2021版第2章第2节电磁感应定律的建立第3节电磁感应现象的应用
高中物理必修三教案,随意下载,教学用
高中物理必修三教案,随意,教学用一、教学内容本节课选自高中物理必修三第二章《电磁感应》,具体包括第1节“法拉第电磁感应定律”和第2节“电磁感应现象的应用”。
详细内容如下:1. 法拉第电磁感应定律的内容、公式推导及应用;2. 电磁感应现象在生活中的应用实例。
二、教学目标1. 掌握法拉第电磁感应定律的内容、公式及应用;2. 了解电磁感应现象在生活中的应用,提高学以致用的能力;3. 培养学生的实验操作能力和科学思维能力。
三、教学难点与重点重点:法拉第电磁感应定律的内容、公式及应用。
难点:法拉第电磁感应定律的推导过程及电磁感应现象在实际应用中的理解。
四、教具与学具准备1. 教具:电磁感应演示器、电流表、磁场演示器等;2. 学具:实验报告册、笔、计算器等。
五、教学过程1. 实践情景引入:展示电磁感应演示器,引导学生观察电磁感应现象,激发学习兴趣;2. 例题讲解:(1)讲解法拉第电磁感应定律的推导过程;(2)通过实例分析,解释法拉第电磁感应定律的应用;3. 随堂练习:(1)让学生根据法拉第电磁感应定律,计算给定条件下的感应电动势;(2)分析生活中的电磁感应现象,解释其原理;4. 学生实验:分组进行电磁感应实验,观察并记录实验现象;六、板书设计1. 法拉第电磁感应定律的公式、内容;2. 电磁感应现象的应用实例;3. 实验注意事项。
七、作业设计1. 作业题目:a. 闭合线圈在磁场中转动;b. 长直导线在磁场中运动。
a. 发电机;b. 变压器。
2. 答案:见附件。
八、课后反思及拓展延伸1. 反思:本节课学生对法拉第电磁感应定律的理解程度,以及实验操作是否规范;2. 拓展延伸:引导学生思考电磁感应现象在其他领域的应用,如电动汽车、无线充电技术等,激发学生探索科学的兴趣。
重点和难点解析:1. 法拉第电磁感应定律的推导过程;2. 电磁感应现象在实际应用中的理解;3. 学生实验操作的规范性和实验现象的观察;4. 作业设计中问题的设置和答案的详细解释。
第三节电磁感应的基本定律
2-3-3
ε
d 3. (同学自证) Φ < 0, Φ > 0 dt d 4. (同学自证) Φ < 0, Φ < 0 dt 若有N 匝导线 d (NΦ ) d ψ dΦ = N = i= dt dt dt
2-3-3
ε
d 3. (同学自证) Φ < 0, Φ > 0 dt d 4. (同学自证) Φ < 0, Φ < 0 dt 若有N 匝导线 d (NΦ ) d ψ dΦ = N = i= dt dt dt
2-3-3
ε
ψ = NΦ
d 3. (同学自证) Φ < 0, Φ > 0 dt d 4. (同学自证) Φ < 0, Φ < 0 dt 若有N 匝导线 d (NΦ ) d ψ dΦ = N = i= dt dt dt
2-3-3
ε
ψ = NΦ
磁通链数
d 3. (同学自证) Φ < 0, Φ > 0 dt d 4. (同学自证) Φ < 0, Φ < 0 dt 若有N 匝导线 d (NΦ ) d ψ dΦ = N = i= dt dt dt
Φ
n
绕 行方向
2-3-3
ε
L
分四种情况讨论: dΦ 1. Φ > 0, d t > 0 由定律得 i < 0
故 i与 L方向相反。
Φ
n
绕 行方向
2-3-3
ε
ε
εi
L
分四种情况讨论: dΦ 1. Φ > 0, d t > 0 由定律得 i < 0
故 i与 L方向相反。 2. Φ > 0,
Φ
n
绕 行方向
Φ
n
绕 行方向
2-3-3
ε
ε
εi
L
Φ
n
绕 行方向
高中物理选择性必修2 第二章电磁感应 第二节法拉第电磁感应定律(一)-教案
2.2 法拉第电磁感应定律(第一课时)教学目标:(一)知识与技能1、从实验中得出影响感生电动势大小的因素,学会分析实验的方法。
2、知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t∆∆Φ。
3、理解法拉第电磁感应定律内容、数学表达式及应用。
(二)过程与方法培养学生的探究实验能力、定性分析和总结的能力。
(三)情感态度与价值观1、培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想2、通过探究实验,引导学生把握主要矛盾,忽略次要因素。
【教学难点】法拉第电磁感应定律的物理意义【教学重点】实验分析,得出影响感应电动势的因素,感应电动势公式的应用【教学方法】实验、讨论分析、总结归纳【教学过程设计】(一)引入新课:复习提问:1、在电磁感应现象中,产生感应电流的条件是什么?答:闭合回路、磁通量发生变化2、恒定电流中学过,电路中存在持续电流的条件是什么?答:电路闭合,一定有电源。
3、试从本质上比较甲、乙两电路的异同相同点:两电路都是闭合的,有电流不同点:甲中有电池(电源),乙中有螺线管(相当于电源)既然闭合电路中有感应电流,这个电路中就一定有电动势。
问题4上图中,若开关断开,电路中有电流吗?(没有)问题5:如果电路不是闭合的,电路中就没有电流,电源的电动势是否还存在呢?(存在)由此可见,在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势,但产生感应电流还需要电路闭合,因此研究感应电动势更有意义。
二、进行新课如图所示,产生感应电动势的那部分导体相当于电源(一)、感应电动势1、定义:在电磁感应现象中产生的电动势。
2、条件:只要穿过电路的磁通量发生变化,电路中就产生感应电动势。
与电路是否闭合无关。
3、电磁感应现象的本质磁通量变化是电磁感应的根本原因; 产生感应电动势是电磁感应现象的本质,产生感应电流只不过是一个现象,表示电路中输送着电能;而产生感应电动势才是电磁感应现象的本质,它表示电路已经具备随时输出电能的能力。
_新教材高中物理第二章电磁感应2法拉第电磁感应定律课件新人教版选择性必修第二册
[思路点拨] (1)磁感应强度在 0~4 s 内均匀增大,可由 E=nΔΔBt ·S,求感应电动势。 (2)t=5 s 时,磁感应强度正在均匀减小,线圈产生感应电动势,相当于电源。
[解析] (1)根据法拉第电磁感应定律得,0~4 s 内,回路中的感应电动势 E=nΔΔΦt =1 000×0.4-0.24×2×10-2 V=1 V。 (2)t=5 s 时,磁感应强度正在减弱,根据楞次定律,感应电流的磁场方向与 原磁场方向相同,即感应电流产生的磁场方向是垂直纸面向里,故 a 点的电势高。
()
解析:由楞次定律知,题中圆环感应电流产生的磁场与原磁场方向相反,故感应 电流沿顺时针方向。由法拉第电磁感应定律知,E=ΔΔΦt =ΔΔBtS=ΔBΔ·πtR2,由于两 圆环半径之比 Ra∶Rb=2∶1,所以 Ea∶Eb=4∶1。综上所述,选项 B 正确。 答案:B
动生电动势的理解及应用 [问题探究] 如图所示,一个半径为 r 的半圆导线,处在磁感应强度 为 B 的匀强磁场中。 (1)当导线沿 OP 方向以速度 v 做匀速运动时,其感应电 动势的大小是多少?
