SPSS回归分析实训指导
实训6教学演示:直线相关与回归分析的SPSS软件实现方法
【实训结果】
【结果解释】
实训表29相关分析结果显示,身高与前臂 长两个变量的相关系数为0.795。经检验, P=0.002(P<0.05),有统计学意义,可认为 身高与前臂长之间存在线性相关关系,且为 正相关。
项目二:回归分析
【实训目的】
运用SPSS“分析”菜单中的“回归”选项, 建立回归方程,并检验总体回归系数是否 为0,正确解释SPSS的输出结果。
【实训结果】
【结果解释】
✓ 实训表30为模型摘要表,显示了模型的拟合优度情况, 相关系数为0.795,决定系数为0.633,校正决定系数为 0.596。
✓ 实训表31为回归方程的方差分析表,显示了变异分解情 况,F=17.216,P<0.01,建立的模型具有统计学意义。
✓ 实训表32为回归系数表,给出了回归系数的估计及检验, 回归方程的常数项为10.700,身高的回归系数为0.200。 经回归系数t检验,t=4.149,P<0.01,说明身高与前臂 长之间存在线性回归关系,回归方程:^Y=10.7+0.2X。
项目一:直线相关分析
【实训目的】
运用SPSS“分析”菜单中“相关”选项, 计算相关系数,并检验两变量总体相关系 数是否为0,正确解释SPSS的输出结果。
【实训内容】
✓ 见第十一章例11-1,某医师测量12名20岁健康男大学生 的身高与前臂长,资料见表11-1。试求身高与前臂长的 相关系数。
表11-1 12名20岁健康男大学生身高与前臂长资料
实训6 直线相关与回归分析的SPSS软件实现方166
155
188
190
171
前臂 长 43 45 47 47 44 42 46 44 41 49 50 47 /cm
SPSS实验6-回归分析
SPSS作业6:回归分析(一)回归分析多元线性回归模型的基本操作:(1)选择菜单Analyze-Regression-Linear;(2)选择被解释变量(能源消费标准煤总量)和解释变量(国内生产总值、工业增加值、建筑业增加值、交通运输邮电业增加值、人均电力消费、能源加工转换效率)到对应框中;(3)在Method框中,选择Enter方法;在Statistics框中,选择Estimates、Model fit、Covariancematrix、Collinearity diagnostics选项;在Plots框中,选择ZRESED到Y框,ZPRED到X框,再选择Histogram和Normal plot;(4)选择菜单Analyze-Non Test-1-Sanple K-S;选择菜单Analyze-Correlate-Brivariate;结果如下:Regression能源消费需求的多元线性回归分析结果(强制进入策略)(一)Model Summary bModel R R Square Adjusted R Square Std. Error of the Estimate1 .990a.980 .973 8480.38783a. Predictors: (Constant), 能源加工转换效率/%, 交通运输邮电业增加值/亿元, 工业增加值/亿元, 人均电力消费/千瓦时, 建筑业增加值/亿元, 国内生产总值/亿元b. Dependent Variable: 能源消费标准煤总量/万吨分析:被解释变量和解释变量的复相关系数为0.990,判定系数为0.980,调整的判定系数为0.973,回归方程的估计标准误差为8480.38783。
该方程有6个解释变量,调整的判定系数为0.973,,接近于1,所以拟合优度较高,被解释变量可以被模型解释的部分较多,未能解释的部分较少。
分析:由上可知,被解释变量的总离差平方和为5.882E10,回归平方和及均方分别为5.766E10和9.611E9,剩余平方和及均方分别为1.151E9和7.192E7,F检验统计量的观测值为133.636,对应的概率p值近似为0。
如何使用统计软件SPSS进行回归分析
如何使用统计软件SPSS进行回归分析如何使用统计软件SPSS进行回归分析引言:回归分析是一种广泛应用于统计学和数据分析领域的方法,用于研究变量之间的关系和预测未来的趋势。
SPSS作为一款功能强大的统计软件,在进行回归分析方面提供了很多便捷的工具和功能。
本文将介绍如何使用SPSS进行回归分析,包括数据准备、模型建立和结果解释等方面的内容。
一、数据准备在进行回归分析前,首先需要准备好需要分析的数据。
将数据保存为SPSS支持的格式(.sav),然后打开SPSS软件。
1. 导入数据:在SPSS软件中选择“文件”-“导入”-“数据”命令,找到数据文件并选择打开。
此时数据文件将被导入到SPSS的数据编辑器中。
2. 数据清洗:在进行回归分析之前,需要对数据进行清洗,包括处理缺失值、异常值和离群值等。
可以使用SPSS中的“转换”-“计算变量”功能来对数据进行处理。
3. 变量选择:根据回归分析的目的,选择合适的自变量和因变量。
