人教版初三数学下册28.1.1锐角三角函数公开课教案

合集下载

28.1.1锐角三角函数公开课教案

28.1.1锐角三角函数公开课教案

28.1.1锐角三角函数学校矿泉中学授课陆叙波时间设计理念注重学生经历观察、操作等探索过程,强调学生对知识的感觉与对新知识的理解与认知。

鼓励学生自主探索与合作交流,培养学生概括的能力,使知识形成体系,并渗透数学思想方法。

教学目标1、知识目标:使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定这一事实,进而认识正弦(sinA).2、技能目标:经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维.3、情感态度与价值观:使学生体验数学活动充满着探索与创造,能积极参与数学学习活动重点使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实,认识正弦(sinA).难点学生很难想到对任意锐角,它的对边与斜边的比值是固定值的事实,关键在于教师引导学生比较、分析,得出结论.方法体验、探索式教学课型新授课教学过程教学环节教学内容师生活动设计意图一、观察发现问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?思考:1.在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?2.若斜坡与水平面所成角的度数是45°,结果会如何呢?3.若斜坡与水平面所成角的度数是40°,结果会如何呢?4.若已知出水口高度为40m,斜坡上铺设的水管长50m,那么斜坡与水平面所成角的度数是多少呢?教师提出问题,给学生一定的时间进行思考,之后可让学生进行交流。

得到在直角三角形中,如果一个锐角是30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都是12由实际需要引出新知.前两个问题学生很容易回答.主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.后两个问题的设计却使学生感到疑惑,这对九年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.二、探究1.请每一位同学拿出自己的三角板,分别测量并教师提出问在培养学生。

28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册

28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册
2.学习特殊(30°、45°、60°)的正弦、余弦、正切值,并能熟练运用这些值进行相关计算。
3.通过实际例题,培养学生运用锐角三角函数解决实际问题的能力。
本节课将结合教材内容,通过讲解、示范、练习等环节,帮助学生掌握特殊角的锐角三角函数值,并为后续学习三角函数的性质和应用打下坚实基础。
二、核心素养目标
3.增强学生的数学运算与数据分析能力:通过解决实际例题,让学生运用锐角三角函数进行计算和分析,提高数学运算与数据分析能力,为解决复杂问题奠定基础。
本节课将紧密围绕新教材的要求,关注学生核心素养的培养,帮助学生将所学知识内化为自身的数学素养,为未来的学习和生活打下坚实基础。
后的内容###”二、核心素养目标”作为标题标识,再开篇直接输出。
2.逻辑推理:通过特殊角的锐角三角函数值的推导,提高学生的逻辑推理能力。
3.数学运算与数据分析:培养学生运用特殊角的锐角三角函数值进行精确计算和解决实际问题的能力。
三、教学过程
1.导入新课
通过回顾上一节课的内容,引导学生进入锐角三角函数的学习。
2.基本概念与性质
复习锐角三角函数的定义,强调正弦、余弦、正切的概念。
四、教学评价
1.课堂问答:检查学生对特殊角的锐角三角函数值的掌握程度。
2.练习题完成情况:评估学生对知识点的理解和运用能力。
3.课后作业:布置相关作业,巩固所学知识。
五、教学资源
1.教材:人教版数学九年级下册。
2.课件:包含本节课教学内容的PPT。
3.练习题:针对本节课知识点的练习题。
五、教学反思
在上完这节关于特殊角的锐角三角函数值的内容后,我进行了深入的思考。首先,我发现学生们对于锐角三角函数的定义有了较好的理解,但记忆特殊角的函数值还存在一定难度。在教学中,我尝试通过一些记忆方法,如编口诀、画图等,帮助学生记忆。从学生的反馈来看,这些方法还是有一定效果的,但还需在后续教学中继续巩固。