第2章 电磁感应 2 法拉第电磁感应定律
核心素养目标
1.知道什么是感应电动势。 2.理解和掌握法拉第电磁感应定律的内容和表达
式,会用法拉第电磁感应定律解答有关问题。 3.掌握导体切割磁感线产生的电动势 E=Blvsin θ
的推导及意义,会用此关系式解答有关问题。 4.知道动生电动势的产生以及与洛伦兹力的关系,
知识点二 导线切割磁感线时的感应电动势 [情境导学] 如图所示,把矩形线框 CDMN 放在磁感应强度为 B
的匀强磁场中,线框平面跟磁感线垂直。试计算导体棒 MN 切割磁感线时的感应电动势。
提示:在 Δt 内穿过闭合电路磁通量的变化量 ΔΦ=BΔS=BlvΔt。根据法拉 第电磁感应定律,得 E=ΔΔΦt =Blv。
法拉第电磁感应定律-课教案
法拉第电磁感应定律-优质课教案第一章:引言1.1 课程背景法拉第电磁感应定律是电磁学的基础之一,对于理解现代科技的发展具有重要意义。
本课程旨在帮助学生深入理解法拉第电磁感应定律的原理和应用,提高学生的科学素养。
1.2 教学目标通过本章的学习,学生能够:(1)了解法拉第电磁感应定律的发现过程;(2)理解法拉第电磁感应定律的表述;(3)掌握法拉第电磁感应定律的基本应用。
1.3 教学内容本章主要介绍法拉第电磁感应定律的背景、发现过程和表述。
1.4 教学方法采用讲解、案例分析和互动讨论相结合的方式进行教学。
第二章:法拉第电磁感应定律的发现2.1 课程背景法拉第电磁感应定律的发现是电磁学发展史上的重要里程碑,了解其发现过程对于理解定律的重要性具有重要意义。
2.2 教学目标通过本章的学习,学生能够:(1)了解法拉第电磁感应定律的发现过程;(2)理解法拉第的实验方法和思维方式。
2.3 教学内容本章主要介绍法拉第电磁感应定律的发现过程,包括法拉第的实验方法和思维方式。
2.4 教学方法采用讲解和案例分析相结合的方式进行教学。
第三章:法拉第电磁感应定律的表述3.1 课程背景法拉第电磁感应定律的表述是理解和学习电磁学的基础,掌握其表述对于进一步学习电磁学的其他内容至关重要。
3.2 教学目标通过本章的学习,学生能够:(1)掌握法拉第电磁感应定律的表述;(2)理解法拉第电磁感应定律的各种形式。
3.3 教学内容本章主要介绍法拉第电磁感应定律的表述,包括各种形式。
3.4 教学方法采用讲解和互动讨论相结合的方式进行教学。
第四章:法拉第电磁感应定律的基本应用4.1 课程背景法拉第电磁感应定律在生产和生活中有着广泛的应用,了解其基本应用对于理解电磁学的实际意义具有重要意义。
4.2 教学目标通过本章的学习,学生能够:(1)掌握法拉第电磁感应定律的基本应用;(2)了解法拉第电磁感应定律在生产和生活中的应用。
4.3 教学内容本章主要介绍法拉第电磁感应定律的基本应用,包括在生产和生活中的应用。
高中人教物理选择性必修二第2章第1节法拉第电磁感应定律
第二章 电磁感应第2节 法拉第电磁感应定律一、电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体相当于电源. (2)在电磁感应现象中,只要闭合回路中有感应电流,这个回路就一定有感应电动势;回路断开时,虽然没有感应电流,但感应电动势依然存在.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =ΔΦΔt .若闭合导体回路是一个匝数为n 的线圈,则E =n ΔΦΔt .①若ΔΦ仅由磁场变化引起,则表达式可写为E =n ΔBΔt S .②若ΔΦ仅由回路的面积变化引起,则表达式可写为E =nB ΔSΔt .3、Φ、ΔΦ、ΔΦΔt的比较磁通量Φ 磁通量的变化量ΔΦ 磁通量的变化率ΔΦΔt物理 意义某时刻穿过磁场中某个面的磁感线条数在某一过程中穿过某个面的磁通量的变化量穿过某个面的磁通量变化的快慢大小 计算Φ=BS ⊥ΔΦ=⎩⎪⎨⎪⎧Φ2-Φ1B ·ΔS S ·ΔBΔΦΔt =⎩⎪⎨⎪⎧|Φ2-Φ1|ΔtB ·ΔSΔtΔB Δt ·S注意穿过某个面有方向相反的磁场时,则不能直接应用Φ=B ·S .应考虑相反方向的磁通量抵消以后所开始和转过180°时,平面都与磁场垂直,但穿过平面的磁通量是不同的,一正一负,ΔΦ=2B ·S 而不既不表示磁通量的大小也不表示变化的多少.在Φt 图象中,可用图线的斜率表示剩余的磁通量 是零4、磁通量的变化率ΔΦΔt 是Φ-t 图像上某点切线的斜率大小.如图中A 点磁通量变化率大于B 点的磁通量变化率.二、导体切割磁感线时的感应电动势 1.垂直切割导体棒垂直于磁场运动,B 、l 、v 两两垂直时,如图甲,E =Bl v .2.不垂直切割导线的运动方向与导线本身垂直,但与磁感线方向夹角为 θ时,如图乙,则E =Bl v 1=Bl v sin_θ. 3、对公式E =Blv sin θ的理解(1)对 θ的理解:当B 、l 、v 三个量方向互相垂直时, θ=90°,感应电动势最大;当有任意两个量的方向互相平行时, θ=0°,感应电动势为零.(2)对l 的理解:式中的l 应理解为导线切割磁感线时的有效长度,如果导线不和磁场垂直,l 应是导线在与磁场垂直方向投影的长度;如果切割磁感线的导线是弯曲的,如图所示,则应取与B 和v 垂直的等效直线长度,即ab 的弦长.(3)对v 的理解①公式中的v 应理解为导线和磁场间的相对速度,当导线不动而磁场运动时,也有电磁感应现象产生.②公式E =Bl v 一般用于导线各部分切割磁感线速度相同的情况,若导线各部分切割磁感线的速度不同,可取其平均速度求电动势.如图所示,导体棒在磁场中绕A 点在纸面内以角速度ω匀速转动,磁感应强度为B ,平均切割速度v =12v C =ωl 2,则E =Bl v =12Bωl 2.4.公式E =Bl v sin θ与E =n ΔΦΔt的对比E =n ΔΦΔtE =Bl v sin θ区别研究对象 整个闭合回路 回路中做切割磁感线运动的那部分导体 适用范围 各种电磁感应现象 只适用于导体切割磁感线运动的情况计算结果 Δt 内的平均感应电动势某一时刻的瞬时感应电动势联系E =Bl v sin θ是由E =n ΔΦΔt 在一定条件下推导出来的,该公式可看做法拉第电磁感应定律的一个推论【例题1】 如图所示,半径为r 的金属圆环,其电阻为R ,绕通过某直径的轴OO ′以角速度ω匀速转动,匀强磁场的磁感应强度为B .从金属圆环的平面与磁场方向平行时开始计时,求金属圆环由图示位置分别转过30°角和由30°角转到330°角的过程中,金属圆环中产生的感应电动势各是多大?[思路点拨] (1)确定磁感线穿过圆环的有效面积; (2)了解磁通量正负号的含义; (3)确定不同角度转过的时间. [答案] 3Bωr 2 35Bωr 2[解析] 初始位置时穿过金属圆环的磁通量Φ1=0;由图示位置转过30°角时,金属圆环在垂直于磁场方向上的投影面积为S 2=πr 2sin 30°=12πr 2,此时穿过金属圆环的磁通量Φ2=BS 2=12B πr 2;由图示位置转过330°角时,金属圆环在垂直于磁场方向上的投影面积为S 3=πr 2sin 30°=12πr 2,此时穿过金属圆环的磁通量Φ3=-BS 3=-12B πr 2.所以金属圆环在转过30°角和由30°角转到330°角的过程中磁通量的变化量分别为 ΔΦ1=Φ2-Φ1=12B πr 2,ΔΦ2=Φ3-Φ2=-B πr 2,又Δt 1= θ1ω=π6ω=π6ω,Δt 2= θ2ω=5π3ω=5π3ω.