可以使用SPSS的“变量视图”或“数据视图”来查看和选择变量。
二、模型建立在进行回归分析时,需要建立合适的模型来描述变量之间的关系。
1. 确定回归模型类型:根据研究目的和数据类型,选择适合的回归模型,如线性回归、多项式回归、对数回归等。
2. 自变量的选择:根据自变量与因变量的相关性和理论基础,选择合适的自变量。
可以使用SPSS的“逐步回归”功能来进行自动选择变量。
3. 建立回归模型:在SPSS软件中选择“回归”-“线性”命令,然后将因变量和自变量添加到相应的框中。
点击“确定”即可建立回归模型。
三、结果解释在进行回归分析后,需要对结果进行解释和验证。
1. 检验模型拟合度:可以使用SPSS的“模型拟合度”命令来检验模型的拟合度,包括R方值、调整R方值和显著性水平等指标。
2. 检验回归系数:回归系数表示自变量对因变量的影响程度。
通过检验回归系数的显著性,可以判断自变量是否对因变量有统计上显著的影响。
SPSS多元线性回归分析实例操作步骤
SPSS多元线性回归分析实例操作步骤多元线性回归是一种常用的统计分析方法,用于探究多个自变量对因变量的影响程度。
SPSS(Statistical Package for the Social Sciences)是一款常用的统计软件,可以进行多元线性回归分析,并提供了简便易用的操作界面。
本文将介绍SPSS中进行多元线性回归分析的实例操作步骤,帮助您快速掌握该分析方法的使用。
步骤一:准备数据在进行多元线性回归分析之前,首先需要准备好相关的数据。
数据应包含一个或多个自变量和一个因变量,以便进行回归分析。
数据可以来自实验、调查或其他来源,但应确保数据的质量和可靠性。
步骤二:导入数据在SPSS软件中,打开或创建一个新的数据集,然后将准备好的数据导入到数据集中。
可以通过导入Excel、CSV等格式的文件或手动输入数据的方式进行数据导入。
确保数据被正确地导入到SPSS中,并正确地显示在数据集的各个变量列中。
步骤三:进行多元线性回归分析在SPSS软件中,通过依次点击"分析"-"回归"-"线性",打开线性回归分析对话框。
在对话框中,将因变量和自变量移入相应的输入框中。
可以使用鼠标拖拽或双击变量名称来快速进行变量的移动。
步骤四:设置分析选项在线性回归分析对话框中,可以设置一些分析选项,以满足具体的分析需求。
例如,可以选择是否计算标准化回归权重、残差和预测值,并选择是否进行方差分析和共线性统计检验等。
根据需要,适当调整这些选项。
步骤五:获取多元线性回归分析结果点击对话框中的"确定"按钮后,SPSS将自动进行多元线性回归分析,并生成相应的分析结果。
结果包括回归系数、显著性检验、残差统计和模型拟合度等信息,这些信息可以帮助我们理解自变量对因变量的贡献情况和模型的拟合程度。
步骤六:解读多元线性回归分析结果在获取多元线性回归分析结果之后,需要对结果进行解读,以得出准确的结论。
SPSS实验8-二项Logistic回归分析
SPSS作业8:二项Logistic回归分析为研究和预测某商品消费特点和趋势,收集到以往胡消费数据.数据项包括是否购买,性别,年龄和收入水平。
这里采用Logistic回归的方法,是否购买作为被解释变量(0/1二值变量),其余各变量为解释变量,且其中性别和收入水平为品质变量,年龄为定距变量。
变量选择采用Enter方法,性别以男为参照类,收入以低收入为参照类。
(一)基本操作:(1)选择菜单Analyz e-Regression-Binary Logistic;(2)选择是否购买作为被解释变量到Dependent框中,选其余各变量为解释变量到Covariates框中,采用Enter方法,结果如下:消费的二项Logistic分析结果(一)(强制进入策略)Categorical Variables CodingsFrequency Parameter coding (1) (2)收入低收入132 .000 .000中收入144 1.000 。
000高收入155 。
000 1。
000性别男191 。
000女240 1.000分析:上表显示了对品质变量产生虚拟变量的情况,产生的虚拟变量命名为原变量名(编码)。
可以看到,对收入生成了两个虚拟变量名为Income(1)和Income(2),分别表示是否中收入和是否高收入,两变量均为0时表示低收入;对性别生成了一个虚拟变量名为Gedder(1),表示是否女,取值为0时表示为男。
消费的二项Logistic 分析结果(二)(强制进入策略)Block 0: Beginning BlockClassification Table a,bObserved Predicted是否购买 Percentage Correct不购买购买Step 0是否购买不购买 269 0 100。
购买162。
0 Overall Percentage62。
4a 。
Constant is included in the model 。
利用spss进行一元回归分析.