人教版九年级下册28.1特殊角的锐角三角函数值教学设计

人教版九年级下册28.1特殊角的锐角三角函数值教学设计
(4)小组合作题:以小组为单位,探讨特殊角的三角函数值在生活中的应用,并撰写一篇小论文。
作业要求:
1.学生需独立完成作业,诚实守信,不得抄袭。
2.解题过程要求步骤清晰,书写规范。
3.小组合作题需充分发挥团队合作精神,共同完成。
4.作业完成后,及时上交,教师将进行批改和反馈。
4.通过对特殊角的锐角三角函数值的学习,培养学生对数的敏感性和逻辑思维能力。
(二)过程与方法
1.通过观察、猜想、验证等教学活动,引导学生自主发现特殊角的锐角三角函数值规律,培养学生自主学习的能力。
2.运用问题驱动的教学方法,激发学生的学习兴趣,引导学生通过合作、探究、讨论等方式,深入理解特殊角锐角三角函数的概念和计算方法。
针对学生的困惑,我会进行有针对性的解答,巩固学生对知识的理解。最后,强调特殊角的锐角三角函数值在实际生活中的应用,提高学生的应用意识,为后续学习打下坚实基础。
五、作业布置
为了巩固学生对特殊角的锐角三角函数值的学习,确保学生能够熟练掌握并运用到实际中,我设计了以下几类作业:
1.基础巩固题:布置一些基本的计算题,要求学生熟练掌握特殊角的正弦、余弦、正切值,并能快速准确地计算出结果。
学生在讨论过程中,可以相互提问、解答,共同探讨特殊角锐角三角函数值的规律。我会巡回指导,解答学生的疑问,引导学生深入思考。讨论结束后,每个小组汇报讨论成果,共同分享学习心得。
(四)课堂练习,500字
在课堂练习环节,我会设计不同难度的题目,让学生独立完成。题目包括基础题、提高题和应用题,旨在检验学生对特殊角的锐角三角函数值的掌握程度。
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,我将结合学生的生活经验,提出一个与学生实际相关的问题:“同学们,在我们的日常生活中,如建筑设计、制作家具等,经常会遇到各种角度的测量问题。那么,如何才能快速、准确地计算出这些角度的三角函数值呢?”通过这个问题,激发学生的好奇心,引导学生思考。

人教版数学九年级下册教学设计28.1《锐角三角函数》

人教版数学九年级下册教学设计28.1《锐角三角函数》

人教版数学九年级下册教学设计28.1《锐角三角函数》一. 教材分析人教版数学九年级下册第28.1节《锐角三角函数》是初中数学的重要内容,主要介绍了锐角三角函数的概念、定义及应用。

本节内容是学生对三角形知识深入理解的基础上进行学习的,对于培养学生的逻辑思维能力、空间想象能力和数学应用能力具有重要意义。

教材通过丰富的实例,引导学生探究锐角三角函数的定义,并运用函数思想解决实际问题。

二. 学情分析九年级的学生已经掌握了三角形的基本知识,具有较好的逻辑思维能力和空间想象能力。

但是,对于锐角三角函数的概念和应用,部分学生可能会感到抽象和难以理解。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的特点进行针对性的教学。

三. 教学目标1.知识与技能:使学生掌握锐角三角函数的概念、定义及性质,能够运用锐角三角函数解决实际问题。

2.过程与方法:通过探究活动,培养学生合作交流、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的抽象思维能力和创新意识。

四. 教学重难点1.重点:锐角三角函数的概念、定义及性质。

2.难点:锐角三角函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例,引导学生认识锐角三角函数,激发学生的学习兴趣。

2.探究教学法:学生进行小组讨论,共同探究锐角三角函数的性质,培养学生的合作意识。

3.案例教学法:通过典型例题,讲解锐角三角函数在实际问题中的应用,提高学生的解决问题的能力。

六. 教学准备1.教学PPT:制作精美的教学PPT,展示锐角三角函数的相关概念、定义及应用。

2.教学案例:挑选具有代表性的例题,供课堂讲解和练习使用。

3.学习素材:为学生提供相关的学习资料,帮助学生巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如建筑设计、工程测量等,引导学生认识锐角三角函数,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示锐角三角函数的概念、定义及性质,让学生初步了解并掌握相关知识。