此过程中产生的感应电动势分别为 E 1=ΔΦ1Δt 1=12B πr 2π6ω=3Bωr 2,E 2=|ΔΦ2Δt 2|=B πr 25π3ω=35Bωr 2.[例2] 如图所示,有一半径为R 的圆形匀强磁场区域,磁感应强度为B ,一条足够长的直导线以速度v 进入磁场.从直导线进入磁场至匀速离开磁场区域的过程中,求:(1)感应电动势的最大值为多少?(2)在这一过程中感应电动势随时间变化的规律如何?(3)从开始运动至经过圆心的过程中直导线中的平均感应电动势为多少? [思路点拨] (1)求瞬时感应电动势选择E =Bl v . (2)求平均感应电动势选择E =n ΔΦΔt .(3)应用E =Bl v 时找准导线的有效长度. [答案] (1)2BR v (2)2B v 2R v t -v 2t 2(3)12πBR v[解析] (1)由E =Bl v 可知,当直导线切割磁感线的有效长度l 最大时,E 最大,l 最大为2R ,所以感应电动势的最大值E =2BR v .(2)对于E 随t 变化的规律应求的是瞬时感应电动势,由几何关系可求出直导线切割磁感线的有效长度l 随时间t 变化的情况为l =2R 2-(R -v t )2,所以E =2B v 2R v t -v 2t 2.(3)从开始运动至经过圆心的过程中直导线的平均感应电动势E =ΔΦΔt =12πBR 2R v=12πBR v .1.(多选)单匝矩形线圈在匀强磁场中匀速运动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图所示,则O ~D 过程中( )A .线圈中O 时刻感应电动势最大B .线圈中D 时刻感应电动势为零C .线圈中D 时刻感应电动势最大D .线圈中O 至D 时间内平均感应电动势为0.4 V2.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中,在Δt 时间内,磁感应强度的方向不变,大小由B 均匀增大到2B ,在此过程中,线圈中产生的感应电动势为( )A.na 2B 2ΔtB.a 2B 2ΔtC.na 2B ΔtD.2na 2B Δt3.(多选)关于感应电动势的大小,下列说法不正确的是( ) A .穿过闭合电路的磁通量最大时,其感应电动势一定最大 B .穿过闭合电路的磁通量为零时,其感应电动势一定为零C .穿过闭合电路的磁通量由不为零变为零时,其感应电动势一定为零D .穿过闭合电路的磁通量由不为零变为零时,其感应电动势一定不为零 4.如图所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab 以水平速度v 0抛出,运动过程中棒的方向不变,不计空气阻力,那么金属棒内产生的感应电动势将( )A .越来越大B .越来越小C .保持不变D .方向不变,大小改变5、如图所示,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a -b -c -aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a -c -b -a6、如图所示,A 、B 两闭合圆形导线环用相同规格的导线制成,它们的半径之比r A ∶r B =2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环的平面向里.当磁场的磁感应强度随时间均匀增大的过程中,流过两导线环的感应电流大小之比为( )A.I AI B =1 B.I AI B =2 C.I A I B =14D.I A I B =127、如图所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成 θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )A .电路中感应电动势的大小为Bl vsin θB .电路中感应电流的大小为B v sin θrC .金属杆所受安培力的大小为B 2l v sin θrD .金属杆的热功率为B 2l v 2r sin θ8.(多选)如图所示,三角形金属导轨EOF 上放有一根金属杆AB ,在外力作用下,保持金属杆AB 和OF 垂直,以速度v 匀速向右移动.设导轨和金属杆AB 都是用粗细相同的同种材料制成的,金属杆AB 与导轨接触良好,则下列判断正确的是( )A .电路中的感应电动势大小不变B .电路中的感应电流大小不变C .电路中的感应电动势大小逐渐增大D .电路中的感应电流大小逐渐增大9.一个面积为S =4×10-2 m 2、匝数为n =100匝的线圈放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B 随时间t 变化的规律如图所示,则下列判断正确的是( )A .在开始的2 s 内穿过线圈的磁通量的变化率等于8 Wb/sB .在开始的2 s 内穿过线圈的磁通量的变化量等于零C .在开始的2 s 内线圈中产生的感应电动势的大小等于8 VD .在第3 s 末线圈中的感应电动势等于零10.(多选)如图所示,单匝线圈在匀强磁场中绕垂直于磁场的轴匀速转动,穿过线圈的磁通量Φ随时间t 的关系可用图像表示,则( )A .在t =0时刻,线圈中的磁通量最大,感应电动势也最大B .在t =1×10-2 s 时刻,感应电动势最大 C .在t =2×10-2 s 时刻,感应电动势为零D .在0~2×10-2 s 时间内,线圈中感应电动势的平均值为零11.如图所示,面积为0.2 m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面.已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4 Ω,求:(1)磁通量变化率及回路的感应电动势; (2)a 、b 两点间电压U ab .12.如图甲所示,轻质细线吊着一质量m =0.32 kg 、边长L =0.8 m 、匝数n =10的正方形线圈,总电阻为r =1 Ω,边长为L2的正方形磁场区域对称分布在线圈下边的两侧,磁场方向垂直纸面向里,大小随时间的变化关系如图乙所示,从t =0开始经t 0时间细线开始松弛,g 取10 m/s 2.求:(1)从t =0到t =t 0时间内线圈中产生的电动势; (2)从t =0到t =t 0时间内线圈的电功率; (3)t 0的值.1.【答案】:ABD【解析】:由法拉第电磁感应定律知线圈中O 至D 时间内的平均感应电动势E =ΔΦΔt =2×10-30.012 V =0.4V ,D 项正确;由感应电动势的物理意义知,感应电动势的大小与磁通量的大小Φ和磁通量的改变量ΔΦ均无必然联系,仅由磁通量的变化率ΔΦΔt 决定,而任何时刻磁通量的变化率ΔΦΔt 就是Φ-t 图像上该时刻切线的斜率,不难看出O 时刻处切线斜率最大,D 点处切线斜率最小为零,故A 、B 正确,C 错误.2.【答案】:A【解析】:正方形线圈内磁感应强度B 的变化率ΔB Δt =BΔt ,由法拉第电磁感应定律知,线圈中产生的感应电动势为E =nS ΔB Δt =n ·a 22·B Δt =na 2B2Δt,选项A 正确.3.