“描述性”复选框:
“部分相关和偏相关性”复选框:
• 显示自变量间的相关、部分相关和偏相关系数。
“共线性诊断”复选框:
• 给出一些用于共线性诊断的统计量,如特征根(Eigenvalues)、方差 膨胀因子(VIF)等。
以上各项在默认情况下只有“估计”和“模型拟合度”复选框被选中。
【绘制】按钮
“模型拟合度”复选框:
“R方变化”复选框:
• 模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检 验:R,R2和调整的R2, 标准误及方差分析表。 • 显示模型拟合过程中R2、F值和p值的改变情况。 • 提供一些变量描述,如有效例数、均数、标准差等,同时还给出一个自 变量间的相关矩阵。
Case2目的: 分析平均气温和降雨量之间的数量关系
Case2习题要求: 做散点图,查看两因素之间是否线性相关 如果线性相关,接着做线性回归分析,揭示其数量关系 对回归方程做显著性检验,写出结论
Case2:气温&降雨量
给这个例子的目的是,看大家是否真的理解做散点图的意 义 当散点图都不呈现线性关系,那有多少同学接着就做了一 元线性回归?根本就没有在脑子里思考一下它究竟是不是 一元线性关系。 希望大家在以后的软件学习中,要问自己做每一步操作的 意义何在,不要机械的不思考的动手 Case3:大家用case1的数据,分析一下年蒸发量与纬度 的关系。
用于选择需要绘制的回归分析诊断或预测图。
• 可绘制的有标准化残差的直方图和正态分布图,应变量、预测值 和各自变量残差间两两的散点图等。
【保存】按钮
许多时候我们需要将回归分析的结果存储起来,然后用得到的残差、 预测值等做进一步的分析,保存按钮就是用来存储中间结果的。
SPSS多元线性回归分析实例操作步骤-spss做多元线性回归
SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。
实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。
实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2.Opening excel data s ource——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear,Depende n(t因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics 默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDN T(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plo t(s标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.a. Predictors: (Constant), 城市人口密度 (人/平方公里)b. Predictors: (Constant), 城市人口密度 (人/平方公里), 城市居民人均可支配收入(元)c. Dependent Variable: 商品房平均售价(元/平方米)Variables Entered/Removed aModel 1Variables Entered 城市人口密度 (人/平方公里)Variables Removed2城市居民人均可支配收入(元)Method. Stepwise (Criteria: Probability-of-F-to-enter <= .050,Probability-of-F-to-remove >= .100).. Stepwise (Criteria: Probability-of-F-to-enter <= .050,Probability-of-F-to-remove >= .100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型的拟合情况。
SPSS回归分析实验报告
中国计量学院现代科技学院实验报告实验课程:应用统计学实验名称:回归分析班级:学号:姓名:实验日期: 2012.05.23 实验成绩:指导教师签名:一.实验目的一元线性回归简单地说是涉及一个自变量的回归分析,主要功能是处理两个变量之间的线性关系,建立线性数学模型并进行评价预测。
本实验要求掌握一元线性回归的求解和多元线性回归理论与方法。
二.实验环境中国计量学院现代科技学院机房310三.实验步骤与内容1打开应用统计学实验指导书,新建excel表地区供水管道长度(公里)全年供水总量(万平方米)北京15896 128823 天津6822 64537 河北10771.2 160132 山西5669.3 77525 内蒙古5635.5 59276 辽宁21999 280510 吉林6384.9 159570 黑龙江9065.9 153387 上海22098.8 308309 江苏36632.4 380395 浙江24126.9 235535 安徽7389.4 204128 福建6270.4 118512 江西5094.7 143240 山东26073.9 259782 河南11405.6 185092 湖北15668.6 257787 湖南9341.8 262691 广东35728.8 568949 广西6923.1 134412 海南1726.7 20241 重庆6082.7 71077 四川12251.3 165632 贵州3275.3 45198 云南5208.5 52742 西藏364.9 5363陕西4270 73580甘肃5010 62127青海893 14390宁夏1538.2 22921新疆3670.2 766852.打开SPSS,将数据导入3.打开分析,选择回归分析再选择线性因变量选全年供水总量,自变量选供水管道长度统计里回归系数选估计,再选择模型拟合按继续再按确定会出来分析的结果对以上结果进行分析:(1)回归方程为:y=28484.712+11.610X(X是自变量供水管道长度,Y是因变量全年供水总量)(2)检验1)拟合效果检验根据表2可知,R2=0.819,即拟合效果好,线性成立。
