=4,则双曲线C的标准方程为x 29−y216=1,故答案为:x 29−y216=1.由双曲线的性质,结合双曲线的标准方程的求法求解即可.本题考查了双曲线的性质,重点考查了双曲线的标准方程的求法,属基础题.16.【答案】−4e2+36【解析】解:由椭圆方程可得a=2,再由椭圆的定义可得r1+r2=2a=4,且c=√a2−b2=√4−(4−4e2)=2e,所以(2r1+r2)(2r2+r1)=(r1+2a)(r2+2a)=(r1+4)(r2+4)=r1r2+4(r1+r2)+16=r1r2+32=(4−r2)r2=−r22+4r2+32=−(r2−2)2+36,因为a−c≤r2≤a+c,即2−2e≤r2≤2+2e,又因为|2−2e−2|=2e,|2+2e−2|=2e,所以2−2e≤r2≤2+2e时,当r2=2−2e或r2=2+2e时,(2r1+r2)(2r2+r1)取到最小值,即f(e)=−(2−2e−2)2+36=−4e2+36,故答案为:−4e2+36.由椭圆的方程可得a,b的值,进而求出c的值,再由椭圆的定义转化(2r1+r2)(2r2+r1)=−(r2−2)2+36,再由r2的范围,可得它的最小值.本题考查椭圆的性质的应用及由函数的单调性求最值的应用,属于中档题.17.【答案】解:(1)由圆心C在射线y=x(x≥0)上,圆心C到y轴距离为2,设圆C的标准方程为(x−2)2+(y−2)2=r2(r>0),又圆C 过坐标原点,所以r 2=8,所以圆C 的标准方程为(x −2)2+(y −2)2=8.(2)由(1)知半径r =2√2,圆心C(2,2)到直线x +y −6=0的距离d =√2, 由于直线x +y −6=0与圆C 交于A ,B 两点, 故|AB|=2√r 2−d 2=2√6.【解析】(1)根据已知条件可设圆C 的标准方程为(x −2)2+(y −2)2=r 2(r >0),代入原点坐标可得r 2,从而求得圆的标准方程;(2)计算圆心C(2,2)到直线x +y −6=0的距离d =√2,进而利用勾股定理可得弦长. 本题考查了圆的标准方程,直线与圆的位置关系,属于基础题.18.【答案】解:(1)由(0.004+0.036+0.032+a +0.008)×10=1,得a =0.02,根据频率分布直方图知,样本的众数为65,设中位数为x ,则(0.004+0.036)×10+0.032×(x −70)=0.5,得x ≈73; (2)用分层抽样的方法在该校2022年春季的高一学生中选出5人,故在[50,70)的成绩为不达标,抽取2人,记为a ,b ,在[70,100]的成绩为达标,抽取3人,记为1,2,3,从这5人中随机选2人,共有{1,2},{1,3},{1,a},{1,b},{2,3},{2,a},{2,b},{3,a},{3,b},{a,b},共10种,这两人中至少有一人体育成绩达标,{1,2},{1,3},{1,a},{1,b},{2,3},{2,a},{2,b},{3,a},{3,b},共9种,故这两人中至少有一人体育成绩达标的概率为910.【解析】(1)由频率和为1可求解a ,再由频率分布直方图的频率计算众数和中位数即可; (2)用分层抽样的方法在该校2022年春季的高一学生中选出5人,故在[50,70)的成绩为不达标,抽取2人,记为a ,b ,在[70,100]的成绩为达标,抽取3人,记为1,2,3,列举所有情况,利用古典概型的概率公式,求解即可.本题考查频率分布直方图的应用,属于基础题.19.【答案】解:(1)因为等比数列{a n }中,a 1=1,a 2⋅a 3=q 3=e 3,所以q =e ,a n =e n−1, 所以S n =1−e n1−e; (2)由b n =lna n =n −1,所以T n =b 1+b 2+…+b n =0+1+2+⋅⋅⋅+(n −1)=n(n−1)2.【解析】(1)由已知结合等比数列的通项公式可求q,然后结合等比数列的通项公式及求和公式即可求解;(2)先求出b n,然后结合等差数列的求和公式可求.本题主要考查了等比数列的通项公式及求和公式的应用,还考查了等差数列的求和公式的应用,属于基础题.20.【答案】解:(1)证明:因为E,F分别为PA,PD的中点,所以AD//EF,因为AD//BC,所以EF//BC,因为EF⊄面PBC,BC⊂面PBC,所以EF//面PBC.(2)因为AB⊥AD,AD//BC,所以AB⊥BC,连接AC,由AB=BC=2得AC=2√2,因为AD=4,所以CD=√AB2+(AD−BC)2=2√2,所以AC⊥CD,因为PA⊥面ABCD,所以PA⊥AC,PA⊥CD,因为PA,AC是平面PAC内两相交直线,所以CD⊥面PAC,因为PC⊂面PAC,所以CD⊥PC,所以二面角P−CD−A的平面角为∠ACP,因为AP=4,所以PC=2√6,所以cos∠ACP=ACPC =√33,所以二面角P−CD−A的余弦值为√33,所以二面角F−CD−B的余弦值为√33.【解析】(1)由E,F分别为PA,PD的中点,得AD//EF,进而可得EF//BC,由线面平行的判定定理,即可得出答案.(2)根据题意可得AB⊥BC,AC=2√2,CD=√AB2+(AD−BC)2=2√2,由线面垂直的判定定理可得CD ⊥面PAC ,进而可得CD ⊥PC ,则二面角P −CD −A 得平面角为∠ACP ,进而可得cos∠ACP =ACPC ,即可得出答案.本题考查直线与平面的位置关系,二面角,解题中需要理清思路,属于中档题.21.【答案】解:(1)∵点A(0,5)在圆O :x 2+y 2=r 2(r >0)上,∴r 2=25,∵|AB|=5√3,|OA|=|OB|=5, ∴cosα=|OA|2+|OB|2−|AB|22|OA|⋅|OB|=−12,∵α∈[0,π], ∴α=2π3, 由条件得О到l 的距离为d =25−(5√32)=52,∴l 不与x 轴垂直,设l 的方程为y =kx +5,即kx −y +5=0, ∴√k +1=52,解得k =−√3,或k =√3,所以l 的方程为√3x −y +5=0,或√3x +y −5=0.(2)当|AB|=5时,α=π3,由f(x)=−sinx +2cosx ⋅sinα+2cos 2α−1, 得f(x)=−sinx +√3cosx −12=2cos(x +π6)−12, 当且仅当2kπ−π≤x +π6≤2kπ,(k ∈Z), 即2kπ−7π6≤x ≤2kπ−π6,(k ∈Z)时,f(x)单调递增,所以f(x)的单调递增区间为[2kπ−7π6,2kπ−π6],k ∈Z.【解析】(1)由题意可求r 2=25,利用余弦定理可求cosα的值,结合范围α∈[0,π],可求α=2π3,利用点到直线的距离可求d =52,设l 的方程为y =kx +5,由√k +1=52,解得k 的值即可得解.(2)当|AB|=5时,α=π3,可得f(x)=2cos(x +π6)−12,进而利用余弦函数的单调性即可求解. 本题考查了余弦定理,点到直线的距离,余弦函数的单调性,考查了函数思想,属于中档题.22.【答案】解:(1)由题意可得{e =c a=√1−b 2a 2=45π⋅a ⋅b =15π,解得a =5,b =3,所以Γ的标准方程为x 225+y 29=1;(2)当直线l 的斜率不存在时,由题意则直线l 的方程为x =±4,代入Γ的方程可得y 2=9(1−1625)=8125, 可得|y|=95,可得|CD|=185, 这时S △COD =12⋅4⋅185=365; 当直线l 的斜率存在时,设直线l 的方程为y =kx +t ,设C(x 1,y 1),D(x 2,y 2), 因为直线l 与圆M 相切,所以圆心O 到直线l 的距离d =√1+k =4,可得t 2=16(1+k 2),联立{y =kx +t 9x 2+25y 2=225,整理可得:(9+25k 2)+50ktx +25t 2−225=0, Δ=502k 2t 2−4(9+25k 2)(25t 2−225)>0,即t 2<9+25k 2, 即16(1+k 2)<9+25k 2,可得k 2>79,且x 1+x 2=−50kt 9+25k2,x 1x 2=25t 2−2259+25k2,所以|CD|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅√502k 2t 2(9+25k 2)2−4⋅25t 2−2259+25k2=√1+k 2⋅30√25k 2+9−t 29+25k2,所以S △COD =12|CD|⋅d =12⋅√1+k 2⋅30√25k 2+9−t 29+25k2⋅4=60⋅√1+k 2⋅√9k 2−79+25k2,令k 2=m ,则m >79, S △COD =60⋅√(1+m)(9m−7)9+25m=60⋅√9m 2+2m−7(9+25m)2,令y =9m 2+2m−7(9+25m)2,m >79,则y −9625=9m 2+2m−7(9+25m)2−9625=−2800m+5104625(9+25m)2<0恒成立,所以y <9625, 即S △COD 的最大值为365.【解析】(1)由离心率的值及椭圆的面积的大小可得a ,b 的值,进而求出椭圆的方程; (2)分直线l 斜率存在和不存在两种情况讨论,设直线l 的方程,由直线l 与圆相切,可得参数的关系,将直线l 的方程与椭圆的方程联立,可得两根之和及两根之积,由弦长公式可得求出|CD|的表达式,换元,可得面积的范围,求出面积的最大值.本题考查求椭圆的方程及直线与椭圆的综合应用,三角形面积的求法,属于中档题.。
新人教版高二上期末数学试卷(理科)含答案解析
高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“∀n∈N*,f(n)∉N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.且f(n0)>n0D.或f(n0)>n02.(5分)若复数=2﹣i其中a,b是实数,则复数a+bi在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知a,b,c均为实数,则“b2=ac”是“a,b,c构成等比数列”的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件4.(5分)抛物线x2=y的准线方程是()A.y=1 B.y=﹣1 C.y=D.y=﹣5.(5分)在等差数列{a n}中,a1=1,a3+a4+a5+a6=20,则a8=()A.7 B.8 C.9 D.106.(5分)已知△ABC的两个顶点A(5,0),B(﹣5,0),周长为22,则顶点C 的轨迹方程是()A.B.C.D.7.(5分)函数,则()A.x=e为函数f(x)的极大值点B.x=e为函数f(x)的极小值点C.为函数f(x)的极大值点D.为函数f(x)的极小值点8.(5分)如图所示,在正方体ABCD﹣A1B1C1D1中,已知M,N分别是BD和AD 的中点,则B1M与D1N所成角的余弦值为()A.B.C.D.9.(5分)已知数列{a n},a1=1,,则a10的值为()A.5 B.C.D.10.(5分)若函数y=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是()A.(,+∞)B.(﹣∞,]C.[,+∞)D.(﹣∞,)11.(5分)已知x,y∈(0,+∞),且满足,那么x+4y的最小值为()A.B.C.D.12.(5分)如图,F1,F2是双曲线C:﹣=1(a>0,b>0)的左、右两个焦点.若直线y=x与双曲线C交于P、Q两点,且四边形PF1QF2为矩形,则双曲线的离心率为()A.2+B.2+C.D.二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.(5分)若,则=.14.(5分)=.15.(5分)椭圆C的中心在坐标原点,左、右焦点F1,F2在x轴上,已知A,B 分别是椭圆的上顶点和右顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,则此椭圆的离心率为.16.(5分)已知f(x,y)=ax+by,若1≤f(1,1)≤2且﹣1≤f(1,﹣1)≤1,则f(2,1)的取值范围为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设数列{a n}满足a1=1,a n+1=3a n,n∈N+.(Ⅰ)求{a n}的通项公式及前n项和S n;(Ⅱ)已知{b n}是等差数列,且满足b1=a2,b3=a1+a2+a3,求数列{b n}的通项公式.18.(12分)已知抛物线y2=2px(p>0),焦点对准线的距离为4,过点P(1,﹣1)的直线交抛物线于A,B两点.(1)求抛物线的方程;(2)如果点P恰是线段AB的中点,求直线AB的方程.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=2,AB=2.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)求锐二面角D﹣A1C﹣E的余弦值.20.(12分)在圆x2+y2=4上任取一点P,点P在x轴的正射影为点Q,当点P 在圆上运动时,动点M满足,动点M形成的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)点A(2,0)在曲线C上,过点(1,0)的直线l交曲线C于B,D两点,设直线AB斜率为k1,直线AD斜率为k2,求证:k1k2为定值.21.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=2AD=2,,PD⊥AD,PD⊥DC.(Ⅰ)证明:平面PBC⊥平面PBD;(Ⅱ)若二面角P﹣BC﹣D为,求AP与平面PBC所成角的正弦值.22.(12分)设函数f(x)=x2e x.(1)求曲线f(x)在点(1,e)处的切线方程;(2)若f(x)<ax对x∈(﹣∞,0)恒成立,求a的取值范围;(3)求整数n的值,使函数F(x)=f(x)﹣在区间(n,n+1)上有零点.2017-2018学年江西省赣州市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“∀n∈N*,f(n)∉N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.且f(n0)>n0D.或f(n0)>n0【解答】解:因为全称命题的否定是特称命题,所以,命题“∀n∈N*,f(n)∉N*且f(n)≤n”的否定形式是:或f(n0)>n0.故选:D.2.(5分)若复数=2﹣i其中a,b是实数,则复数a+bi在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数=2﹣i,其中a,b是实数,∴a+i=(2﹣i)(b﹣i)=2b﹣1﹣(2+b)i,∴,解得b=﹣3,a=﹣7.则复数a+bi在复平面内所对应的点(﹣7,﹣3)位于第三象限.故选:C.3.(5分)已知a,b,c均为实数,则“b2=ac”是“a,b,c构成等比数列”的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件【解答】解:由“b2=ac”推不出“a,b,c构成等比数列,比如a=b=c=0,反之成立,故选:A.4.(5分)抛物线x2=y的准线方程是()A.y=1 B.y=﹣1 C.y=D.y=﹣【解答】解:因为抛物线的标准方程为:x2=y,焦点在y轴上;所以:2p=,即p=,所以:=,所以准线方程y=﹣.故选:D.5.(5分)在等差数列{a n}中,a1=1,a3+a4+a5+a6=20,则a8=()A.7 B.8 C.9 D.10【解答】解:设公差为d,则1+2d+1+3d+1+4d+1+5d=20,∴d=,∴a8=1+7d=9,故选C.6.(5分)已知△ABC的两个顶点A(5,0),B(﹣5,0),周长为22,则顶点C 的轨迹方程是()A.B.C.D.【解答】解:△ABC的两个顶点A(5,0),B(﹣5,0),周长为22,则顶点C 的轨迹是椭圆,可知c=5,2a=12,解得a=6,c=.