复合函数的单调性和奇偶性

合集下载

复合函数及抽象函数的单调性

复合函数及抽象函数的单调性

复合函数的单调性复合函数的定义:设y=f(u)定义域A ,u=g(x)值域为B ,若A B ,则y 关于x 函数的y=f[g(x)]叫做函数f 与g 的复合函数,u 叫中间量复合函数的单调性复合函数的单调性由两个函数共同决定;引理1:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数。

引理2:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数。

若u=g(x)y=f(u)则y=f[g(x)]规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不相同时,其复合函数是减函数。

“同增异减”例2. 已知f ( x )=-x2 + 2x + 8,g ( x ) = f ( 2-x 2 ),求g ( x )的单调增区间.的单调区间。

:求函数例29121)(1x x f --=抽象函数例1:设f(x)是定义在实数集R 上的奇函数,且在区间(-∞,0)上是增函数,又f(2a2+a+1)<f(3a2-2a+1),试求a 的取值范围。

问:设f(x)是定义在实数集R 上的奇函数,且在区间(-∞,0)上是增函数,问在 区间(0,+∞)上f(x)是 增函数还是减函数?例2:设f(x)是定义在实数集R 上的偶函数,且在区间(-∞,0]上是增函数,又f(2a2+a+1)<f(3a2-2a+1),试求a 的取值范围。

.2)3()()4()()()3()()()()2(1)2()1()(2的取值范围求时,满足:上的函数:定义在例x x f x f y f x f y x y f x f xy f f x f R ≤-+<>+==+.)().()()(,,1)(0)(3上的增函数是求证:有、且对于任意时,上,当定义在:函数例R x f b f a f b a f R b a x f x R x f =+∈>>例4:.]1,2[)(,2)1(,0)(),()()(,)(上的值域在区间求时,且当均有、对于任意实数已知函数--=->>+=+xffxfxyfxfyxfyxxf.,9)1()3(.),0()()2.()()1().1,0()(1,9)27(,1)1()()()()(53的取值范围求且若上的单调性,并证明在判断的奇偶性判断时当且都有、对任意实数:已知函数例aafaxfxfxfxffyfxfxyfyxxf≤+≥+∞∈<<==-=复合函数的单调性小结复合函数y=f[g(x)]的单调性可按下列步骤判断:(1) 将复合函数分解成两个简单函数:y=f(u)与u=g(x)。

复合函数奇偶性的判定方式

复合函数奇偶性的判定方式

函数奇偶性判定方式的教学1.函数奇偶性的必要性:函数的概念域必需关于原点对称,如此该函数可能有奇偶性。

2.概念法:x属于函数y=f(x)的概念域A,且-x属于A的条件下,若是f(-x)=-f(x)那么y=f(x)为奇函数,若是f(-x)=f(x)那么y=f(x)为偶函数。

若是f(-x)=-f(x)=f(x)=0 那么y=f(x)为偶函数且奇函数。

若是f(-x)=-f(x)=f(x)等于不为零的一个常数,那么y=f(x)为偶函数。

3.依照函数图像对称性来判定:若是函数图像关于原点对称,那么为奇函数,若是函数图像关于y轴对称,那么为偶函数。

4. 分段函数奇偶性的判定:要看每段上f(-x)与f(x)的关系,或要取绝对值符号,化简函数式。

5.复合函数奇偶性的判定:函数 y=f(t)且t=g(x),若是f(t)为奇〔偶〕函数,那么t=g(x)为奇〔偶〕函数。

6. 互为反函数的关系判定:若是一个函数是奇函数,那么它的反函数也是起函数,但偶函数就不能如此的关系。

7. 用特殊值判定函数的奇偶性:例如:f(x)知足,f(x y) f(x-y)=2f(x).f(y), 且f(1)不等于f(2),求证:f(x)为偶函数例题:判定函数的奇偶性和单调性分析:不难判定函数的概念域是;又因为可得是奇函数,因此,把握在上函数的单调性,就能够把握函数在概念域上的单调性,将的解析式变形为,设,咱们已经熟知函数在区间上单调递减,在区间上单调递增,且,那么,由就能够够推断函数在区间上单调递增,在区间上单调递减,再由是奇函数就可判定在和两个区间上都是减函数;在区间上是增函数.如此,利用函数的单调性的概念推证的单调性的目标就明确了.解:∵函数的概念域为,又故是奇函数,任取,,且.其中和恒为正数.当,,,,,即当时,且,,由此可得,,即当时,,,.即综上所述,函数在和上都是减函数,在上是增函数.说明:咱们还能够利用函数的奇偶性和单调性对的性质作进一步研究.第一作出函数的草图,咱们发觉: 当时,;当时,;当时,.这说明图象位于第一、三象限,且通过原点,当或即时,,说明图象向左、向右都无穷接近轴,再加上对的奇偶性和单调性的推断,就可刻画出函数的图象,在图象上咱们还能推断:当时,取得最小值为,当时,取得最大值为,通过上述对从数量关系和几何特点的两个侧面的分析,使咱们对函数能有全面的了解.。

复合函数单调性

复合函数单调性

复合函数单调性一般地,设函数)(x g =ω在区间M 上有意义,函数)(ωf y =在区间N 上有意义,且当M x ∈时,N ∈ω有以下四种情况:(1)若)(x g =ω在M 上是增函数,)(ωf y =在N 上是增函数,则)]([x g f y =在M 上也是增函数;(2)若)(x g =ω在M 上是增函数,)(ωf y =在N 上是减函数,则)]([x g f y =在M 上也是减函数;(3)若)(x g =ω在M 上是减函数,)(ωf y =在N 上是增函数,则)]([x g f y =在M 上也是减函数;(4)若)(x g =ω在M 上是减函数,)(ωf y =在N 上是减函数,则)]([x g f y =在M 上也是增函数。

注意:内层函数)(x g =ω的值域是外层函数)(ωf y =的定义域的子集。

规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。

即我们所说的“同增异减”规律。

求y=122)21(--x x 的单调区间.解 : 设y=u)21(.由u ∈R,u=x 2-2x -1,解得原复合函数的定义域为x ∈R.因为y=u)21(在定义域R 内为减函数,二次函数u=x 2-2x -1的单调性与复合函数的单调性相反.易知,u=x 2-2x -1=(x -1)2-2在x ≤1时单调减,由x ∈R, (复合函数定义域)x ≤1, (u 减)解得x ≤1.所以(-∞,1]是复合函数的单调增区间.同理[1,+∞)是复合函数的单调减区间. y=x17.0;((-∞,0),(0,+∞)均为单调增区间.)y=232x -;(-∞,0)为单调增区间,(0,+∞)为单调减区间) y=3)31(+x ,((-∞,+∞)为单调减区间.)y=227x x -;((-∞,1)为单调增区间,(1,+∞)为单调减区间.)指数运算和指数函数1.根式的性质(1)当n 为奇数时,有a a n n = (2)当n 为偶数时,有⎩⎨⎧<-≥==)0(,)0(,a a a a a a n n (3)负数没有偶次方根 (4)零的任何正次方根都是零2.幂的有关概念(1)正整数指数幂:)(.............*∈⋅⋅=N n a a a a a n n(2)零指数幂)0(10≠=a a (3)负整数指数幂 ).0(1*∈≠=-N p a a ap p (4)正分数指数幂 )1,,,0(>*∈>=n N n m a a a n m n m且(5)负分数指数幂 n mn ma a 1=-)1,,,0(>*∈>n N n m a 且(6)0的正分数指数幂等于0,0的负分数指数幂无意义3.有理指数幂的运算性质(1)),,0(,Q s r a a a a s r s r ∈>=⋅+ (2)),,0(,)(Q s r a a a rs s r ∈>=(3)),0,0(,)(Q r b a a a ab s r r ∈>>⋅=4.指数函数定义:函数)10(≠>=a a a y x且叫做指数函数。

复合函数的单调性与奇偶性

复合函数的单调性与奇偶性
复合函数ቤተ መጻሕፍቲ ባይዱ单调性与奇偶性
复合函数的性质与构成它的函数的性质密切相关,其规律可列表如下:
1.若函数 的定义域都是关于原点对称的,那么由 的奇偶性得到 的奇偶性的规律是:
函数
奇偶性
奇函数
奇函数
偶函数
偶函数
奇函数
偶函数
奇函数
偶函数
奇函数
偶函数
偶函数
偶函数
即当且仅当 和 都是奇函数时,复合函数 是奇函数.
2.若函数 在区间 上是单调函数,函数 在 或 上也是单调函数,那么复合函数 在区间 上是单调函数,其单调性规律是:
函数
单调性
增函数
增函数
减函数
减函数
增函数
减函数
增函数
减函数
增函数
减函数
减函数
增函数
即 , 增减性相同时, 为增函数,增减性相反时, 为减函数.

