气力输送网络的设计与计算共16页文档

合集下载

气力输送计算

气力输送计算

第四节 气力输送网络的设计与计算
一、设计依据和主要参数的确定 2.输送风速 输料管中的风速ν,必须保证物料能可靠地输送,同时也要考虑工作的 经济性。风速过高,动力消耗过大。动力消耗几乎与风速的三次方成正比。 风速过低,对物料输送量变化的适应性小,工作不稳定,容易发生堵塞或掉 料。所以应该在保证输送工作稳定可靠的前提下,尽量采取低风速。
第四节 气力输送网络的设计与计算
三、正压输送系统的设计计算
(一)设计的原则和要求
4.罗茨鼓风机,作为输送气源,通常都集中安装在单独的房间内,这 样可便于管理和控制噪声。供料器的位置应尽量布置在供料点的附近,鼓 风机与供料器之间的连接风管,在布置走向时可不必拘泥于弯头的多少和 管道的长短,主要考虑的是不过多地影响车间通道,适当照顾整齐美观。 对于气源压力较高的送风管,其水平部分应有3%的倾斜(沿气源方向), 以便凝结水的集中和收集。 5.在压送系统的设计过程中,必须同时考虑仓顶或卸料器尾气的收集 处理,包括供料器;漏风的收集。这些都可按一般的通风除尘系统进行设 计。 总之,设计过程中需要考虑的因素是很多的,应该在坚持基本原则的 基础上,灵活掌握,不能生搬硬套,以免顾此失彼,必要时可列出多种四节 气力输送网络的设计与计算
第四节 气力输送网络的设计与计算
气力输送网路的设计与计算的任务是,根据规定的条件设计确定网路的 组合形式以及各输料管和风运设备的规格尺寸,计算网路所需要的风量和压 力损失,从而正确选用合适的风机和电动机,以保证网路既经济,又能可靠 地工作。 一、设计依据和主要参数的确定 (一)设计依据及对工艺设计的要求 作为设计依据的条件主要有: 1.生产规模及工作制度。 2.原粮的性质及其成品的种类和等级。 3.厂房结构形式,以及仓库和附属车间的结合情况。 4.工艺流程和作业机的布置情况。 5.技术经济指标和环境保护要求。 6.操作管理条件和技术措施的可能性。 7..远景发展规划。

气力输送计算【范本模板】

气力输送计算【范本模板】

气力输送计算
一、设计依据和主要参数确定
1、输送量(G)
输送管在正常工作中最大物料量:20T/H
2、输送风速(V)
气力输送装置中空气在管道中运动要有一个最有利的经济速度,此速度。

风速过高动力消耗过大。

动力消耗几乎与风速的三次方成正比。

风速过低,对物料输送量变化的适应小,工作不稳定易发生堵塞或掉料.所以应该在保证输送工作稳定可靠的前提下,尽量采用低风速。

通常当物料比重和颗粒愈大、输送浓度越高、或者有弯曲和水平输送时所需风速取大值,反之则取较低数值.一般输送粮粒的风速为20—25m/s.
我们考虑到我们输送距离短,弯头少等实际情况选择输送风速为22m/s.
3、输送浓度(υ)
输送浓度即气体输送中气体所含输送物料的质量浓度。

我国粮食行业一般输送稻谷等粮粒时取υ=3-5。

我们根据实际情况取υ=4
4、风量(Q) 根据公式y
G Q υ==2.1410203⨯⨯=4.17×103 m 3/h y-空气的比重 取1.2Kg/m 3
考虑到系统漏风和储备所需风量为Q=1。

1×4.17×103=4。

58×103
m 3/h
5、输料管直径D 根据公式=⨯==22
1058.48.188.183V Q D 271.1 我们进行取整,得输料管直径D=300mm 。

6、压力损失(P)。

气力输送计算书

气力输送计算书

设计计算书本系统两罐串联,交替运行。

发送罐选用型号CT6.5,每罐装满料的质量为3500Kg系统要求的正常质量流量27156Kg/h-----------G s设计的最大输送能力325872 Kg/h---------------G m备用率为G m/ G s=1.2管道当量长度Le的计算:[单位mm ]原始数据:水平长度220m,垂直40m,弯头数9个,管道阀门数2个。

L e=L水+L垂*C+(N弯+N阀)*L pC为垂直管道的当量系数取1.2L p为弯头的当量长度取10m计算得Le=378m当地空气的平均密度的计算:[单位Kg/m³]原始数据:年平均温度5.9℃(T=279)大气压力73.56Pa根据理想方程:PV=nRT推导如下PV=(m/M)RT=(ρV/M)ρ气=0.92Kg/m³R 为比例系数,单位是J/(mol·K)取8.314M空气的摩尔质量29固气比μ的选择:μ=25μ= G s/ G aG a为正常空气质量流量Ga= Gs/μ=27156/25=1086.24Kg/h耗气量Q= Ga/ρ气=1086.24/0.92*60=19.7Nm³/min管径的选择:[单位mm ]发送器到四路分流器之间输送管径选用φ219*6规格,四路分流器至料仓输送管径选用φ325*8规格。