则顶点C的轨迹方程是:.故选:B.7.(5分)函数,则()A.x=e为函数f(x)的极大值点B.x=e为函数f(x)的极小值点C.为函数f(x)的极大值点D.为函数f(x)的极小值点【解答】解:的定义域(0,+∞),求导f′(x)=,令f′(x)=>0,解得:0<x<e,令f′(x)=<0,解得:x>e,∴函数在(0,e)上递增,在(e,+∞)上递减,∴当x=e时,函数有极大值,故选A.8.(5分)如图所示,在正方体ABCD﹣A1B1C1D1中,已知M,N分别是BD和AD 的中点,则B1M与D1N所成角的余弦值为()A.B.C.D.【解答】解:建立如图所示的坐标系,设正方体的棱长为2,则B1(2,2,2),M(1,1,0),D1(0,0,2),N(1,0,0),∴=(﹣1,﹣1,﹣2),=(1,0,﹣2),∴B1M与D1N所成角的余弦值为||=,故选:A.9.(5分)已知数列{a n},a1=1,,则a10的值为()A.5 B.C.D.【解答】解:∵数列{a n},a1=1,,∴=,=,=,由此猜想a n=.下面利用数学归纳法进行证明:①,成立;②假设a k=,则==,成立,∴,∴a10=.故选:D.10.(5分)若函数y=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是()A.(,+∞)B.(﹣∞,]C.[,+∞)D.(﹣∞,)【解答】解:若函数y=x3+x2+mx+1是R上的单调函数,只需y′=3x2+2x+m≥0恒成立,即△=4﹣12m≤0,∴m≥.故选C.11.(5分)已知x,y∈(0,+∞),且满足,那么x+4y的最小值为()A.B.C.D.【解答】解:∵x,y∈(0,+∞),且满足,那么x+4y=(x+4y)=≥==+,当且仅当x=2=时取等号.故选:C.12.(5分)如图,F1,F2是双曲线C:﹣=1(a>0,b>0)的左、右两个焦点.若直线y=x与双曲线C交于P、Q两点,且四边形PF1QF2为矩形,则双曲线的离心率为()A.2+B.2+C.D.【解答】解:由题意,矩形的对角线长相等,y=x代入﹣=1,可得x=±,∴•=c,∴2a2b2=(b2﹣a2)c2,∴2a2(c2﹣a2)=(c2﹣2a2)c2,∴2(e2﹣1)=e4﹣2e2,∴e4﹣4e2+2=0,∵e>1,∴e2=2+,∴e=.故选:C.二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.(5分)若,则=﹣7.【解答】解:,则=(﹣2,﹣1,5)•(7,﹣2,1)=﹣14+2+5=﹣7;故答案为:﹣7.14.(5分)=1.【解答】解:∫1e dx=lnx|1e=lne﹣ln1=1,故答案为115.(5分)椭圆C的中心在坐标原点,左、右焦点F1,F2在x轴上,已知A,B 分别是椭圆的上顶点和右顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,则此椭圆的离心率为.【解答】解:如图所示,把x=﹣c代入椭圆标准方程:+=1(a>b>0).则=1,解得y=±.取P,又A(0,b),B(a,0),F2(c,0),∴k AB=﹣,==﹣.∵PF2∥AB,∴﹣=﹣,化为:b=2c.∴4c2=b2=a2﹣c2,即a2=5c2,解得a=c,∴e==.故答案为:.16.(5分)已知f(x,y)=ax+by,若1≤f(1,1)≤2且﹣1≤f(1,﹣1)≤1,则f(2,1)的取值范围为.【解答】解:f(x,y)=ax+by,若1≤f(1,1)≤2且﹣1≤f(1,﹣1)≤1,可得,画出不等式组的可行域如图:则f(2,1)=2a+b,当直线z=2a+b经过A时取得最小值,经过B时取得最大值,由可得B(,),f(2,1)=2a+b的最小值为:!,最大值为:.故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设数列{a n}满足a1=1,a n+1=3a n,n∈N+.(Ⅰ)求{a n}的通项公式及前n项和S n;(Ⅱ)已知{b n}是等差数列,且满足b1=a2,b3=a1+a2+a3,求数列{b n}的通项公式.【解答】解:(Ⅰ)由题设可知{a n}是首项为1,公比为3的等比数列,…(2分)所以,…(4分)…(6分)(Ⅱ)设数列{b n}的公差为d∵b1=a2=3,b3=a1+a2+a3=S3=13,∴b3﹣b1=10=2d,∴d=5,…(8分)∴b n=5n﹣2…(10分)18.(12分)已知抛物线y2=2px(p>0),焦点对准线的距离为4,过点P(1,﹣1)的直线交抛物线于A,B两点.(1)求抛物线的方程;(2)如果点P恰是线段AB的中点,求直线AB的方程.【解答】解:(1)由题设焦点对准线的距离为4,可知p=4,所以抛物线方程为y2=8x;(2)方法一:设A(x1,y1),B(x2,y2),则x1+x2=2,y1+y2=﹣2,又,相减整理得,所以直线AB的方程是y=﹣4(x﹣1)﹣1,即4x+y﹣3=0.方法二:由题设可知直线AB的斜率存在,设直线AB的方程为y=k(x﹣1)﹣1,A(x1,y1),B(x2,y2),由,消去x,得ky2﹣8y﹣8k﹣8=0,易知,又y1+y2=﹣2所以,所以直线AB的方程是y=﹣4(x﹣1)﹣1,即4x+y﹣3=0.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=2,AB=2.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)求锐二面角D﹣A1C﹣E的余弦值.【解答】解:(Ⅰ)连结AC1,交A1C于点O,连结DO,则O为AC1的中点,因为D为AB的中点,所以OD∥BC1,又因为OD⊂平面A1CD,BC1⊄平面A1CD,∴BC1∥平面A1CD…(4分)(Ⅱ)由,可知AC⊥BC,以C为坐标原点,方向为x 轴正方向,方向为y轴正方向,方向为z轴正方向,建立空间直角坐标系Cxyz,则D(1,1,0),E(0,2,1),A1(2,0,2),,,设是平面A1CD的法向量,则即可取.…(6分)同理,设是平面A1CE的法向量,则,可取.…(8分)从而…(10分)所以锐二面角D﹣A1C﹣E的余弦值为…(12分)20.(12分)在圆x2+y2=4上任取一点P,点P在x轴的正射影为点Q,当点P 在圆上运动时,动点M满足,动点M形成的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)点A(2,0)在曲线C上,过点(1,0)的直线l交曲线C于B,D两点,设直线AB斜率为k1,直线AD斜率为k2,求证:k1k2为定值.【解答】解:(Ⅰ)设点M的坐标为(x,y),则由题意知点P的坐标为(x,2y)因为P在圆O:x2+y2=4,所以x2+4y2=4故所求动点M的轨迹方程为.…(4分)(Ⅱ)方法一:由题意知直线l斜率不为0,设直线l方程为x=my+1,B(x1,y1),D(x2,y2)由消去x,得(m2+4)y2+2my﹣3=0,易知△=16m2+48>0,得…(8分)=.所以为定值…(12分)方法二:(ⅰ)当直线l斜率不存在时,所以…(6分)(ⅱ)当直线l斜率存在时,设直线l方程为y=k(x﹣1),B(x1,y1),D(x2,y2)由消去y,得(1+4k2)x2﹣8k2x+4k2﹣4=0,易知△=48k2+16>0,…(8分)=.所以为定值…(12分)21.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=2AD=2,,PD⊥AD,PD⊥DC.(Ⅰ)证明:平面PBC⊥平面PBD;(Ⅱ)若二面角P﹣BC﹣D为,求AP与平面PBC所成角的正弦值.【解答】证明:(Ⅰ)∵PD⊥AD,PD⊥CDAD∩CD=D,AD⊂平面ABCDCD⊂平面ABCD∴PD⊥平面ABCD,BC⊂平面ABCD∴PD⊥BC…(2分)又∴又∴,∠ADB=90°,AD⊥BD,又AD∥BC∴BC⊥BD…(4分)又∵PD∩BD=D,BD⊂平面PBD,PD⊂平面PBD∴BC⊥平面PBD而BC⊂平面PBC,∴平面PBC⊥平面PBD…(6分)解:(Ⅱ)由(Ⅰ)所证,BC⊥平面PBD∴∠PBD即为二面角P﹣BC﹣D的平面角,即∠PBD=而,所以PD=1…(8分)分别以DA、DB、DP为x轴、y轴、z轴建立空间直角坐标系.则A(1,0,0),,,P(0,0,1)∴,=(﹣1,0,0),,设平面PBC的法向量为,则,即,取y=1,得…(10分)∴AP与平面PBC所成角的正弦值为:.…(12分)22.(12分)设函数f(x)=x2e x.(1)求曲线f(x)在点(1,e)处的切线方程;(2)若f(x)<ax对x∈(﹣∞,0)恒成立,求a的取值范围;(3)求整数n的值,使函数F(x)=f(x)﹣在区间(n,n+1)上有零点.【解答】解:(1)f'(x)=(x2+2x)e x,∴f'(1)=3e,∴所求切线方程为y﹣e=3e(x﹣1),即y=3ex﹣2e;(2)∵f(x)<ax,对x∈(﹣∞,0)恒成立,∴,设g(x)=xe x,g'(x)=(x+1)e x,令g'(x)>0,得x>﹣1,令g'(x)<0得x<﹣1,∴g(x)在(﹣∞,﹣1)上递减,在(﹣1,0)上递增,∴,∴;(3)令F(x)=0,得,当x<0时,,∴F(x)的零点在(0,+∞)上,令f'(x)>0,得x>0或x<﹣2,∴f(x)在(0,+∞)上递增,又在(0,+∞)上递减,∴方程仅有一解x0,且x0∈(n,n+1),n∈Z,∵,∴由零点存在的条件可得,则n=0.。
高二第一学期数学(理)期末试卷及答案5套
高二第一学期数学(理)期末试卷及答案5套(时间:120分钟 总分:150分,交答题纸)第Ⅰ卷(12题:共60分)一、选择题(包括12小题,每小题5分,共60分) 1.某高中有学生1 000人,其中一、二、三年级的人数比为4∶3∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .100 B .40 C .75 D .252.某市进行一次高三教学质量抽样检测,考试后统计的所有考生的数学成绩服从正态分布.已知数学成绩平均分为90分,60分以下的人数占10%,则数学成绩在90分至120分之间的考生人数所占百分比约为 ( ) A.40%B.30%C.20%D. 10%3.对于空间的两条直线n m ,和一个平面α,下列命题中的真命题是 ( ) A.n m n m //,////则,若αα B.n m n m //,则,若αα⊥⊥ C.n m n m //,//则,若αα⊥ D.n m n m //,//则,若αα⊂4.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830,则在吹东风的条件下下雨的概率为 ( )A.911B.811C.89D.255.甲、乙两名学生六次数学测验成绩如右图所示。
①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低; ④甲同学成绩的方差小于乙同学成绩的方差。
上面说法正确的是( )A.②④B.①②④C.③④D.①③ 6.下图是把二进制数11111(2)化成十进制数的一个程序框图, 则判断框内应填入的条件是( )A.?5>iB.?4≤iC.?4>iD.?5≤i7.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为8165,则事件A 在1次试验中发生的概率为( ) A.32 B.31 C.95 D.94 8.已知双曲线)0,0(12222>>=-b a by a x 的一个焦点与圆01022=-+x y x 的圆心重合,且双曲线的离心率等于5,则该双曲线的标准方程为( )A.120522=-y x B.1202522=-y x C.152022=-y x D.1252022=-y x 9.设A 为定圆C 圆周上一点,在圆周上等可能地任取一点与A 连接,求弦长超过半径2倍的概率( ) A.34B. 35C.13D.1210.命题“设R b a ∈,,若6≠+b a ,则3≠a 或3≠b ”是一个真命题; 若“q p ∨”为真命题,则q p ,均为真命题;命题“)1(2,,22--≥+∈∀b a b a R b a ”的否定是“)1(2,,22--≤+∈∃b a b a R b a ”; ④“)(2Z k k ∈+=ππϕ”是函数)2sin(ϕ+=x y 为偶函数的充要条件。
人教版高二上学期期末数学理科试卷(有答案)【真题】
甘肃省武威高二(上)期末数学试卷(理科)一、选择题(12小题,每小题5分,共60分,请将答案涂在机读答题卡)1.(5分)下列特称命题中,假命题是()A.∃x∈R,x2﹣2x﹣3=0B.至少有一个x∈Z,x能被2和3整除C.存在两个相交平面垂直于同一直线D.∃x∈{x|x是无理数},使x2是有理数2.(5分)椭圆+=1和+=1(a2>b2>k2)的关系是()A.有相同的长、短轴B.有相同的离心率C.有相同的准线D.有相同的焦点3.(5分)已知随机变量X服从正态分布N(0,σ2),若P(X>2)=0.023,则P(﹣2≤X≤2)等于()A.0.477 B.0.628 C.0.954 D.0.9774.(5分)命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=的定义域是(﹣∞,﹣1]∪[3,+∞),则()A.“p或q”为假B.“p且q”为真C.p真q假D.p假q真5.(5分)已知随机变量ξ的分布列为A.B. C. D.6.(5分)用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第()个数.A.6 B.9 C.10 D.87.(5分)设M是椭圆上的一点,F1,F2为焦点,∠F1MF2=,则△MF1F2的面积为()A.B.C.D.168.(5分)已知随机变量ξ~B(n,p),且Eξ=2.4,Dξ=1.44,则n,p值为()A .8,0.3B .6,0.4C .12,0.2D .5,0.6 9.(5分)(2x +)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2﹣(a 1+a 3)2的值为( )A .1B .﹣1C .0D .210.(5分)给出如下几个结论:①命题“∃x ∈R ,sinx +cosx=2”的否定是“∃x ∈R ,sinx +cosx ≠2”;②命题“∀x ∈R ,sinx +≥2”的否定是“∃x ∈R ,sinx +<2”;③对于∀x ∈(0,),tanx +≥2;④∃x ∈R ,使sinx +cosx=.其中正确的为( ) A .③ B .③④C .②③④D .①②③④11.(5分)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( ) A .108种 B .186种 C .216种 D .270种12.(5分)已知a 、b 、c 为集合A={1,2,3,4,5,6}中三个不同的数,通过如图框图给出的一个算法输出一个整数a ,则输出的数a=5的概率是( )A .B .C .D .二.填空题(每空5分,共20分)13.(5分)已知命题p :∀x ∈[0,1],a ≥e x ,命题q :“∃x ∈R ,x 2+4x +a=0”,若命题“p ∧q”是真命题,则实数a 的取值范围是 .14.(5分)在平面直角坐标系中,点B 与点A (﹣1,1)关于原点O 对称,P 是动点,且直线AP与BP的斜率之积等于,则动点P的轨迹方程.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.16.(5分)给出下列四个命题:①命题“若α=,则tanα=1”的逆否命题为假命题;②命题p:∀x∈R,sinx≤1.则¬p:∃x0∈R,使sinx0>1;③“φ=+kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件;④命题p:“∃x0∈R,使sinx0+cosx0=”;命题q:“若sinα>sinβ,则α>β”,那么(¬p)∧q 为真命题.