线性回归分析的SPSS操作(多元线性回归)
线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。
包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。
为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。
也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。
另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
一、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。
数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。
从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。
在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。
所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。
具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。
如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。
Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。
上述两项为默认选项,请注意保持选中。
设置如图7-10所示。
设置完成后点击Continue返回主对话框。
图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。
第八章 回归分析的SPSS过程 实验
实验:回归分析的SPSS过程
一、实验目的与要求
1.学会在SPSS上实现一元及多元回归模型的计算与检验。
2.学会回归模型的散点图与样本方程图形。
3.学会对所计算结果进行统计分析说明。
4.要求实验前,了解回归分析的如下内容。
(1)参数α、β的估计
(2)回归模型的检验方法:回归系数β的显著性检验(t-检验);回归方程显著性检验(F-检验)。
5. 学会利用回归分析方法解决身边的实际问题。
二、实验原理
相关关系不等于因果关系,要明确因果关系必须借助于回归分析。
回归分析是研究两个变量或多个变量之间因果关系的统计方法。
其基本思想是,在相关分析的基础上,对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定,确立一个合适的数据模型,以便从一个已知量推断另一个未知量。
回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进行检验和判断,并进行预测等。
三、实验内容与步骤
研究青春发育阶段的年龄与远视率的变化关系,测得数据如下表所示,请对年龄与远视率的关系进行曲线估计。
青春发育阶段年龄与远视率的变化关系
年龄(x)6789101112131415161718远视率(y)63.6461.0638.8413.7514.58.07 4.41 2.27 2.09 1.02 2.51 3.12 2.98
(1)对题目的分析:
(2)数据组织:
(3) 主要设置步骤:
(4)主要结果及分析:。
SPSS回归分析实验报告
中国计量学院现代科技学院实验报告实验课程:应用统计学实验名称: 回归分析_____________ 班级:___________________________ 学号:______________________________ 姓名:__________________________ 实验日期:2012.05.23 ____________实验成绩:________________ 指导教师签名: __________________实验目的一元线性回归简单地说是涉及一个自变量的回归分析个变量之间的线性关系,建立线性数学模型并进行评价预测一元线性回归的求解和多元线性回归理论与方法。
二. 实验环境中国计量学院现代科技学院机房310三. 实验步骤与内容1打开应用统计学实验指导书,新建excel表,主要功能是处理两本实验要求掌握新疆 3670.2 766852 •打开SPSS,将数据导入3 •打开分析,选择回归分析再选择线性因变量选全年供水总量,自变量选供水管道长度 统计里回归系数选估计,再选择模型拟合空旧I 圖囤 丨_ |韵虫| 叮鬥 口圭|冃 钥10 11 12 13 14 15W 17 1R19 2021232425 26 272831地区|供水管道|全年供水 天肄 1J 西对蒙古黒龙江:工芯 晰江 安徵 江西闕北云甫宁裏var var var var var var1ESS E6S22 W771 5669 5&36 21999 E385906G' 22099j 3663'f 24127627011406 15669 3572969231727 6063 12251 3275 5209 365 42705010393 T&39 367C120323165632 45198527425363 735S06212714390^921 76685-SP5S Data Editor訳肋(囲恚 E ■ T -S i.U64537 160132 110512 143240568949 134412 202417107777525 5^276 