气体流速的计算[单位m/s ]V初=Q/πR1²R1=100mm计算V初=10.46m/sV末=Q/πR2²R2=150mm计算V末=4.6m/s压力损失ΔP的计算[单位Pa ]系统的全程压力损失由以下几点确定①气体和物料在水平管道内的损失②气体和物料在垂直管道内的损失③物料启动时的压力损失(即物料从开始的静止到一定速度输送所消耗的压力)④弯管的压力损失以上的计算较为复杂,国内目前大多是根据日本狩野武推导的公式进行计算,根据经验参数估算的结果为ΔP=4.5~5bar即4.5~5*105Pa 吨米气耗q r″的计算[单位m3/t*km]q r″=q va/q mg*L=(Q/WL)*106q va=Q/tq mg=W/tq r″=152÷(3500*378)*106=115 式中:q va-----------空气体积流量,单位m3/sQ-----------输送一罐料所用的空气量,单位m3t-------------输送一罐料所需的时间,单位sq mg----------物料的质量流量,单位Kg/sw------------一罐料的质量,单位KgL-------------输送管的当量长度单位m输送一罐料的耗气量Q3500 Kg÷25=140Kg 140÷0.92=152 m325是固气比吨米功率消耗k″的计算[单位kWh/t*m]k″= q va*ΔP/(q mg*L)= Q*ΔP/3600wLΔP---------输送管入口和出口的全压差(Pa)k″=152*5*105/3600*3500*378=0.016kW*h/t*m每小时系统的能耗E:[单位kWh]E=ηk″* G s*Le =1.3*0.016*27*378*=212.3kWhη为损耗系数1.3 (全文完)。

气力输送原理与设计计算

气力输送原理与设计计算

气力输送原理与设计计算气力输送是一种流体输送的方式,通过高压气体或气流将固态或液态物质输送到目的地。

气力输送主要应用于建筑材料、化工、粮食、医药等行业,其输送原理和设计计算是研究气力输送的基础。

一、气力输送原理气力输送是通过高速气流将固态或液态物质在管道中输送到目的地。

当高速气流通过管道中的物料时,产生了一定的阻力,物料随着气流的推动在管道中运动。

物料输送的基本原理是利用高速气流对物料进行运动和悬浮,当物料与管道壁面或物料自身接触时,形成了摩擦力和重力,这些力会对物料的输送和递送产生影响。

在气力输送过程中,气体对物料形成冲击、惯性和剪切作用,使物料粒子之间发生碰撞,从而形成了堵塞、飞沫和结块现象。

为减少这些不利的影响,需要在设计中考虑物料特性、管道直径、流速、气体性质和气氛等因素。

二、气力输送设计计算1. 气体管道设计气体管道的设计首先要确定管道直径和输送速度。

一般来说,直径较小的管道输送速度较快,但也容易产生堵塞和结块。

根据运输物料的粘度、密度和颗粒形状选择管道直径。

通过实验和测试确定输送速度和管道直径。

2. 生产物料和气体流量的计算在气力输送中,对生产物料和气体流量的计算是非常重要的。

通过实验和测试确定生产物料的密度和颗粒大小,从而计算出物料的传输量。

对于气体流量的计算,需要考虑输送材料的特性、气体的压力和温度等因素。

一般来说,气态流体通过管道的总流量取决于气体的压力、管道长度和管道内径等参数。

3. 气力输送设备的选择在气力输送设计过程中,需要选择适合的输送设备。

一般来说,气流输送分为沉降相式和悬浮相式。

沉降相式要求管道中的物料沉降到底部,重物料和轻物料分别在不同的位置,这需要对物料和气体流动进行控制。

悬浮相式要求物料与气流悬浮在一起,在管道中形成泥浆状流体,常用于细颗粒物料的输送。

4. 气动输送控制系统设计在气力输送设计过程中,需要考虑气动输送控制系统的设计。

主要控制方式有手动控制和自动控制两种。

气力输送计算

气力输送计算
0.016 气体的摩擦系数,无因次系数 1 光滑管:e=1;新焊接管:e=1.3;旧管:e=1.6
19.000 气流平均速度,m/s 0.637 3975 水平转向垂直向上弯头阻力 0.75 理论冲击次数,按表选取-->> 10 水平转向垂直向上弯头数量 2783 垂直转向水平弯头阻力 10 垂直转向水平弯头数量 3299 水平面内弯头阻力
ΔPp=
28525
发送设备压力损失 C=
100 直管吸嘴:C=1-10,Kp=1

旋泵:C=100,Kp=7

Kp=
7 式泵:C=100-200,Kp=7
四、供压力与风量
Q=
P=
6836 风量,m3/h 249989 压力,Pa
五、功率计算
N=
954
Lo=
326601
P1=
101000 空压机进气绝对压力,Pa
垂直管压力损失 分离器压力损失 管道出口压力损失
m3= ΔPv= H= Kv= ΔPsp= ζ= Ui= ΔPcx=
10 水平面内弯头数量 745 垂直管压力损失,Pa
5 垂直管有效高度,m 1.100
310 分离器压力损失,Pa,旋风分离器 10.6 阻力系数,表内选取-->>
8 入口气流速度,m/s 1333
气力输送系统设计计算(黄底部分输入数据)
参数名称
代号 数值
备注
一、空气消耗量
Q=
114 Q=1000G/60μρa,空气消耗量,m3/min
G=
50 物料输送量,t/h
ρa=
0.91 按温度海拔换算当地自由空气的密度,kg/m3
T=
30 当地温度,℃