其中正确的序号是.三、解答题17.(10分)已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.18.(12分)已知(+)n展开式中偶数项二项式系数和比(a+b)2n展开式中奇数项二项式系数和小120,求:(1)(+)n展开式中第三项的系数;(2)(a+b)2n展开式的中间项.19.(12分)已知椭圆=1(a>b>0)经过点A(0,4),离心率为;(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.20.(12分)已知p:x2+mx+1=0有两个不等的负根,q:4x2+4(m﹣2)x+1=0无实根,若“p 或q”为真,“p且q”为假,求m的取值范围.21.(12分)“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.某市交通管理部门于某天晚上8点至11点设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q ≥140的人数计入120≤Q<140人数之内).(1)求此次拦查中醉酒驾车的人数;(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数X的分布列和数学期望.22.(12分)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.甘肃省武威高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(12小题,每小题5分,共60分,请将答案涂在机读答题卡)1.(5分)下列特称命题中,假命题是()A.∃x∈R,x2﹣2x﹣3=0B.至少有一个x∈Z,x能被2和3整除C.存在两个相交平面垂直于同一直线D.∃x∈{x|x是无理数},使x2是有理数【解答】解:对于A:当x=﹣1时,x2﹣2x﹣3=0,故A为真命题;对于B:当x=6时,符合题目要求,为真命题;对于C假命题,垂直于同意直线的两个平面平行;对于D:x=时,x2=3,故D为真命题.故选C2.(5分)椭圆+=1和+=1(a2>b2>k2)的关系是()A.有相同的长、短轴B.有相同的离心率C.有相同的准线D.有相同的焦点【解答】解:椭圆+=1的焦点坐标(,0)和+=1(a2>b2>k2)的焦点坐标(,0),故选:D.3.(5分)已知随机变量X服从正态分布N(0,σ2),若P(X>2)=0.023,则P(﹣2≤X≤2)等于()A.0.477 B.0.628 C.0.954 D.0.977【解答】解:∵随机变量X服从标准正态分布N(0,σ2),∴正态曲线关于X=0对称,∵P(X>2)=0.023,∴P(﹣2≤X≤2)=1﹣2×0.023=0.954,故选:C.4.(5分)命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=的定义域是(﹣∞,﹣1]∪[3,+∞),则()A.“p或q”为假B.“p且q”为真C.p真q假D.p假q真【解答】解:∵|a+b|≤|a|+|b|,若|a|+|b|>1,不能推出|a+b|>1,而|a+b|>1,一定有|a|+|b|>1,故命题p为假.又由函数y=的定义域为|x﹣1|﹣2≥0,即|x﹣1|≥2,即x﹣1≥2或x﹣1≤﹣2.故有x∈(﹣∞,﹣1]∪[3,+∞).∴q为真命题.故选D.5.(5分)已知随机变量ξ的分布列为A.B. C. D.【解答】解:Eξ=1×+2×+3×+4×=,Dξ=×(1﹣)2+×(2﹣)2+×(3﹣)2+×(4﹣)2=,故选:C.6.(5分)用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第()个数.A.6 B.9 C.10 D.8【解答】解:由题意知本题是一个分类计数问题,首位是1,第二位是0,则后三位可以用剩下的数字全排列,共有A33=6个,前两位是12,第三位是0,后两位可以用余下的两个数字进行全排列.共有A22=2种结果,前三位是123.第四位是0,最后一位是4,只有1种结果,∴数字12340前面有6+2+1=9个数字,数字本身就是第十个数字,故选C.7.(5分)设M是椭圆上的一点,F1,F2为焦点,∠F1MF2=,则△MF1F2的面积为()A.B.C.D.16【解答】解:∵椭圆方程为上的一点,F1,F2为焦点,∠F1MF2=,∴a2=25,b2=16,可得c2=a2﹣b2=9,即a=5,c=3,设|PF1|=m,|PF2|=n,则有m+n=10,∵∠F1MF2=,∴36=m2+n2﹣2mncos∵(m+n)2=m2+n2+2mn,∴mn=,∴|PF1|•|PF2|=.∴△PF1F2的面积S=|PF1|•|PF2|sin=••=16(2﹣).故选:C.8.(5分)已知随机变量ξ~B(n,p),且Eξ=2.4,Dξ=1.44,则n,p值为()A.8,0.3 B.6,0.4 C.12,0.2 D.5,0.6【解答】解:∵ξ服从二项分布B~(n,p)由Eξ=2.4=np,Dξ=1.44=np(1﹣p),可得1﹣p==0.6,∴p=0.4,n==6.故选:B.9.(5分)(2x+)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2﹣(a1+a3)2的值为()A.1 B.﹣1 C.0 D.2【解答】解:令x=1,则a0+a1+…+a4=,令x=﹣1,则a0﹣a1+a2﹣a3+a4=.所以,(a0+a2+a4)2﹣(a1+a3)2=(a0+a1+…+a4)(a0﹣a1+a2﹣a3+a4)==1故选A10.(5分)给出如下几个结论:①命题“∃x∈R,sinx+cosx=2”的否定是“∃x∈R,sinx+cosx≠2”;②命题“∀x∈R,sinx+≥2”的否定是“∃x∈R,sinx+<2”;③对于∀x∈(0,),tanx+≥2;④∃x∈R,使sinx+cosx=.其中正确的为()A.③B.③④C.②③④D.①②③④【解答】解:根据全称命题的否定是特称命题,特称命题的否定是全称命题,可知①不正确;②正确;由基本不等式可知③正确;由sinx+cosx=sin(x+)∈[﹣,],可知④正确;故选C.11.(5分)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有()A.108种B.186种C.216种D.270种【解答】解:从4名男生和3名女生中选出3人,分别从事三项不同的工作,有A73种选法,其中只选派男生的方案数为A43,分析可得,“这3人中至少有1名女生”与“只选派男生”为对立事件,则这3人中至少有1名女生等于从全部方案中减去只选派男生的方案数,即合理的选派方案共有A73﹣A43=186种,故选B.12.(5分)已知a、b、c为集合A={1,2,3,4,5,6}中三个不同的数,通过如图框图给出的一个算法输出一个整数a,则输出的数a=5的概率是()A.B.C.D.【解答】解:根据框图判断,本框图输出的a为输入的三个数a,b,c中的最大值最大值是3的情况,输入的三个数为1,2,3 1种情况最大值是4的情况,输入的三个数为1,2,3里两个以及4 3种情况最大值是5的情况,输入的三个数为1,2,3,4里两个数以及5 6种情况最大值是6的情况,输入的三个数为1,2,3,4,5里两个数及6 10种情况a=5的概率P==故选:A二.填空题(每空5分,共20分)13.(5分)已知命题p:∀x∈[0,1],a≥e x,命题q:“∃x∈R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是e≤a≤4.【解答】解:对于命题p:∀x∈[0,1],a≥e x,∴a≥(e x)max,x∈[0,1],∵e x在x∈[0,1]上单调递增,∴当x=1时,e x取得最大值e,∴a≥e.对于命题q:∃x∈R,x2+4x+a=0,∴△=42﹣4a≥0,解得a≤4.若命题“p∧q”是真命题,则p与q都是真命题,∴e≤a≤4.故答案为:e≤a≤4.14.(5分)在平面直角坐标系中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于,则动点P的轨迹方程x2+3y2=4,(x≠±1).【解答】解:∵点B与A(﹣1,1)关于原点O对称,∴点B的坐标为(1,﹣1).设点P的坐标为(x,y),∵直线AP与BP的斜率之积等于﹣,∴=﹣,(x≠±1).化简得x2+3y2=4(x≠±1).故动点P轨迹方程为:x2+3y2=4(x≠±1).故答案为:x2+3y2=4(x≠±1).15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为16.(5分)给出下列四个命题:①命题“若α=,则tanα=1”的逆否命题为假命题;②命题p:∀x∈R,sinx≤1.则¬p:∃x0∈R,使sinx0>1;③“φ=+kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件;④命题p:“∃x0∈R,使sinx0+cosx0=”;命题q:“若sinα>sinβ,则α>β”,那么(¬p)∧q 为真命题.其中正确的序号是②③.【解答】解:①命题“若α=,则tanα=1”为真命题,由互为逆否命题的等价性可知,其逆否命题是真命题,故①错;②命题p:∀x∈R,sinx≤1.则¬p:∃x0∈R,使sinx0>1,故②对;③函数y=sin(2x+φ)为偶函数,由诱导公式可知,φ=+kπ(k∈Z),反之成立,故③对;④由于sinx+cosx=sin(x)≤,故命题p为假命题,比如α=﹣300°,β=30°,满足sinα>sinβ,但α<β,故命题q为假命题.则(¬p)∧q为假命题,故④错.故答案为:②③三、解答题17.(10分)已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围.【解答】解:由||=,得|x﹣4|≤6,即﹣6≤x﹣4≤6,∴﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,即1﹣m≤x≤1+m,(m>0),∴q:1﹣m≤x≤1+m,(m>0),∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,且等号不能同时取,∴,解得m ≥9.18.(12分)已知(+)n 展开式中偶数项二项式系数和比(a +b )2n 展开式中奇数项二项式系数和小120,求:(1)(+)n 展开式中第三项的系数;(2)(a +b )2n 展开式的中间项.【解答】解:(1)由题意可得2n ﹣1+120=22n ﹣1,故有 (2n ﹣16)(2n +15)=0,故2n =16,解得 n=4.故(+)n 展开式中第三项为 T 3=•=.(2)(a +b )2n 即(a +b )8,它的开式的中间项为T 5=•a 4•b 4=70a 4b 4.19.(12分)已知椭圆=1(a >b >0)经过点A (0,4),离心率为;(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被C 所截线段的中点坐标.【解答】解:(1)由椭圆C :+=1(a >b >0)过点A (0,4),则b=4,椭圆离心率为e===,则a=5,∴C 的方程为+=1;(2)过点(3,0)且斜率为的直线方程为y=(x ﹣3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y=(x ﹣3)代入C 的方程,得x 2﹣3x ﹣8=0,解得:x 1=,x 2=,∴AB 的中点M (x 0,y 0)坐标x 0==,y0==(x1+x1﹣6)=﹣,即中点为(,﹣).20.(12分)已知p:x2+mx+1=0有两个不等的负根,q:4x2+4(m﹣2)x+1=0无实根,若“p 或q”为真,“p且q”为假,求m的取值范围.【解答】解:当p为真命题时,,∴m>2.当q为真命题时,△=42(m﹣2)2﹣16<0,∴1<m<3.若“p或q”为真,“p且q”为假,则p、q一真一假,即,p真q假或p假q真,①若p真q假,∴,∴m≥3.②若p假q真,∴,∴1<m≤2.综上m的取值范围是(1,2]∪[3,+∞).21.(12分)“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.某市交通管理部门于某天晚上8点至11点设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q ≥140的人数计入120≤Q<140人数之内).(1)求此次拦查中醉酒驾车的人数;(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数X的分布列和数学期望.【解答】解:(1)由已知得,(0.003 2+0.004 3+0.005 0)×20=0.25,0.25×60=15,所以此次拦查中醉酒驾车的人数为15人.(2)易知利用分层抽样抽取8人中含有醉酒驾车者为2人,所以X的所有可能取值为0,1,2.P(X=0)==,P(X=1)==,P(X=2)==,X的分布列为E(X)=0×+1×+2×=.22.(12分)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.【解答】解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件A i(i=0,1,2,3,4),∴P(A i)=(1)这4个人中恰有2人去参加甲游戏的概率为P(A2)=;(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,∴P(B)=P(A3)+P(A4)=(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,故P(ξ=0)=P(A2)=P(ξ=2)=P(A1)+P(A3)=,P(ξ=4)=P(A0)+P(A4)=∴ξ的分布列是数学期望Eξ=。
2021年高二上学期期末考试数学理科试题 含答案
2021年高二上学期期末考试数学理科试题含答案一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、抛物线的焦点坐标为()A.(1,0)B.(,0)C.()D.()2、某学校共有老、中、青教职工215人,其中青年教职工80人,中年教职工人抽样方法进行调查,在抽取的样本中有青年职工16人,则该样本中的老年教职工人数为( )A.6 B.8 C.9 D.123、命题“,都有成立”的否定为 ( )A.,使成立 B.,使成立C.,都有成立 D.,都有成立4、阅读程序框图1,则该程序运行后输出的的值是( )A.3 B.4 C.5 D.65.某学校举办校园演讲大赛,下图为七位评委为某选手打出的分数的茎叶统计图,要求去掉一个最高分和一个最低分后,求出所剩数据的平均数和方差为( )A.84,4.84 B.84,1.6 C.85,4 D.85,1.66.国家物价部门在2015年11月11日那天,对某商品在网上五大购物平台的一天销售量及,则=( )A.24 B.35.6 C.40 D.40.57、已知椭圆与双曲线共同焦点,它们的离心率之和为,则此椭圆方程为()A. B.C. D.。
8、某科技研究所对一批新研发的产品长度进行检测(单位:),下图是检测结果的频率分布直方图,据此估计这批产品的中位数为( )(A )20 (B )22.5 (C )22.75 (D )259、 从所表示的圆锥曲线(椭圆、双曲线)方程中任取一个,则此方程是焦点在轴上的双曲线方程的概率是( )(A) (B) (C) (D) 10、已知P是抛物线上的一个动点,则点P到直线和的距离之和的最小值是( )A.1 B.2 C.3 D.4 11、已知正方体-,则与平面所成角的余弦值为( )A .B .C .D . 12、若点和点分别是双曲线的中心和右焦点,为右顶点,点为双曲线右支上的任意一点,则的取值范围为 ( )A .B .C .D .二.填空题:本大题共4小题,每小题5分。