专题:复合函数的单调性

专题:复合函数的单调性
1 13 1 又t x 在 3, 上是增函数。 2 2 2
2
1 函数y log2 6 x x 2 的单调递增区间为 3 , 。 2


七.小结:
(1)求复合函数的单调区间;
注意:求函数的单调性首先要求函数的定义域。
y
k (k 0) x
y
y
k k 0 x
O
x
图象的函数解析式是: y
k k 0。此函数是反比例函数 。 x 0,上也是减函数; 当k 0时,函数在 ,0上是减函数,在
0,上也是增函数。 当k 0时,函数在 ,0上是增函数,在
y
y ax2 bx c(a 0)
复合函数的单调性
知识回顾: a 1
图 y
0a1
ya
x
ya
x
y

定义域: 性
(0,1) O R 值域: (0, )
x
(0,1) O
x
定义域:
R
奇偶性: 非奇非偶函数 单调性: 在R上是增函数 质 x>0时,y>1;x<0时,0<y<1
值域: (0, ) 奇偶性:非奇非偶函数 单调性: 在R上是减函数 x>0时,0<y<1;x<0时,y>1
个自变量的值 x1 , x2 ,当x1 x2时,都有f ( x1 ) f ( x2 ), 那么就 说在这个区间上是增函 数。
2减函数:如果对于属于 定义域I内某个区间的任意两
个自变量的值 x1 , x2 ,当x1 x2时,都有f ( x1 ) f ( x2 ), 那么 就说在这个区间上是减 函数。
解: x2 4x 5 0