工程气力输送系统方案设计

工程气力输送系统方案设计

工程气力输送系统方案设计一、引言气力输送系统是一种利用气体流动进行物料输送的技术。

它广泛应用于各种工业场景中,如煤炭、粮食、化工原料等领域。

气力输送系统以其高效、节能、环保等特点,受到了广泛的关注和应用。

本文旨在设计一套完善的工程气力输送系统方案,为相关行业提供优质的输送解决方案。

二、系统组成1.气源及压缩系统气源是气力输送系统的核心组成部分,通常采用风机或压缩机提供气源。

在选择气源设备时,需要考虑输送的物料性质、输送距离、输送流量等因素,以确定合适的气源设备类型和规格。

2.物料收集和输送系统物料收集和输送系统包括物料收集设备、输送管道、输送阀门等组成部分。

物料收集设备通常采用集尘器、集尘罩等设备进行物料的收集和预处理,输送管道则是将物料从收集设备输送到目的地的管道系统。

3.辅助设备辅助设备包括除尘器、隔尘器、压力表、流量表等,这些设备用于确保系统的安全运行和物料的清洁输送。

4.控制系统控制系统是气力输送系统的“大脑”,它通过控制气源设备、输送管道阀门等进行输送流程的控制和调节。

控制系统需要保证输送系统的稳定运行、安全输送。

5.安全保护系统安全保护系统是气力输送系统中不可或缺的组成部分,它包括防火防爆装置、压力保护装置、温度保护装置等,用于确保系统的安全运行和保护人员、设备不受损害。

三、系统设计1.输送距离和输送流量的确定在设计气力输送系统方案时,首先需要确定输送的物料性质、输送距离和输送流量。

根据物料的颗粒大小、密度、流动性等特性,确定输送管道的直径、输送压力等参数。

同时,根据输送的距离和输送流量,选择合适的气源设备和输送管道。

2.输送管道的设计输送管道是气力输送系统中重要的组成部分,它直接影响到输送的效率和能耗。

输送管道的设计需要考虑到物料的流动性、摩擦阻力、气流速度等因素,以确保物料能够顺利输送到目的地。

同时,还需要考虑到管道的材质、防腐蚀、防磨损等问题,以延长管道的使用寿命。

3.气源设备的选择气源设备是输送系统的动力来源,选择合适的气源设备对系统的正常运行至关重要。

气力输送计算

气力输送计算

上引式系统(空气输送):一、计算条件(所有压力均为表压)锅炉额定排灰量qmB=28t/h干灰堆积密度ρh= 电场灰斗数量n=4个灰斗内干灰温 电场的输送单元数量n1=1个当地大气压pa=计算输送单元电场效率η=0.75 当地平均输送几何距离L=800m系统富余系数K=输送总垂直提升高度H=40m二、流态化仓泵技术数据电场灰预设输送单元输送一次的时间间隔Ti=5min(应包括装灰、输送及等待时间)仓泵输送压力p e=0.32MPa 计算流态化仓泵有效仓泵输出灰气混合物温度t e=100℃根据计算选择流态化仓泵有效容计算点压缩空气密度ρe=3.932452kg/m3 仓泵输出灰气比μ1=气灰混合物总量V ah=7.738995m3 仓泵出料管内气灰混合物 流态化仓泵出料管管径Dz=0.081888m 预设仓泵内气灰混合物输出时取仓泵内增压、流化仓泵出料管选用标准无缝管管径为Dn=0.081m (内径) 助吹空气量占总输送空气量百φ=仓泵出料管输出流量q vc=2.163162m3/min 计算点压力工况下需要输送空修正仓泵内气灰混合物输出时间t1=3.577631min 输送仓泵输出气灰混合物流三、输送管道技术参数初定输送管道助吹空气量q'vf= 1.34907m3/min 输送管道起始流输送管道管径Dn'=0.163427m输送管选用标准无缝管输送管道起始段气灰混合物流量qvAah=9.501012m3/min输灰管道输入灰库压力P F=修正助吹空气量q vf=1.413992m3/min输灰管道末端气灰混合物温度tF=计算点输送压缩空气初速度va=6.431367m/s 输送管道末段流输送单元系统需要标况空气量qvn=26.65106Nm3/min输送管道末段管径DF'=0.196481m 输灰管道末段气灰混合物流修正输送管道末速度Vf= 选用标准无缝管管径为Dn F=0.199m (内径)输送管道内平均输送流速v av=气灰混合物在输送管道内输送仓泵输送单元输送一次时间T=5.090984min 不含间隔时间输送管道内的输送灰气比μ= 输送管道末段气灰混合物密度ρFah=25.47775kg/m3 输送管道内干灰平均四、输送管道压力损失(必须先完成上面的计算,分管段计算每段压力损失后再人工相加)计算管段管径Dn=0.199m管道内壁平均粗糙度ε= 计算管段当量长度Leg=340m计算管段标准内径Dn=0.199m空气摩擦阻力系数λa=计算管段末端温度t2=50℃ 计算管段末段空气流量2=计算管段末端压力p2=6KPa 计算管段前段空气流量1=计算管段前端温度t1=65℃ 计算管段前端气灰混合物流量=计算管段末端气灰混合物流量= 计算管段前端压力P1=82.45667KPa 计算管段末端气灰混合物密度ρeah2=计算管段末端速度Vf=15.57656m/s 计算管段压力损计算管段始端速度Va=9.794972m/s干灰堆积密度ρh=0.75t/m3干灰温度te1=110℃当地大气压pa=101.234Kpa地平均气温ta=20℃系统富余系数K= 1.5灰斗采用定期出灰方式运行时 K≥2.0灰斗采用不积灰状态运行时 K=1.2~1.5电场灰量qm'=31.5t/h泵有效容积V=0.875m3有效容积为V= 1.2m3仓泵输出灰气比μ1=35kg/kg 为30~45kg(灰)/kg(气)混合物流速v2=7m/s 一般按6~7.5m/s选取输出时间t1'= 3.5min、流化时间t2=0.3min 一般取0.2~0.5min气量百分比φ=20% 初步设定按15%~20%选取输送空气量qve=1.686337m3/min合物流量qveah=8.08702m3/min起始流速VA'=7.5m/s 按7.0~8.5m/s选取无缝管管径Dn=0.164m (内径)管道输入灰库压力P F=6KPa端气灰混合物温度tF=50℃末段流速Vf'=16m/s 一般控制在20m/s内合物流量qVFah=29.09658m3/min正输送管道末速度Vf=15.57656m/s道内平均输送流速v av=11.53828m/s内输送时间t3=1.213352min道内的输送灰气比μ=22.01908kg(灰)/kg(气)灰平均流速vh=2.922156道内壁平均粗糙度ε=0.0002 无缝钢管为0.0002,焊钢管为0.0003,铸钢管为0.0005空气摩擦阻力系数λa=0.01964气流量qVFa2=27.75491m3/min气流量qVFa1=16.95506m3/min物流量qVFah1=18.29673m3/min物流量qVFah2=29.09658m3/min物密度ρeah2=25.47775kg/m3压力损失△Pe=76.45667Kpa。