2田7氐185C92257787彳胎狞■!235535 20412B 230610 159570 153367 308309^ 360395"按继续再按确定会出来分析的结果7EB■* b |\M> Ww & Vslife Vtowfi2iZ736^91却朋134412 2W*i 71(177FE£EZ2第I*口川 鼻州出常-* MKlt "Ell“ f j. |4iJI+ Regressionbth De pe n den tVa rt attie'(万平方米)a. Predictors: (ConstamtJ.ft^Xa. Predittnrs: (Ccnstant ),ftzKr®Iff Io. Dcpen dent Vari at>le :(万平右米)3DependentVariabie'对以上结果进行分析:(1)回归方程为:y=28484.712+11.610X (X 是自变量供水管道长度,丫是因 变量全年供水总量)(2)检验1) 拟合效果检验根据表2可知,R2=0.819 ,即拟合效果好,线性成立。
SPSS多元线性回归分析报告实例操作步骤
SPSS多元线性回归分析报告实例操作步骤步骤1:导入数据首先,打开SPSS软件,并导入准备进行多元线性回归分析的数据集。
在菜单栏中选择"File",然后选择"Open",在弹出的窗口中选择数据集的位置并点击"Open"按钮。
步骤2:选择变量在SPSS的数据视图中,选择需要用于分析的相关自变量和因变量。
选中的变量将会显示在变量视图中。
确保选择的变量是数值型的,因为多元线性回归只适用于数值型变量。
步骤3:进行多元线性回归分析在菜单栏中选择"Analyze",然后选择"Regression",再选择"Linear"。
这将打开多元线性回归的对话框。
将因变量移动到"Dependent"框中,将自变量移动到"Independent(s)"框中,并点击"OK"按钮。
步骤4:检查多元线性回归的假设在多元线性回归的结果中,需要检查多元线性回归的基本假设。
这些假设包括线性关系、多重共线性、正态分布、独立性和等方差性。
可以通过多元线性回归的结果来进行检查。
步骤5:解读多元线性回归结果多元线性回归的结果会显示在输出窗口的回归系数表中。
可以检查各个自变量的回归系数、标准误差、显著性水平和置信区间。
同时,还可以检查回归模型的显著性和解释力。
步骤6:完成多元线性回归分析报告根据多元线性回归的结果,可以编写一份完整的多元线性回归分析报告。
报告应包括简要介绍、研究问题、分析方法、回归模型的假设、回归结果的解释以及进一步分析的建议等。
下面是一个多元线性回归分析报告的示例:标题:多元线性回归分析报告介绍:本报告基于一份数据集,旨在探究x1、x2和x3对y的影响。
通过多元线性回归分析,我们可以确定各个自变量对因变量的贡献程度,并检验模型的显著性和准确性。
研究问题:本研究旨在探究x1、x2和x3对y的影响。
实验7相关与回归分析SPSS应用
实验7相关与回归分析SPSS应用引言:在统计学中,相关与回归分析是两种常用的数据分析方法。
相关分析主要用于研究变量之间的关联程度,回归分析则主要用于预测和解释一个或多个自变量对因变量的影响程度。
本实验将使用SPSS软件进行相关与回归分析的应用,并通过一个案例来说明具体的步骤和方法。
实验目的:1.理解相关与回归分析的基本概念和原理;2.掌握使用SPSS软件进行相关与回归分析的方法;3.并能够通过实例运用所学知识进行数据分析和解释。
实验方法:1.数据准备:首先,我们需要准备一组相关的数据,包括自变量和因变量。
本实验中,我们选择一个经典的案例,研究汽车的速度与刹车距离之间的关系。
我们随机选择了10辆汽车,并记录了它们的刹车速度和刹车距离数据。
2.相关分析:首先,我们使用SPSS软件对所收集的数据进行相关性分析。
具体步骤如下:a.打开SPSS软件并导入数据文件;b.选择“分析”菜单中的“相关”选项;c.从左边的变量列表中选择自变量和因变量,并将其移动到右边的变量列表中;d.点击“OK”按钮,开始进行相关分析;e. 分析结果将显示相关系数矩阵、Sig.值和样本大小等信息。
3.回归分析:在完成相关性分析后,我们可以进一步使用回归分析来预测和解释因变量。
具体步骤如下:a.选择“分析”菜单中的“回归”选项;b.从左边的变量列表中选择因变量和自变量,并将其移动到右边的变量列表中;c.在“方法”选项卡中,选择适当的回归方法;d.点击“OK”按钮,开始进行回归分析;e.分析结果将显示模型的回归系数、截距、显著性和模型拟合度等信息。
实验结果与讨论:在完成相关与回归分析后,我们可以得到以下结果:1.相关性分析结果:相关性分析结果显示,汽车的刹车速度与刹车距离呈显著正相关(r=0.818,p<0.01)。
这说明了刹车速度和刹车距离之间存在较强的线性关系,车速越快,刹车距离越大。
2.简单线性回归结果:根据回归分析结果,我们建立了一个简单的线性回归模型:刹车距离=0.804×刹车速度-17.579回归系数说明刹车速度每增加1单位,刹车距离平均增加0.804单位,截距表示当刹车速度为0时,刹车距离的预测值为-17.579回归模型的显著性水平为0.000,说明模型的预测能力较强。
SPSS对主成分回归实验报告
SPSS对主成分回归实验报告一、实验目的本实验的目的是利用SPSS软件对主成分回归进行分析,通过降维处理建立回归模型,并对模型结果进行解释和评估。
二、实验数据本实验使用的数据为一个假设情景中的模拟数据,包含自变量x1、x2、x3和因变量y。
数据集共有100个样本,样本量较小,主成分回归的效果可以更好地展示。
三、分析方法及步骤1.导入数据首先,在SPSS软件中导入实验数据,并进行必要的数据预处理,例如检查数据的缺失情况和异常值,并进行处理。
2.主成分分析使用PCA方法对自变量进行降维处理。
在SPSS软件中,选择“分析”菜单下的“尺度分析”选项,选择需要进行主成分分析的自变量,并设置合适的选项参数,例如保留主成分的方差解释比例。