数学人教版九年级下册28.1《锐角三角函数》教学设计

数学人教版九年级下册28.1《锐角三角函数》教学设计
(二)学练结合探究新知
探究三:议一议
探究四:辨一辨
a
c
b
dHale Waihona Puke (三)应用新知巩固拓展(四)回顾课堂、感悟收获(五)达标检测、反思成长
(六)课下作业、巩固发展
1、利用多媒体播放“设计过山车路线”的游戏.
探究一:比一比
比较下列各组中哪个滑道更陡,你有哪些判断方法
1、若锐角a改变,则tana会怎样变化?
2、滑道的倾斜程度与tana有怎样的关系?
学生要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。
教学目标
1、知识目标
(1)经历探索直角三角形中边角关系的过程,理解正切的意义,并能举例说明。
(2)能运用tana表示直角三角形中的两边之比,表示物体的倾斜度、坡度等,能利用直角三角形中的边角关系进行简单的计算。
结论2
(学生板演展示)
28.1《锐角三角函数》教学设计
第一课时
教材分析
《锐角三角函数》(第一课时),它是人教版义务教育实验教科书九年级下册第二十九章的内容。
锐角三角函数反映了直角三角形中边角之间的关系,它在解决实际问题中起着重要的作用。相比之下,正切是生活当中应用最多的三角函数概念。通过本节课的学习使学生进一步体会比和比例、图形的相似、推理证明等数学知识之间的联系。感受数形结合的思想,体会数形结合的方法,为一般性的学习锐角三角函数、利用锐角三角函数解决实际问题奠定基础。
学生能直观的发现倾斜角越大滑道越陡.还有其它方法吗?细心的同学观察出通过边来进行判断:“当高等时,底边越短滑道越陡.”
让学生用自己的语言来总结出今天探索的知识点,有利于培养学生善于总结归纳的好习惯.

人教版九年级数学下册: 28《锐角三角函数》《《锐角三角函数》教案》教案1

人教版九年级数学下册: 28《锐角三角函数》《《锐角三角函数》教案》教案1

人教版九年级数学下册: 28《锐角三角函数》《《锐角三角函数》教案》教案1一. 教材分析人教版九年级数学下册第28课《锐角三角函数》是学生在学习了三角函数概念和特殊角的三角函数值的基础上进行的一节实践性较强的课程。

本节课主要让学生了解锐角三角函数的概念,学会用锐角三角函数解决实际问题,培养学生运用数学知识解决实际问题的能力。

二. 学情分析九年级的学生已经掌握了三角函数的基本概念和特殊角的三角函数值,具备一定的数学基础。

但是,对于锐角三角函数的实际应用,学生可能还比较陌生。

因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生运用数学知识解决实际问题的能力。

三. 教学目标1.知识与技能:让学生掌握锐角三角函数的概念,学会用锐角三角函数解决实际问题。

2.过程与方法:通过自主学习、合作探究的方式,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:锐角三角函数的概念及应用。

2.难点:如何引导学生将理论知识与实际问题相结合,提高学生运用数学知识解决实际问题的能力。

五. 教学方法1.情境教学法:通过生活实例,引导学生了解锐角三角函数在实际生活中的应用。

2.自主学习法:鼓励学生自主探究,培养学生的学习能力。

3.合作学习法:学生进行小组讨论,提高学生的团队合作能力。

六. 教学准备1.准备相关的生活实例,用于引导学生了解锐角三角函数在实际生活中的应用。

2.准备多媒体教学课件,帮助学生直观地理解锐角三角函数的概念。

七. 教学过程1.导入(5分钟)教师通过展示一些生活实例,如测量山的高度、计算建筑物的斜面积等,引导学生了解锐角三角函数在实际生活中的应用,激发学生的学习兴趣。

2.呈现(10分钟)教师通过多媒体课件,介绍锐角三角函数的概念,让学生了解锐角三角函数的定义和性质。

同时,教师可以通过讲解特殊角的三角函数值,帮助学生巩固已学的知识。

人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例

人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例
4.定期对学生的学习成果进行评价和总结,激发学生的学习动力,提高学生的数学素养。
四、教学评价
1.评价学生的知识掌握程度:通过课堂提问、作业批改等方式,了解学生对锐角三角函数知识的掌握情况;
2.评价学生的实践操作能力:通过实际问题解决,评价学生运用锐角三角函数解决实际问题的能力;
3.评价学生的合作交流能力:通过小组讨论、互动交流等方式,评价学生在团队合作中的表现;
3.讲练结合:在课堂中及时进行练习,巩固所学知识,提高学生的实际操作能力;
4.反馈调整:根据学生的学习情况,及时调整教学方法,以提高教学效果。
五、教学过程
1.创设情境,引入新课:通过生活实例,引导学生思考并引入锐角三角函数的概念;
2.自主探究,小组合作:让学生在小组内讨论交流,共同探究锐角三角函数的定义及应用;
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生学习数学的内在动力;
2.培养学生合作交流的意识,提高学生团队协作的能力;
3.让学生感受数学与生活的紧密联系,培养学生的应用意识;
4.通过对本节课的学习,使学生树立正确的数学学习观念,相信自己通过努力可以掌握并运用好数学知识。
三、教学重难点
4.评价学生的情感态度与价值观:通过观察学生的学习态度、课堂表现等,评价学生对数学学科的兴趣和热爱。
五、教学拓展
1.利用多媒体技术,展示锐角三角函数在实际生活中的应用,激发学生的学习兴趣;
2.推荐相关的数学读物和网站,让学生课后进行拓展学习,提高学生的数学素养;
3.结合学校或社区的活动,让学生运用所学知识解决实际问题,提高学生的实践能力。
六、教学反思
在教学过程中,教师应不断反思自己的教学方法、教学内容等方面,以确保教学的质量和效果。同时,关注学生的学习反馈,根据学生的需求调整教学策略,以提高教学效果。通过不断的反思和调整,使教学更加符合学生的实际情况,提高学生的数学素养。