复合函数的性质探究

复合函数的性质探究

复合函数的性质探究在高中,我们经常研究函数的定义域、值域、单调性、奇偶性以及零点等问题.课本上仅介绍了基本的初等函数,由它们构造出纷繁复杂的函数,这里面很多都是复合函数,什么是复合函数?复合函数的性质如何判别?又如何应用?一、概念复合函数的描述性定义是:如果y是u的函数,而u又是x的函数,即y=f(u),u=g (x),那么y关于x的函数y=f[g(x)]叫做函数f和g的复合函数,u叫做中间变量.例如y=sin2x与y=sinx不同,它不是基本初等函数,而是由三角函数y=sinu和一次函数u=2x经过“复合”而成的一个函数.在复合函数的定义中,对复合的步骤和方式有特殊的约定.把几个简单函数随意地结合在一起,例如用四则运算把它们结合起来得到的形如a·f(x)+b·g(x)或a·f(x)·g(x)的函数不是复合函数.复合函数是指把几个映射依先后顺序合在一起,对同一自变量逐次映射,构造一个复合映射所确定的函数.自变量像被加工的零件依次通过第一个映射、第二个映射,直到通过全部映射.例如,复合函数y=sin2x是自变量x先“乘以2”(第一次映射),再“取正弦”(第二次映射),最后得到y关于x的一个函数y=sin2x.为了叙述和应用的方便,我们通常用“层”来描述上述不同的映射所对应的函数.从外向内看函数y=f[g(x)],称函数y=f(u)为外层函数(外函数),称函数u=g(x)为内层函数(内函数),且称函数y=f[g(x)]为函数f和g复合一次得到.二、定义域1.已知f(x)的定义域,求f[g(x)]的定义域思路:设函数f(x)的定义域为D,即x∈D,所以f的作用范围为D,又f对g(x)的作用范围不变,所以g(x)∈D,解得x∈E,E为y=f[g(x)]的定义域.例1设函数f(u)的定义域为(0,1),则函数f(lnx)的定义域为.解:函数f(u)的定义域为(0,1)即u∈(0,1),所以f的作用范围为(0,1).又f 对lnx的作用范围不变,所以02.已知f[g(x)]的定义域,求f(x)的定义域思路:设f[g(x)]的定义域为D,即x∈D,由此得g(x)∈E,所以f的作用范围为E;在f(x)中f对x的作用范围不变,所以x∈E,E为f(x)的定义域.例2已知f(3-2x)的定义域为x∈[-1,2],则函数f(x)的定义域为.解:f(3-2x)的定义域为[-1,2],即x∈[-1,2],由此得3-2x∈[-1,5].所以f的作用范围为[-1,5];在f(x)中f对x的作用范围不变,所以x∈[-1,5],即函数f(x)的定义域为[-1,5].3.已知f[g(x)]的定义域,求f[h(x)]的定义域思路:设f[g(x)]的定义域为D,即x∈D,由此得g(x)∈E,f的作用范围为E;在f[h(x)]中f对h(x)的作用范围不变,所以h(x)∈E,解得x∈F,F为f[h(x)]的定义域.例3若函数f(2x)的定义域为[-1,1],则f(log2x)的定义域为.解:f(2x)的定义域为[-1,1],即x∈[-1,1],由此得2x∈[12,2],所以f的作用范围为[12,2].在f(log2x)中f对log2x的作用范围不变,所以log2x∈[12,2],解得x∈[2,4],即f(log2x)的定义域为[2,4].评注:函数定义域是自变量x的取值范围(用集合或区间表示).f对谁作用,则谁的范围是f的作用范围,f作用对象可以变,但f的作用范围不会变.三、值域1.可以化归为二次函数的复合函数求值域例4求函数y=2x+41-x的值域.分析:含根式的函数关键是去根号,可以利用换元法转化为一元二次函数求值域问题.解:令t=1-x(x≤1),则x=1-t2,其中t≥0,原函数可以看成由y=-2t2+4t+2与t=1-x复合而成,∵x≤1,∴t≥0,∴y=-2(t-1)2+4(t≥0)∈(-∞,4],即原函数的值域是(-∞,4].2.可以化归为一次函数的复合函数求值域例5求函数y=sinxcosx1+sinx+cosx的值域.解:令sinx+cosx=t,则sinxcosx=t2-12,原函数可以看成由函数y=t2-12(1+t)=12(t-1)(t≠-1)与t=sinx+cosx复合而成.因为t=sinx+cosx=2sin(x+π4),所以t∈[-2,-1)∪(-1,2].结合一次函数图像可知函数值域为[-2-12,-1)∪(-1,2-12].评注:求函数值域要注意函数定义域,本题很容易遗漏t≠-1的限制,导致求值域出错,产生错误的原因是忽视了转化的等价性,所以解题过程中必须紧扣定义域.3.可以化归为反比例函数的复合函数求值域例6求函数y=2x2+2x+3x2+x+1的值域.解:函数y=2x2+2x+3x2+x+1=2+1x2+x+1,令t=x2+x+1,则原函数可以看成由函数y=2+1t和t=x2+x+1复合而成.因为x∈R,所以t=x2+x+1=(x+12)2+34≥34,结合反比例函数图像可知y=2+1t∈(2,103],所以原函数的值域为(2,103].4.可以化归为y=ax+bx(a,b∈R*)型函数的复合函数求值域例7求函数y=sin2x-2sinx+4sinx-2的值域.解:令t=2-sinx,则原函数可以看成由函数y=-(t+4t)+2和t=2-sinx复合而成.∵sinx∈[-1,1],∴t=2-sinx∈[1,3],由u=t+4t的图像可知u∈[4,5],故y=-(t+4t)+2∈[-3,-2],所以原函数的值域为[-3,-2].评注:求复合函数值域的关键是把复杂的函数通过换元转化为由简单函数y=f(t)和t=g (x)复合而成,其中t是中间变量,具有双重身份:在函数y=f(t)中,t是自变量;在函数t=g(x)中,t是函数值.要求原函数的值域,必先求出中间变量t的取值范围,而求t的范围,就是求函数t=g(x)的值域,从而将求原函数的值域化归为求两个简单函数的值域,使得问题得到解决.四、单调性复合函数的单调性是由两个函数共同决定,我们把其规律归纳如下表:y=f(u)增↗减↘u=g(x)增↗减↘增↗减↘y=f(g(x))增↗减↘减↘增↗以上规律还可描述为:“同向得增,异向得减”或“同增异减”.例8已知y=loga(2-ax)在[0,1]上是x的减函数,求a的取值范围.解:∵a>0且a≠1,(1)若a>1,内函数t=2-ax是减函数,外函数y=logat是增函数,得复合函数y=loga(2-ax)是减函数,满足题意;又由于x∈[0,1],2-ax>0,即2-ax的最小值2-a1>0,解得a∴1(2)若0内函数t=2-ax是增函数,外函数y=logat是减函数,得复合函数y=loga(2-ax)是减函数,满足题意;又由于x∈[0,1],2-ax>0,即2-ax的最小值2-a0>0,恒成立,∴0综上所述,0评注:复合函数y=f(g(x))的单调性判断步骤:①确定函数的定义域;②将复合函数分解成两个简单函数:y=f(t)与t=g(x);③分别确定分解成的两个函数的单调性;④若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数y=f(g(x))为增函数;若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数y=f(g(x))为减函数.当然复合函数的单调性还可以用求导的方式来研究,同学们一定要熟练掌握复合函数的求导法则.五、考题回顾复合函数问题是高考中的一个热点问题,具有关系复杂、综合性强、难度大等特点,往往涵盖函数方程、数形结合、分类讨论和转化化归等重要数学思想,对同学们的思维能力、运算能力、耐心细致处变不惊的心理品质等都有较高的要求.例9(2013年江苏省)平面直角坐标系xOy中,设定点A(a,a),P是函数y=1x(x>0)图像上一动点,若点P,A之间最短距离为22,则满足条件的实数a的所有值为.解:由题意设P(x0,1x0),(x0>0)则有PA2=(x0-a)2+(1x0-a)2=x20+1x20-2a(x0+1x0)+2a2=(x0+1x0)2-2a(x0+1x0)+2a2-2.令x0+1x0=t(t≥2),则PA2=f(t)=t2-2at+2a2-2=(t-a)2+a2-2(t≥2).当a≤2时,PA2min=f(2)=2a2-4a+2,∴2a2-4a+2=8,∴a=-1,a=3(舍去).当a>2时,PA2min=f(a)=a2-2,∴a2-2=8∴a=10,a=-10(舍去).∴综上所述:a=-1或a=10.评注:此题的最值若用求导的方法来研究,过程会过于繁琐,而用复合函数的观点来研究则相对简单.例10(2012年江苏省)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))-c,其中c∈[-2,2],求函数y=h(x)的零点个数.解:(1)a=0,b=-3.(2)略.(3)令f(x)=t,则h(x)=f(t)-c.先讨论关于x的方程f(x)=d根的情况:d∈[-2,2].当|d|=2时,f(x)=-2的两个不同的根为1和-2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为-1和2.当|d|0,f(1)-d=f(-2)-d=-2-d∴-2,-1,1,2都不是f(x)=d的根.由(1)知f′(x)=3(x+1)(x-1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2,此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)-d0,y=f(x)-d的图像不间断,∴f(x)=d在(1,2)内有唯一实根.同理,f(x)=d在(-2,-1)内有唯一实根.③当x∈(-1,1)时,f′(x)又∵f(-1)-d>0,f(1)-d∴f(x)=d在(-1,1)内有唯一实根.因此,当|d|=2时,f(x)=d有两个不同的根x1,x2满足|x1|=1,|x2|=2;当|d|现在考虑函数y=h(x)的零点:(ⅰ)当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5个零点.(ⅱ)当|c|而f(x)=ti(i=3,4,5)有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|评注:解决本题的关键还是通过换元的方法把复合函数分解为两个简单函数,而这两个简单函数是我们熟悉的三次函数.当然也可通过研究复合函数h(x)=f(f(x))-c的单调性来解决此题.复合函数往往是由简单函数“组合”而成的,解决其有关问题时,常用“逐步分解术”,“化整为零”,各个击破,最后解决问题.作题人:(注:可编辑下载,若有不当之处,请指正,谢谢!)。

指数型复合函数的奇偶性与单调性

指数型复合函数的奇偶性与单调性

当 ∈ f — 1 , + 一 ) 时 , g ( ) 为 增 函 数 。
, 1 、
所 以, ( z ) 一 ( + 专 ) ‘ z 。 为 偶
函数 。
而指数函 数f ( u ) 一( 寺)是减函 数,
根据 复 合 函数 的单 调 性 知 : f( z)一
( 3 ) 证明: 当z >o 时, 2 >l , 2 —l >o 。
( 2 ) 讨 论 f( z) 的奇偶 性 ;
( 3 ) 证明: f( x) > O。 分析: 对 于 f( z) 一 g( )・ ( z) 的 奇 偶 性 , 可 以 先 判 断 g( z) 与 ( z) 的奇 偶性 , 然 后 根据: 奇 ×奇 一 偶 , 偶 ×偶 一偶 , 奇 X偶 一 奇 , 得 出 f( z) 的奇偶性 。 解: ( 1 ) 由题 意 得 2 一 1 r e 0, 即 z≠ 0 。
例1 求函数厂 ( ) 一f

的单调增
所以, z 的定义域为 一。 。 , o ) u‘ o ,
+ ∞ )。
区间 。
( 2 ) 由( 1 ) 知 f( ) 的定 义 域 为 ( 一一

O)
分析 : 原 函数可 看成 由指数 函数 - 厂( “) 一
U( O +o 。 ) , 关 于原 点对 称 。
取 _ 平 桶
一 一 一 一 一 一 一
咱 , 计 J 璧



学 习研 究 版 2 0 1 6年 第 1 2期
指 数 型 复合 函数 的奇 偶 性 与 单调 性
■ 赵 万 里
函数 的单 调性 与奇偶 性是 两 个 常考 的性
( 1 ) 求 f( - z ) 的定 义 域 ;