【答案】:ABC【解析】:磁通量的大小与感应电动势的大小不存在内在的联系,故A 、B 错;当磁通量由不为零变为零时,闭合电路的磁通量发生改变,一定有感应电流产生,有感应电流就一定有感应电动势,故C 错,D 对.4.【答案】:C【解析】:由于导体棒中无感应电流,故棒只受重力作用,导体棒做平抛运动,水平速度v 0不变,即切割磁感线的速度不变,故感应电动势保持不变,C 正确.5、【答案】:C【解析】:金属框abc 平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B 、D 错误.转动过程中bc 边和ac 边均切割磁感线,产生感应电动势,由右手定则判断U a <U c ,U b <U c ,选项A 错误.由转动切割产生感应电动势的公式得U bc =-12Bl 2ω,选项C 正确.6、【答案】:D【解析】:A 、B 两导线环的半径不同,它们所包围的面积不同,但穿过它们的磁场所在的区域面积是相等的,所以两导线环上的磁通量变化率是相等的,E =ΔΦΔt =ΔB Δt S 相同,得E A E B =1,I =E R ,R =ρlS (S 为导线的横截面积),l =2πr ,所以I A I B =r B r A ,代入数值得I A I B =r B r A =12.7、【答案】:B【解析】:由电磁感应定律可知电路中感应电动势为E =Bl v ,A 错误;感应电流的大小I =Bl v r l sin θ=B v sin θr ,B 正确;金属杆所受安培力的大小F =B B v sin θr ·l sin θ=B 2l v r ,C 错误;热功率P =(B v sin θr )2r l sin θ=B 2l v 2sin θr ,D 错误.8、【答案】:BC【解析】:设三角形金属导轨的夹角为θ,金属杆AB 由O 点经时间t 运动了v t 的距离,则E =B v t ·tan θ·v ,电路总长为l =v t +v t tan θ+v t cos θ=v t (1+tan θ+1cos θ),又因为R =ρl S ,所以I =ER =B v S sin θρ(1+sin θ+cos θ),I 与t 无关,是恒量,故选项B 正确.E 逐渐增大,故选项C 正确.9.【答案】:C【解析】:在开始的2 s 内,磁通量的变化量为ΔΦ=|-2-2|×4×10-2 Wb =0.16 Wb ,磁通量的变化率ΔΦΔt =0.08 Wb/s ,感应电动势大小为E =n ΔΦΔt=8 V ,故A 、B 错,C 对;第3 s 末虽然磁通量为零,但磁通量的变化率为0.08 Wb/s ,感应电动势不等于零,故D 错.10.【答案】:BC【解析】:由法拉第电磁感应定律知E ∝ΔΦΔt,故t =0及t =2×10-2 s 时刻,E =0,A 错,C 对.t =1×10-2s ,E 最大,B 对.0~2×10-2 s ,ΔΦ≠0,E ≠0,D 错. 11.【答案】:(1)0.04 Wb/s 4 V (2)2.4 V 【解析】:(1)由B =(2+0.2t )T 得ΔBΔt =0.2 T/s ,故ΔΦΔt =S ΔBΔt=0.04 Wb/s , E =n ΔΦΔt=4 V.(2)线圈相当于电源,U ab 是外电压,则 U ab =ER 1+R 2R 1=2.4 V .12.【答案】:(1)0.4 V (2)0.16 W (3)2 s 【解析】:(1)由法拉第电磁感应定律得 E =n ΔΦΔt =n ΔB Δt ×12×⎝⎛⎭⎫L 22=0.4 V .(2)I =Er =0.4 A ,P =I 2r =0.16 W.(3)分析线圈受力可知,当细线松驰时有 F 安=nB t 0I ·L 2=mg ,I =E r ,则B t 0=2mgrnEL =2 T.由图象知B t 0=1+0.5 t 0(T),解得t 0=2 s.。
电磁感应现象及其应用
电磁感应现象及其应用第九章电磁感应现象及其应用本章以磁场及电场等知识为基础,研究电磁感应的一系列现象,总结出产生感应电流的条件,形成了导体做切割磁感线运动而产生的感应电动势的计算公式,应用右手定则判断感应电动势的方向也是解决问题的关键.[基本规律与概念]一.电磁感应现象1.感应电动势2.感应电流产生的条件及方向的判断二.电磁感应现象的应用1.自感现象2.交变电流①交变电流的定义②正弦交流电的产生及规律a.产生b.规律:函数形式:e=NBSωsinωt(从中性面开始计时)图象c.表征交流电的物理量(1)瞬时值(2)峰值(3)有效值(4)周期和频率③应用:(1)变压器(2)远距离输电3.电磁场和电磁波a.麦克斯韦电磁场理论b.电磁波[应用]1.用丝线悬挂闭合金属环,悬于O点,虚线左边有匀强磁场,右边没有磁场.(1)金属环的摆动会很快停下来,试解释这一现象.(2)若整个空间都有向外的匀强磁场,会有这种现象吗?2.如图所示,矩形线圈abcd质量为m,电阻为R,宽为d,长为L,在竖直平面内由静止开始自由下落,其下方存在如图示方向的磁感强度为B的匀强磁场,磁场上.下边界水平,宽度也为d.(1)线圈ab进入磁场时,感应电流的方向?(2)如果矩形线圈在ab边刚进入磁场就开始做匀速直线运动,那么,矩形线圈的ab 边应该距离磁场的上边界多高的位置开始下落?3.上海的部分交通线路上已开始使用〝非接触式IC卡〞.该卡应用到物理学上的电磁感应原理.持卡者只要将卡在车门口的一台小机器前一晃,机器就能发出通过的信号.(1)电磁感应现象的最早发现者是(A )A.法拉第B.格拉姆C.西门子D.爱迪生(2)与这一发现有关的科技革命的突出成就不包括( D )A.电力的广泛应用B.内燃机和新交通工具的创新C.新的通讯手段的发明D.计算机信息技术的出现4.照明电路中,为了安全,一般在电能表后面电路上按接一个漏电保护器,如右图所示,当漏电保护器的ef两端未有电压时,脱扣开关K能始终保持接通.当ef两端一有电压时,脱扣开关K立即会断开,下列说法正确的是A.当用户家的电流超过一定值时,脱扣开关会自动断开,即有过流保护作用B.当相线和零线间电压太高时,脱扣开关会自动断开,即有过压保护作用C.站在地面上的人触及b线时(单线触电),脱扣开关会自动断开,即有触电保护作用D.当站在绝缘物上的带电工作的人两手分别触到b线和d线时(双线触电),脱扣开关会自动断开,即有触电保护作用【分析与解答】漏电保护器是家庭生活中常见的电学仪器,通过变压器的互感原理进行开关控制,达到保护线路,防止漏电作用.观察工作原理图可知:相线ab与零线cd双线同向绕制构成原线圈.线路接通时,b与d相连,双线反向连接,磁场相反,无论用户电流的大小及相线和零线间电压高低如何变化,在副线圈中的磁通量变化率始终为零,因此ef两端未有电压,脱扣开关始终闭合.当人站在地面上单线触电时,电流不再经过零线而是通过人体流向大地,此时相线ab单线绕制,原副线圈中磁通量发生变化,ef两端出现电压,脱扣开关断开,当人站在绝缘物上双线触电时,人体形如用电器,电流通过人体流经零钱,此时相线与零线同样双线绕制,所以ef两端电压亦为零.正确选项为C.5.家用微波炉是利用微波电磁能加热食物的新型灶具,主要由磁控管.波导管.微波加热器.炉门.直流电源.冷却系统.控制系统.外壳等组成,接通电源后,220V交流电经一变压器,一方面在次级产生3.4V交流对磁控管加热,同时在次级产生2000V高压经整流加到磁控管的阴.