人教版九年级下册28.1锐角三角函数课程设计

人教版九年级下册28.1锐角三角函数课程设计

人教版九年级下册28.1锐角三角函数课程设计本门课程旨在让学生掌握锐角三角函数的基本概念及应用。

通过对本门课程的学习,学生将能够深入了解三角函数的性质和图像,并且了解三角函数在实际生活中的应用。

一、基本概念和性质1.1 锐角三角函数的概念锐角三角函数是指三角函数中正弦函数、余弦函数和正切函数,它们都只在锐角范围内有定义。

1.2 正弦函数、余弦函数和正切函数的图像学生可以通过画出不同角度下正弦函数、余弦函数和正切函数的图像进行观察和对比,并从中了解它们之间的关系和特点。

1.3 三角函数的周期性和奇偶性三角函数是周期函数。

对于正弦函数和余弦函数,其图像关于y轴对称;对于正切函数,它的图像关于原点对称。

二、三角函数的应用2.1 三角函数在几何中的应用三角函数在几何中有着广泛的应用,比如可以用正弦函数计算直角三角形中的角度,用余弦函数计算平行四边形对角线长度等等。

2.2 三角函数在物理中的应用三角函数在物理中也有着广泛的应用,比如可以用正弦函数计算某一物体的压强,用余弦函数计算物体的质量等等。

三、课程设计3.1 教学目标1.掌握锐角三角函数的基本概念;2.了解正弦函数、余弦函数和正切函数图像,并能进行比较和分析;3.熟练掌握三角函数在几何中和物理中的应用。

3.2 教学重难点1.三角函数在几何中的应用;2.三角函数在物理中的应用。

3.3 教学过程与方法1.教师讲解锐角三角函数的基本概念和性质;2.教师示范正弦函数、余弦函数和正切函数的图像,并让学生进行观察和探究;3.学生进行小组讨论,分析三角函数在几何和物理中的应用;4.教师辅导学生进行三角函数在实际问题中的应用题目练习。