复合函数的性质

复合函数的性质

复合函数的性质文/董裕华复合函数是函数知识的综合和拓展,在高中数学教学中已经涉及到许多这方面知识,在国内外数学竞赛中复合函数问题也频频出现,但现行中学数学教材中没有作出系统研究.本文拟讨论形如y=f[g(x)]的复合函数的性质及其应用.一、基础知识1.定义.设函数y=f(u),当u∈P时,f(u)∈Q;u又是x的函数,u=g(x),当x∈M时,u∈P.从集合M中每一个给定的x,通过P中唯一的元素u与集合Q中唯一的元素y相对应,则y也是x的函数,称为这两个函数的复函数,记为y=f[g(x)].其中y=f(u)叫做复合函数的外函数,u=g(x)叫做复合函数的内函数,集合M叫做这个复合函数的定义域.形如fn(fn-1(fn-2(…f2(f1(x))…)))的函数叫做多重复合函数,它可以看成是函数u=fn-i(fn-i-1(…f2(f1(x))…))与y=fn(fn-1…fn-i+1(u)…)的复合函数.2.单调性.函数u=g(x)在集合M上有定义,u∈P;y=f(u)在P上有定义.如果g(x)在M上递增,f(u)在P上递增(减),那么f[g(x)]在M上也递增(减);如果g(x)在M上递减,f(u)在P上递增(减),那么f[g(x)]在M上递减(增).3.奇偶性.如果u=g(x)为奇函数,y=f(u)为奇(偶)函数,则复合函数y=f[g(x)]为奇(偶)函数;如果u=g(x)为偶函数,y=f(u)有意义,则复合函数y=f[g(x)]必为偶函数.4.反函数.如果内函数u=g(x)和外函数y=f(u)都分别是其定义域到值域上一一对应的函数,那么复合函数y=f[g(x)]的反函数为y=g-1[f-1(x)].证明见文[1].5.周期性.函数u=g(x)是集合R上的周期函数,u∈M;f(u)在M上有定义,则复合函数f[g(x)]也是R上的周期函数.内函数为周期函数,复合函数必为周期函数;若外函数为周期函数,复合函数却未必是周期函数.例如1975年加拿大第七届中学生数学竞赛第7题,问sin(x2)是周期函数吗?回答显然是否定的.综合复合函数的周期性、单调性、奇偶性,不难发现复合函数还有以下性质:6.若内函数u=g(x)的最小正周期为T0,u∈D,外函数y=f(u)是D上的单调函数,则复合函数y=f[g(x)]也是最小正周期为T0的周期函数.7.若函数f(u)的最小正周期为T0,g(x)=ax+b(a≠0),则复合函数f[g(x)]也为周期函数,最小正周期为T0/|a|.8.若g(x)为奇函数,当f(x)与φ(x)均为偶函数时,复合函数φ(x)=f[g(x+a)](a≠0)为周期函数,2a是它的一个周期;当f(x)与φ(x)奇偶性相异时,复合函数φ(x)=f[g(x+a)](a≠0)也为周期函数,4a是它的一个周期.9.若g(x)为偶函数,f(x)在R上有定义,当φ(x)为偶函数时,复合函数φ(x)=f[g(x+a)](a≠0)为周期函数,2a是它的一个周期;当φ(x)为奇函数时,复合函数φ(x)=f[g(x+a)](a ≠0)也为周期函数,4a是它的一个周期.现证明一种情形.f(x)为奇函数,g(x)、φ(x)均为偶函数时,由φ(-x)=f[g(-x+a)]=f[g(x-a)],又φ(x)=f[g(x+a)],得f[g(x-a)]=f[g(x+a)],即φ(x-2a)=φ(x).φ(x)为周期函数,2a是它的一个周期.其余情形类似可证.例1 P(x)和Q(x)为二实系数多项式,它们对一切实数x满足恒等式P[Q(x)]=Q[P(x)],若方程P(x)=Q(x)无实数解,证明:方程P[P(x)]=Q[Q(x)]亦无实数解.导析:学生观察题目后,容易闪现出一个念头,即设出多项式P(x)和Q(x),但P[P(x)]、Q[Q(x)]等难以表示.思维受阻后,学生转而考虑反证法.假设P[P(x)]=Q[Q(x)]有解,设其解为a,则由P[P(a)]=Q[Q(a)]很难确定下一步证题方向,同样无功而返.这时教师可提醒学生:P(x)=Q(x)无实数解的实质是什么?学生很快想到P(x)-Q(x)或者恒为正,或者恒为负.不妨设P(x)>Q(x),由此P[P(x)]>Q[P(x)],P[Q(x)]>Q[Q(x)].又P[Q(x)]=Q[P(x)],得P[P(x)]>Q[Q(x)].这已是学生熟悉的问题,可由学生整理完成.例2 已知f(x+1)=|x-1|-|x+1|,如果f[f(a)]=f(1993)+1,求a.导析:从条件看,多数同学会想到f(1993)=f(1992+1)=-2,由此f(a)=|a-2|-|a|,f[f(a)]=||a-2|-|a|-2|-||a-2|-|a||.现在要去掉绝对值符号,就非常困难了.教师适时引导学生:如果先去绝对值符号呢?f(x)=|x-2|-|x|=由于f[f(a)]=f(1 993)+1=-2+1=-1,学生便会想到此时0≤f(a)≤2,从而2-2f(a)=-1,a=1/4.例3函数f(x)在R上有定义,且满足:①f(x)是偶函数,f(0)=993;②g(x)=f(x-1)是奇函数.试求f(1992)的值.导析:学生很容易想到f(1992)=g(1993)=-g(-1993)=-f(1994).本来求f(1992)就很烦,化成f(1994)更显繁,不少学生畏难而退.能否找出函数变化规律呢?也就是说把数据一般化,能否证得f(x)=-f(x+2)呢?学生会恍然大悟,f(x)是周期为4的函数!至此思路已经畅通.由特殊到一般,再由一般到特殊,这是人类认识世界、改造世界的规律,也是解竞赛题的常用策略.本题也可直接用基础知识8,只要令φ(x)=x,则f(x)=g[φ(x+1)]即可求解.二、综合应用复合函数是单一函数的整合与拓展,它以代数式、数列、几何等知识为支撑,以方程、不等式等形式为载体,以函数的性质为纽带,加之应用广泛,在竞赛命题中自然就颇受青睐.复合函数问题常通过换元法、待定系数法、特殊值法变形求解,与自然数有关的命题也可通过数学归纳法获证.例4是否存在函数f∶R→R;g∶R→R,使得对所有的x∈R,都有f[g(x)]=x2,g[f(x)]=x3?导析:既然对所有x∈R,都有这两个函数关系,学生首先想到用特殊值去验证.根据本题特点选择0和1,得f[g(0)]=0,g[f(0)]=0;f[g(1)]=1,g[f(1)]=1.现在问题转化为要求f(0)、f(1)、g(0)、g(1).经过一番“折腾”,学生摸索出f(0)=f{g[f(0)]}=[f(0)]2,f(1)=f{g[f(1)]}=[f(1)]2.那么f(0)究竟等于0还是1?f(1)又等于几?f(x)表达式又是什么?这时学生能够推得f(x3)=f{g[f(x)]}=[f(x)]2,这是一个一般性结论,学生还能观察出f(-1)=[f(-1)]2.