【高二】2021年高二数学理科上学期期末试题(有答案)
【高二】2021年高二数学理科上学期期末试题(有答案)命题人:高二数学备课组(考试时间:2021年1月15日)满分:100分(必考试卷Ⅰ)50分(必考试卷Ⅱ)时量:120分钟得分:必考试卷Ⅰ一、:本大题共7小题,每小题5分,共35分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数i+i2在复平面内表示的点在A.第一象限B.第二象限C.第三象限D.第四象限2.设x∈R,则x>e的一个必要不充分条件是A.x>1B.x<1C.x>3D.x<33.若f(x)=2cos α-sin x,则f′(α)等于A.-sin αB.-cos αC.-2sin α-cos αD.-3cos α4.下列三句话按三段论的模式排列顺序正确的是①z1,z2不能比较大小;②虚数不能比较大小;③z1,z2是虚数.A.①②③B.②①③C.②③①D.③②①5.若a=(1,λ,2),b=(2,-1,1),a与b的夹角为60°,则λ的值为A.17或-1B.-17或1C.-1D.16.设F1,F2是椭圆+=1(a>5)的两个焦点,且F1F2=8,弦AB过点F1,则△ABF2的周长为A.10B.20C.2D.47.对于R上可导的任意函数f(x),若满足(x-2)f′(x)≤0,则必有A.f(-3)+f(3)<2f(2)B.f(-3)+f(7)>2f(2)C.f(-3)+f(3)≤2f(2)D.f(-3)+f(7)≥2f(2)二、题:本大题共6个小题,每小题5分,共30分.请把答案填在答题卷对应题号后的横线上.8.复数10的值是.9.用反证法证明命题:“若x,y>0,且x+y>2,则,中至少有一个小于2”时,假设的内容应为.10.已知等差数列{an}中,有=成立.类似地,在等比数列{bn}中,有成立.11.曲线y=sin x在[0,π]上与x轴所围成的平面图形的面积为.12.已知函数f(x)=x(x-c)2在x=2处有极大值,则c的值为.13.正整数按下列方法分组:{1},{2,3,4},{5,6,7,8,9},{10,11,12,13,14,15,16},…,记第n组中各数之和为An;由自然数的立方构成下列数组:{03,13},{13,23},{23,33},{33,43},…,记第n组中后一个数与前一个数的差为Bn,则An+Bn=.三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤.14.(本小题满分11分)已知函数f(x)=ax3+(a-1)x2+27(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,5]上的单调性,并求出f(x)在区间[-4,5]上的最值.15.(本小题满分12分)已知数列{an}满足Sn+an=2n+1.(1)写出a1,a2,a3,并推测an的表达式;(2)用数学归纳法证明所得的结论.16.(本小题满分12分)如图,已知四棱锥P-ABCD中,底面ABCD为菱形,且AC=AB=BC=2,PA⊥平面ABCD,E,F分别是BC,PC的中点.(1)证明:AE⊥PD;(2)若H为PD上一点,且AH⊥PD,EH与平面PAD所成角的正切值为,求二面角E-AF -C的余弦值.必考试卷Ⅱ一、:本大题共1个小题,每小题5分,满分5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.定义在R上的函数f(x)的导函数f′(x)的图像如图,若两个正数a,b满足f(2a+b)<1,且f(4)=1,则的取值范围是A.B.∪(5,+∞)C.(-∞,3)D.二、题:本大题共1个小题,每小题5分,共5分.请把答案填在答题卷对应题号后的横线上.2.设函数f(x)=x(x+k)(x+2k)(x-3k),且f′(0)=6,则k=.三、解答题:本大题共3小题,共40分,解答应写出文字说明,证明过程或演算步骤.3.(本小题满分13分)某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分别为a、ln(b+1)万元(>0且为常数).已知该企业投放总价值为10万元的A、B两种型号的电视机,且A、B 两种型号的投放金额都不低于1万元.(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;(2)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?4.(本小题满分13分)已知椭圆C:+=1(a>b>0)的离心率为,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点与点N.(1)求椭圆C的方程;(2)求?的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于,N的任意一点,且直线P,NP分别与x轴交于点R,S,O 为坐标原点,求证:?为定值.5.(本小题满分14分)已知函数f(x)=ex,x∈R.(1)若直线y=kx+1与f(x)的反函数的图象相切,求实数k的值;(2)设x>0,讨论曲线y=与直线y=(>0)公共点的个数;(3)设函数h满足x2h′(x)+2xh(x)=,h(2)=,试比较h(e)与的大小.湖南师大附中2021届高二第一学期期末考试试题数学(理科)参考答案必考试卷Ⅰ又∵函数f(x)在[-4,5]上连续.∴f(x)在(-3,3)上是单调递减函数,在(-4,-3)和(3,5)上是单调递增函数.(9分)∴f(x)的最大值是54,f(x)的最小值是-54.(11分)15.解:(1)a1=,a2=,a3=,….猜测an=2-(5分)(2)①由(1)已得当n=1时,命题成立;(7分)②假设n=k时,命题成立,即ak=2-,(8分)当n=k+1时,a1+a2+……+ak+ak+1+ak+1=2(k+1)+1,且a1+a2+……+ak=2k+1-ak∴2k+1-ak+2ak+1=2(k+1)+1=2k+3,∴2ak+1=2+2-,ak+1=2-,即当n=k+1时,命题成立.(11分)根据①②得n∈N+时,an=2-都成立.(12分)16.(1)证明:由AC=AB=BC,可得△ABC为正三角形.因为E为BC的中点,所以AE⊥BC.又BC∥AD,因此AE⊥AD.因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.而PA⊂平面PAD,AD⊂平面PAD且PA∩AD=A,所以AE⊥平面PAD.又PD⊂平面PAD,所以AE⊥PD.(5分)(2)解:因为AH⊥PD,由(1)知AE⊥平面PAD,则∠EHA为EH与平面PAD所成的角.在Rt△EAH中,AE=,此时tan∠EHA===,在Rt△AOE中,EO=AE?sin 30°=,AO=AE?cos 30°=,又F是PC的中点,在Rt△ASO中,SO=AO?sin 45°=,又SE===,在Rt△ESO中,cos∠ESO===,即所求二面角的余弦值为.(12分)解法二:由(1)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E,F分别为BC,PC的中点,所以A(0,0,0),B(,-1,0),C(,1,0),D(0,2,0),P(0,0,2),E(,0,0),F,所以=(,0,0),=.所以cos〈,〉===.因为二面角E-AF-C为锐角,所以所求二面角的余弦值为.(12分)必考试卷Ⅱ一、选择题1.D 【解析】由图像可知f(x)在(-∞,0)递减,在(0,+∞)递增,所以f(2a+b)<1即2a+b<4,原题等价于,求的取值范围.画出不等式组表示的可行区域,利用直线斜率的意义可得∈.二、填空题2.-1 【解析】思路分析:按导数乘积运算法则先求导,然后由已知条件构造关于k 的方程求解.f′(x)=(x+k)(x+2k)(x-3k)+x(x+2k)(x-3k)+x(x+k)(x-3k)+x(x+k)(x+2k)故f′(0)=-6k3,又f′(0)=6,故k=-1.三、解答题3.解:(1)设投放B型电视机的金额为x万元,则投放A型电视机的金额为(10-x)万元,农民得到的总补贴f(x)=(10-x)+ln(x+1)=ln(x+1)-+1,(1≤x≤9).(5分)(没有指明x范围的扣1分)(2)f′(x)=-==,令y′=0,得x=10-1(8分)1°若10-1≤1即0<≤,则f(x)在[1,9]为减函数,当x=1时,f(x)有最大值;新课标第一网2°若1<10-1<9即<<1,则f(x)在[1,10-1)是增函数,在(10-1,9]是减函数,当x=10-1时,f(x)有最大值;3°若10-1≥9即≥1,则f(x)在[1,9]是增函数,当x=9时,f(x)有最大值.因此,当0<≤时,投放B型电视机1万元,农民得到的总补贴最大.当<<1时,投放B型电视机(10-1)万元,农民得到的总补贴最大;当≥1时,投放B型电视机9万元,农民得到的总补贴最大.(13分)4.解:(1)依题意,得a=2,e==,∴c=,b==1;故椭圆C的方程为+y2=1.(3分)(2)方法一:点与点N关于x轴对称,设(x1,y1),N(x1,-y1),不妨设y1>0.由于点在椭圆C上,所以y=1-.(*)(4分)由已知T(-2,0),则=(x1+2,y1),=(x1+2,-y1),∴?=(x1+2,y1)?(x1+2,-y1)=(x1+2)2-y=(x1+2)2-=x+4x1+3方法二:点与点N关于x轴对称,故设(2cos θ,sin θ),N(2cos θ,-sin θ),不妨设sin θ>0,由已知T(-2,0),则?=(2cos θ+2,sin θ)?(2cos θ+2,-sin θ)=(2cos θ+2)2-sin2θ=5cos2θ+8cos θ+3=52-.(6分)故当cos θ=-时,?取得最小值为-,此时,又点在圆T上,代入圆的方程得到r2=.故圆T的方程为:(x+2)2+y2=.(8分)(3)方法一:设P(x0,y0),则直线P的方程为:y-y0=(x-x0),令y=0,得xR=,同理:xS=,(10分)故xR?xS=(**)(11分)又点与点P在椭圆上,故x=4(1-y),x=4(1-y),(12分)代入(**)式,得:xR?xS===4.所以?=?==4为定值.(13分)方法二:设(2cos θ,sin θ),N(2cos θ,-sin θ),不妨设sin θ>0,P(2cos α,sin α),其中sin α≠±sin θ.则直线P的方程为:y-sin α=(x-2cos α),令y=0,得xR=,同理:xS=,(12分)故xR?xS===4.所以?=?==4为定值.(13分)5.解:(1)f的反函数g(x)=ln x.设直线y=kx+1与g(x)=ln x相切于点P(x0,y0),则⇒x0=e2,k=e-2.所以k=e-2.(3分)(2)当x>0,>0时,曲线y=f(x)与曲线y=x2(>0)的公共点个数即方程f(x)=x2根的个数.由f(x)=x2⇒=,令v(x)=⇒v′(x)=,则v(x)在(0,2)上单调递减,这时v(x)∈(v(2),+∞);v(x)在(2,+∞)上单调递增,这时v(x)∈(v(2),+∞).v(2)=. v(2)是y=v(x)的极小值,也是最小值.(5分)所以对曲线y=f(x)与曲线y=x2(>0)公共点的个数,讨论如下:当∈时,有0个公共点;当=时,有1个公共点;当∈时有2个公共点;(8分)(3)令F(x)=x2h(x),则F′(x)=x2h′(x)+2xh=所以h=,故h′===令G(x)=ex-2F(x),则G′(x)=ex-2F′(x)=ex-2?=显然,当0<x<2时,G′(x)<0,G(x)单调递减;当x>2时,G′(x)>0,G(x)单调递增;所以,在(0,+∞)范围内,G(x)在x=2处取得最小值G(2)=0.即x>0时,ex-2F(x)≥0.故在(0,+∞)内,h′(x)≥0,所以h(x)在(0,+∞)单调递增,又因为h(2)==>,h(2)<h(e)所以h(e)>.(14分)感谢您的阅读,祝您生活愉快。
人教版高二(上)期末数学试卷(理科)(有解析)
人教版高二(上)期末数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)“x>2”是“x>3”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.(5分)命题“所有能被2整除的数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.(5分)设a,b,c都是实数.已知命题p:若a>b,则a+c>b+c;命题q:若a>b>0,则ac>bc.则下列命题中为真命题的是()A.(¬p)∨q B.p∧q C.(¬p)∧(¬q)D.(¬p)∨(¬q)4.(5分)双曲线=﹣1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.B.C.2 D.46.(5分)已知M(﹣2,0),N(2,0),|PM|﹣|PN|=4,则动点P的轨迹是()A.一条射线B.双曲线C.双曲线左支D.双曲线右支7.(5分)若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()A.A>0,且B>0 B.A>0,且B<0 C.A<0,且B>0 D.A<0,且B<08.(5分)在等比数列{a n},a3=2,a7=32,则q=()A.2 B.﹣2 C.±2 D.49.(5分)方程2x2﹣5x+2=0的两个根可分别作为的离心率.()A.椭圆和双曲线B.两条抛物线C.椭圆和抛物线D.两个椭圆10.(5分)已知a<b<0,则下列式子中恒成立的是()A.B.C.a2<b2D.11.(5分)不等式x2﹣ax﹣b<0的解为2<x<3,则a,b值分别为()A.a=2,b=3 B.a=﹣2,b=3 C.a=5,b=﹣6 D.a=﹣5,b=612.(5分)已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量与的夹角为()A.30°B.45°C.60°D.90°二.空题(4×5=20).13.(5分)抛物线y=4x2的焦点坐标是.14.(5分)14.已知=(1,2,﹣2),=(1,0,﹣1),求(﹣2))=.15.(5分)在△ABC中,若c2=a2+b2+ab,则∠C=.16.(5分)已知双曲线的一个焦点为F(0,2),则m=.三、解答题(共5小题,满分70分)17.(12分)已知平面π1的法向量为=(1,2,3)平面π2的法向量为=(﹣1,0,2)求两个平面夹角的余弦值.18.(12分)写出适合条件的双曲线的标准方程:(1)a=3,b=4焦点在x轴上;(2)焦点为(0,5),(0,﹣5)经过点(2,).19.(16分)已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.(1)求椭圆的方程;(2)求m的取值范围.20.(16分)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD.21.(14分)在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a﹣c)cosB=bcosC.(1)求角B的大小;(2)当a=3,c=2时,求△ABC的面积.人教版高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)“x>2”是“x>3”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:当x=时,满足x>2,但x>3不成立,即充分性不成立,若x>3,则x>2,即必要性成立,则“x>2”是“x>3”的必要不充分条件,故选:B.2.