3.4 课堂作业1.练习册P314,第1-3题。

四、课后反思通过本堂课的学习,学生对锐角三角函数的基本概念和应用有了更加深入的了解。

但是在课堂教学中,有些学生因为对数学知识掌握不熟练,导致在课堂练习与实际问题解决中表现不佳,需要在后续的教学中加以重点关注和辅导。

人教版九年级数学下册28.1:锐角三角函数 课程教学设计

人教版九年级数学下册28.1:锐角三角函数 课程教学设计

课题:锐角三角函数(第一课时)教材:人教版九年级下册28.1【教学目标】1.经历回顾及提出问题的过程,能将实际问题转化为几何模型,感悟研究直角三角形边角关系的重要性.2.参与锐角三角函数定义的活动过程,会计算特殊角对应边的比值,能结合图形陈述锐角三角函数概念、表示方法、取值范围,体会概念形成过程和所蕴含的归纳、类比思想.3.通过求锐角三角函数值的活动,掌握特殊角的三角函数值,积累求锐角三角函数值的数学活动经验.【教学重难点】教学重点:通过求锐角三角函数值的活动,掌握特殊角的三角函数值,能用锐角三角函数解直角三角形.教学难点:探索并认识锐角三角函数.【教学方法与教学手段】教学方法:自学.议论.引导教学法.教学手段:利用生活中的实例引入教学,抽象出要解决的问题,师生共同探究归纳总结生成结论.【教学过程】一、情境导入活动1问题如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使水管出水口到水平面的高度为35m,那么需准备多长的管?导图【设计意图】对这样实际问题,教师引导学生如何将这一实际问题转化为数学模型,让学生在相互交流中获得结论.教师重点关注学生获取结论的过程,即是否运用“ = ”这一结论.二、师生议学探究1问题如果将上述问题中出水口到水平面的高度改为50m,那么需准备多长的水管?通过对前面问题和探究的思考,你有什么发现?【设计意图】在学生自主探究,获得结论后,让他们相互交流各自体会,为掌握本节知识积累感性认识.最后教师与学生一道进行简要总结.【归纳结论】在一个直角三角形中,如果一个锐角为30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于12,是一个定值.探究2问题如图1,如果将上述问题中的斜坡与水平面所成角的度数改成固定角度α,那么这个角的对边和斜边的比值还是定值吗?图1【设计意图】由特殊到一般的推理,学生可以利用相似三角形的性质发现当B i点在射线AB上移动时,每个直角三角形中锐角对边和斜边的比值是定值.【归纳结论】直角三角形中,锐角的对边和斜边的比值是定值.探究3问题如果将上述问题中的斜坡与水平面所成角的度数改成变化的角度α,那么随着角的变化,这个角的对边和斜边的比值还是定值吗?【设计意图】学生通过上述问题理解随着角的变化,这个角的对边和斜边的比值也在变化,感悟比值就是这个角的函数.【归纳结论】如图2,我们把锐角A的对边与斜边的比叫做∠A的正弦函数,记作sin A,即sin A==A ac∠的对边斜边.图2【典例剖析】例1 如图3,在Rt△ABC中,∠C=90°,求sin A和sin B的值.图3活动2探究4问题刚才我们研究了∠A的正弦函数,也就是∠A的对边和斜边之比,那么类似的还能提出哪些关于边之比的问题?【设计意图】类比已经学过的知识,学生通过思考,自主建构,可能会提出邻边与斜边、对边与邻边、斜边与邻边、邻边与对边之比等各位结论,引导学生建构余弦、正切函数.邻边ac对边斜边CαOC【归纳结论】我们把锐角A 的邻边与斜边的比叫做∠A 的余弦函数,记作cos A ,即cos A ==A b c∠的邻边斜边,我们把锐角A 的对边与邻边的比叫做∠A 的正切函数,记作tan A ,即tan A ==A a b∠的对边邻边,初中阶段我们只研究这3个函数,这里sin A , cos A , tan A 都是一个完整的符号,单独的“sin”没有意义.其中A 前面的 “∠”一般省略不写.∠A 的正弦、余弦、正切都是∠A 的锐角三角函数.探究5问题 根据图形,能得出这三个三角函数的取值范围吗?【设计意图】通过取值范围的探究,学生会更注重数形结合,能够加深对这三个函数的理解,有利于建立角与边之间的关系.【归纳结论】0<sin A <1,0<cos A <1,tan A >0.活动3自主整理30°,45°,60°的三角函数值,小组交流结论,并提出猜想.【设计意图】学生自主探究特殊角的三角函数值,进一步增加对三角函数的理解,同时为后续利用特殊角的三角函数值解决问题打下基础.【归纳结论】(90°-A ), tan A ×tan (90°-A )=1,sin 2A +cos 2A =1等结论.【典例剖析】例2 (1)求sin45°cos60°-cos45°;(2)在Rt △ABC 中,∠C =90°,AC =12,5sin 13A =,求AB 的长及sin B ,cos A 和tan A .【设计意图】所选例题,可由学生自主探究完成.学生既能独立思考,又可相互合作,师生共同寻求解题方法,完成解答过程.本题学生先画图,利用图形的直观性来获得结论更好些.【归纳结论】(2)利用参数思想,学生可以具体化对应边长,最终容易得出结论。