负压稀相气力输送的设计和计算

负压稀相气力输送的设计和计算

负压气力输送系统1,常见的负压气力输送装置A,低负压离心风机气力输送:采用离心风机作为气源、以落料式吸嘴作为进料装置、用串联双旋风作为气固分离装置,采用大风量连续输送并冷却略潮湿的物料,见下图。

由于采用高压离心风机作为气源输送其压力很低,因此这种输送距离不易过长(一般不超过100米),否则输送距离太长则能耗显著增加得不偿失。

由于离心风机的压头很低,多点进料时就不能采用串联形式(因为串联形式的多点进料阻力很大离心风机没有力量同时抽动多个点位的物料),因此它采用落料式吸嘴进行并联多点进料,这样就可以大大地降低吸嘴处的阻力降,在每个进料点都配有调风插板进行调节,同时在进料段管道直径应合理匹配让直径逐渐加粗使得每一点的风速都基本一致。

气固分离装置则先让二相流进入矮胖的旋风分离器将绝大部分粗粉和颗粒及一部分细粉分离出来经过安装在其底部的旋转阀连续地排泄出去,然后再将含尘气体进入细高的旋风分离器将绝大部分细粉分离出来并由旋转阀排出,尾气则经由离心风机(离心风机可以走粉尘)排空,这种方式尾气不能达到排放标准。

采用落料式吸嘴的低负压离心风机输送系统管道不会堵塞,原因是瞬间加大进料量时由于真空度很低它没有力量吸入太多的物料,多余的物料会溢出洒落到地面。

由于这种吸嘴无法吸入过多的物料因而输送管道也就不可能堵塞。

B,‘A’中讲述的略潮湿的物料低负压离心风机气力输送的尾气不能达到排放标准。

在肯定物料是干燥的无附着的情况下用布袋除尘器替代细高的旋风分离器,这样排出的尾气就能够达到排放标准,见下图。

布袋除尘器的前端保留旋风分离器的目的是用旋风分离器将绝大部分物料分离出去以降低进入布袋除尘器的粉尘浓度防止其堵塞。

由于这是气力输送系统它的负压值远比除尘系统大(一般大10倍左右),除尘系统使用的轻薄滤袋容易透灰,因此一般采用加厚或覆膜滤料来制造滤袋,来防止细粉穿透滤袋,另外与除尘系统相比其脉冲阀加大且脉冲反吹清灰的频次增加以加强清灰力度,过滤面积也要加大以抵消清灰频次增加所抵消的过滤面积,设计风量也应适当增加以抵消过多的脉冲反吹空气。

气力输送计算

气力输送计算
第四章 气力输送技术
第四节 气力输送网络的设计与计算
第四节 气力输送网络的设计与计算
气力输送网路的设计与计算的任务是,根据规定的条件设计确定网路的 组合形式以及各输料管和风运设备的规格尺寸,计算网路所需要的风量和压 力损失,从而正确选用合适的风机和电动机,以保证网路既经济,又能可靠 地工作。 一、设计依据和主要参数的确定 (一)设计依据及对工艺设计的要求 作为设计依据的条件主要有: 1.生产规模及工作制度。 2.原粮的性质及其成品的种类和等级。 3.厂房结构形式,以及仓库和附属车间的结合情况。 4.工艺流程和作业机的布置情况。 5.技术经济指标和环境保护要求。 6.操作管理条件和技术措施的可能性。 7..远景发展规划。
第四节 气力输送网络的设计与计算
三、正压输送系统的设计计算 (一)设计的原则和要求 4.罗茨鼓风机,作为输送气源,通常都集中安装在单独的房间内,这 .罗茨鼓风机,作为输送气源,通常都集中安装在单独的房间内, 样可便于管理和控制噪声。供料器的位置应尽量布置在供料点的附近, 样可便于管理和控制噪声。供料器的位置应尽量布置在供料点的附近,鼓 风机与供料器之间的连接风管, 风机与供料器之间的连接风管,在布置走向时可不必拘泥于弯头的多少和 管道的长短,主要考虑的是不过多地影响车间通道,适当照顾整齐美观。 管道的长短,主要考虑的是不过多地影响车间通道,适当照顾整齐美观。 对于气源压力较高的送风管,其水平部分应有3%的倾斜 沿气源方向), 的倾斜( 对于气源压力较高的送风管,其水平部分应有 的倾斜(沿气源方向), 以便凝结水的集中和收集。 以便凝结水的集中和收集。 5.在压送系统的设计过程中,必须同时考虑仓顶或卸料器尾气的收集 .在压送系统的设计过程中, 处理,包括供料器;漏风的收集。 处理,包括供料器;漏风的收集。这些都可按一般的通风除尘系统进行设 计。 总之,设计过程中需要考虑的因素是很多的, 总之,设计过程中需要考虑的因素是很多的,应该在坚持基本原则的 基础上,灵活掌握,不能生搬硬套,以免顾此失彼, 基础上,灵活掌握,不能生搬硬套,以免顾此失彼,必要时可列出多种方 论证对比,择善而从。 案,论证对比,择善而从。