阳两极之间,使磁控管产生频率为2450MHz的微波,微波输送至金属制成的加热器(炉腔),被来回反射,微波的电磁作用使食物内分子高额地振动而内外同时迅速变热,并能最大限度地保存食物中的维生素.(1)试计算微波输出功率为700W的磁控管每秒内产生的光子数.(2)试计算变压器的高压变压比.(3)导体能反射微波,绝缘体可使微波透射,而食物通常含有的成分是,较易吸收微波能而转换成热.故在使用微波炉时应A.用金属容器盛放食物放火炉内加热B.用陶瓷容器盛放食物火炉内加热C.将微波炉置于磁性材料周围D.将微波炉远离磁性材料周围6.图为一表示交变电流随时间变化的图象,此交变电流的有效值是A.A B.5AC.A D.3.5A7.一矩形线圈在匀强磁场中匀速转动产生的交变电动势的图象如图所示,则A.交变电流的频率是4πHzB.交变电的周期是0.5sC.当t=0时线圈平面与磁感线平行D.当t=0.5时,e有最大值8.现代家庭电器化程度越来越高,用电安全是一个十分突出的问题.(1)下表提供了一组部分人的人体电阻平均值数据.测量项目完全干燥时出汗或潮湿时电阻电流(加220V)电阻电流(加220V)手与手之间200kΩ5kΩ手与脚之间300kΩ8kΩ手与塑料鞋底之间8000kΩ10kΩ①从表中可看出干燥时电阻大约是潮湿时电阻的倍.②在空格中填入,对人体加220伏电压后的电流值.③若对人的安全电流是25mA以下,上述哪几项是十分危险的.(2)大家知道,洗衣机的插头上有三个金属片,插座也是三眼的,其中有一个较长而粗的是接地金属片,由导线将它与洗衣机的金属外壳连接,一旦插入插座,也就将洗衣机外壳与大地相连通.洗衣机的外壳是金属的(有许多地方没有油漆),左上图表示插头没有接地线,外壳与相线(俗称火线)接触漏电,手触及外壳.右上图表示插头中有接地线,接在洗衣机外壳,此时发生漏电.通过讨论说明为什么三眼插头比两眼插头更安全?(试在下图中画出电流经过的路线,假设此时M为正,N为负,并画出简单的电路模型加以分析)(3).电路上有规格为10A的熔丝(俗称保险丝),如右图所示用电器R的功率是1500W,这时通过熔丝实际电流是多少?一个潮湿的人,手脚触电,为什么熔丝不会断(即熔丝不能救人命).(4)如下图所示是一种触电保安器,变压器A处用相线和零线双股平行绕制成线圈,然后接到用电器.B处有一个输出线圈.一旦线圈中有电流,经放大后便能推动继电器J切断电源.试说明:①为什么多开灯不会使保安器切断电源.②为什么有人〝手—地〞触电保安器会切断电源③该保安器能不能为双手〝相线—零线〞触电保安?为什么?【参考答案】1:①40~80倍②干燥时电流分别为lmA,0.7mA,0.28mA,潮湿时电流分别为:44mA,27.5mA,22Ma③潮湿时各种情况均有危险2.电流路径如下图所示三眼插头比两眼插头安全.左图为二眼插头,一旦漏电,电流将流经人体;右图为三眼插头,一旦漏电,电流将通过接地板流入地下,(相当于一个短路导线),几乎没有电流通过人体.3.通过熔丝的实际电流是6.8A人的手脚触电时,通过人体电流是0.0275A熔丝点电流为6.828A,小于10A,故熔丝不会断去4.①变压器A线臼因双股并绕,正向电流与反向电流产生的磁性相互抵消,多开灯.少开灯都如此.所以线圈B中无感应电流,保安器的控制开关J不工作,不会自动切断电源.③当人〝手—地〞触电时,相线中电流有一部分直接通过人体,流入大地,不从A线圈中回流,保安器铁芯中有磁通量变化,B线圈有电流输出,保安器开关J工作,自动切断电源.③〝相线—零线〞触电时,与多打开几盏电灯情况相似,A线圈中正.反向电流总是相等,不引起磁通量变化,保安器不能自动切断电源,不起保安作用.综合点:本题首先是物理知识内部电流.电路.电磁感应等各部分的综合.它还涉及人身用电安全的问题,有较重要的现实意义.解答本题在一定程度能考查解答者所学知识联系实际问题的能力.有几点说明:本题中洗衣机的底部有塑料垫脚,因此它的外壳是不直接接地的,保安器的控制开关J应带有电流放大装置.因为变压器感应人体电流的功率是很小的,电流也是很小的,通常不经放大不能推动开关做功.9.如图所示带电的平行板电容器C的两个极板,在用绝缘工具将两板间距离匀速增大的过程中,电容器周围空间将( A )A.会产生变化的磁场B.会产生稳定的磁场C.不会产生磁场D.会产生周期性振荡的磁场10.对于〝超导体〞和〝空间技术〞的名字,人们可能并不陌生.所谓〝超导体〞是指电阻值几乎为零(10-5Ω)的导体.超导体在电力领域里,必将成为人们的理想材料.(1)以下关于超导体的说法中正确的是( B )A.超导体是没有电阻的导体B.超导体是电阻值很小的导体C.超导体内部电流可以任意大D.超导体内部电流必需大于某一特定值(2).我们把当温度降低到一定程度时,导体的电阻突然降低到很小(10-5Ω)的现象称为超导现象;而材料超导性的实现,除了需要将温度降低到临界温度以下外,还需要使其周围磁场低于某一临界值.另据实验表明,超导体内部电流必需小于某一特定值.其原因是(B)A.超导体虽然电阻很小,但是仍然有电阻,电流流过时要产生焦耳热,所以电流不能太大B.由于导线通过电流后,电流要在导线周围产生磁场,电流越大,磁场越强;而超导体周围磁场不能大于临界值,所以通过超导体的电流必需小于某一特定值C.超导体对电流有阻碍作用,所以电流不能太大D.以上说法均不对11.变压器是供电网络中的重要器件,它可以根据需要改变电压.(1)某理想变压器原副线圈匝数之比为10:1,正常工作时输入功率与输出功率之比是多少?(2)在传送一定电功率的输电线路中,若升压变压器输出电压提高1倍,则输电线上的电功率损失将变为原来的多少?。
第02章 电磁感应 练习与应用-高二物理课后习题精准解析(新教材人教版选择性必修第二册)(解析版)
人教版新教科书选择性必修第二册第二章电磁感应练习与应用(解析版)第1节楞次定律练习与应用1.在图2.1-9中,线圈M和线圈P绕在同一个铁芯上。
(1)当闭合开关S的一瞬间,线圈P中感应电流的方向如何?(2)当断开开关S的一瞬间,线圈P中感应电流的方向如何?【答案】1.当铜盘在磁极间运动时,由于发生电磁感应现象,在铜盘中产生涡流,使铜盘受到安培力作用,而安培力阻碍导体的运动,所以铜盘很快就停了下来。
2.在图2.1-10中CDEF是金属框,框内存在着如图所示的匀强磁场。
当导体AB向右移动时,请用楞次定律判断MNCD和MNFE两个电路中感应电流的方向。
【答案】2.当条形磁体的N极靠近线圈时,线圈中向下的磁通量增加,根据楞次定律可得,线圈中感应电流的磁场应该向上,再根据右手螺旋定则,判断出线圈中的感应电流方向为逆时针方向(自. 上而下看)。
感应电流的磁场对条形磁体N极的作用力向上,阻碍条形磁体向下运动。
当条形磁体的N极远离线圈时,线圈中向下的磁通量减小,根据楞次定律可得,线圈中感应电流的磁场应该向下,再根据右手螺旋定则,判断出线圈中的感应电流方向为顺时针方向(自上而下看)。
感应电流的磁场对条形磁体N极的作用力向下,阻碍条形磁体向上运动。
因此,无论条形磁体怎样运动,都将受到线圈中感应电流磁场的阻碍作用,所以条形磁体较快地停了下来,在此.过程中,弹簧和磁体的机械能转化为线圈中的电能。
3. 如图2.1-11所示,导线AB与CD平行。
试判断在闭合与断开开关S时,导线CD中感应电流的方向,说明你判断的理由。