人教版九年级下册28.1特殊角的锐角三角函数值优秀教学案例

人教版九年级下册28.1特殊角的锐角三角函数值优秀教学案例
这些亮点体现了本教学案例在教学设计、教学方法和教学评价等方面的优势,有助于提高学生的学习兴趣、参与度和效果,培养学生的综合素质和能力。
4.利用多媒体手段,如动画、视频等,形象地展示特殊角的三角函数值的变化规律,增强学生的直观感受。
(二)问题导向
1.设计一系列具有启发性的问题,引导学生思考特殊角三角函数值的意义和作用。
2.引导学生通过实验、观察、讨论等方式,自主探究特殊角三角函数值的规律。
3.提出挑战性的问题,激发学生深入思考,提高学生解决问题的能力。
在实际教学中,我发现许多学生在学习这一部分内容时存在一定的困难,主要是由于对三角函数概念的理解不够深刻,以及对特殊角三角函数值的记忆不牢固。因此,在教学过程中,我需要针对学生的实际情况进行有针对性的教学设计,通过合理的教学方法和手段,帮助学生理解和掌握特殊角的三角函数值,提高他们的学习效果。
二、教学目标
4.采用小组合作学习的方式,培养学生团队合作的精神,提高学生的沟通表达能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习三角函数的内在动机。
2.使学生认识到特殊角三角函数值在实际生活中的应用,提高学生对数学价值的认识。
3.培养学生勇于挑战自我,克服困难的意志,增强学生的自信心。
4.引导学生树立正确的价值观,明白努力学习三角函数的重要性,为今后的学习和生活打下坚实的基础。
4.鼓励学生提出自己的疑问,培养学生敢于质疑、善于思考的良好习惯。
(三)小组合作
1.组织学生进行小组讨论,鼓励学生分享自己的观点和思考,培养学生的团队合作精神。
2.设计小组合作任务,让学生在实践中运用特殊角的三角函数值,提高学生的动手操作能力。
3.采用小组竞赛的方式,激发学生的竞争意识,提高学生的学习积极性。

人教初中数学九年级下册28-1 锐角三角函数(教学设计)

人教初中数学九年级下册28-1 锐角三角函数(教学设计)

28.1 锐角三角函数
为了绿化荒山,某地打算从位于山脚下的机井
房沿着山坡铺设水管,在山坡上修建一座扬水站,
对坡面的绿地进行喷灌。

现测得斜坡的仰角为30°
【问题一】为使出水口的高度为35m,需要准备多长的水管?
【问题二】如果出水口的高度为50 m,那么需要准备多长的水管?100m
例1 如图(1)(2),在Rt△ABC中,∠C=90°,求sinA和sinB的值.
变式1-1在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()
A.3
5 B.3
4
C.4
5
D.4
3
变式1-2 把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()
A.不变B.缩小为原来的1
3
C.扩大为原来的3倍D.不能确定
变式1-3 在△ABC中,∠C=90°,如果 sinA = 1
3
,AB=9,那么BC=___.
典例2 在 Rt△ABC 中,∠C=90°,若∠A=30°且 BC=2,求cosA=?
变式2-1 在 Rt△ABC 中,∠C=90°,若∠A=45°且 BC=2,求cosA=?
,AC=6cm,那么BC等于_____.
变式2-2 Rt△ABC中,∠C=90°,cosA=3
5
变式2-3 如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=4
,则AC=____.
5
观察30°、45°、60°角的正弦值、余弦值和正切值,你发现了什么?。

人教版九年级数学下册28.1.1:锐角三角函数-正弦(教案)

人教版九年级数学下册28.1.1:锐角三角函数-正弦(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正弦函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对正弦函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调正弦函数的定义和计算方法这两个重点。对于难点部分,我会通过实际例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正弦函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,使用直角三角形模型来演示正弦函数的计算过程。
-计算过程中的转换:在实际问题中,往往需要将实际情景转换为直角三角形,再利用正弦函数进行计算,这一转换过程对学生来说是难点。
-计算器的正确使用:对于部分学生来说,正确使用计算器求正弦值可能存在困难,需要教师耐心指导。
-解决实际问题的策略:如何将实际问题抽象为数学模型,并运用正弦函数解决问题,这对学生的数学建模和数学应用能力提出了挑战。
此外,学生在使用计算器求正弦值时,出现了一些操作上的错误。这让我意识到,在强调数学概念和计算方法的同时,也不能忽视对学生计算器使用技能的培训。我需要在课堂上留出更多时间,专门讲解和练习计算器的正确使用方法。
在小组讨论环节,我尝试作为一个引导者,鼓励学生提出问题和解决问题。我感到欣慰的是,学生们能够积极参与,勇于表达自己的观点。不过,我也观察到,有些小组在讨论中可能会偏离主题,这提醒我在今后的教学中,需要更明确地设置讨论的界限,同时提供更多的问题引导,以保持讨论的针对性和效率。

九年级数学下册28_1锐角三角函数教案新版新人教版

九年级数学下册28_1锐角三角函数教案新版新人教版

28.1锐角三角函数教学目标:1、 理解锐角三角函数的定义,掌握锐角三角函数的表示法;2、 能根据锐角三角函数的定义计算一个锐角的各个三角函数的值;3、 掌握Rt △中的锐角三角函数的表示:sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠4、掌握锐角三角函数的取值范围;5、通过经历三角函数概念的形成过程,培养学生从特殊到一般及数形结合的思想方法。