这样f(0)、f(1)、f(-1)的值都只能在0和1中选择,因此f(0)、f(1)、f(-1)至少有两个相等,究竟又是哪两个相等呢?正当“山穷水尽”之时,再揣摩一下题目中的“是否存在”,这是不是意味着上述结论不一定成立?至此问题的解决进入最后阶段,由于g[f(0)]、g[f(1)]、g[f(-1)]不等,故f(0)、f(1)、f(-1)也互不相等.更一般地,对于任意x1≠x2,f(x1)≠f(x2),因此满足条件的函数关系不存在.例5确定所有的函数f:R→R,其中R是实数集,使得对任意x,y∈R,恒有f[x-f(y)]=f[f(y)]+xf(y)+f(x)-1成立.(1999年第四十届IMO试题)导析:和上题一样,先用特殊值代入验算.学生自然先考虑x=y=0的情形.得出f[-f(0)]=f[f(0)]+f(0)-1.f(0)的值又如何求呢?学生仍然会考虑特殊情况,再令x=f(y),得f(0)=2f(x)+x2-1,从而f(0)=1.容易验证f(x)=1-x2/2符合题意.这是从特殊情形推出的结果,现在还需要解决的问题是有没有满足条件的其他函数?不妨设函数f像的集合为A.我们的目标是求f(x)表达式.令y=0,则f(0)∈A且为常数,记为m,则f(x-m)-f(x)可以表示为x的一次函数:f(x-m)-f(x)=mx+f(m)-1.也就是说对任意x∈R,mx+f(m)-1∈R,f(x-m)-f(x)∈R.换句话讲对任意x∈R,都存在y1,y2∈A,使得x=y1-y2.因此f(x)=f(y-y2)=f(y1)+f(y2)+y1y2-1.①那么f(y1)、f(y2)又如何表示?由上述1分析知只要令x=f(y),便得f(x)=(-x2+m+1)/2.② 把f(y1)、f(y)表达式代入①,即可求得f(x)=m-x2/2.再令x=0,则m=1.从而对任意x∈R,2都有f(x)=1-x2/2.例6设n为自然数集合,k∈N,如果有一个函数f:N→N是严格递增的,且对于每一个n∈N,都有f[f(n)]=kn.求证:对每一个n∈N,都有2kn/(k+1)≤f(n)≤(k+1)n/2.导析:条件是关于复合函数的等式,结论却是关于f(x)的不等式,学生首先能考虑寻找f(n)与f[f(n)]之间的关系.由已知,f(n)≥n,则f[f(n)]≥f(n)≥n,故k≥1,而2kn/(k+1)=n/(1/2+1/2k)≥n,这对证题没有帮助.再回到已知“f严格递增且取自然数值”,就是说f(n+1)≥f(n)+1,进而对任意m∈N,都有f(n+m)≥f(n)+m.既然f(n)≥n,不妨设f(n)=n+m(m是非负整数),则f[f(n)]≥f(n)+m=f(n)+f(n)-n,从而f(n)≤(k+1)n/2.对于左式,实质是要证明f[f(n)]≤(k+1)f(n)/2,这已是水到渠成的事情.本题多次运用换元思想,进行“换位思考”,这也是解复合函数竞赛试题的常用手段.例7设f(n)为一个在所有正整数集合N上有定义且在N上取值的函数.证明:如果对每一个n,f(n+1)>f[f(n)],则对每一个n,f(n)=n.导析:本题和上题恰好相反,是由不等关系推相等关系.根据所求,学生较易想到的是反证法.假设f(n)≠n,不妨先考虑f(n)>n的情形,得f[f(n)]>f(n),而f(n+1)≥f(n)+1,至此已别无它法.调整思路,比较本题和上题,上题已知f是N→N上严格增函数,本题结论函数f也是单调增函数.所以可以尝试先证明m≥n时,f(m)≥f(n).由于是与自然数有关的命题,可以考虑用数学归纳法证明.当n=1时,f(2)>f[f(1)],而f[f(1)]≥f(1)又怎么证?这又回到上面老路上.退一步讲,对任意m≥n,欲证f(m)≥f(n)比较困难,能否证得f(m)≥n?事实上如果证得f(m)≥n,则f(n)≥n也必定成立,这离f(n)=n反而更接近.当n=1时结论显然成立.设n=k(k∈N)时结论成立,即m≥k时,f(m)≥k.则当n=k+1,即m≥k+1时,m-1≥k,f(m-1)≥k,从而f(m)>f[f(m-1)]≥k.由于f(m)取值为正整数,因此f(m)≥k+1,命题成立.这样f(n)≥n.现在证明f(n)>n不可能.若f(n)>n,即f(n)≥n+1,则f[f(n)]≥f(n+1),这与已知矛盾.接下来,就由学生对上述思路进行梳理、整合.三、强化训练1.若=x,求F(x).2.已知f(x)=|1-2x|,x∈[0,1],求方程f{f[f(x)]}=(1/2)x的解的个数.3.若a>0,a≠1,F(x)为R上的奇函数,判定函数G(x)=的奇偶性.4.设f(x)=(1+x)/(1-3x),f1(x)=f[f(x)],f2(x)=f[f1(x)],…,fn(x)=f[fn-1(x)],…,求f1991(4.7).5.设y=f(x)是定义在R上的函数,且对任意a,b∈R,都有f[af(b)]=ab,求f(2000).6.设f(x)是定义在R上的函数,M={x|f(x)=x},N={x|f[f(x)]=x}.(1)求证MN;(2)若f(x)在R上是增函数,判断M=N是否成立,并证明你的结论.7.全体正整数集是两个不相交子集{f(1),f(2),…,f(n),…}与{g(1),g(2),…,g(n),…}的并集,其中f(1)<f(2)<…<f(n)<…,g(1)<g(2)<…<g(n)<…,且对于所有n>1,有g(n)=f[f(n)]+1,求f(240).参考答案与提示1.(1-x)/(1+x).提示:用换元法.2.8个.提示:分类讨论.先分两类:f(x)=对于f[f(x)],也可类似分成四个区间讨论,因为f(x)在上述两区间值域仍为[0,1].至于f{f[f(x)]}要分八个区间分别求解.3.奇函数.提示:可先证明是奇函数.4.4.7.提示:由f1(x)=(x-1)/(3x+1),f2(x)=x,f3(x)=f(x),f4(x)=f1(x),由此可以类推,归纳出规律,f3m+k(x)=fk(x)(m,),从而f1991(4.7)=f3×663+2(4.7)=f2(4.7)=4.7.5.±2000.提示:用特殊值法.先令a=1,得f[f(b)]=b;再令a=f(b),得f[f2(b)]=bf(b).而f[bf(b)]=b2=f{f[f2(b)]}=f2(b),故|f(b)|=|b|.6.(1)对任一x∈M,f(x)=x,于是f[f(x)]=f(x)=x,即x∈N,故MN.(2)成立.设f(x)为增函数,若xM,则f(x)>x或f(x)<x;前者导出f[f(x)]>f(x)>x,后者导出f[f(x)]<f(x)<x,故总有xN,因此NM.结合(1),M=N.7.388.解答见文[2].参考文献1.甘大旺.复合函数的反函数.中学数学,2000,22.单土尊.数学奥林匹克题典.南京:南京大学出版社,1995(本期“高中竞赛初级讲座”特邀编辑刘康宁)。