(5分)命题“所有能被2整除的数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【解答】解:命题“所有能被2整除的数都是偶数”是一个全称命题其否定一定是一个特称命题,故排除A,B结合全称命题的否定方法,我们易得命题“所有能被2整除的数都是偶数”的否定应为“存在一个能被2整除的整数不是偶数”故选:D3.(5分)设a,b,c都是实数.已知命题p:若a>b,则a+c>b+c;命题q:若a>b>0,则ac>bc.则下列命题中为真命题的是()A.(¬p)∨q B.p∧q C.(¬p)∧(¬q)D.(¬p)∨(¬q)【解答】解:∵命题p:若a>b,则a+c>b+c是真命题,则¬p为假命题,命题q:若a>b>0,则ac>bc是假命题,¬q是真命题,∴(¬p)∨q为假命题,p∧q为假命题,(¬p)∧(¬q)为假命题,(¬p)∨(¬q)为真命题故选:D.4.(5分)双曲线=﹣1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:化已知双曲线的方程为标准方程,可知焦点在y轴,且a=3,b=2,故渐近线方程为y==故选A5.(5分)椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.B.C.2 D.4【解答】解:椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,∴,故选A.6.(5分)已知M(﹣2,0),N(2,0),|PM|﹣|PN|=4,则动点P的轨迹是()A.一条射线B.双曲线C.双曲线左支D.双曲线右支【解答】解:如果是双曲线,那么|PM|﹣|PN|=4=2aa=2而两个定点M(﹣2,0),N(2,0)为双曲线的焦点c=2而在双曲线中c>a所以把后三个关于双曲线的答案全部排除,故选A.7.(5分)若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()A.A>0,且B>0 B.A>0,且B<0 C.A<0,且B>0 D.A<0,且B<0【解答】解:方程Ax2+By2=1化成:,∵方程Ax2+By2=1表示焦点在y轴上的双曲线,∴即A<0,且B>0故选C.8.(5分)在等比数列{a n},a3=2,a7=32,则q=()A.2 B.﹣2 C.±2 D.4【解答】解:设等比数列的公比为q,首项为a1则由题意可得两式相除可得,即q4=16∴q=±2故选C9.(5分)方程2x2﹣5x+2=0的两个根可分别作为的离心率.()A.椭圆和双曲线B.两条抛物线C.椭圆和抛物线D.两个椭圆【解答】解:∵2x2﹣5x+2=0,∴解得方程的两个根为x1=2,x2=.∵x1=2∈(1,+∞),∴x1可作为双曲线的离心率;∵x2=∈(0,1),∴x2可作为椭圆的离心率.故选:A.10.(5分)已知a<b<0,则下列式子中恒成立的是()A.B.C.a2<b2D.【解答】解:∵a<b<0,不放令a=﹣3,b=﹣2,则﹣>﹣,可排除A;(﹣3)2>(﹣2)2,可排除C;=>1,可排除D;而﹣>﹣,即,B正确.故选B.11.(5分)不等式x2﹣ax﹣b<0的解为2<x<3,则a,b值分别为()A.a=2,b=3 B.a=﹣2,b=3 C.a=5,b=﹣6 D.a=﹣5,b=6【解答】解:[解法一]∵不等式x2﹣ax﹣b<0的解为2<x<3,∴一元二次方程x2﹣ax﹣b=0的根为x1=2,x2=3,根据根与系数的关系可得:,所以a=5,b=﹣6;[解法二]∵不等式x2﹣ax﹣b<0的解为2<x<3,∴不等式x2﹣ax﹣b<0与(x﹣2)(x﹣3)<0解集相同即x2﹣ax﹣b<0与x2﹣5x+6<0解集相同,所以==,可得a=5,b=﹣6故选C12.(5分)已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量与的夹角为()A.30°B.45°C.60°D.90°【解答】解:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以,所以═0×(﹣1)+3×1+3×0=3,并且||=3,||=,所以cos<,>==,∴的夹角为60°故选C.二.空题(4×5=20).13.(5分)抛物线y=4x2的焦点坐标是.【解答】解:由题意可知∴p=∴焦点坐标为故答案为14.(5分)14.已知=(1,2,﹣2),=(1,0,﹣1),求(﹣2))=17.【解答】解:∵=(1,2,﹣2),=(1,0,﹣1),∴=(﹣1,2,0),=(3,4,﹣5),∴(﹣2))=﹣3+8+0=5.故答案为:5.15.(5分)在△ABC中,若c2=a2+b2+ab,则∠C=120°.【解答】解:∵c2=a2+b2+ab,可得:﹣ab=a2+b2﹣c2,∴cosC===﹣,∵∠C∈(0°,180°),∴∠C=120°.故答案为:120°.16.(5分)已知双曲线的一个焦点为F(0,2),则m=﹣1.【解答】解:∵双曲线上午一个焦点为(0,2)∴双曲线在y轴上则双曲线方程为:c=2∵c2=a2﹣b 2∴4=﹣3m+(﹣m)解得:m=﹣1故答案为﹣1.三、解答题(共5小题,满分70分)17.(12分)已知平面π1的法向量为=(1,2,3)平面π2的法向量为=(﹣1,0,2)求两个平面夹角的余弦值.【解答】解:∵平面π1的法向量为=(1,2,3)平面π2的法向量为=(﹣1,0,2),∴cos<>===.∴两个平面夹角的余弦值为.18.(12分)写出适合条件的双曲线的标准方程:(1)a=3,b=4焦点在x轴上;(2)焦点为(0,5),(0,﹣5)经过点(2,).【解答】解:(1)根据题意,因为要求双曲线的焦点在x轴上,则可设双曲线的标准方程﹣=1,又因为a=3,b=4,所以其标准方程为﹣=1;(2)根据题意,因为双曲线的焦点为(0,5),(0,﹣5),所以双曲线的焦点在y轴上,又由双曲线经过点(2,),则有2a=|﹣|=6,则a=3,又由c=5,则b==4,则双曲线的标准方程为:﹣=1.19.(16分)已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.(1)求椭圆的方程;(2)求m的取值范围.【解答】解:(1)由,得,∴a2=4b2,依题意设椭圆方程为:,把点(4,1)代入得b2=5,∴椭圆方程为;(2)联立,得5x2+8mx+4m2﹣20=0.由△=64m2﹣20(4m2﹣20)=400﹣16m2>0,解得﹣5<m<5.∴m的取值范围是(﹣5,5).20.(16分)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD.【解答】证明:(1)∵E,F分别是AB,BD的中点.∴EF是△ABD的中位线,∴EF∥AD,∵EF⊄面ACD,AD⊂面ACD,∴直线EF∥面ACD;(2)∵AD⊥BD,EF∥AD,∴EF⊥BD,∵CB=CD,F是BD的中点,∴CF⊥BD又EF∩CF=F,∴BD⊥面EFC,∵BD⊂面BCD,∴面EFC⊥面BCD21.(14分)在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a﹣c)cosB=bcosC.(1)求角B的大小;(2)当a=3,c=2时,求△ABC的面积.【解答】.解:(1)(2a﹣c)cosB=bcosC.由正弦定理得:(2sinA﹣sinC)cosB=sinBcosC,即:2sinAcosB=sinA,在△ABC 中,cosB=,解得:B=.(2)直接利用已知条件:=.。
期末备考系列:高二上学期期末数学试卷(理科)(含答案解析)
高二(上)期末测试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 函数:f(x)=3+xlnx 的单调递增区间是( )A. (0,1e )B. .(e,+∞)C. (1e ,+∞)D. (1e ,e) 【答案】C 【解析】解:由函数f(x)=3+xlnx 得:f(x)=lnx +1,令f′(x)=lnx +1>0即lnx >−1=ln 1e ,根据e >1得到此对数函数为增函数,所以得到x >1e ,即为函数的单调递增区间.故选:C .求出f(x)的导函数,令导函数大于0列出关于x 的不等式,求出不等式的解集即可得到x 的范围即为函数的单调递增区间.本题主要考查学生会利用导函数的正负得到函数的单调区间,同时考查了导数的计算,是一道基础题.2. 函数f(x)=lnx−2x x 的图象在点(1,−2)处的切线方程为( )A. 2x −y −4=0B. 2x +y =0C. x −y −3=0D. x +y +1=0 【答案】C【解析】解:由函数f(x)=lnx−2x x 知f′(x)=1−lnxx 2,把x =1代入得到切线的斜率k =1,则切线方程为:y +2=x −1,即x −y −3=0.故选:C .求出曲线的导函数,把x =1代入即可得到切线的斜率,然后根据(1,2)和斜率写出切线的方程即可. 本题考查学生会利用导数求曲线上过某点的切线方程,考查计算能力,注意正确求导.3. 已知A(2,−5,1),B(2,−2,4),C(1,−4,1),则向量AB ⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为( ) A. 30∘B. 45∘C. 60∘D. 90∘【答案】C 【解析】解:因为A(2,−5,1),B(2,−2,4),C(1,−4,1),所以AB ⃗⃗⃗⃗⃗ =(0,3,3),AC⃗⃗⃗⃗⃗ = (−1,1,0), 所以AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ ═0×(−1)+3×1+3×0=3,并且|AB ⃗⃗⃗⃗⃗ |=3√2,|AC⃗⃗⃗⃗⃗ |=√2, 所以cos <AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |=3√2×√2=12, ∴AB⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 的夹角为60∘ 故选:C .由题意可得:AB ⃗⃗⃗⃗⃗ =(0,3,3),AC ⃗⃗⃗⃗⃗ = (−1,1,0),进而得到AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ 与|AB ⃗⃗⃗⃗⃗ |,|AC ⃗⃗⃗⃗⃗ |,再由cos <AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |可得答案.解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题4. 已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(−4,0),则m =( ) A. 2B. 3C. 4D. 9 【答案】B【解析】解:∵椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(−4,0), ∴25−m 2=16,∵m >0,∴m =3, 故选:B .利用椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(−4,0),可得25−m 2=16,即可求出m .本题考查椭圆的性质,考查学生的计算能力,比较基础.5. ∫(10e x +2x)dx 等于( )A. 1B. e−1C. eD. e+1【答案】C【解析】解:∵(e x+x2)′=e x+2x,∴∫(1e x+2x)dx═(e x+x2)|01=(e+1)−(1+0)=e,故选:C.e x+2x)dx=(e x+2x)|01,即可得出.由(e x+x2)′=e x+2x,可得∫(1本题考查了微积分基本定理,属于基础题.6.若函数f(x)=x(x−c)2在x=3处有极大值,则c=()A. 9B. 3C. 3或9D. 以上都不对【答案】A【解析】解:函数f(x)=x(x−c)2的导数为f′(x)=(x−c)2+2x(x−c)=(x−c)(3x−c),由f(x)在x=3处有极大值,即有f′(3)=0,解得c=9或3,若c=9时,f′(x)=0,解得x=9或x=3,由f(x)在x=3处导数左正右负,取得极大值,若c=3,f′(x)=0,可得x=3或1由f(x)在x=3处导数左负右正,取得极小值.综上可得c=9.故选:A.由题意可得f′(3)=0,解出c的值之后必须验证是否符合函数在某一点取得极大值的充分条件.本题考查导数的运用:求极值,主要考查求极值的方法,注意检验,属于中档题和易错题.7.函数y=e x(2x−1)的示意图是()A. B. C. D.【答案】C【解析】解:由函数y =e x (2x −1),当x =0时,可得y =−1,排除A ;D当x =−12时,可得y =0,∴x <12时,y <0.当x 从12→+∞时,y =e x 越来越大,y =2x −1递增,可得函数y =e x (2x −1)的值变大,排除B ; 故选:C .带入特殊点即可选出答案本题考查了函数图象变换,是基础题.8. 若AB 过椭圆 x 225+y 216=1中心的弦,F 1为椭圆的焦点,则△F 1AB 面积的最大值为( ) A. 6B. 12C. 24D. 48【答案】B 【解析】解:设A 的坐标(x,y)则根据对称性得:B(−x,−y),则△F 1AB 面积S =12OF ×|2y|=c|y|.∴当|y|最大时,△F 1AB 面积最大,由图知,当A 点在椭圆的顶点时,其△F 1AB 面积最大,则△F 1AB 面积的最大值为:cb =√25−16×4=12.故选:B .先设A的坐标(x,y)则根据对称性得:B(−x,−y),再表示出△F1AB面积,由图知,当A点在椭圆的顶点时,其△F1AB面积最大,最后结合椭圆的标准方程即可求出△F1AB面积的最大值.本小题主要考查函数椭圆的标准方程、椭圆的简单性质、面积公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.9.设函数f(x)=13x3−x+m的极大值为1,则函数f(x)的极小值为()A. −13B. −1 C. 13D. 1【答案】A【解析】解:∵f(x)=13x3−x+m,∴f′(x)=x2−1,令f′(x)=x2−1=0,解得x=±1,当x>1或x<−1时,f′(x)>0,当−1<x<1时,f′(x)<0;故f(x)在(−∞,−1),(1,+∞)上是增函数,在(−1,1)上是减函数;故f(x)在x=−1处有极大值f(−1)=−13+1+m=1,解得m=13f(x)在x=1处有极小值f(1)=13−1+13=−13,故选:A.求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可.本题考查函数的极值问题,属基础知识的考查.熟练掌握导数法求极值的方法步骤是解答的关键.10.设抛物线y2=4x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是()A. [−12,12] B. [−2,2] C. [−1,1] D. [−4,4]【答案】C【解析】解:∵y2=4x,∴Q(−1,0)(Q为准线与x轴的交点),设过Q点的直线l方程为y=k(x+1).∵l 与抛物线有公共点,∴方程组{y 2=4x y=k(x+1)有解,可得k 2x 2+(2k 2−4)x +k 2=0有解.∴△=(2k 2−4)2−4k 4≥0,即k 2≤1.∴−1≤k ≤1,故选:C .根据抛物线方程求得Q 点坐标,设过Q 点的直线l 方程与抛物线方程联立消去y ,根据判别式大于等于0求得k 的范围.本题主要考查了抛物线的应用.涉及直线与抛物线的关系,常需要把直线方程与抛物线方程联立,利用韦达定理或判别式解决问题.11. 已知函数f(x)=ax −ln x ,若f(x)>1在区间(1,+∞)内恒成立,则实数a 的取值范围是( ) A. (−∞,1)B. (−∞,1]C. (1,+∞)D. [1,+∞)【答案】D 【解析】解:∵f(x)=ax −ln x ,f(x)>1在(1,+∞)内恒成立,∴a >1+lnx x 在(1,+∞)内恒成立.