【答案】3.在磁性很强的小圆柱下落的过程中,没有缺口的铝管中的磁通量发生变化(小圆柱. 上方铝管中的磁通量减小,下方的铝管中的磁通量增大),所以铝管中将产生感应电流.感应电流的磁场对下落的小圆柱产生阻力,小圆柱在铝管中缓慢下落。
如果小圆柱在有缺口的铝管中下落,尽管铝管中也会产生感应电流,感应电流的磁场也将对下落的小圆柱产生阻力,但这时的阻力非常小,所以小圆柱在有裂缝的铝管中下落比较快。
专题10电磁感应 第3讲电磁感应定律的综合应用(教学课件)-高考物理一轮复习
4.电磁感应中图像类选择题的两个常用方法
定性分析电磁感应过程中物理量的变化趋势(增大还是减小)、 排除法 变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正
负,以排除错误的选项 根据题目所给条件定量写出两个物理量之间的函数关系,然 函数法 后由函数关系对图像进行分析和判断
例2 (2020年山东卷)(多选)如图所示,平面直角坐标系的第一和第
的铜圆环,规定从上向下看时,铜环中的感应电流I,沿顺时针方向为
正方向.图乙表示铜环中的感应电流I随时间t变化的图像,则磁场B随
时间t变化的图像可能是下图中的
()
甲
乙
【答案】B
2.(2021年广东一模)(多选)如图所示,绝缘的水平面上固定有两条 平行的光滑金属导轨,导轨电阻不计,两相同金属棒a、b垂直导轨放 置,其右侧矩形区域内存在恒定的匀强磁场,磁场方向竖直向上.现两 金 属 棒 分 别 以 初 速 度 2v0 和 v0 同 时 沿 导 轨 自 由 运 动 , 先 后 进 入 磁 场 区 域.已知a棒离开磁场区域时b棒已经进入磁场区域,则a棒从进入到离 开磁场区域的过程中,电流i随时间t的变化图像可能正确的有
()
【答案】AB
【解析】a 棒以速度 2v0 先进入磁场切割磁感线产生的感应电流为 i0 =Bl·R2v0,a 棒受安培阻力做变减速直线运动,感应电流也随之减小,即 i-t 图像的斜率逐渐变小;设当 b 棒刚进入磁场时 a 棒的速度为 v1,此 时的瞬时电流为 i1=BRlv1.若 v1=v0,即 i1=BRlv0=i20,此时双棒双电源反 接,电流为零,不受安培力,两棒均匀速运动离开,i-t 图像中无电流 的图像,故 A 正确,C 错误.
【解析】导体棒向右切割磁感线,由右手定则,知电流方向为 b 指 向 a,由图像可知金属杆开始运动经 t=5.0 s 时,电压为 0.4 V,根据闭 合电路欧姆定律,得 I=UR=00..44 A=1 A,故 A 正确;根据法拉第电磁感 应定律,知 E=BLv,根据电路结构,可知 U=R+R rE,解得 v=5 m/s, 故 B 错误;
基础电磁感应现象教案
基础电磁感应现象教案第一章:电磁感应现象简介1.1 电磁感应的发现讲述奥斯特和法拉第的实验发现说明电磁感应现象的重要性1.2 电磁感应的定义解释电磁感应的定义强调电磁感应现象的基本原理1.3 电磁感应的类型区分直流电磁感应和交流电磁感应解释电磁感应的分类和特点第二章:法拉第电磁感应定律2.1 法拉第电磁感应定律的表述讲述法拉第电磁感应定律的数学表达式解释电磁感应电动势的产生条件2.2 电磁感应电动势的计算说明电磁感应电动势的计算方法举例说明电磁感应电动势的计算过程2.3 电磁感应电流的方向讲述楞次定律和右手定则解释电磁感应电流方向的确定方法第三章:电磁感应的应用3.1 发电机的原理和结构讲述发电机的工作原理和结构组成说明发电机的工作过程和能量转换3.2 电磁感应电机讲述电磁感应电机的工作原理和结构组成解释电磁感应电机的分类和应用领域3.3 变压器的原理和应用讲述变压器的工作原理和结构组成说明变压器的特点和应用领域第四章:电磁感应现象的实验探究4.1 电磁感应实验装置介绍电磁感应实验装置的组成和连接方式强调实验装置的安全注意事项4.2 电磁感应实验操作步骤讲述电磁感应实验的操作步骤和注意事项说明实验中观察和记录数据的要点4.3 实验结果的分析和解释分析电磁感应实验结果解释实验结果与电磁感应现象的关系第五章:电磁感应现象的拓展应用5.1 电磁感应现象在电子技术中的应用讲述电磁感应现象在电子技术中的应用实例解释电磁感应现象在电子技术中的作用和意义5.2 电磁感应现象在传感器中的应用讲述电磁感应现象在传感器中的应用实例解释电磁感应现象在传感器中的作用和意义5.3 电磁感应现象在其他领域的应用讲述电磁感应现象在其他领域的应用实例解释电磁感应现象在其他领域的作用和意义基础电磁感应现象教案第六章:电磁感应现象的数学描述6.1 麦克斯韦方程组介绍麦克斯韦方程组的背景和意义讲解电磁感应现象在麦克斯韦方程组中的体现6.2 法拉第电磁感应定律的数学形式推导法拉第电磁感应定律的微分形式解释积分形式与微分形式之间的关系6.3 楞次定律的数学表述讲解楞次定律的数学表述分析楞次定律在实际应用中的意义第七章:电磁感应现象的实验验证7.1 楞次定律的实验验证设计实验来验证楞次定律分析实验结果与楞次定律的一致性7.2 法拉第电磁感应定律的实验验证设计实验来验证法拉第电磁感应定律分析实验结果与法拉第电磁感应定律的一致性7.3 实验结果的讨论与总结讨论实验结果对于理解电磁感应现象的意义总结实验验证对于电磁感应理论的重要性第八章:电磁感应现象的现代理解8.1 量子力学与电磁感应现象介绍量子力学在电磁感应现象中的应用讲解量子力学对电磁感应现象的现代理解8.2 相对论与电磁感应现象介绍相对论在电磁感应现象中的应用讲解相对论对电磁感应现象的现代理解8.3 电磁感应现象的宏观与微观表现分析电磁感应现象在宏观与微观层面的表现探讨宏观与微观层面之间的联系与区别第九章:电磁感应现象在技术应用中的拓展9.1 电磁感应现象在电力系统中的应用介绍电磁感应现象在电力系统中的应用实例讲解电磁感应现象在电力系统中的重要作用9.2 电磁感应现象在信息技术中的应用介绍电磁感应现象在信息技术中的应用实例讲解电磁感应现象在信息技术中的重要作用9.3 电磁感应现象在其他领域的应用介绍电磁感应现象在其他领域的应用实例讲解电磁感应现象在其他领域的重要作用第十章:电磁感应现象的思维拓展10.1 电磁感应现象与创新思维探讨电磁感应现象在激发创新思维方面的作用分析电磁感应现象在科技发展中的推动作用10.2 电磁感应现象与科学思维讲解电磁感应现象在培养科学思维方面的价值分析电磁感应现象在科学方法论中的应用10.3 电磁感应现象与综合素质提升探讨电磁感应现象在提升综合素质方面的作用总结学习电磁感应现象对于个人发展的意义基础电磁感应现象教案第十一章:电磁感应现象的案例分析11.1 著名电磁感应现象案例分析历史上著名的电磁感应现象案例讲解案例对于理解电磁感应现象的意义11.2 电磁感应现象在生活中的应用案例分析电磁感应现象在生活中的应用案例讲解案例对于理解电磁感应现象的实际意义11.3 电磁感应现象的启示探讨电磁感应现象给我们的启示总结电磁感应现象对于个人和社会的意义第十二章:电磁感应现象的习题讲解12.1 习题类型及解题方法介绍电磁感应现象习题的类型讲解解题方法及技巧12.2 典型习题解析分析典型习题的解题过程讲解习题解析的方法和要点12.3 习题练习与总结安排习题练习时间,让学生动手实践总结习题练习中的重点和难点,查漏补缺第十三章:电磁感应现象的课堂讨论13.1 课堂讨论的主题及目的确定课堂讨论的主题阐述讨论的目的和意义13.2 课堂讨论的组织实施安排讨论时间和地点指导学生进行讨论,鼓励学生发表见解13.3 课堂讨论的总结与反思总结讨论的成果和不足反思讨论过程中的教学方法和策略第十四章:电磁感应现象的教学评价14.1 教学评价的类型及方法介绍电磁感应现象教学评价的类型讲解评价方法和技巧14.2 学生学习情况的评价评价学生在电磁感应现象学习中的表现分析学生的优点和不足,提出改进建议14.3 教学效果的评价与反思评价电磁感应现象教学效果反思教学过程中的不足,提出改进措施第十五章:电磁感应现象的教学拓展15.1 电磁感应现象与其他学科的联系探讨电磁感应现象与其他学科的联系总结跨学科学习的意义和方法15.2 电磁感应现象的课外阅读与研究推荐电磁感应现象相关的课外阅读材料鼓励学生进行电磁感应现象的课题研究15.3 电磁感应现象的教学展望展望电磁感应现象教学的发展趋势提出改进教学方法和策略的建议重点和难点解析。