气力输送计算

气力输送计算
三、正压输送系统旳设计计算
(一)设计旳原则和要求
1.根据面粉厂配粉旳工艺要求,以及被输送物料旳品种、数量、大小 和排列形式,尽量做到合理利用,布置紧凑。
2.在此基础上,利用一点进料,多点卸料,交替输送,一机多用旳 原则,在满足工艺要求旳前提下,合理组合输送面粉先复筛后进仓,然后 打包发放旳程序,就可考虑设计复式输送系统。
5.在压送系统旳设计过程中,必须同步考虑仓顶或卸料器尾气旳搜集 处理,涉及供料器;漏风旳搜集。这些都可按一般旳通风除尘系统进行设 计。
总之,设计过程中需要考虑旳原因是诸多旳,应该在坚持基本原则旳 基础上,灵活掌握,不能生搬硬套,以免顾此失彼,必要时可列出多种方 案,论证对比,择善而从。
第四节 气力输送网络旳设计与计算
输料管中旳风速ν,必须确保物料能可靠地输送,同步也要考虑工作旳 经济性。风速过高,动力消耗过大。动力消耗几乎与风速旳三次方成正比。 风速过低,对物料输送量变化旳适应性小,工作不稳定,轻易发生堵塞或掉 料。所以应该在确保输送工作稳定可靠旳前提下,尽量采用低风速。
一般,当物料旳比重和颗粒愈大、输送浓度愈高、或者管道有弯曲和 水平输送时,所需风速应取较大数值,反之则取较低数值。粮食加工厂输料 管中旳风速一般为:
一、设计依据和主要参数旳拟定
3.输送浓度
但是,输送浓度也并不是越大越好。浓度高了,输送压力损失将增大, 操作较闲难,而且轻易引起堵塞或掉料。另外,考虑到空气有时还兼有通 风和风选旳任务,这些都必须确保有一定旳风量。所以,过分地追求高浓 度,并不是永远合适旳。
浓度旳大小直接关系到网路旳风量和压力损失旳大小,我们在选定输 送浓度时,还要考虑到此时旳风量和阻力是否与风机旳风量和压力相适应, 也即风机能否在较高旳效率下工作。不然,浓度虽然是高旳,但风机并不 在较高效率下工作,动力消耗就不一定会降低。

气力输送计算

气力输送计算

上引式系统(空气输送):一、计算条件(所有压力均为表压)锅炉额定排灰量qmB=28t/h干灰堆积密度ρh= 电场灰斗数量n=4个灰斗内干灰温 电场的输送单元数量n1=1个当地大气压pa=计算输送单元电场效率η=0.75 当地平均输送几何距离L=800m系统富余系数K=输送总垂直提升高度H=40m二、流态化仓泵技术数据电场灰预设输送单元输送一次的时间间隔Ti=5min(应包括装灰、输送及等待时间)仓泵输送压力p e=0.32MPa 计算流态化仓泵有效仓泵输出灰气混合物温度t e=100℃根据计算选择流态化仓泵有效容计算点压缩空气密度ρe=3.932452kg/m3 仓泵输出灰气比μ1=气灰混合物总量V ah=7.738995m3 仓泵出料管内气灰混合物 流态化仓泵出料管管径Dz=0.081888m 预设仓泵内气灰混合物输出时取仓泵内增压、流化仓泵出料管选用标准无缝管管径为Dn=0.081m (内径) 助吹空气量占总输送空气量百φ=仓泵出料管输出流量q vc=2.163162m3/min 计算点压力工况下需要输送空修正仓泵内气灰混合物输出时间t1=3.577631min 输送仓泵输出气灰混合物流三、输送管道技术参数初定输送管道助吹空气量q'vf= 1.34907m3/min 输送管道起始流输送管道管径Dn'=0.163427m输送管选用标准无缝管输送管道起始段气灰混合物流量qvAah=9.501012m3/min输灰管道输入灰库压力P F=修正助吹空气量q vf=1.413992m3/min输灰管道末端气灰混合物温度tF=计算点输送压缩空气初速度va=6.431367m/s 输送管道末段流输送单元系统需要标况空气量qvn=26.65106Nm3/min输送管道末段管径DF'=0.196481m 输灰管道末段气灰混合物流修正输送管道末速度Vf= 选用标准无缝管管径为Dn F=0.199m (内径)输送管道内平均输送流速v av=气灰混合物在输送管道内输送仓泵输送单元输送一次时间T=5.090984min 不含间隔时间输送管道内的输送灰气比μ= 输送管道末段气灰混合物密度ρFah=25.47775kg/m3 输送管道内干灰平均四、输送管道压力损失(必须先完成上面的计算,分管段计算每段压力损失后再人工相加)计算管段管径Dn=0.199m管道内壁平均粗糙度ε= 计算管段当量长度Leg=340m计算管段标准内径Dn=0.199m空气摩擦阻力系数λa=计算管段末端温度t2=50℃ 计算管段末段空气流量2=计算管段末端压力p2=6KPa 计算管段前段空气流量1=计算管段前端温度t1=65℃ 计算管段前端气灰混合物流量=计算管段末端气灰混合物流量= 计算管段前端压力P1=82.45667KPa 计算管段末端气灰混合物密度ρeah2=计算管段末端速度Vf=15.57656m/s 计算管段压力损计算管段始端速度Va=9.794972m/s干灰堆积密度ρh=0.75t/m3干灰温度te1=110℃当地大气压pa=101.234Kpa地平均气温ta=20℃系统富余系数K= 1.5灰斗采用定期出灰方式运行时 K≥2.0灰斗采用不积灰状态运行时 K=1.2~1.5电场灰量qm'=31.5t/h泵有效容积V=0.875m3有效容积为V= 1.2m3仓泵输出灰气比μ1=35kg/kg 为30~45kg(灰)/kg(气)混合物流速v2=7m/s 一般按6~7.5m/s选取输出时间t1'= 3.5min、流化时间t2=0.3min 一般取0.2~0.5min气量百分比φ=20% 初步设定按15%~20%选取输送空气量qve=1.686337m3/min合物流量qveah=8.08702m3/min起始流速VA'=7.5m/s 按7.0~8.5m/s选取无缝管管径Dn=0.164m (内径)管道输入灰库压力P F=6KPa端气灰混合物温度tF=50℃末段流速Vf'=16m/s 一般控制在20m/s内合物流量qVFah=29.09658m3/min正输送管道末速度Vf=15.57656m/s道内平均输送流速v av=11.53828m/s内输送时间t3=1.213352min道内的输送灰气比μ=22.01908kg(灰)/kg(气)灰平均流速vh=2.922156道内壁平均粗糙度ε=0.0002 无缝钢管为0.0002,焊钢管为0.0003,铸钢管为0.0005空气摩擦阻力系数λa=0.01964气流量qVFa2=27.75491m3/min气流量qVFa1=16.95506m3/min物流量qVFah1=18.29673m3/min物流量qVFah2=29.09658m3/min物密度ρeah2=25.47775kg/m3压力损失△Pe=76.45667Kpa。