设g(x)=1+lnx x ,∴x ∈(1,+∞)时,g′(x)=−lnxx 2<0,即g(x)在(1,+∞)上是减少的,∴g(x)<g(1)=1,∴a ≥1,即a 的取值范围是[1,+∞).故选:D .化简不等式,得到a >1+lnx x 在(1,+∞)内恒成立.设g(x)=1+lnx x ,求出函数的导数,利用函数的单调性化简求解即可.本题考查函数的导数的综合应用,考查转化思想以及计算能力.12. 设双曲线x 2a 2−y 2b 2=1的两条渐近线与直线x =a 2c 分别交于A ,B 两点,F 为该双曲线的右焦点.若60∘<∠AFB <90∘,则该双曲线的离心率的取值范围是( )A. (1,√2)B. (√2,2)C. (1,2)D. (√2,+∞)【答案】B【解析】解:双曲线x2a2−y2b2=1的两条渐近线方程为y=±bax,x=a2c时,y=±abc,∴A(a2c ,abc),B(a2c,−abc),∵60∘<∠AFB<90∘,∴√33<k FB<1,∴√33<abcc−a2c<1,∴√33<ab<1,∴13<a2c−a<1,∴1<e2−1<3,∴√2<e<2.故选:B.确定双曲线x2a2−y2b2=1的两条渐近线方程,求得A,B的坐标,利用60∘<∠AFB<90∘,可得√33<k FB<1,由此可求双曲线的离心率的取值范围.本题考查双曲线的几何性质,考查学生的计算能力,正确寻找几何量之间的关系是关键.二、填空题(本大题共4小题,共20.0分)13.双曲线x2−y2=1的顶点到其渐近线的距离等于______.【答案】√22【解析】解:双曲线x2−y2=1的a=b=1,可得顶点为(±1,0),渐近线方程为y=±x,即有顶点到渐近线的距离为d=√1+1=√22.故答案为:√22.求得双曲线的a=b=1,求得顶点坐标,渐近线方程,运用点到直线的距离公式计算即可得到所求值.本题考查双曲线的顶点到渐近线的距离,注意运用点到直线的距离公式,考查运算能力,属于基础题.14. 已知函数f(x)的导函数为f′(x),且满足f(x)=3x 2+2xf′(2),则f′(5)=______.【答案】6【解析】解:f′(x)=6x +2f′(2)令x =2得f′(2)=−12∴f′(x)=6x −24∴f′(5)=30−24=6故答案为:6将f′(2)看出常数利用导数的运算法则求出f′(x),令x =2求出f′(2)代入f′(x),令x =5求出f′(5). 本题考查导数的运算法则、考查通过赋值求出导函数值.15. 已知向量AB ⃗⃗⃗⃗⃗ =(1,5,−2),BC ⃗⃗⃗⃗⃗ =(3,1,2),DE⃗⃗⃗⃗⃗⃗ =(x,−3,6).若DE//平面ABC ,则x 的值是______. 【答案】−23【解析】解:∵DE//平面ABC ,∴存在事实m ,n ,使得DE ⃗⃗⃗⃗⃗⃗ =m AB ⃗⃗⃗⃗⃗ +n BC ⃗⃗⃗⃗⃗ ,∴{x =m +3n −3=5m +n 6=−2m +2n,解得x =−23.故答案为:−23.由DE//平面ABC ,可得存在事实m ,n ,使得DE ⃗⃗⃗⃗⃗⃗ =m AB ⃗⃗⃗⃗⃗ +n BC ⃗⃗⃗⃗⃗ ,利用平面向量基本定理即可得出.本题考查了平面向量基本定理、方程的解法,考查了推理能力与计算能力,属于基础题.16. 已知抛物线C :y 2=−4x 的焦点F ,A(−1,1),则曲线C 上的动点P 到点F 与点A 的距离之和的最小值为______.【答案】2【解析】解:∵抛物线方程为y 2=−4x ,∴2p =4,可得焦点为F(−1,0),准线为x =1设P 在抛物线准线l 上的射影点为Q 点,A(−1,1)则由抛物线的定义,可知当P 、Q 、A 点三点共线时,点P 到点(−1,1)的距离与P 到该抛物线焦点的距离之和最小,∴最小值为1+1=2.故答案为:2.根据抛物线方程求出焦点坐标和准线方程,再由抛物线的定义知:当P、A和P在准线上的射影点Q三点共线时,这个距离之和最小,即可得出结论.本题给出抛物线上的动点,求该点到定点Q和焦点F距离之和的最小值,着重考查了抛物线的定义和简单几何性质等知识,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=x3+x−16.(I)求曲线y=f(x)在点(2,−6)处的切线的方程;(Ⅱ)直线L为曲线y=f(x)的切线,且经过原点,求直线L的方程及切点坐标.【答案】解:(I)函数f(x)=x3+x−16的导数为f′(x)=3x2+1,可得曲线y=f(x)在点(2,−6)处的切线的斜率为3×4+1=13,即有曲线y=f(x)在点(2,−6)处的切线的方程为y−(−6)=13(x−2),即为13x−y−32=0;(Ⅱ)f(x)的导数为f′(x)=3x2+1,设切点为(m,n),可得切线的斜率为3m2+1,即有3m2+1=nm =m3+m−16m,即为2m3+16=0,解得m=−2,n=−8−2−16=−26,可得直线L的方程为y=13x及切点坐标为(−2,−26).【解析】(I)求出f(x)的导数,可得切线的斜率,由点斜式方程即可得到所求切线的方程;(Ⅱ)f(x)的导数为f′(x)=3x2+1,设切点为(m,n),可得切线的斜率,运用两点的斜率公式,可得m的方程,解方程可得m的值,即可得到所求切线的方程和切点坐标.本题考查导数的运用:求切线的方程,考查导数的几何意义,以及运算能力,正确求导和运用直线方程是解题的关键,属于基础题.18.如图,在四棱锥S−ABCD中,SD⊥底面ABCD,底面ABCD是矩形,且SD=AD=√2AB,E是SA的中点.(1)求证:平面BED⊥平面SAB;(2)求平面BED 与平面SBC 所成二面角(锐角)的大小.【答案】(1)证明:∵SD ⊥底面ABCD ,SD ⊂平面SAD ,∴平面SAD ⊥平面ABCD …(2分)∵AB ⊥AD ,平面SAD ∩平面ABCDAD ,∴AB ⊥平面SAD ,又DE ⊂平面SAD ,∴DE ⊥AB ,…(4分)∵SD =AD ,E 是SA 的中点,∴DE ⊥SA ,∵AB ∩SA =A ,DE ⊥AB ,DE ⊥SA ,∴DE ⊥平面SAB ,∵DE ⊂平面BED ,∴平面BED ⊥平面SAB.…(6分)(2)解:由题意知SD ,AD ,DC 两两垂直,建立如图所示的空间直角坐标系D −xyz ,不妨设AD =2.则D(0,0,0),A(2,0,0),B(2,√2,0),C(0,√2,0),S(0,0,2),E(1,0,1),∴DB ⃗⃗⃗⃗⃗⃗ =(2,√2,0),DE ⃗⃗⃗⃗⃗⃗ =(1,0,1),CB ⃗⃗⃗⃗⃗ =(2,0,0),CS ⃗⃗⃗⃗ =(0,−√2,2)…(8分)设m ⃗⃗⃗ =(x 1,y 1,z 1)是平面BED 的法向量,则{m ⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅DE⃗⃗⃗⃗⃗⃗ =0,即{2x 1+√2y 1=0x 1+z 1=0, 令x 1=−1,则y 1=√2,z 1=1,∴m ⃗⃗⃗ =(−1,√2,1)是平面BED 的一个法向量. 设n ⃗ =(x 2,y 2,z 2)是平面SBC 的法向量,则{n ⃗ ⋅CB ⃗⃗⃗⃗⃗ =0n⃗ ⋅CS ⃗⃗⃗⃗ =0,即{2x 2=0−√2y 2+2z 2=0, 解得x 2=0,令y 2=√2,则z 2=1,∴n ⃗ =(0,√2,1)是平面SBC 的一个法向量.…(10分)∵cos〈m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=2√3=√32, ∴平面BED 与平面SBC 所成锐二面角的大小为π6.…(12分)【解析】(1)证明平面BED ⊥平面SAB ,利用面面垂直的判定定理,证明DE ⊥平面SAB 即可;(2)建立空间直角坐标系,求出平面BED 与平面SBC 的法向量,利用向量的夹角公式,即可求平面BED 与平面SBC 所成二面角(锐角)的大小.本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定,正确利用向量法,属于中档题.19. 如图所示,斜率为1的直线过抛物线y 2=2px(p >0)的焦点F ,与抛物线交于A ,B 两点且|AB|=8,M 为抛物线弧AB 上的动点.(1)求抛物线的方程;(2)求S △ABM 的最大值.【答案】解 (1)由条件知l AB :y =x −p 2,与y 2=2px 联立,消去y ,得x 2−3px +14p 2=0,则x 1+x 2=3p.由抛物线定义得|AB|=x 1+x 2+p =4p .又因为|AB|=8,即p =2,则抛物线的方程为y 2=4x ;(2)由(1)知|AB|=4p ,且l AB :y =x −p 2,设与直线AB 平行且与抛物线相切的直线方程为y =x +m ,代入抛物线方程,得x 2+2(m −p)x +m 2=0.由△=4(m −p)2−4m 2=0,得m =p 2.与直线AB平行且与抛物线相切的直线方程为y=x+p2两直线间的距离为d=√22p,故S△ABM的最大值为12×4p×√22p=√2p2=4√2.【解析】(1)根据题意,分析易得直线AB的方程,将其与y2=2px联立,得x2−3px+14p2=0,由根与系数的关系可得x1+x2=3p,结合抛物线的定义可得|AB|=x1+x2+p=4p=8,解可得p的值,即可得抛物线的方程;(2)设与直线AB平行且与抛物线相切的直线方程为y=x+m,代入抛物线方程,得x2+2(m−p)x+m2=0,进而可得与直线AB平行且与抛物线相切的直线方程,计算可得两直线间的距离,由三角形面积公式计算即可得答案.本题考查直线与抛物线的位置关系,注意抛物线的焦点弦的性质,属于中档题20.函数f(x)=ax+xlnx在x=1处取得极值.(Ⅰ)求f(x)的单调区间;(Ⅱ)若y=f(x)−m−1在定义域内有两个不同的零点,求实数m的取值范围.【答案】解:(Ⅰ,…(1分),解得a=−1,当a=−1时,f(x)=−x+xlnx,…(2分)即,令0'/>,解得x>1;…(3分)令,解得0<x<1;…(4分)∴f(x)在x=1处取得极小值,f(x)的增区间为(1,+∞),减区间为(0,1)…(6分)(Ⅱ)y=f(x)−m−1在(0,+∞)内有两个不同的零点,可转化为f(x)=m+1在(0,+∞)内有两个不同的根,也可转化为y=f(x)与y=m+1图象上有两个不同的交点,…(7分)由(Ⅰ)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=−1,…(8分)由题意得,m+1>−1即m>−2①…(10分)当0<x<1时,f(x)=x(−1+lnx)<0;当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞(或者举例:当x=e2,f(e2)=e2>0);由图象可知,m+1<0,即m<−1②…(11分)由①②可得−2<m<−1…(12分)【解析】(Ⅰ)求出函数的导数,计算f′(1),求出a 的值,从而求出函数的单调区间即可;(Ⅱ)问题转化为f(x)=m +1在(0,+∞)内有两个不同的根,结合函数的图象求出m 的范围即可.本题考查了函数的单调性、极值问题,考查导数的应用以及数形结合思想、转化思想,是一道中档题.21. 已知椭圆x 23+y 2=1,已知定点E(−1,0),若直线y =kx +2(k ≠0)与椭圆交于C 、D 两点.问:是否存在k的值,使以CD 为直径的圆过E 点?请说明理由.【答案】解:假若存在这样的k 值,由{x 2+3y 2−3=0y=kx+2得(1+3k 2)x 2+12kx +9=0.∴△=(12k)2−36(1+3k 2)>0. ①设C(x 1,y 1)、D(x 2,y 2),则{x 1+x 2=−12k 1+3k 2x 1⋅x 2=91+3k 2② 而y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4.要使以CD 为直径的圆过点E(−1,0),当且仅当CE ⊥DE 时,则y 1x 1+1⋅y 2x 2+1=−1,即y 1y 2+(x 1+1)(x 2+1)=0.∴(k 2+1)x 1x 2+2(k +1)(x 1+x 2)+5=0. ③将②式代入③整理解得k =76.经验证,k =76,使①成立.综上可知,存在k =76,使得以CD 为直径的圆过点E .【解析】把直线的方程与椭圆的方程联立,转化为关于x 的一元二次方程,得到根与系数的关系,假设以CD 为直径的圆过E 点,则CE ⊥DE ,将它们联立消去x 1,x 2即可得出k 的值.本题考查椭圆的标准方程,考查椭圆的性质,考查直线与椭圆的位置关系,考查韦达定理的运用,考查向量知识,解题的关键是联立方程,利用韦达定理求解.22. 设函数f(x)=x −ae x−1.(1)求函数f(x)的单调区间;(2)若f(x)≤0对x ∈R 恒成立,求实数a 的取值范围.【答案】解:(1)f′(x)=1−ae x−1当a ≤0时,f′(x)>0,f(x)在R 上是增函数;当a >0时,令f′(x)=0得x =1−lna若x <1−lna ,则f′(x)>0,从而f(x)在区间(−∞,1−lna)上是增函数;若x >1−lna ,则f′(x)<0,从而f(x)在区间(1−lna,+∞上是减函数.(2)由(1)可知:当a≤0时,f(x)≤0不恒成立,又当a>0时,f(x)在点x=1−lna处取最大值,且f(1−lna)=1−lna−ae−lna=−lna,令−lna<0得a≥1,故若f(x)≤0对x∈R恒成立,则a的取值范围是[1,+∞).【解析】(1)对函数求导,使得导函数大于0,求出自变量的取值范围,针对于a的值小于进行讨论,得到函数的单调区间.(2)这是一个恒成立问题,根据上一问做出的结果,知道当a≤0时,f(x)≤0不恒成立,又当a>0时,f(x)在点x=1−lna处取最大值,求出a的范围.本题考查求函数的单调区间和解决函数恒成立的问题,解题时注意函数的单调性是解决最值的必经途径,注意数字的运算.。
陕西省高二上学期期末理科数学试题 (解析版)
10.
x2 已知双曲线 C: a2
y2 b2
1(a 0,b 0) 的左、右焦点分别为 F1 , F2 ,离心率为 2, P 是双曲线上一
点, PF1 x 轴,则
PF1 F1F2
的值为(
)
3
A.
4
4
B.
5
5
C.
6
2 D.
3
【答案】A
【解析】
【分析】由离心率可得 c 2a ,再根据 a2 b2 c2 可得 b
由余弦定理 2c2 m2 n2 2mn cos 60 ,
即 4c2 m2 n2 mn ,(1)
设 a1 是椭圆的长半轴, a2 为双曲线的实半轴,
由椭圆以及双曲线的定义,可得 m n 2a1 , m n 2a2 ,
m a1 a2 , n a1 a2 ,
代入(1)式,可得 3a22 4c2 a12 0 ,
【详解】设等比数列an 的公比为 q ,
则 q a2 a3 a4 a1 a2 a3 q q 2 ,
a1 a2 a3
a1 a2 a3
所以 S6 S3 a4 a5 a6 q3 a1 a2 a3 8 7 56 .
故选:D
12. 我们把离心率互为倒数且焦点相同的椭圆和双曲线称为一对“优美曲线”.已知 F1 , F2 是一对“优美曲线”
【答案】 3 【解析】 【分析】已知两边及夹角,由余弦定理直接求得结果.
【详解】已知 A 60, c 2, b 1 , 由余弦定理得 a2 b2 c2 bc 12 22 1 2 3 ,解得 a 3 .
故答案为: 3 .
15. “蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上任意两条互相垂直的切线的交点都在
高二上册理科数学期末试卷
高二上册理科数学期末试卷
A.相交且过圆心
B. 相交但不过圆心
C. 相切
D. 相离
5.如右图所示的不等式的区域为( )
A. B.
C. D.
6.椭圆,点M在椭圆上,等于-2,则△F1MF2的面积等于( )
A.1
B.
C.2
D.
7.已知对称中心在原点,对称轴为坐标轴的双曲线的渐近线为,则此双曲线的离心率为( )