人教版高中物理选择性必修第2册 第二章 电磁感应 2 2 法拉第电磁感应定律
(2)表达式:E=⑤
ΔΦ
n Δt
。
(3)符号意义:n是⑥ 线圈匝数 , ΔΦ 是⑦ 磁通量的变化率 ,它与穿过电路的
Δt
磁通量Φ和磁通量的变化量ΔΦ⑧ 没有 (填“有”或“没有”)必然联系。 易错警示 感应电动势的大小和线圈匝数成正比,但磁通量和线圈的匝数无关。
2|导线切割磁感线时的感应电动势
1.导线垂直切割磁感线时,E=⑨ Blv ,此式常用来计算瞬时感应电动势的大小。 2.如果导线的运动方向与导线本身是垂直的,但与磁感线方向有 一夹角θ,如图所示,此时可将导线的速度v沿垂直于磁感线和平行 于磁感线两个方向分解,则分速度v2=v cos θ不使导线切割磁感线, 使导线垂直切割磁感线的分速度为v1=v sin θ,从而使导线产生的 感应电动势为E=Blv1=⑩ Blv sin θ 。 易错警示 导线运动速度越大,产生的感应电动势不一定越大。因为导线切割磁 感线时,产生的感应电动势的大小与垂直磁感线方向的速度有关,而速度大,垂直磁 感线方向的速度不一定大。
与上述问题相关的几个知识点
5|电磁感应中动力学问题的分析方法 通电导体在磁场中受到安培力作用,电磁感应问题往往和力学问题联 系在一起。解决的基本方法如下:
理解电磁感应问题中的两个研究对象及其相互制约关系 领会力与运动的动态关系
电磁感应中的动力学临界问题 解题思路如下:
6|电磁感应中功能问题的分析方法 电磁感应过程的实质是不同形式的能量之间转化的过程,而能量的转 化是通过安培力做功的形式实现的,安培力做功的过程是电能转化为其他形式能 的过程,外力克服安培力做功的过程,则是其他形式的能转化为电能的过程。 能量转化及焦耳热的求法 (1)能量转化
计算结果 求得的是Δt时间内的平均感应电动势 求得的是某时刻的瞬时感应电动势
高中物理章节目录及重难点
高中物理章节目录及重难点高中物理新课标教材目录·必修1第一章运动的描述1质点参考系和坐标系重点:质点概念的理解、参考系的选取、坐标系的建立难点:理想化模型——质点的建立,及相应的思想方法2时间和位移重点:时间和时刻的概念以及它们之间的区别和联系、位移的概念以及它与路程的区别.难点:位移的概念及其理解3运动快慢的描述──速度重点:速度,平均速度,瞬时速度的概念及区别4实验:用打点计时器测速度5速度变化快慢的描述──加速度重点:加速度概念的简历隔阂加速度与云变速直线运动的关系;加速度是速度的变化率,它描述速度变化的快慢和方向。
难点:理解加速度的概念,树立变化率的思想;区分速度、速度变化量及速度的变化率。
第二章匀变速直线运动的研究1实验:探究小车速度随时间变化的纪律重点:图象法研究速度随时间变化的规律、对运动的速度随时间变化规律的探究。
难点:对实验数据的处理纪律的探究。
2匀变速直线运动的速度与时间的关系重点:理解速度随时间均匀变化的含义、对匀变速直线运动概念的理解、练用数学工具处理分析物理问题的操作方法。
难点:均匀变化的含义、用数学工具解决物理问题3匀变速直线运动的位移与时间的关系重点:线运动的位移与时间关系及其应用;难点:v-t图象中图线与t轴所夹的面积、元法的特点和技巧4匀变速直线运动的位移与速度的关系重点:位移速度公式及平均速度、中间时刻速度和中间位移速度、速度为零的匀变速直线运动的规律及推论。
难点:中间时刻速度和中间位移速度的大小比较及其运用、速度为的匀变速直线运动,相等位移的时间之比。
5自由落体运动重点:什么是自由落体运动及产生自由落体运动的条件、实质。
难点:(1)物体下落快慢影响因素的探究;(2)自由落体运动的运动性质的分析。
6XXX对自由落体运动的研究第三章相互作用1重力基本相互作用重点:1、重力的方向以及重力的大小与物体质量的关系难点:力的作用效果与力的大小、偏向、作用点三个因素有关、重心的概念2弹力3摩擦力4力的分化5力的分化第四章牛顿运动定律1牛顿第一定律重点:经由进程对小车实验的分析比较得出牛顿第一定律难点:明白“力是坚持物体运动的原因”观点是错误的、XXX理想实验的推理进程2实验:探究加速度与力、质量的关系重点:探究加速度与力、质量关系的实验方案,作图分析加速度与力、质量间的关系难点:作图分析出加速度与力、质量间的关系3牛顿第二定律重点:经由进程实验探究,深刻了解牛顿第二定律,并学会简朴运用。
2021学年高二上学期物理人教版(教材)必修第三册PPT-13.3电磁感应现象及应用[1]
通,直长导线正下方平行于导线放置一个小磁针。实验中可能
观察到的现象是( )
C
• A.只要A线圈中电流足够强,小磁针就会发生偏转
B.A线圈闭合开关电流稳定后,线圈B匝数较
少时小磁针不偏转,匝数足够多时小磁针偏转
C.线圈A和电池接通瞬间,小磁针会偏转
D.线圈A和电池断开瞬间,小磁针不会偏转
• 解析:小磁针会不会偏转取决于B线圈中有没有电流,而B中 有没有电流取决于B线圈中的磁通量是否发生变化,当A线圈 中电流足够强,但不变化时,B中无感应电流,磁针不会发生 偏转,A错;当A线圈闭合开关电流稳定后,穿过线圈B的磁通 量不发生变化,所以小磁针也不会发生偏转,故B错;当线圈 A和电池接通或断开的瞬间,穿过线圈B的磁通量发生变化, 所以B中有感应电流,则小磁针会偏转,故C对D错。
• 『想一想』 • 在学校的操场上,把一条大约10 m长电线的两端连在一个灵敏
电流表的两个接线柱上,形成闭合电路,两个同学迅速摇动这 条电线(如图所示),可以发电吗?简述你的理由。
• 你认为这两个同学沿哪个方向站立时,发电的可能性比较大? 试一试。
• 解析:我们知道,闭合电路的部分导体切割磁感线时,闭合电 路中有感应电流产生,摇绳发电的实质是,闭合电路的部分导 体切割地磁场的磁感线,故绳运动方向与地磁场平行时无感应 电流,而运动方向与地磁场垂直时,产生的感应电流最大,地 磁场是南北方向的,故摇绳的两位同学沿东西方向站立时,发 电的可能性最大。
课内互动探究
探究
感应电流的产生条件
情境导入
1825 年,瑞士物理学家德拉里夫的助手科 拉顿将一个螺线管与电流计相连。为了避免强磁 性磁铁影响,他把电流计放在另外一个房间,用 长导线把“电流表”和螺线管连接起来。当他把 磁铁投入螺线管中后,立即跑到另一个房间去观 察(如图)。他在两个房间跑来跑去,没有观察到电流表指针摆动。电路中有 没有产生感应电流呢?