教学重点:锐角三角函数相关定义的理解及根据定义计算锐角三角函数的值。

教学难点:锐角三角函数概念的形成。

教学过程:一、创设情境:鞋跟多高合适?美国人体工程学研究人员卡特·克雷加文调查发现,70%以上的女性喜欢穿鞋跟高度为6至7厘米左右的高跟鞋。

但专家认为穿6厘米以上的高跟鞋腿肚、背部等处的肌肉非常容易疲劳。

据研究,当高跟鞋的鞋底与地面的夹角为11度左右时,人脚的感觉最舒适。

假设某成年人脚前掌到脚后跟长为15厘米,不难算出鞋跟在3厘米左右高度为最佳。

问:你知道专家是怎样计算的吗? 显然,高跟鞋的鞋底、鞋跟与地面围城了一个直角三角形,回顾直角三角形的已学知识,引出课题。

二、探索新知:1、下面我们一起来探索一下。

实践一:作一个30°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。

⑴计算AB BC ,AB AC ,ACBC的值,并将所得的结果与你同伴所得的结果进行比较。

∠A=30°时 学生1结果 学生2结果 学生3结果 学生4结果⑵将你所取的AB 的值和你的同伴比较。

实践二:作一个50°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。

(1)量出AB ,AC ,BC 的长度(精确到1mm )。

(2)计算AB BC ,AB AC ,ACBC的值(结果保留2个有效数字),并将所得的结果与你同伴所∠A=50°时 ABACBCAC B学生1结果 学生2结果 学生3结果 学生4结果(3)将你所取的AB 的值和你的同伴比较。

数学人教版九年级下册28.1锐角三角函数(第一课时)教学设计

数学人教版九年级下册28.1锐角三角函数(第一课时)教学设计

28.1锐角三角函数(第一课时)教学设计学情分析教材利用意大利比萨斜塔偏离垂直中心线求比萨斜塔的倾斜程度这个实际问题的背景,从不同角度展示了直角三角形在实际中的广泛应用。

一方面可以让学生体会锐角三角函数和解直角三角形的知识来源于实际;另一方面让学生感受到由实际问题抽象出数学问题,通过解决数学问题得到数学答案,再将数学问题的答案回到实际问题的认识过程。

这个认识过程符合人的认知规律,有利于调动学生学习数学的积极性,丰富有趣的实际问题也能激发学生的学习兴趣。

教学目标知识目标1.利用相似的直角三角形,探索直角三角形的锐角确定时,它的对边与斜边的比是固定值,从而引出正弦的概念.2.理解锐角的正弦的概念,并能根据正弦的概念进行计算.能力目标1.通过探究锐角的正弦的概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳推理能力.2.通过学生自我发现问题培养学生的自我反思能力。

情感目标通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考的好习惯,同时培养学生的团队合作精神.教学重难点重点理解正弦函数的意义,并会求锐角的正弦值.难点正弦概念的理解和应用。

教学方法教法从生活实际出发,采用“探究——推理——发现”的模式,引导学生进行探究、交流,得出任意给定锐角,它的对边与斜边的比值是固定值。

学法学生通过小组交流,讨论,发展合情的推理能力,探究、发现正弦的特征,从而获得成功的体验。

教学准备教师准备:多媒体课件.学生准备:预习教材P61-63教学过程提出本节学习目标知识目标1.利用相似的直角三角形,探索直角三角形的锐角确定时,它的对边与斜边的比是固定值,从而引出正弦的概念.2.理解锐角的正弦的概念,并能根据正弦的概念进行计算.能力目标1.通过探究锐角的正弦的概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳推理能力.2.通过学生自我发现问题培养学生的自我反思能力。