3.主成分得分计算利用主成分分析得到的特征值和特征向量信息,对样本数据集进行主成分得分计算,得到降维后的自变量。
4.主成分回归通过主成分得分和因变量之间的回归分析,建立主成分回归模型。
在SPSS软件中,选择“分析”菜单下的“回归”选项,将主成分得分作为自变量,因变量作为被解释变量,进行回归分析。
通过观察回归模型的系数、显著性检验和拟合优度等指标,对主成分回归模型进行评估。
5.结果解释和模型选择根据主成分回归的结果,解释模型中各个主成分的影响程度和对因变量的贡献。
通过模型评估指标和领域知识的综合考虑,选择合适的主成分回归模型。
四、结果分析通过SPSS软件分析主成分回归模型后,得到了以下结果:1.主成分分析的解释方差比为0.785,表示保留的主成分能够解释原始变量78.5%的方差。
2.主成分得分的系数表明,对于因变量y的预测,主成分1和主成分3具有显著正向影响,而主成分2则具有显著负向影响。
3.模型的拟合优度(例如R方)为0.602,说明主成分回归模型可以解释因变量y的60.2%变异。
综合以上结果,我们可以得出结论:在这个假设情景中,使用主成分回归对于因变量y的预测具有一定的效果,但存在一些主成分对因变量y的贡献不显著的情况。
SPSS多元线性回归分析实例操作步骤
SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种非常实用且强大的工具,它可以帮助我们探究多个自变量与一个因变量之间的线性关系。
下面,我将为您详细介绍使用 SPSS 进行多元线性回归分析的实例操作步骤。
首先,打开 SPSS 软件,我们需要准备好数据。
假设我们有一组关于房屋价格的数据集,其中包含房屋面积、房间数量、地理位置等自变量,以及房屋的销售价格作为因变量。
在 SPSS 中,通过“文件”菜单中的“打开”选项,找到并导入我们的数据文件。
确保数据的格式正确,并且变量的名称和类型都符合我们的预期。
接下来,选择“分析”菜单中的“回归”,然后点击“线性”选项,这就开启了多元线性回归分析的设置窗口。
在“线性回归”窗口中,将我们的因变量(房屋销售价格)放入“因变量”框中,将自变量(房屋面积、房间数量、地理位置等)放入“自变量”框中。
然后,我们可以点击“统计”按钮,在弹出的“线性回归:统计”窗口中,根据我们的需求选择合适的统计量。
通常,我们会勾选“估计”“置信区间”“模型拟合度”等选项,以获取回归系数的估计值、置信区间以及模型的拟合优度等信息。
接着,点击“图”按钮,在“线性回归:图”窗口中,我们可以选择绘制一些有助于分析的图形,比如“标准化残差图”,用于检查残差的正态性;“残差与预测值”图,用于观察残差的分布是否均匀。
再点击“保存”按钮,在这里我们可以选择保存一些额外的变量,比如预测值、残差等,以便后续的进一步分析。
设置完成后,点击“确定”按钮,SPSS 就会开始进行多元线性回归分析,并输出相应的结果。
结果中首先会给出模型的汇总信息,包括 R 方(决定系数)、调整后的 R 方等。
R 方表示模型对因变量的解释程度,越接近 1 说明模型的拟合效果越好。
调整后的 R 方则考虑了自变量的个数,对模型的拟合优度进行了更合理的修正。
接着是方差分析表,用于检验整个回归模型是否显著。
如果 F 值对应的显著性水平小于设定的阈值(通常为 005),则说明回归模型是显著的,即自变量整体上对因变量有显著的影响。
线性回归分析的SPSS操作(多元线性回归)
线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。
包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。
为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。
也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。
另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
一、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。
数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。
从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。
在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。
所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。
具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。
如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。
Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。
上述两项为默认选项,请注意保持选中。
设置如图7-10所示。
设置完成后点击Continue返回主对话框。
图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。
熟练使用SPSS进行回归分析
50
3.10
9
52
3.46
10
52
2.85
11
58
3.50
12
58
3.00
1.数据录入。将肺活量(L)作为因变量y,体重(Kg)作为自变量x分别输入数据区域,格式如下图。
图1数据输入界面
2.统计分析。逐一选取“Analyze”、“Regression”、“Linear”展开对话框如下图所示。将X选入independent(自变量框),将Y选入dependent(因变量框)。
Sum of Squares
df
Mean Square
F
Sig.