A. B. C. 或 D.
8.已知直线交抛物线于、两点,则△ ( )
A.为直角三角形
B.为锐角三角形
C.为钝角三角形
D.前三种形状都有可能
在高中复习阶段,大家一定要多练习题,掌握考题的规律,掌握常考的知识,这样有助于提高大家的分数。
查字典数学网为大家整理了高二上册理科数学期末试卷,供大家参考。
2021年高二(上)期末数学试卷(理科)含解析
2021年高二(上)期末数学试卷(理科)含解析一、填空题:本大题共14小题,每小题3分,共42分.请把答案填写在答卷纸相应位置上1.(3分)复数(i为虚数单位)在复平面内对应的点位于第四象限.考点:复数的代数表示法及其几何意义.专题:计算题.分析:利用复数的代数运算将转化为1﹣i,即可判断它在复平面内的位置.解答:解:∵==1﹣i,∴数(i为虚数单位)在复平面内对应的点位于第四象限.故答案为:四.点评:本题考查复数的代数运算,将其转化为a+bi的形式是关键,属于基础题.2.(3分)已知命题p:∀x∈R,x2>x﹣1,则¬p为∃x∈R,x2≤x﹣1.考点:命题的否定;全称命题.专题:阅读型.分析:根据命题p:“∀x∈R,x2>x﹣1”是全称命题,其否定¬p定为其对应的特称命题,由∀变∃,结论变否定即可得到答案.解答:解:∵“全称命题”的否定一定是“存在性命题”,∴命题p:∀x∈R,x2>x﹣1,的否定是:∃x∈R,x2≤x﹣1.故答案为:∃x∈R,x2≤x﹣1.点评:命题的否定即命题的对立面.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.3.(3分)在平面直角坐标系中,准线方程为y=4的抛物线标准的方程为x2=﹣16y.考点:抛物线的标准方程.专题:计算题.分析:设所求的抛物线方程为:x2=﹣2py(p>0),依题意,=4可求得p.解答:解:设所求的抛物线方程为:x2=﹣2py(p>0),∵其准线方程为y=4,∴=4,∴p=8.∴抛物线标准的方程为x2=﹣16y.故答案为:x2=﹣16y.点评:本题考查抛物线的标准方程,求得x2=﹣2py(p>0)中的p是关键,属于中档题.4.(3分)“x>1”是“x>a”的充分不必要条件,则a的范围为a<1.考点:充要条件.专题:计算题.分析:“x>1”是“x>a”的充分不必要条件,即由“x>1”可得“x>a”,反之不成立,由此即可得到结论.解答:解:由题意“x>1”是“x>a”的充分不必要条件,∴a<1故答案为a<1点评:本题考查充要条件,求解的关键是正确理解充分不必要条件的含义,并能根据其含义对所给的条件进行正确转化.5.(3分)若圆x2+y2=4与圆x2+(y﹣3)2=r2(r>0)外切,则实数r的值为1.考点:圆与圆的位置关系及其判定.专题:计算题.分析:利用两圆外切,两圆圆心距等于两圆半径之和来求出r的值.解解:圆x2+y2=4的圆心坐标(0,0)半径为2;答:圆x2+(y﹣3)2=r2(r>0)的圆心坐标(0,3),半径为r,∵两圆外切,∴两圆圆心距等于两圆半径之和,∴3=2+r,∴r=1,故答案为:1.点评:本题考查圆与圆的位置关系,两圆外切,两圆圆心距等于两圆半径之和.6.(3分)若复数z满足(z+i)(2﹣i)=11+7i(i为虚数单位),则|z|=5.考点:复数代数形式的乘除运算;复数求模.专题:计算题.分析:设出复数z,代入题目给出的等式,由实部等于实部,虚部等于虚部联立方程组求解a,b的值,则z可求,从而|z|可求.解答:解:设z=a+bi(a,b∈R),由(z+i)(2﹣i)=11+7i,得:(a+(b+1)i)(2﹣i)=11+7i,则(2a+b+1)+(2b﹣a+2)i=11+7i,所以,解得:.所以,z=3+4i.所以,.故答案为5.点评:本题考查了复数代数形式的乘除运算,考查了复数相等的充要条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,考查了复数模的求法,此题是基础题.7.(3分)函数y=2sinx﹣x,x∈[0,π]的单调递减区间为(,π).考点:正弦函数的单调性.专题:三角函数的图像与性质.分析:求导数可得y′=2cosx﹣1,令其小于0,解不等式可得答案.解答:解:∵y=2sinx﹣x,∴y′=2cosx﹣1,令y′=2cosx﹣1<0,结合x∈[0,π]可得x,故函数的单调递减区间为(,π)故答案为:(,π)点评:本题考查函数的单调性,用导数工具是解决问题的关键,属基础题.8.(3分)(xx•朝阳区二模)直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若MN=2,则实数k的值是0或﹣.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:由弦长公式得,当圆心到直线的距离等于1时,弦长MN=2,解此方程求出k的取值即可.解答:解:圆(x﹣3)2+(y﹣2)2=4圆心坐标(3,2),半径为2,因为直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若MN=2,由弦长公式得,圆心到直线的距离等于1,即=1,8k(k+)=0,解得k=0或k=,故答案为:0或.点评:本题考查圆心到直线的距离公式的应用,以及弦长公式的应用.考查计算能力.9.(3分)已知动点M到A(4,0)的距离等于它到直线x=1的距离的2倍,则动点M的轨迹方程为3x2﹣y2=12.考点:轨迹方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:设动点M(x,y),由动点M到A(4,0)的距离等于它到直线x=1的距离的2倍,知=2×|x﹣1|,由此能求出动点M的轨迹方程.解答:解:设动点M(x,y),∵动点M到A(4,0)的距离等于它到直线x=1的距离的2倍,∴=2×|x﹣1|,整理,得动点M的轨迹方程为3x2﹣y2=12.故答案为:3x2﹣y2=12.点评:本题考查动点M的轨迹方程的求法,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.10.(3分)观察下列等式:=(﹣)×,=(﹣)×,=(﹣)×,=(﹣)×,…可推测当n≥3,n∈N*时,=(﹣)×.考点:类比推理.专题:规律型.分析:通过观察可知,等式的规律特点为:积的倒数等于倒数的差乘以差的倒数,据此规律可求得答案.解答:解:通过观察四个等式可看出:两个整数乘积的倒数,等于较小整数的倒数减去较大整数倒数的差再乘以较大整数减去较小整数差的倒数,从而推测可推测当n≥3,n∈N*时,=(﹣)×,故答案为:=(﹣)×.点评:此题考查寻找数字的规律及运用规律进行推理.寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系.11.(3分)已知椭圆+=1与双曲线﹣y2=1有共同焦点F1,F2,点P是两曲线的一个交点,则|PF1|•|PF2|=5.考点:圆锥曲线的共同特征.专题:计算题.分析:利用椭圆+=1与双曲线﹣y2=1有共同的焦点F1、F2,结合椭圆和双曲线的定义求出|PF1|与|PF2|的表达式,代入即可求出|PF1|•|PF2|的值.解答:解:设P在双曲线的右支上,左右焦点F1、F2:利用椭圆以及双曲线的定义可得:|PF1|+|PF2|=6①|PF1|﹣|PF2|=4②由①②得:|PF1|=5,|PF2|=1.∴|PF1|•|PF2|=5×1=5.故答案为:5.点评:本题主要考查圆锥曲线的综合问题.解决本题的关键在于根据椭圆与双曲线有共同的焦点F1、F2,两个圆锥曲线的定义的应用,考查计算能力.12.(3分)在直角三角形ABC中,∠C为直角,两直角边长分别为a,b,求其外接圆半径时,可采取如下方法:将三角形ABC补成以其两直角边为邻边的矩形,则矩形的对角线为三角形外接圆的直径,可得三角形外接圆半径为;按此方法,在三棱锥S﹣ABC中,三条侧棱两两互相垂直,且长度分别为a,b,c,通过类比可得三棱锥S﹣ABC外接球的半径为.考点:类比推理.专题:规律型.分析:直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,将三棱锥补成一个长方体,其外接球的半径R为长方体对角线长的一半.解答:解:直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,将三棱锥补成一个长方体,其外接球的半径R为长方体对角线长的一半.故为故答案为:点评:本题考查类比思想及割补思想的运用,考查类用所学知识分析问题、解决问题的能力.13.(3分)已知曲线y=x2(x>0)在点P处切线恰好与圆C:x2+(y+1)2=1相切,则点P的坐标为(,6).考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:先设P(x0,y0),根据导数的几何意义求出函数f(x)在x=x0处的导数,从而求出切线的斜率,再用点斜式写出化简,根据此直线与圆C:x2+(y+1)2=1相切,转化成圆心到直线的距离等于半径,然后利用点到直线的距离公式进行求解即可.解答:解:设P(x0,y0),由题意知曲线y=x2在P点的切线斜率为k=2x0,切线方程为2x0x﹣y﹣x02=0,而此直线与圆C:x2+(y+1)2=1相切,∴d=.解得x0=±(负值舍去),y0=6.∴P点的坐标为(,6).故答案为:(,6).点评:考查学生会利用导数求曲线上过某点切线方程的斜率,以及直线与圆相切的条件,属于基础题.14.(3分)若函数f(x)在定义域D内某区间I上是增函数,且在I上是减函数,则称y=f (x)在I 上是“弱增函数”.已知函数h(x)=x2﹣(b﹣1)x+b在(0,1]上是“弱增函数”,则实数b的值为1.考点:奇偶性与单调性的综合.专题:新定义.分析:由“弱增函数”的定义知h(x)在(0,1)上递增,在(0,1)上递减,分别根据二次函数、“对勾函数”的单调性求出b的取值范围,二者取交集即可求得b值.解答:解:因为h(x)在(0,1]上是“弱增函数”,所以h(x)在(0,1)上递增,在(0,1)上递减.(1)由h(x)在(0,1)上递增,得≤0,解得b≤1;(2)由=x+﹣(b﹣1)在(0,1)上递减,得①若b≤0,=x+﹣(b﹣1)在(0,+∞)上递增,不合题意;②若b>0,由=x+﹣(b﹣1)在(0,1)上递减,得≥1,解得b≥1,综上,得b≥1,由(1)(2),得b=1.故答案为:1.点评:本题考查函数的单调性问题,熟练掌握常见函数如:二次函数、“对勾函数”的单调性可以为我们迅速解决问题提供帮助.二、解答题:本大题共6小题,共计58分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(8分)已知命题p:任意x∈R,x2+1≥a,命题q:方程﹣=1表示双曲线.(1)若命题p为真命题,求实数a的取值范围;(2)若“p且q”为真命题,求实数a的取值范围.考点:复合命题的真假;命题的真假判断与应用.专题:计算题.分析:(1)由题意先求出f(x)的最小值,然后结合命题p为真命题,可知a≤f(x)min,从而可求a的范围(2)因由为真命题,可知a+2>0,可求a的范围,然后结合p且q可知p,q都为真,可求解答:解(1)记f(x)=x2+1,x∈R,则f(x)的最小值为1,…(2分)因为命题p为真命题,所以a≤f(x)min=1,即a的取值范围为(﹣∞,1].…(4分)(2)因为q为真命题,所以a+2>0,解得a>﹣2.…(6分)因为“p且q”为真命题,所以即a的取值范围为(﹣2,1].…(8分)说明:第(1)问得出命题p为真命题的等价条件a≤1,给(4分),没过程不扣分,第(2)问分两步给,得到a>﹣2给(2分),得到x∈(﹣2,1]给(2分),少一步扣(2分).点评:本题主要考查了复合命题的真假关系的应用,解题的关键是准确求出命题p,q为真时参数的范围16.(8分)已知以点P为圆心的圆经过点A(﹣1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.(1)求直线CD的方程;(2)求圆P的方程.考点:直线和圆的方程的应用.专题:综合题.分析:(1)直接用点斜式求出直线CD的方程;(2)根据条件得知|PA|为圆的半径,点P在直线CD上,列方程求得圆心P坐标,从而求出圆P的方程.解答:解:(1)直线AB的斜率k=1,AB中点坐标为(1,2),…(3分)∴直线CD方程为y﹣2=﹣(x﹣1)即x+y﹣3=0 …(6分)(2)设圆心P(a,b),则由点P在直线CD上得:a+b﹣3=0 ①…(8分)又直径|CD|=,∴∴(a+1)2+b2=40 ②…(10分)由①②解得或∴圆心P(﹣3,6)或P(5,﹣2)…(12分)∴圆P的方程为(x+3)2+(y﹣6)2=40 或(x﹣5)2+(y+2)2=40…(14分)点此题考查直线方程的点斜式,和圆的标准方程.评:17.(10分)如图,四棱锥S﹣ABCD的底面为正方形,SD⊥平面ABCD,SD=AD=3,E 为线段SD上的一点.(1)求证:AC⊥BE;(2)若DE=1,求直线SC与平面ACE所成角的正弦值.考点:直线与平面所成的角;直线与平面垂直的判定.专题:证明题;空间位置关系与距离;空间角.分析:(1)SD,DC,DA两两互相垂直,建立空间直角坐标系,求出ABCS点的坐标,设出E的坐标,求出向量,通过向量的数量积证明AC⊥BE;(2)通过DE=1,求出,设出平面ACE的法向量,通过•=0,•=0,求出,然后利用公式求出直线SC与平面ACE所成角的正弦值.解答:(本题满分10分)解(1)因为四棱锥S﹣ABCD的底面为正方形,SD⊥平面ABCD,所以SD,DC,DA两两互相垂直,建立如图所示的空间直角坐标系D﹣xyz,则各点的坐标为D(0,0,0),A(3,0,0),B(3,3,0),C(0,3,0),S(0,0,3),…(2分)设E(0,0,t)(0≤t≤3),则=(﹣3,3,0),=(﹣3,﹣3,t).所以=﹣3×(﹣3)+3×(﹣3)+0×t=0,所以,即AC⊥BE;…(5分)(2)因为DE=1,所以t=1,所以=(0,3,﹣3),=(﹣3,3,0),=(﹣3,0,1).设平面ACE的法向量=(x,y,z),直线SC与平面ACE所成角为θ,所以•=0,•=0,即﹣3x+3y=0,﹣3x+z=0,解得x=y,z=3x.取x=1,则=(1,1,3),…(8分)所以•=0×1+3×1+(﹣3)×3=﹣6,||=,||=3,则sinθ=|cos<,>|=||==.所以直线SC与平面ACE所成角的正弦值为.…(10分)说明:第(1)问:建系设坐标给(2分),若没有指出SD,DC,DA两两互相垂直,不扣分;写对,的坐标各给(1分);第(2)问:分两步给分,求出法向量给(3分),求出角的正弦给(2分),若把它当成余弦扣(1分).点评:本题考查直线与直线的垂直的判断,直线与平面所成角的大小的求法,本题的解题的关键是空间直角坐标系的建立,以及公式的灵活应用,考查计算能力,空间想象能力.18.(10分)如图,在边长为2 (单位:m)的正方形铁皮的四周切去四个全等的等腰三角形,再把它的四个角沿着虚线折起,做成一个正四棱锥的模型.设切去的等腰三角形的高为x m.(1)求正四棱锥的体积V(x);(2)当x为何值时,正四棱锥的体积V(x)取得最大值?考点:利用导数求闭区间上函数的最值;棱柱、棱锥、棱台的体积.专题:计算题;导数的综合应用;空间位置关系与距离.分析:(1)由题意求出棱锥的底面面积以及棱锥的高,即可求正四棱锥的体积V(x);(2)通过(1)棱锥的体积的表达式,利用函数的导数求出函数的极值点,说明是函数的最大值点,即可求解当x为何值时,正四棱锥的体积V(x)取得最大值.解答:(本题满分10分)解(1)设正四棱锥的底面中心为O,一侧棱为AN.则由于切去的是等腰三角形,所以AN=,NO=1﹣x,…(2分)在直角三角形AON中,AO===,…(4分)所以V(x)=••[2(1﹣x)]2•=(1﹣x)2,(0<x<1).…(6分)(不写0<x<1扣1分)(2)V′(x)=[(2x﹣2)+]=(x﹣1),…(8分)令V′(x)=0,得x=1(舍去),x=.当x∈(0,)时,V′(x)>0,所以V(x)为增函数;当x∈(,1)时,V′(x)<0,所以V(x)为减函数.所以函数V(x)在x=时取得极大值,此时为V(x)最大值.答:当x为m时,正四棱锥的体积V(x)取得最大值.…(10分)说明:按评分标准给分,不写函数的定义域扣(1分),没有答扣(1分).点评:本题以折叠图形为依托,考查空间几何体的体积的求法,通过函数的对数求法函数的值的方法,考查空间想象能力与计算能力;解题中注意函数的定义域,导数的应用.19.(10分)如图,已知椭圆+=1(a>b>0)的右焦点为F(c,0),下顶点为A(0,﹣b),直线AF与椭圆的右准线交于点B,与椭圆的另一个交点为点C,若F恰好为线段AB的中点.(1)求椭圆的离心率;(2)若FC=,求椭圆的方程.考点:椭圆的简单性质;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)依题意,可求得2c=,从而可求得椭圆的离心率;(2)由(1)可知直线AB的方程为y=x﹣c,设C(x0,x0﹣c),将其代入椭圆方程,可求得x0,利用两点间的距离公式表示出FC=,可求得c,从而可求得椭圆的方程.解答:解(1)因为B在右准线上,且F恰好为线段AB的中点,所以2c=,…(2分)即=,所以椭圆的离心率e=…(4分)(2)由(1)知a=c,b=c,所以直线AB的方程为y=x﹣c,设C(x0,x0﹣c),因为点C在椭圆上,所以+=1,…(6分)即+2(x0﹣c)2=2c2,解得x0=0(舍去),x0=c.所以C为(c,c),…(8分)因为FC=,由两点距离公式可得(c﹣c)2+(c)2=,解得c2=2,所以a=2,b=,所以此椭圆的方程为+=1.…(10分)点评:本题考查椭圆的简单性质(求离心率),考查椭圆的标准方程,着重考查方程思想与化归思想的综合应用,属于中档题.20.(12分)设函数f(x)=lnx﹣ax,a∈R.(1)当x=1时,函数f(x)取得极值,求a的值;(2)当a>0时,求函数f(x)在区间[1,2]的最大值;(3)当a=﹣1时,关于x的方程2mf(x)=x2(m>0)有唯一实数解,求实数m的值.考点:函数在某点取得极值的条件;函数的零点;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)先求函数的定义域,然后求出导函数,根据f(x)在x=1处取得极值,则f'(1)=0,求出a的值,然后验证即可;(2)先求出a的范围,然后利用导数研究函数的单调性,①当0<≤1,即a≥1时,②当1<<2,③当≥2,分类讨论后,研究函数的单调性,从而求出函数f(x)在区间[1,2]的最大值;(3)研究函数是单调性得到函数的极值点,根据函数图象的变化趋势,判断何时方程2mf(x)=x2有唯一实数解,得到m所满足的方程,解方程求解m.解答:解:(1)f(x)的定义域为(0,+∞),所以f′(x)=﹣a=.…(2分)因为当x=1时,函数f(x)取得极值,所以f′(1)=1﹣a=0,所以a=1.经检验,a=1符合题意.(不检验不扣分)…(4分)(2)f′(x)=﹣a=,x>0.令f′(x)=0得x=.因为x∈(0,)时,f′(x)>0,x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)递增,在(,+∞)递减,…(5分)①当0<≤1,即a≥1时,f(x)在(1,2)上递减,所以x=1时,f(x)取最大值f (1)=﹣a;②当1<<2,即<a<1时,f(x)在(1,)上递增,在(,2)上递减,所以x=时,f(x)取最大值f()=﹣lna﹣1;③当≥2,即0<a≤时,f(x)在(1,2)上递增,所以x=2时,f(x)取最大值f(2)=ln2﹣2a.综上,①当0<a≤时,f(x)最大值为ln2﹣2a;②当<a<1时,f(x)最大值为﹣lna﹣1;③当a≥1时,f(x)最大值为﹣a.…(8分)(每种情形1分)(3)因为方程2mf(x)=x2有唯一实数解,所以x2﹣2mlnx﹣2mx=0有唯一实数解,设g(x)=x2﹣2mlnx﹣2mx,则g′(x)=,令g′(x)=0,x2﹣mx﹣m=0.因为m>0,x>0,所以x1=<0(舍去),x2=,当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)上单调递减,当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)单调递增,当x=x2时,g(x)取最小值g(x2).…(10分)则即所以2mlnx2+mx2﹣m=0,因为m>0,所以2lnx2+x2﹣1=0(*),设函数h(x)=2lnx+x﹣1,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.因为h(1)=0,所以方程(*)的解为x2=1,即=1,解得m=.…(12分)点评:本题主要考查了利用导数研究函数的极值,以及利用导数研究函数在闭区间上的最值,是一道综合题,有一定的难度,属于中档题.y}Ua627306 6AAA 檪V34897 8851 衑39808 9B80 鮀26860 68EC 棬C#36960 9060 遠。