2.2电磁感应定律的建立
D
第二节 电磁感应定律的建立
第二节 电磁感应定律的建立
第二节 电磁感应定律的建立
例1:下列关于感应电动势的说法中,正确的是 A.穿过闭合线圈的磁通量越大,感应电动势越大 B.穿过闭合线圈的磁通量变化越大,感应电动势越大 C.穿过闭合线圈的磁通量变化越快,感应电动势越大 D.以上说法均不正确
C
例:2:下列关于感应电动势的说法中正确的是: A.穿过闭合回路的磁通量减小,回路中的感应电动势一定也减小 B.穿过闭合回路的磁通量变化量越大,回路中的感应电动势也越大 C.线圈放在磁场越强的位置,产生的感应电动势一定越大 D.穿过闭合回路的磁通量的变化率不变,回路中的感应电动势也不变
磁通量的变化率—— ——变化的快慢 t
第二节 电磁感应定律的建立
法拉第(1791—1876) 是英国著名的物理学家、 化学家。他发现了电磁感 应现象,提出电场和磁场 的概念。场的概念对近代 物理的发展的重大意义。 他家境贫寒,出身于 铁匠家庭,未受过系统的 正规教育,但却在众多领 域中作出惊人成就,堪称 刻苦勤奋、探索真理、不 计个人名利的典范,对于 青少年富有教育意义。
2、实验探究
变量控制法
第二节 电磁感应定律的建立
3、实验结果 (1)用同样快速(控制时间): 1根条形磁铁, △φ小,指针偏转小 2根条形磁铁, △φ大,指针偏转大 (2)用一根条形磁铁(控制磁通量): 快速, △t小,指针偏转大 慢速, △t大,指针偏转小
第二节 电磁感应定律的建立
4、分析与论证 1、当时间相同时,磁通量变化越大,感应电流就越大,表明感应电 动势越大。 2、当磁通量变化相同时,所用时间越短,感应电流就越大,表明感 应电动势越大。 5、我的结论 感应电动势的大小跟磁通量变化和所用时间都有关.
新课标高中物理人教版选择性必修123册教材解读〖电磁感应〗
第二章 电磁感应一、课标要求1探究影响感应电流方向的因素,理解楞次定律。
2通过实验,理解法拉第电磁感应定律。
3通过实验,了解自感现象和涡流现象。
能举例说明自感现象和涡流现象在生产生活中的应用。
二、教材概述必修第三册已经讲述了电磁感应现象、感应电流的产生条件,在此基础上,本章从楞次定律开始,进一步研究电磁感应的规律。
第1节通过实验探究影响感应电流方向的因素,阐述楞次定律的内容,这是从感应电流角度来认识电磁感应现象,是认识电磁感应现象的第一个阶段。
第2节“法拉第电磁感应定律”从感应电流深入到感应电动势来理解电磁感应现象,这是第二个阶段,它的核心内容是法拉第电磁感应定律E =Φt∆∆。
第3节介绍了涡流、电磁阻尼和电磁驱动。
与前面研究电路中的电磁感应现象不同,涡流是导体块中的感应电流。
第4节“互感和自感”阐述了两种具体的电磁感应现象,特别是自感现象的特点及应用。
第3、4节介绍了产生感应电动势的两种非静电力的示了电磁感应现象的本质,这是认识电磁感应现象的第三个阶段。
本章教材在编写时还有以下一些具体的考虑。
21 从运动与相互作用及能量的角度来分析楞次定律教材通过实验展示把磁极插入线圈或从线圈内抽出时,感应电流的方向并不相同,引出探究活动并得出结论:“感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
”进一步分析探究实验,推力或拉力都必须做机械功,做功过程中消耗的机械能转化为感应电流的电能。
总的来看,阻碍的作用是把其他形式的能量或其他电路的电能转化或转移为感应电流所在回路的电能,在这个过程中,能量总是守恒的。
楞次定律的深刻意义,正是在于它是能量的转化与守恒定律在电磁感应现象中的体现,而这种能量的转化与守恒关系是通过“阻碍”作用具体体现出来的。
22 楞次定律的得出运用了归纳推理的科学思维方法归纳推理是从一类事物的部分对象所具有的某种属性出发,推理出这类事物的所有对象都具有共同属性的推理方法,也就是由具体结论推理出一般规律的方法。
电磁感应现象概述
电磁感应现象概述电磁感应是指电流变化或磁场的变化所引起的电场或磁场的变化现象。
它是电磁学的基础,也是电磁感应发电机、变压器等电气设备的基本原理。
本文将对电磁感应现象进行概述,并讨论其相关应用。
一、电磁感应的基本原理电磁感应的基本原理是法拉第电磁感应定律,即法拉第第一电磁感应定律和法拉第第二电磁感应定律。
法拉第第一电磁感应定律表明,当导体中的磁通量发生变化时,导体两端会产生感应电动势,并且感应电动势的方向与磁通量的变化方向相反。
数学表示为:\[ ε = -\frac{d\Phi}{dt} \]法拉第第二电磁感应定律则描述了导体中感应电动势与导体回路中的电流和导体几何形状的关系。
数学表示为:\[ ε = -n\frac{d\Phi}{dt} \]其中,n是导体回路的匝数。
二、电磁感应的应用1. 电磁感应发电机电磁感应发电机利用电磁感应现象将机械能转化为电能。
当导体通过磁场运动时,导体中的电子受到磁场力的作用,产生感应电动势。
通过导体回路中的电流,电能被产生并输出。
电磁感应发电机广泛应用于发电厂、风力发电、水力发电等领域。
2. 变压器变压器是利用电磁感应原理进行能量转移的电力设备。
它由两个线圈(即主线圈和副线圈)和一个铁芯组成。
当主线圈中的交流电流通过铁芯时,产生变化的磁场,导致副线圈中产生感应电动势。
通过调整主副线圈的匝数比例,变压器可以实现电压的升降。
变压器广泛应用于电力输配系统,实现远距离电力输送和提供不同电压等级的需求。
3. 感应炉感应炉是利用电磁感应原理进行加热的设备。
通过感应线圈中通过交流电流产生的磁场,使感应炉内的金属材料产生感应电流,从而产生热量。
感应炉在工业领域广泛应用于金属熔炼、加热、淬火等工艺过程。
4. 磁悬浮列车磁悬浮列车利用电磁感应原理实现列车的悬浮和推进。
通过列车底部的线圈产生的交变磁场,与轨道上的磁铁相互作用,产生电磁力用于悬浮和推动列车移动。
磁悬浮列车具有高速、无摩擦、低噪音等优点,并在一些国家和地区得到了广泛应用。