气力输送计算

气力输送计算

气力输送计算
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
气力输送计算
一、设计依据和主要参数确定
1、输送量(G )
输送管在正常工作中最大物料量:20T/H
2、输送风速(V)
气力输送装置中空气在管道中运动要有一个最有利的经济速
度,此速度。

风速过高动力消耗过大。

动力消耗几乎与风速的三次方成正比。

风速过低,对物料输送量变化的适应小,工作不稳定易发生堵塞或掉料。

所以应该在保证输送工作稳定可靠的前提下,尽量采用低风速。

通常当物料比重和颗粒愈大、输送浓度越高、或者有弯曲和水平输送时所需风速取大值,反之则取较低数值。

一般输送粮粒的风速为20-25m/s.
我们考虑到我们输送距离短,弯头少等实际情况选择输送风速为22m/s.
3、输送浓度(υ)
输送浓度即气体输送中气体所含输送物料的质量浓度。

我国粮食行业一般输送稻谷等粮粒时取υ=3-5.我们根据实际情况取υ=4
4、风量(Q ) 根据公式y G Q υ==2
.1410203⨯⨯=4.17×103 m 3/h y —空气的比重取1.2Kg/m 3
考虑到系统漏风和储备所需风量为Q=1.1×4.17×103=4.58×103 m 3/h
5、输料管直径D 根据公式=⨯==221058.48.188.183V Q D 271.1
我们进行取整,得输料管直径
D=300mm 。

6、压力损失(P )。

气力输送计算

气力输送计算

垂直管压力损失 分离器压力损失 管道出口压力损失
m3= ΔPv= H= Kv= ΔPsp= ζ= Ui= ΔPcx=

发送设备压力损失
ΔPp= C= Kp=
10 水平面内弯头数量 745 垂直管压力损失,Pa
5 垂直管有效高度,m 1.100
310 分离器压力损失,Pa,旋风分离器 10.6 阻力系数,表内选取-->>
P2=
300000 空压机供气绝对压力,Pa
η=
0.65 等温全效率,0.55-0.75
R/D 0.5 1 2 3 9 20
n
0.75 0.94 1.22 1.67 2.04 3
0.016 气体的摩擦系数,无因次系数 1 光滑管:e=1;新焊接管:e=1.3;旧管:e=1.6
19.000 气流平均速度,m/s 0.637 3975 水平转向垂直向上弯头阻力 0.75 理论冲击次数,按表选取-->> 10 水平转向垂直向上弯头数量 2783 垂直转向水平弯头阻力 10 垂直转向水平弯头数量 3299 水平面内弯头阻力
气力输送系统设计计算(黄底部分输入数据)
参数名称
代号 数值
备注
一、空气消耗量
Q=
114 Q=1000G/60μρa,空气消耗量,m3/min
G=
50 物料输送量,t/h
ρa=
0.91 按温度海拔换算当地自由空气的密度,kg/m3
T=
30 当地温度,℃
P=
0.8456 当地气压,大气压,查表
μ=
8 低压小于49kPa取小于10;高压按表选取->
8 入口气流速度,m/s
1333
28525 100 直管吸嘴:C=1-10,Kp=1 螺旋泵:C=100,Kp=7 7 仓式泵:C=100-200,Kp=7