Regression
1.061
1
1.06112.817来自.005Residual
.828
10
.083
Total
1.889
11
a Predictors: (Constant), X
b Dependent Variable: Y
表5回归结果表
Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
(Constant)
4.130E-04
.815
.001
1.000
X
5.883E-02
.016
.749
3.580
.005
第一个表格显示了选入或删除的变量,本例有一个自变量x被选入方程,无删除的变量。
第二个表格为模型总结。给出了复相关系数R,复相关系数平方R Square,调整复相关系数平方Adjusted R Square,估计值的标准误Std. Error of the Estimate。
spass回归分析实验报告
上,看哪种模型拟合效果更好从拟合优度(Rsq 即R2)来看,QUA,CUB,POW 效果较好(因为其Rsq 值较大),于是就选QUA,CUB,POW来进行。
重新进行上面的过程,只选以上三种模型。
3、实验结果:Model Summary and Parameter EstimatesDependent Variable:远视率EquationModel Summary Parameter EstimatesRSquare F df1 df2 Sig。
Constant b1 b2 b3Linear。
674 22。
7101 11 .001 74.006—4。
768Logarith mic .793 42.251 1 11 。
000 156。
773-57.574Inverse。
883 83.244 1 11 。
000 -40。
567 615.321Quadrati c .94382。
1142 10 .000 192.085-26.567。
908Cubic.959 69。
5383 9 .000 290.851—54。
7173.398 —。
069Compound。
794 42.445 1 11 .000 308。
120 .731Power.861 68.413 1 11 .000 49462.724—3。
638S .877 78.119 1 11 .000 -1。
502 37.175Growth.794 42。
4451 11 。
000 5。
730 —。
314Exponen tial .79442。
4451 11 。
000 308.120 -.314Logistic 。
794 42.445 1 11 。
000 .003 1。
369The independent variable is 年龄.分析:可以用Cubic拟合曲线图的拟合效果最好.第四题:棉花单株在不同时期的成铃数(y)与初花后天数(x)存在非线性的关系,假设这一非线性关系可用Gompertz模型表示:y=b1*exp(-b2*exp(—b3*x))。
实习二 使用SPSS进行回归分析
实习二使用SPSS进行回归分析
实习目的及意义:
通过本次实习,使学生掌握回归分析的定义,意义。
掌握多元线性回归和逐步回归的计算方法。
使用SPSS作为平台,利用示例数据完成回归分析,并对回归分析的结果进行显著性检验。
实习基本要求:
1.根据题目1要求,结合课堂所学内容,设计出回归分析的基本思路。
2.能在SPSS中输入题目所述数据,本对数据进行回归分析,求得回归方程。
3.指定检验水平α=0.05,对回归分析结果进行显著性检验。
4.判断每个变量的重要性。
5.编写实习报告,报告中要求列出使用SPSS进行回归分析的操作步骤,并附上每一步的运行结果。
实习题目1:
已知夕卡岩型白钨矿中钨(WO3)对铋(Bi),钼(Mo)具有线性依赖关系。
现从某矿区采集标本15块,分别化验其钨,铋和钼的含量,试求矿石中钨与铋,钼含量之间的关系。
Bi,Mo及WO3的含量列于表2.1.1中的第2、3、4列。
实习题目2:
已知煤的有机成分主要为碳(C),氢(H),氧(O),氮(N)等元素,由于变质程度不同,它们的含量(%)也不同,煤的性能也不同。
今搜集各种煤的样品10块,分别测得碳、氢、氧、氮与高发热量(卡/克)的含量(见表)试分别用多元线性回归及逐步回归求高发热量与碳、氢、氧、氮的关系。
思考题
对比线性回归和逐步线性回归,体会二者之间的差别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东英才学院实训报告
小组成员:
班级:
实训地点:实训时间:
指导老师:尹晓宇
实训项目:Spss回归分析
实训内容:回归分析
1、相关系数
2、一元线性相关分析
3、多元线性相关分析
实训步骤与结果:
6.2 解:
(1) 先做散点图
Graphs→Scatter/Dot→Simple Scatterplot,将y选入Y Axis,将x选入X Axis;
图6-2-1
图6-2-1显示的是航班正点率和投诉率的散点图,由图形可以看出两者大致呈线性关系。
因此以航班正点率为自变量,投诉率为因变量建立线性回归模型。
(2)计算相关系数
Analyze→Correlate→Bivariate Correlations,将y和x选入Variables,选中Person,Two-tailed和Flag significant correlations。
-0.883,显著性概率为0.002<0.01,线性相关性显著。
(3)进行一元线性回归
Analyze→Regression→Linear Regression,将y选入Dependent,将x选入Independent(s)。
从而拒绝原假设,认为解释变量和因变量之间的线性关系非常显著,可以建立线性模型。
表6-1-4是回归模型的回归系数表,回归系数的显著性检验统计量t 统计量的值为-4.967,对应的显著性水平Sig.=0.002<0.05,认为方程显著,因此可以得出建立的回归模型为:
ˆ 6.0180.070y
x =- (4)预测
在X 列中输入80,Analyze →Regression →Li near Regression ,在save 选项中Predicted Values 下选中Unstandardized ,在Predicted Intervals 同时选中Mean 和Individual 。
数据文件中将输出非标准化的预测值及均值和个体值的预测区间。
如果航班正点率为80%,用回归方程预测的投诉率为0.38468,均值95%的预测区间为(0.15071,0.61865),个体值95%的预测区间为(-0.06180,0.83116),由于投诉率>0,所以个体值95%预测区间应为(0,0.83116)。
因此,如果航班正点率为80%,每10万名乘客投诉的次数为38468次,均值95%的预测区间为(15071, 61865),个体值95%的预测区间为(0, 83116)。
6.1 解:
(1)对因变量和解释变量进行相关性分析,Analyze →Correlate →Bivariate Correlations ,将y 、x1、x2、x3、x4和x5选入Variables ,选中Person ,Two-tailed 和Flag significant correlations 。
表6-1-1是相关分析的结果:民航客运量y 与国民收入1x 、消费额2x 、民航航线里程4x 和来华旅游入境人数5x 相关系数较高,相关性显著,Sig. (1-tailed)=0.000<0.01,而民航客运量y 与铁路客运量3x 相关系数较低,仅为0.266,Sig. (1-tailed)=0.160>0.01,相关性不显著。
Analyze→Regression→Linear Regression,将y选入Dependent,将x1、x2、x3、x4和X5选入Independent(s),Method选择Enter。
表6-1-2是回归模型统计量:复相关系数R为0.994,解释变量和因变量的相关性很强;可决系数2R为0.988,用自变量可以解释因变量变异的程度为98.8%,调整后的可决系数为0.982,模型整体的拟合效果很好。
表6-1-3是回归模型的方差分析表,F值为162.787,显著性概率是0.000,从而拒绝原假设,认为解释变量和因变量之间的线性关系非常显著,可以建立线性模型。
表6-1-4是回归模型的回归系数表,可以得出建立的回归模型为:
512345ˆ401.2240.0140.021 5.8101030.4400.200y
x x x x x -=-+-+⨯++ 可以发现,仅有民航航线里程数的回归系数显著性检验(t 检验)的p 值分小于0.05,认为其显著,其他变量不显著,说明这些变量之间存在共线性。
(3)进行逐步回归,Analyze →Regression →Linear Regression ,将y 选入Dependent ,将x1、x2、x3、x4和x5选入Independent(s),Method 选择Stepwise 。
结果见表6-1-5、表6-1-6、表6-1-7和表6-1-8。
由结果可知,最终建立两个模型,
模型一:4ˆ382.50840.147=-+y
x ,20.974=R 模型二:45ˆ401.07431.4710.187=-++y
x x ,20.987=R 两个模型的拟合效果都很好,可决系数2R 大于0.970,且模型中因变量的系数通过了显著性检验。
表6-1-8的结果显示了排除在模型之外的变量。
实训收获:
指导教师评语:
成绩评定:
指导教师:
年月日。