复合函数奇偶性单调性

复合函数奇偶性单调性

复合函数的奇偶性、单调性函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.1.设a>0,f(x)=x x eaa e +是R 上的偶函数,(1)求a 的值;(2)证明: f(x)在(0,+∞)上是增函数.●案例探究例1:已知函数f(x)在(-1,1)上有定义,f(21)=-1,当且仅当0<x<1时f(x)<0,且对任意x 、y∈(-1,1)都有f(x)+f(y)=f(xy yx ++1), 证明:(1)由f(x)+f(y)=f(xyyx ++1),令x=y=0,得f(0)=0,令y=-x,得f(x)+f(-x)=f(21x xx --)=f(0)=0.∴f(x)=-f(-x).∴f(x)为奇函数.(2)先证f(x)在(0,1) 上单调递减.令0<x 1<x 2<1,则f(x 2)-f(x 1)=f(x 2)-f(-x 1)=f(21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0∴x 2-x 1<1-x 2x 1,∴0<12121x x x x --<1,由题意知f(21121x x xx --)<0,即f(x 2)<f(x 1). ∴f(x)在(0,1)上为减函数,又f(x)为奇函数且f(0)=0. ∴f(x)在(-1,1)上为减函数. 试证明:(1)f(x)为奇函数;(2)f(x)在(-1,1)上单调递减.命题意图:本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力.知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.错解分析:本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得.技巧与方法:对于(1),获得f(0)的值进而取x=-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点.例2:设函数f(x)是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f(2a 2+a+1)<f(3a 2-2a+1).求:a 的取值范围,并在该范围内求函数y=(21)132+-a a的单调递减区间.解:设0<x 1<x 2,则-x 2<-x 1<0,∵f(x)在区间(-∞,0)内单调递增,∴f(-x 2)<f(-x 1), ∵f(x)为偶函数,∴f(-x 2)=f(x 2),f(-x 1)=f(x 1), ∴f(x 2)<f(x 1).∴f(x)在(0,+∞)内单调递减..032)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又由f(2a 2+a+1)<f(3a 2-2a+1)得:2a 2+a+1>3a 2-2a+1.解之,得0<a<3. 又a 2-3a+1=(a -23)2-45.∴函数y=(21)132+-a a 的单调减区间是[23,+∞]结合0<a<3,得函数y=(23)132+-a a 的单调递减区间为[23,3).命题意图:本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法.知识依托:逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题.错解分析:逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱.技巧与方法:本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法.本难点所涉及的问题及解决方法主要有:(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性.若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.同时,注意判断与证明、讨论三者的区别,用好数与形的统一.复合函数的奇偶性、单调性.问题的解决关键在于:既把握复合过程,又掌握基本函数.(2)加强逆向思维、数形统一.正反结合解决基本应用题目,下一节我们将展开研究奇偶性、单调性的应用. 难点训练 一、选择题:1.下列函数中的奇函数是( )A.f(x)=(x -1)x x -+11B.f(x)=2|2|)1lg(22---x xC.f(x)=⎪⎩⎪⎨⎧>+-<+)0()0(22x x x x x x D.f(x)=x x x x sin cos 1cos sin 1++-+2.函数f(x)=111122+++-++x x x x 的图象( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线x=1对称二、填空题:3.函数f(x)在R 上为增函数,则y=f(|x+1|)的一个单调递减区间是_________.4.若函数f(x)=ax 3+bx 2+cx+d 满足f(0)=f(x 1)=f(x 2)=0 (0<x 1<x 2),且在[x 2,+∞)上单调递增,则b 的取值范围是_________. 三、解答题: 5.已知函数f(x)=a x +12+-x x (a>1). (1)证明:函数f(x)在(-1,+∞)上为增函数. (2)用反证法证明方程f(x)=0没有负数根.6.求证函数f(x)=223)1(-x x 在区间(1,+∞)上是减函数.7.设函数f(x)的定义域关于原点对称且满足: (i)f(x 1-x 2)=)()(1)()(1221x f x f x f x f -+⋅;(ii)存在正常数a 使f(a)=1.求证:(1)f(x)是奇函数.(2)f(x)是周期函数,且有一个周期是4a.8.已知函数f(x)的定义域为R ,且对m 、n ∈R,恒有f(m+n)=f(m)+f(n)-1,且f(-21)=0,当x>-21 时,f(x)>0.(1)求证:f(x)是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证.参考答案(1)解:依题意,对一切x ∈R,有f(x)=f(-x),即x x x ae e a a e 1=++ae x .整理,得(a -a1)(e x -x e 1)=0.因此,有a -a1=0,即a 2=1,又a>0,∴a=1(2)证法一:设0<x 1<x 2,则f(x 1)-f(x 2)= )11)((1121122121--=-+-+x x x x x x x x e e e e e ee 21211211)1(x x x x x x x e e e e ++---=由x 1>0,x 2>0,x 2>x 1,∴112--x x e >0,1-e 21x x +<0,∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2)∴f(x)在(0,+∞)上是增函数证法二:由f(x)=e x +e-x,得f ′(x)=e x -e -x =e -x ·(e 2x -1).当x ∈(0,+∞)时,e -x >0,e 2x -1>0此时f ′(x)>0,所以f(x)在[0,+∞)上是增函数. 难点训练 一、选择题:1.解析:f(-x)=⎪⎩⎪⎨⎧>+--<+-=⎪⎩⎪⎨⎧<-->-)0( )()0()()0( )0( 2222x x x x x x x x x x x x =-f(x),故f(x)为奇函数.答案:C 2.解析:f(-x)=-f(x),f(x)是奇函数,图象关于原点对称.答案:C 二、填空题:3.解析:令t=|x+1|,则t 在(-∞,-1]上递减,又y=f(x)在R 上单调递增, ∴y=f(|x+1|)在(-∞,-1]上递减.答案:(-∞,-1]4.解析:∵f(0)=f(x 1)=f(x 2)=0,∴f(0)=d=0.f(x)=ax(x -x 1)(x -x 2)=ax 3-a(x 1+x 2)x 2+ax 1x 2x , ∴b=-a(x 1+x 2),又f(x)在[x 2,+∞)单调递增,故a>0.又知0<x 1<x,得x 1+x 2>0, ∴b=-a(x 1+x 2)<0.答案:(-∞,0) 三、解答题:5.证明:(1)设-1<x 1<x 2<+∞,则x 2-x 1>0, 12x x a ->1且1x a >0,∴)1(12112-=--x x x x x a a a a >0, 又x 1+1>0,x 2+1>0 ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f(x 2)-f(x 1)=12x x a a -+12121122+--+-x x x x >0 ∴f(x)在(-1,+∞)上为递增函数.(2)证法一:设存在x 0<0(x 0≠-1)满足f(x 0)=0,则12000+--=x x a x 且由0<0x a <1得0<-1200+-x x <1,即21<x 0<2与x 0<0矛盾,故f(x)=0没有负数根.证法二:设存在x 0<0(x 0≠-1)使f(x 0)=0,若-1<x 0<0,则1200+-x x <-2,0x a <1,∴f(x 0)<-1与f(x 0)=0矛盾,若x 0<-1,则1200+-x x >0, 0x a >0,∴f(x 0)>0与f(x 0)=0矛盾,故方程f(x)=0没有负数根.6.证明:∵x ≠0,∴f(x)=22422322)11(1)1(1)1(1x x x x x x x -=-=-,设1<x 1<x 2<+∞, 则01111,11121222122>->-<<x x x x .2211222222112222)11(1)11(1.0)11()11(x x x x x x x x -<-∴>->-∴∴f(x 1)>f(x 2),故函数f(x)在(1,+∞)上是减函数.(本题也可用求导方法解决)7.证明:(1)不妨令x=x 1-x 2,则f(-x)=f(x 2-x 1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f -+-=-+=-f(x 1-x 2)=-f(x).∴f(x)是奇函数.(2)要证f(x+4a)=f(x),可先计算f(x+a),f(x+2a). ∵f(x+a)=f [x -(-a)]=)1)((1)(1)()()(1)()()()(1)()(=+-=--+-=---+-a f x f x f x f a f x f a f x f a f x f a f .).(111)(1)(11)(1)(1)(1)(])[()2(x f x f x f x f x f a x f a x f a a x f a x f -=++--+-=++-+=++=+∴ ∴f(x+4a)=f [(x+2a)+2a ]=)2(1a x f +-=f(x),故f(x)是以4a 为周期的周期函数.8.(1)证明:设x 1<x 2,则x 2-x 1-21>-21,由题意f(x 2-x 1-21)>0,∵f(x 2)-f(x 1)=f [(x 2-x 1)+x 1]-f(x 1)=f(x 2-x 1)+f(x 1)-1-f(x 1)=f(x 2-x 1)-1=f(x 2-x 1)+f(-21)-1=f [(x 2-x 1)-21]>0, ∴f(x)是单调递增函数. (2)解:f(x)=2x+1.验证过程略.。

