复合函数的单调性和奇偶性

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合函数奇偶性

一偶则偶,同奇则奇

记F(x)=f[g(x)]——复合函数,则F(-x)=f[g(-x)],

如果g(x)是奇函数,即g(-x)=-g(x) ==> F(-x)=f[-g(x)],

则当f(x)是奇函数时,F(-x)=-f[g(x)]=-F(x),F(x)是奇函数;

当f(x)是偶函数时,F(-x)=f[g(x)]=F(x),F(x)是偶函数。

如果g(x)是偶函数,即g(-x)=g(x) ==> F(-x)=f[g(x)]=F(x),F(x)是偶函数。

所以由两个函数复合而成的复合函数:

当里层的函数是偶函数时,不论外层是怎样的函数,复合函数都是偶函数;

当里层的函数是奇函数、外层的函数也是奇函数时,复合函数是奇函数;

当里层的函数是奇函数、外层的函数是偶函数时,复合函数是偶函数。

相关文档
最新文档