高二上学期期末数学(理)试卷Word版含答案 (2)
高二(上)数学期末统测试题(理科)考生注意:1. 本试卷分第I 卷(选择题)和第#卷(非选择题)两部分,共150分.考试时间120分钟.2. 请将各题答案填写在答题卡上.3. 本试卷主要考试内容:人教A 版必修1,必修3占15%,必修5占30%,选修2—1占55%.第"卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是 符合题目要求的.1.命题“若,则I a | = | # | ”的逆命题为 A .若 a 2 /b 2,则 \ a\ #\ b\ B.若 a 2##,则 I a " # " b" 0 若 I a | = | b |,则 a 2/b 21 若 I a \ # \ b \,则 a 2#b 22,若集合 \ — 1V 2—%%1%,&={0,1,2,3%,则 A&B /A . {1,2%B . {2,3%0 {0,1%1 {1,2,3%3, 某大学随机抽取20个班,调查各班中有网上购物经历的人数,所得数据 T ----------------1 7 3的茎叶图如图所示,则这20个班有网购经历的人数的众数为2 7 4 4 4 3。
3 7 5 5 5 5 2 0A. 24B. 37 4 8 8 4 3 00 481 354, 已知a >3,则a —33a—3%最小值为5, 在三棱柱 ABC —A 1B 1C 1 中,若AB =!,A'=",A(/C ,则A. !十"一c B . ―!―b +c C , —a +b —c 1!—b —c6, 执行如图的程序框图.若输入A = 3,则输出的Z =A3 B4 05 167, 已知函数y (%) / log2(%+1) + 3%+*的零点在区间(0,1]上,则*的取 值范围为A , ( — 7, —4)*(0,十7) B, ( — 4,0)A . § B. 102140(— 7, —4]*(0,十7) 1 [ — 4,0)9.已知点F是抛物线+ =的焦点,点$(2,+#)&(!,+!)分别是抛物线上位于第一、四象限的点,若$-1/10测/ABF的面积为A. 14B. 30C. 42D. 9010.正三棱锥A'PBC的侧棱两两垂直,0,E分别为棱PA,BC的中点,则异面直线PC与DE 所成角的余弦值为A槡3 只槡槡p /槡p.槡(.33.11.在直角坐标系%Q y中,-是椭圆C:号十#!=1 (〉#〉0)的左焦点,A, B分别为左、右顶点, 过点-作%轴的垂线交椭圆C P P 3两点,连接PB交+轴于点E,连接AE交PQ于点4,#4是线段P-的中点,则椭圆C的离心率为; ) 10 4 12A.12.对于给定的正整数5,设集合X={1,2,3,…,n}, AOX,且A#1 ,记I(.A)为集合A中的最大元素,当A取遍X的所有非空子集时,对应的所有K.A)的和记为S(n),则8(100)的值为A. 100X2100+1B. 100X299+1C 99X2" + 1 D. 99 X2100+1第#卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.设命题.:对于任意的[0,2$) , | si; % |%1 ,则3 .为▲.14.一袋子中装有100个大小相同的红球、白球和黑球,其中45个红球,从中摸出一个球,摸出白球的概率为0. 23,则摸出黑球的概率为15.在/ABC中,内角A, B, C所对的边分别为",b, c.若c =4槡b, c os B /槡槡cos C?a /槡3 ,则S/ABC / ▲.16.已知双曲线C:%2-b2/ 1(a>0 , b〉0)的左、右焦点分别为-i, -2 ,过-2的直线交C的右支ab于A , B两点,A-,丄AB, 4 "A- | =3 | AB | ,则C的离心率为▲,三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1。
高二上学期期末数学(理)试卷Word版含答案
2018〜2019学年高二上学)期末统测数学(理科)考生注意:1. 本试卷分第I 卷(选择题)和第#卷(非选择题)两部分,共150分.考试时间120分钟.2. 请将各题答案填写在答题卡上.3. 本试卷主要考试内容:人教A 版必修1,必修3占15%,必修5占30%,选修2—1占55%.第"卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是 符合题目要求的.1.命题“若,则I a | = | # | ”的逆命题为 A .若 a 2 /b 2,则 \ a\ #\ b\ B.若 a 2##,则 I a " # " b" 0 若 I a | = | b |,则 a 2/b 21 若 I a \ # \ b \,则 a 2#b 22,若集合 \ — 1V 2—%%1%,&={0,1,2,3%,则 A&B /A . {1,2%B . {2,3%0 {0,1%1 {1,2,3%3, 某大学随机抽取20个班,调查各班中有网上购物经历的人数,所得数据 T ----------------1 7 3的茎叶图如图所示,则这20个班有网购经历的人数的众数为2 7 4 4 4 3。
3 7 5 5 5 5 2 0A. 24B. 37 4 8 8 4 3 00 481 354, 已知a >3,则a —33a—3%最小值为5, 在三棱柱 ABC —A 1B 1C 1 中,若AB =!,A'=",A(/C ,则A. !十"一c B . ―!―b +c C , —a +b —c 1!—b —c6, 执行如图的程序框图.若输入A = 3,则输出的Z =A3 B4 05A . § B. 10214167,已知函数y(%)/ log2(%+1)+ 3%+*的零点在区间(0,1]上,则*的取值范围为A , (— 7, —4)*(0,十7)B, (— 4,0)0(— 7, —4]*(0,十7) 1 [ — 4,0)9.已知点F是抛物线+ =的焦点,点$(2,+#)&(!,+!)分别是抛物线上位于第一、四象限的点,若$-1/10测/ABF的面积为A. 14B. 30C. 42D. 9010.正三棱锥A'PBC的侧棱两两垂直,0,E分别为棱PA,BC的中点,则异面直线PC与DE 所成角的余弦值为A槡3 只槡槡p /槡p.槡(.33.11.在直角坐标系%Q y中,-是椭圆C:号十#!=1 (〉#〉0)的左焦点,A, B分别为左、右顶点, 过点-作%轴的垂线交椭圆C P P 3两点,连接PB交+轴于点E,连接AE交PQ于点4,#4是线段P-的中点,则椭圆C的离心率为; ) 10 4 12A.12.对于给定的正整数5,设集合X={1,2,3,…,n}, AOX,且A#1 ,记I(.A)为集合A中的最大元素,当A取遍X的所有非空子集时,对应的所有K.A)的和记为S(n),则8(100)的值为A. 100X2100+1B. 100X299+1C 99X2" + 1 D. 99 X2100+1第#卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.设命题.:对于任意的[0,2$) , | si; % |%1 ,则3 .为▲.14.一袋子中装有100个大小相同的红球、白球和黑球,其中45个红球,从中摸出一个球,摸出白球的概率为0. 23,则摸出黑球的概率为15.在/ABC中,内角A, B, C所对的边分别为",b, c.若c =4槡b, c os B /槡槡cos C?a /槡3 ,则S/ABC / ▲.16.已知双曲线C:%2-b2/ 1(a>0 , b〉0)的左、右焦点分别为-i, -2 ,过-2的直线交C的右支ab于A , B两点,A-,丄AB, 4 "A- | =3 | AB | ,则C的离心率为▲,三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1。
2023 年新高考II卷高二上期期末数学试题
2023 年新高考II卷高二上期期末数学试题班级:_______ 姓名_______ 考号_______一、选择题:本题共8 小题,每小题5 分,共40 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1 .已知椭圆的一个焦点为(1, 0) ,则实数m 的值为A. B. 2 C. D.2 .已知等比数列{a n } 的各项均为正数,且a1 . a5 . a9 = 8 ,则log2 a1 + log2 a3 + log2 a5 + log2 a7 +log2 a9 =A .3B .4C .5D .63 .已知函数x3 −f x2 + x −3 ,则fA . −1B .1C . −5D .54 .已知双曲线的左、右焦点分别为F1, F2, 过左焦点F1 作斜率为2 的直线与双曲线交于1A ,B 两点,P 是AB 的中点,O 为坐标原点,若直线OP 的斜率为,则b 的值是4A .2B .C .D . ·i25 .《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织七匹三丈(1 匹=40 尺,一丈=10 尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5 尺,一月织了七匹一丈,问每天增加多少尺布?”若这一个月有29 天,记该女子一个月中的第n 天所织布的尺数为a n ,则的值为28 1 15A .15B .C .D .29 3 14试卷第1 页共4 页6 .已知抛物线E : y2 = 4x ,圆C:x2 + y2 = 2x ,过圆心C 作直线l 与抛物线E 和圆C 交于四个点,自上而下依次为A, M, N, B ,若AM ,MN,NB成等差数列,则直线l 的斜率为A .- 2B .±2C . ·22 D .±7 .已知函数f (x) 是定义在R 上的可导函数,其导函数为f '(x) ,若f (2) = e2 ,且f (x) −f '(x) > 0 ,则关于x 的不等式f (ln x) ≥x 的解集为A .(0, e]B .(0, e2C .[e, +∞)D .e2 , +∞)8.设函数f (x) = e x −ax2 + ax(a∈R) (e = 2.718 为自然对数的底数),若恰好存在两个正整数m, n 使得f (m) < 0, f (n) < 0 ,则实数a 的取值范围是A .B .C .D .二、选择题:本题共4 小题,每小题5 分,共20 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二上学期期末数学试卷(理科)
一、选择题
1. 抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是()
A .
B .
C .
D .
2. 直线x+y﹣3=0的倾斜角为()
A .
B .
C .
D .
3. 为研究两变量x和y的线性相关性,甲、乙两人分别做了研究,利用线性回归方法得到回归直线方程m和n,两人计算相同,也相同,则下列说法正确的是()
A . m与n重合
B . m与n平行
C . m与n交于点(,)
D . 无法判定m与n是否相交
4. 一束光线从A(1,0)点处射到y轴上一点B(0,2)后被y轴反射,则反射光线所在直线的方程是()
A . x+2y﹣2=0
B . 2x﹣y+2=0
C . x﹣2y+2=0
D . 2x+y﹣2=0
5. 完成下列抽样调查,较为合理的抽样方法依次是()
①从30件产品中抽取3件进行检查.
②某校高中三个年级共有2460人,其中高一890人、高二820人、高三810人,为了了解学生对数学的建议,拟抽取一个容量为300的样本;
③某剧场有28排,每排有32个座位,在一次报告中恰好坐满了听众,报告结束后,为了了解听众意见,需要请28名听众进行座谈.
A . ①简单随机抽样,②系统抽样,③分层抽样
B . ①分层抽样,②系统抽样,③简单随机抽样
C . ①系统抽样,②简单随机抽样,③分层抽样
D . ①简单随机抽样,②分层抽样,③系统抽样
6. 有四个游戏盒,将它们水平放稳后,在上面仍一粒玻璃珠,若玻璃珠落在阴影部分,则可中奖,则中奖机会大的游戏盘是()
A .
B .
C .
D .
7. 以点(5,4)为圆心且与x轴相切的圆的方程是()
A . (x﹣5)2+(y﹣4)2=16
B . (x+5)2+(y﹣4)2=16
C . (x﹣5)2+(y﹣4)2=25
D . (x+5)2+(y﹣4)2=25
8. 直线l1:(a+3)x+y﹣4=0与直线l2:x+(a﹣1)y+4=0垂直,则直线l1在x轴上的截距是()
A . 1
B . 2
C . 3
D . 4
9. 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为()(参考数据:sin15°=0.2588,sin75°=0.1305)
A . 3.10
B . 3.11
C . 3.12
D . 3.13
10. 某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为()
A . 8万元
B . 10万元
C . 12万元
D . 15万
11. 从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()
A . 300
B . 216
C . 180
D . 162
12. 圆C1:(x﹣1)2+(y﹣3)2=9和C2:x2+(y﹣2)2=1,M,N分别是圆C1,C2上的点,P是直线y=﹣1上的点,则|PM|+|PN|的最小值是()
A . 5 ﹣4
B . ﹣1
C . 6﹣2
D .
二、填空题
13. 在的展开式中,x6的系数是________.
14. 一批10件产品,其中有3件次品,7件正品,不放回抽取2次,若第一次抽到的是正品,则第二次抽到次品的概率________.
15. 已知点A(﹣2,3)、B(3,2),若直线l:y=kx﹣2与线段AB没有交点,则l的斜率k的取值范围是________.
16. 在无重复数字的五位数a1a2a3a4a5中,若a1<a2,a2>a3,a3<a4,a4>a5时称为波形数,如89674就是一个波形数,由1,2,3,4,5组成一个没有重复数字的五位数是波形数的概率是________.
三、解答题
17. 设(x+2)n=a0+a1x+a2x2+…+anxn(n∈N*,n≥2),且a0,a1,a2成等差数列.
(1)求(x+2)n展开式的中间项;
(2)求(x+2)n展开式所有含x奇次幂的系数和.
18. 已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.
19. 为了考查培育的某种植物的生长情况,从试验田中随机抽取100柱该植物进行检测,得到该植物高度的频数分布表如下:
组序
高度区间
频数
1 [230,235)14
0.14
2 [235,240)①
0.26
3 [240,245)②
0.20
4 [245,250)30
③
5 [250,255)10
④
合计
100
(Ⅰ)写出表中①②③④处的数据;
(Ⅱ)用分层抽样法从第3、4、5组中抽取一个容量为6的样本,则各组应分别抽取多少个个体?
(Ⅲ)在(Ⅱ)的前提下,从抽出的容量为6的样本中随机选取两个个体进行进一步分析,求这两个个体中至少有一个来自第3组的概率.
20. 某工厂组织工人技能培训,其中甲、乙两名技工在培训时进行的5次技能测试中的成绩如图茎叶图所示.
(Ⅰ)现要从中选派一人参加技能大赛,从这两名技工的测试成绩分析,派谁参加更合适;
(Ⅱ)若将频率视为概率,对选派参加技能大赛的技工在今后三次技能大赛的成绩进行预测,记这三次成绩中高于85分的次数为ξ,求ξ的分布列及数学期望.
21. 已知圆O的方程为x2+y2=5.
(1)P是直线y= x﹣5上的动点,过P作圆O的两条切线PC、PD,切点为C、D,求证:直线CD过定点;
(2)若EF、GH为圆O的两条互相垂直的弦,垂足为M(1,1),求四边形EGFH 面积的最大值.
22. 已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+5﹣2m=0(m∈R).
(1)求方程表示一条直线的条件;
(2)当m为何值时,方程表示的直线与x轴垂直;
(3)若方程表示的直线在两坐标轴上的截距相等,求实数m的值.。