复合函数的性质

复合函数的性质

复合函数的性质文/董裕华复合函数是函数知识的综合和拓展,在高中数学教学中已经涉及到许多这方面知识,在国内外数学竞赛中复合函数问题也频频出现,但现行中学数学教材中没有作出系统研究.本文拟讨论形如y=f[g(x)]的复合函数的性质及其应用.一、基础知识1.定义.设函数y=f(u),当u∈P时,f(u)∈Q;u又是x的函数,u=g(x),当x∈M时,u∈P.从集合M中每一个给定的x,通过P中唯一的元素u与集合Q中唯一的元素y相对应,则y也是x的函数,称为这两个函数的复函数,记为y=f[g(x)].其中y=f(u)叫做复合函数的外函数,u=g(x)叫做复合函数的内函数,集合M叫做这个复合函数的定义域.形如fn(fn-1(fn-2(…f2(f1(x))…)))的函数叫做多重复合函数,它可以看成是函数u=fn-i(fn-i-1(…f2(f1(x))…))与y=fn(fn-1…fn-i+1(u)…)的复合函数.2.单调性.函数u=g(x)在集合M上有定义,u∈P;y=f(u)在P上有定义.如果g(x)在M上递增,f(u)在P上递增(减),那么f[g(x)]在M上也递增(减);如果g(x)在M上递减,f(u)在P上递增(减),那么f[g(x)]在M上递减(增).3.奇偶性.如果u=g(x)为奇函数,y=f(u)为奇(偶)函数,则复合函数y=f[g(x)]为奇(偶)函数;如果u=g(x)为偶函数,y=f(u)有意义,则复合函数y=f[g(x)]必为偶函数.4.反函数.如果内函数u=g(x)和外函数y=f(u)都分别是其定义域到值域上一一对应的函数,那么复合函数y=f[g(x)]的反函数为y=g-1[f-1(x)].证明见文[1].5.周期性.函数u=g(x)是集合R上的周期函数,u∈M;f(u)在M上有定义,则复合函数f[g(x)]也是R上的周期函数.内函数为周期函数,复合函数必为周期函数;若外函数为周期函数,复合函数却未必是周期函数.例如1975年加拿大第七届中学生数学竞赛第7题,问sin(x2)是周期函数吗?回答显然是否定的.综合复合函数的周期性、单调性、奇偶性,不难发现复合函数还有以下性质:6.若内函数u=g(x)的最小正周期为T0,u∈D,外函数y=f(u)是D上的单调函数,则复合函数y=f[g(x)]也是最小正周期为T0的周期函数.7.若函数f(u)的最小正周期为T0,g(x)=ax+b(a≠0),则复合函数f[g(x)]也为周期函数,最小正周期为T0/|a|.8.若g(x)为奇函数,当f(x)与φ(x)均为偶函数时,复合函数φ(x)=f[g(x+a)](a≠0)为周期函数,2a是它的一个周期;当f(x)与φ(x)奇偶性相异时,复合函数φ(x)=f[g(x+a)](a≠0)也为周期函数,4a是它的一个周期.9.若g(x)为偶函数,f(x)在R上有定义,当φ(x)为偶函数时,复合函数φ(x)=f[g(x+a)](a≠0)为周期函数,2a是它的一个周期;当φ(x)为奇函数时,复合函数φ(x)=f[g(x+a)](a ≠0)也为周期函数,4a是它的一个周期.现证明一种情形.f(x)为奇函数,g(x)、φ(x)均为偶函数时,由φ(-x)=f[g(-x+a)]=f[g(x-a)],又φ(x)=f[g(x+a)],得f[g(x-a)]=f[g(x+a)],即φ(x-2a)=φ(x).φ(x)为周期函数,2a是它的一个周期.其余情形类似可证.例1 P(x)和Q(x)为二实系数多项式,它们对一切实数x满足恒等式P[Q(x)]=Q[P(x)],若方程P(x)=Q(x)无实数解,证明:方程P[P(x)]=Q[Q(x)]亦无实数解.导析:学生观察题目后,容易闪现出一个念头,即设出多项式P(x)和Q(x),但P[P(x)]、Q[Q(x)]等难以表示.思维受阻后,学生转而考虑反证法.假设P[P(x)]=Q[Q(x)]有解,设其解为a,则由P[P(a)]=Q[Q(a)]很难确定下一步证题方向,同样无功而返.这时教师可提醒学生:P(x)=Q(x)无实数解的实质是什么?学生很快想到P(x)-Q(x)或者恒为正,或者恒为负.不妨设P(x)>Q(x),由此P[P(x)]>Q[P(x)],P[Q(x)]>Q[Q(x)].又P[Q(x)]=Q[P(x)],得P[P(x)]>Q[Q(x)].这已是学生熟悉的问题,可由学生整理完成.例2 已知f(x+1)=|x-1|-|x+1|,如果f[f(a)]=f(1993)+1,求a.导析:从条件看,多数同学会想到f(1993)=f(1992+1)=-2,由此f(a)=|a-2|-|a|,f[f(a)]=||a-2|-|a|-2|-||a-2|-|a||.现在要去掉绝对值符号,就非常困难了.教师适时引导学生:如果先去绝对值符号呢?f(x)=|x-2|-|x|=由于f[f(a)]=f(1 993)+1=-2+1=-1,学生便会想到此时0≤f(a)≤2,从而2-2f(a)=-1,a=1/4.例3函数f(x)在R上有定义,且满足:①f(x)是偶函数,f(0)=993;②g(x)=f(x-1)是奇函数.试求f(1992)的值.导析:学生很容易想到f(1992)=g(1993)=-g(-1993)=-f(1994).本来求f(1992)就很烦,化成f(1994)更显繁,不少学生畏难而退.能否找出函数变化规律呢?也就是说把数据一般化,能否证得f(x)=-f(x+2)呢?学生会恍然大悟,f(x)是周期为4的函数!至此思路已经畅通.由特殊到一般,再由一般到特殊,这是人类认识世界、改造世界的规律,也是解竞赛题的常用策略.本题也可直接用基础知识8,只要令φ(x)=x,则f(x)=g[φ(x+1)]即可求解.二、综合应用复合函数是单一函数的整合与拓展,它以代数式、数列、几何等知识为支撑,以方程、不等式等形式为载体,以函数的性质为纽带,加之应用广泛,在竞赛命题中自然就颇受青睐.复合函数问题常通过换元法、待定系数法、特殊值法变形求解,与自然数有关的命题也可通过数学归纳法获证.例4是否存在函数f∶R→R;g∶R→R,使得对所有的x∈R,都有f[g(x)]=x2,g[f(x)]=x3?导析:既然对所有x∈R,都有这两个函数关系,学生首先想到用特殊值去验证.根据本题特点选择0和1,得f[g(0)]=0,g[f(0)]=0;f[g(1)]=1,g[f(1)]=1.现在问题转化为要求f(0)、f(1)、g(0)、g(1).经过一番“折腾”,学生摸索出f(0)=f{g[f(0)]}=[f(0)]2,f(1)=f{g[f(1)]}=[f(1)]2.那么f(0)究竟等于0还是1?f(1)又等于几?f(x)表达式又是什么?这时学生能够推得f(x3)=f{g[f(x)]}=[f(x)]2,这是一个一般性结论,学生还能观察出f(-1)=[f(-1)]2.这样f(0)、f(1)、f(-1)的值都只能在0和1中选择,因此f(0)、f(1)、f(-1)至少有两个相等,究竟又是哪两个相等呢?正当“山穷水尽”之时,再揣摩一下题目中的“是否存在”,这是不是意味着上述结论不一定成立?至此问题的解决进入最后阶段,由于g[f(0)]、g[f(1)]、g[f(-1)]不等,故f(0)、f(1)、f(-1)也互不相等.