气力输送计算书

气力输送计算书

设计计算书本系统两罐串联,交替运行。

发送罐选用型号CT6.5,每罐装满料的质量为3500Kg系统要求的正常质量流量27156Kg/h—-——--——-—-G s设计的最大输送能力325872 Kg/h--—--—-—-—--———G m备用率为G m/ G s=1.2管道当量长度Le的计算:[单位mm ]原始数据:水平长度220m,垂直40m,弯头数9个,管道阀门数2个。

L e=L水+L垂*C+(N弯+N阀)*L pC为垂直管道的当量系数取1。

2L p为弯头的当量长度取10m计算得Le=378m当地空气的平均密度的计算:[单位Kg/m³]原始数据:年平均温度5.9℃(T=279)大气压力73.56Pa根据理想方程:PV=nRT推导如下PV=(m/M)RT=(ρV/M)ρ气=0。

92Kg/m³R 为比例系数,单位是J/(mol·K)取8。

314M空气的摩尔质量29固气比μ的选择:μ=25μ= G s/ G aG a为正常空气质量流量Ga= Gs/μ=27156/25=1086.24Kg/h耗气量Q= Ga/ρ气=1086.24/0。

92*60=19.7Nm³/min管径的选择:[单位mm ]发送器到四路分流器之间输送管径选用φ219*6规格,四路分流器至料仓输送管径选用φ325*8规格。

气体流速的计算[单位m/s ]V初=Q/πR1²R1=100mm计算V初=10。

46m/sV末=Q/πR2²R2=150mm计算V末=4。

6m/s压力损失ΔP的计算[单位Pa ]系统的全程压力损失由以下几点确定①气体和物料在水平管道内的损失②气体和物料在垂直管道内的损失③物料启动时的压力损失(即物料从开始的静止到一定速度输送所消耗的压力)④弯管的压力损失以上的计算较为复杂,国内目前大多是根据日本狩野武推导的公式进行计算,根据经验参数估算的结果为ΔP=4。

5~5bar即4。

工程气力输送方案

工程气力输送方案

工程气力输送方案一、前言气力输送是一种利用气流将物料从一个地点输送至另一个地点的输送方式。

它具有高效、节能、环保的特点,广泛应用于化工、建材、矿业、冶金、食品等行业。

本文将介绍气力输送的工程方案,包括设计原理、系统组成、操作注意事项等内容。

二、设计原理1. 气力输送的基本原理气力输送是利用气流产生的动能将物料从一处输送至另一处的一种传送方式。

其中,气流的产生是通过鼓风机、风机等设备产生的,将高压气体送入管道系统,带动物料一起进行输送。

在输送过程中,物料会与气流发生互动,形成一种稀薄悬浮的状态,从而实现物料的输送。

2. 设计原则在进行气力输送系统设计时,需要充分考虑气流的参数、物料的性质、输送距离、输送量等因素。

同时还需要考虑到系统的安全、稳定性、节能性等方面。

基于以上原则,设计气力输送系统应遵循以下几点原则:- 选择适当的输送速度和气流速度,确保物料能够稳定的输送;- 根据物料的性质选择合适的管道材质和形式,避免物料的损耗和管道磨损;- 保证气力输送系统的安全性和稳定性,预防堵塞和泄漏的发生;- 最大限度的减少系统的能耗,提高系统的节能性。

三、系统组成气力输送系统主要由气源系统、输送管道系统、物料装载和卸载系统、控制系统等部分组成。

在实际设计中,还需要根据具体的场地条件和物料特性进行不同的配置,以满足不同的输送需求。

1. 气源系统气源系统是气力输送系统的动力来源,主要包括鼓风机、风机、压缩机等设备。

它的作用是产生高压气流,并将气流输送至输送管道系统。

2. 输送管道系统输送管道系统是气力输送系统中的核心部分,它起到输送物料和气流的作用。

输送管道系统的构成包括输送管道、弯头、减速器、分支管等部分,通过不同形式的组合,可以满足不同物料的输送需求。

3. 物料装载和卸载系统物料装载和卸载系统是整个气力输送系统的物料处理部分,它包括物料的装载点、卸载点、喂料器、收集器等设备。

在实际设计中,它的配置会受到物料的特性、装载点和卸载点的具体条件等因素的影响。

气动输送系统设计计算

气动输送系统设计计算

孙广明①S U N Gu a n g — mi n g ; 付志茹①F U Z h i — r u ; 谢刚①XI E Ga n g ; 张韦①Z HANG We i ; 杨华①Y A N G Hu a ; 李 秀民②L I X i u — m i n ; 李 文雯①L I We n — w e n ; 苗家禄①MI A O J i a — l u
统” 设计 , 实现养 鱼饵料单管道输送作业与远程输送 。 1 环境条件与输送要求 试验地点安排 在本所淡水试验站养殖池塘 ,池塘 为 3 排每排有 2口共计 6口池塘 , 每 口池塘面积约 为 3 . 6亩 , 试 验 区 6口池塘合计面积 为 2 1 . 6 亩。 气 力输送输料管道合计 直线距离 1 4 4米 , 有一处转弯 , 整个管线基本 为水平布置。 本系统通过一 条管道 向 6口池塘输送饲料 , 具体 是在 每 口池塘选定饵料投 喂点设置饵料储存 与投放 设施 , 输料 管道通过饵 料投 喂点时串接三通 分料 阀, 当需要 向某投喂 点输 送饵料 时将分料 阀置于 分料位 置 即可 向该投喂 点输 送饵 料。 因为使用 了“ 干管直通滑块式 阀芯分料 阀” 进行分 料, 串接 的分料 阀在直通状 态B - , t  ̄ t 当于直通 管道 , 不存在 变径和 转向以及 空间的变化问题 。 饵 料的最 大输送量是确定气 力输送 能力的基础数据 , 池塘养殖 生产 规模决定 了饵料 的需求数量 , 由于 在不 同生 产 时期投饵 率不同 , 因此应该按 照饵料需 求量最 大量作 为 输 送 能 力依 据 。池 塘成 鱼 养 殖生 产 水平 每 亩 鱼产 量 在 1 0 0 0 k g 左 右 ,按照 日投饲 率 3 %计 算 , 6口池塘 2 1 . 6亩每 日投放饵 料数量合计 为 6 4 8 k g 。若每 日投饵 3次 , 每次投