情感目标通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考的好习惯,同时培养学生的团队合作精神.课前预习1、在直角三角形中 ,30°角所对的直角边等于斜边的_____.2、勾股定理的内容是________________.3、在Rt △ABC 中, ∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的____,记作______.问题引入:意大利比萨斜塔在1350年落成时就已倾斜,其塔顶中心点偏离垂直中心线2.1 m.1972年比萨地区发生地震,这座高54.5 m 的斜塔在大幅度摇摆后仍巍然屹立,但塔顶中心点偏离垂直中心线增至5.2 m ,而且还在继续倾斜,有倒塌的危险.当地从1990年起对斜塔维修纠偏,2001年竣工,此时塔顶中心点偏离垂直中心线的距离比纠偏前减少了43.8 cm. 你能把上述问题抽象成数学问题就是:已知直角三角形的某些边长,求其锐角的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培养学生概括的能力,使知识形成体系,并渗透数学思想方法。
六、实践
延伸
1.三角形在正方形网格纸中的位置如图所示,则sinα的值是﹙)
A. B. C. D.
2.如图,在直角△ABC中,∠C=90o,若AB=5,AC=4,则sinA=()
A. B. C. D.
3.在△ABC中,∠C=90°,BC=2,sinA= ,则边AC的长是( )
给学生留下思考的空间。
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边与斜边的比值。
教师提出问题后,学生积极动手,学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.
在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探究说理
三、感悟
深化
任意画Rt△ABC和Rt△A1B1C1,使得∠C=∠C1=90°,∠A= = ,那么 有什么关系,你能解释一下吗?
28.1.1锐角三角函数
学校
矿泉中学
授课
陆叙波
时间
设计理念
注重学生经历观察、操作等探索过程,强调学生对知识的感觉与对新知识的理解与认知。鼓励学生自主探索与合作交流,培养学生概括的能力,使知识形成体系,并渗透数学思想方法。




1、知识目标:使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定这一事实,进而认识正弦(sinA).
即 .
同样sinB=
当∠A=300时,sinA=?
当∠A=450时,sinA=?
当∠A=600时,sinA=?
二、注意:
1、sinA不是sin与A的乘积,而是一个整体;
2、正弦的三种表示方式:sinA、sin56°、sin∠DEF
3、sinA是线段之间的一个比值;sinA没有单位。
教师引导学生作知识总结,不断扩充学生的知识结构,学习新的解题方法.
(3)在Rt△ABC中,∠C=90°,∠A=45°,求sinA的sinB的值.
学生独立完成,教师巡视,对学习基础较弱的学生及时给予指点.
巩固正弦概念,学会一种新的解题格式.
求sinA就是要确定∠A的对边与斜边的比;求sinB就是要确定∠B的对边与斜边的比.
五、体验
收获
一、在Rt△ABC中,∠C =90°:
2、学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生观察问题、解决问题的能力,
起到培养学生思维能力的作用
四、巩固
提高
(1)如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值.
(2)在Rt△ABC中,∠C=90°,∠A=30°,求sinA的sinB的值;
2.若斜坡与水平面所成角的度数是45°,结果会如何呢?
3.若斜坡与水平面所成角的度数是40°,结果会如何呢?
4.若已知出水口高度为40m,斜坡上铺设的水管长50m,那么斜坡与水平面所成角的度数是多少呢?
教师提出问题,给学生一定的时间进行思考,之后可让学生进行交流。
得到在直角三角形中,如果一个锐角是30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都是
由实际需要引出新知.
前两个问题学生很容易回答.主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.
后两个问题的设计却使学生感到疑惑,这对九年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.
二、探究说理
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边与斜边的比值.
方法
体验、探索式教学
课型
新授课
教学过程
教学环节
教学内容
师生活动
设计意图
一、观察
发现
问题:
为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?
思考:
1.在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?
2、技能目标:经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维.
3、情感态度与价值观:使学生体验数学活动充满着探索与创造,能积极参与数学学习活动
重点
使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实,认识正弦(sinA).
难点
学生很难想到对任意锐角,它的对边与斜边的比值是固定值的事实,关键在于教师引导学生比较、分析,得出结论.
A. B.3 C. D.
4.如图,已知AB是⊙O的直径,点C、D在⊙O上,且AB=5,BC=3.
则sin∠BAC=;sin∠ADC=.
5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D。已知AC= ,BC=2,那么sin∠ACD=()
A. B. C. D.
七、预习
探究
在Rt△ABC中,∠C =90°:当锐角A确定时,∠A的对边与斜边的比就随之确定,此时,其它边之间的比是否也随之确定?为什么?
经过学生的实验和证明,得出:
在Rt△ABC中,∠C=90°,我们把锐
角A的对边与斜边的比叫做∠A的正弦(sine)记作:sinA,即 .
同样sinB=
1、通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,一旦角度确定,它的对边与斜边的比值也随之确定”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
相关文档
最新文档