(word完整版)气力输送设计

(word完整版)气力输送设计

气力输送设计5.1已知条件:5.2系统选择5。

2.1正压系统是工业上最常用的,它适用于文丘里式、螺旋泵和仓式泵等绝大多数供料器.5。

2。

2 供料器的选择:螺旋泵5.2.3 风机选择大多数气力输送系统使用容积式空压机(风机),因为此类设备当压力变化时体积流量几乎不变。

当排气压力小于100kPa时,广泛使用罗茨鼓风机.该类型具有宽广的体积流量范围并能提供无油空气.此外,它有恒定的速度曲线,当传递压力增加时,体积流量仅轻微减少,从而保证了物料在一定压力下的悬浮流动状态。

5.3设计计算5.3.1输送速度选择据输送速度表的粒径和和密度,选v=18m/s5。

3。

2输送料气比据GALOTER炉资料料气比C=2424/398=6。

09,本设计取料气比C=6㎏/㎏则气体量为Q0=G/6=77821/6=12970㎏,折标态12970/1。

293=10031 m3/h考虑系统漏风和储备,风机风量Q=K4Q0=1.25×10031=12538.8 Nm3/h5.3。

2 输送管道有效内径计算5。

3.2。

1风量换算系数计算风量换算系数体积换算系数C=V质量换算系数C=m20000/273/273HP t t t mp T C p T P tρρ==*=+当已知海拔高度为H 时,大气压与标准大气压的关系为:P h/ P 0= (1-0.022569H)5。

256式中:T o -—标况气体温度,℃; T 1一该风量中气体的工况温度,℃; P 0—海平面上的气压,Pa P h 一水泥厂厂区的气压,paH-—水泥厂厂区海拔高度,km1.711C V==== 5.3.2.2管道流量计算Qt= Q0⨯C V =10031×1。

711=17163 m3/h5。

3.2.3管道直径计算有效管径D1应为:10.493D === m圆整,取D1=0.5m5.4 气力输送系统总压损气力输送系统总压损是由输送管道总压力损失、管道出口阻力、喷煤管阻力和气力输送设备阻力组成.输送管道总压力损失又由水平管摩擦阻力、垂直管摩擦阻力和垂直管提升阻力组成。

气力输送核算

气力输送核算

气力输送核算下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!气力输送是一种常见的物料输送方式,通过利用气体流体力学特性,将固体颗粒或粉末物料在管道中进行输送。

气动输送系统设计计算

气动输送系统设计计算

气动输送系统设计计算气力输送是借助空气或气体在管道内流动来输送干燥的散状固体粒子或颗粒物料的输送方法,在水产养殖生产中应用气力输送与投放饵料将是实现水产养殖生产的设施化、自动化的重要措施。

我们依据气力输送技术原理结合我所淡水试验站的实际情况,采用稀相低压正压气力输送基本形式进行了“单道多工位气力输送饵料投喂机系统” 设计,实现养鱼饵料单管道输送作业与远程输送。

1 环境条件与输送要求试验地点安排在本所淡水试验站养殖池塘,池塘为3排每排有2口共计6口池塘,每口池塘面积约为3.6亩,试验区6口池塘合计面积为21.6亩。

气力输送输料管道合计直线距离144米,有一处转弯,整个管线基本为水平布置。

本系统通过一条管道向6口池塘输送饲料,具体是在每口池塘选定饵料投喂点设置饵料储存与投放设施,输料管道通过饵料投喂点时串接三通分料阀,当需要向某投喂点输送饵料时将分料阀置于分料位置即可向该投喂点输送饵料。

因为使用了“干管直通滑块式阀芯分料阀”进行分料,串接的分料阀在直通状态时相当于直通管道,不存在变径和转向以及空间的变化问题。

饵料的最大输送量是确定气力输送能力的基础数据,池塘养殖生产规模决定了饵料的需求数量,由于在不同生产时期投饵率不同,因此应该按照饵料需求量最大量作为输送能力依据。

池塘成鱼养殖生产水平每亩鱼产量在1000kg左右,按照日投饲率3%计算,6口池塘21.6亩每日投放饵料数量合计为648kg。

若每日投饵3次,每次投饵量为216kg。

使用的成鱼养殖颗粒饵料,粒径为5.5mm,比重为378kg/m3。

2 气力输送的设计计算2.1 基本参数①输送类型。

根据水产养殖饵料的性质特点以及饵料输送作业实际要求,适宜采用低压稀相压运输送方式。

气力压运方式具有由一处向多处供料、去向灵活、适用于长距离输送等特点。

②输料管道。

输料管道是用来输送饵料的通道,在本系统中分为3段连接,第1段是连接在供料器与工料主干管的,这一段选用内经55mm的塑料硬管,过渡部分采用内经63mm塑料软管。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档