更一般地,对于任意x1≠x2,f(x1)≠f(x2),因此满足条件的函数关系不存在.例5确定所有的函数f:R→R,其中R是实数集,使得对任意x,y∈R,恒有f[x-f(y)]=f[f(y)]+xf(y)+f(x)-1成立.(1999年第四十届IMO试题)导析:和上题一样,先用特殊值代入验算.学生自然先考虑x=y=0的情形.得出f[-f(0)]=f[f(0)]+f(0)-1.f(0)的值又如何求呢?学生仍然会考虑特殊情况,再令x=f(y),得f(0)=2f(x)+x2-1,从而f(0)=1.容易验证f(x)=1-x2/2符合题意.这是从特殊情形推出的结果,现在还需要解决的问题是有没有满足条件的其他函数?不妨设函数f像的集合为A.我们的目标是求f(x)表达式.令y=0,则f(0)∈A且为常数,记为m,则f(x-m)-f(x)可以表示为x的一次函数:f(x-m)-f(x)=mx+f(m)-1.也就是说对任意x∈R,mx+f(m)-1∈R,f(x-m)-f(x)∈R.换句话讲对任意x∈R,都存在y1,y2∈A,使得x=y1-y2.因此f(x)=f(y-y2)=f(y1)+f(y2)+y1y2-1.①那么f(y1)、f(y2)又如何表示?由上述1分析知只要令x=f(y),便得f(x)=(-x2+m+1)/2.② 把f(y1)、f(y)表达式代入①,即可求得f(x)=m-x2/2.再令x=0,则m=1.从而对任意x∈R,2都有f(x)=1-x2/2.例6设n为自然数集合,k∈N,如果有一个函数f:N→N是严格递增的,且对于每一个n∈N,都有f[f(n)]=kn.求证:对每一个n∈N,都有2kn/(k+1)≤f(n)≤(k+1)n/2.导析:条件是关于复合函数的等式,结论却是关于f(x)的不等式,学生首先能考虑寻找f(n)与f[f(n)]之间的关系.由已知,f(n)≥n,则f[f(n)]≥f(n)≥n,故k≥1,而2kn/(k+1)=n/(1/2+1/2k)≥n,这对证题没有帮助.再回到已知“f严格递增且取自然数值”,就是说f(n+1)≥f(n)+1,进而对任意m∈N,都有f(n+m)≥f(n)+m.既然f(n)≥n,不妨设f(n)=n+m(m是非负整数),则f[f(n)]≥f(n)+m=f(n)+f(n)-n,从而f(n)≤(k+1)n/2.对于左式,实质是要证明f[f(n)]≤(k+1)f(n)/2,这已是水到渠成的事情.本题多次运用换元思想,进行“换位思考”,这也是解复合函数竞赛试题的常用手段.例7设f(n)为一个在所有正整数集合N上有定义且在N上取值的函数.证明:如果对每一个n,f(n+1)>f[f(n)],则对每一个n,f(n)=n.导析:本题和上题恰好相反,是由不等关系推相等关系.根据所求,学生较易想到的是反证法.假设f(n)≠n,不妨先考虑f(n)>n的情形,得f[f(n)]>f(n),而f(n+1)≥f(n)+1,至此已别无它法.调整思路,比较本题和上题,上题已知f是N→N上严格增函数,本题结论函数f也是单调增函数.所以可以尝试先证明m≥n时,f(m)≥f(n).由于是与自然数有关的命题,可以考虑用数学归纳法证明.当n=1时,f(2)>f[f(1)],而f[f(1)]≥f(1)又怎么证?这又回到上面老路上.退一步讲,对任意m≥n,欲证f(m)≥f(n)比较困难,能否证得f(m)≥n?事实上如果证得f(m)≥n,则f(n)≥n也必定成立,这离f(n)=n反而更接近.当n=1时结论显然成立.设n=k(k∈N)时结论成立,即m≥k时,f(m)≥k.则当n=k+1,即m≥k+1时,m-1≥k,f(m-1)≥k,从而f(m)>f[f(m-1)]≥k.由于f(m)取值为正整数,因此f(m)≥k+1,命题成立.这样f(n)≥n.现在证明f(n)>n不可能.若f(n)>n,即f(n)≥n+1,则f[f(n)]≥f(n+1),这与已知矛盾.接下来,就由学生对上述思路进行梳理、整合.三、强化训练1.若=x,求F(x).2.已知f(x)=|1-2x|,x∈[0,1],求方程f{f[f(x)]}=(1/2)x的解的个数.3.若a>0,a≠1,F(x)为R上的奇函数,判定函数G(x)=的奇偶性.4.设f(x)=(1+x)/(1-3x),f1(x)=f[f(x)],f2(x)=f[f1(x)],…,fn(x)=f[fn-1(x)],…,求f1991(4.7).5.设y=f(x)是定义在R上的函数,且对任意a,b∈R,都有f[af(b)]=ab,求f(2000).6.设f(x)是定义在R上的函数,M={x|f(x)=x},N={x|f[f(x)]=x}.(1)求证MN;(2)若f(x)在R上是增函数,判断M=N是否成立,并证明你的结论.7.全体正整数集是两个不相交子集{f(1),f(2),…,f(n),…}与{g(1),g(2),…,g(n),…}的并集,其中f(1)<f(2)<…<f(n)<…,g(1)<g(2)<…<g(n)<…,且对于所有n>1,有g(n)=f[f(n)]+1,求f(240).参考答案与提示1.(1-x)/(1+x).提示:用换元法.2.8个.提示:分类讨论.先分两类:f(x)=对于f[f(x)],也可类似分成四个区间讨论,因为f(x)在上述两区间值域仍为[0,1].至于f{f[f(x)]}要分八个区间分别求解.3.奇函数.提示:可先证明是奇函数.4.4.7.提示:由f1(x)=(x-1)/(3x+1),f2(x)=x,f3(x)=f(x),f4(x)=f1(x),由此可以类推,归纳出规律,f3m+k(x)=fk(x)(m,),从而f1991(4.7)=f3×663+2(4.7)=f2(4.7)=4.7.5.±2000.提示:用特殊值法.先令a=1,得f[f(b)]=b;再令a=f(b),得f[f2(b)]=bf(b).而f[bf(b)]=b2=f{f[f2(b)]}=f2(b),故|f(b)|=|b|.6.(1)对任一x∈M,f(x)=x,于是f[f(x)]=f(x)=x,即x∈N,故MN.(2)成立.设f(x)为增函数,若xM,则f(x)>x或f(x)<x;前者导出f[f(x)]>f(x)>x,后者导出f[f(x)]<f(x)<x,故总有xN,因此NM.结合(1),M=N.7.388.解答见文[2].参考文献1.甘大旺.复合函数的反函数.中学数学,2000,22.单土尊.数学奥林匹克题典.南京:南京大学出版社,1995(本期“高中竞赛初级讲座”特邀编辑刘康宁)。

(整理)函数的单调性奇偶性与周期性

(整理)函数的单调性奇偶性与周期性

函数的单调性、奇偶性与周期性基础知识一、函数的单调性 1. 单调性概念如果函数y= f (x )对于定义域I 内某个区间上的任意两个自变量的值x 1、、x 2,当x 1、<x 2时, ①都有f (x 1)< f (x 2),则称f (x )在这个区间上是增函数(或单调递增),而这个区间称函数的一个单调递增区间 ;②都有f (x 1)> f (x 2),则称f (x )在这个区间上是减函数(或单调递减),而这个区间称函数的一个单调减区间.注意,若函数f (x )在整个定义域I 内只有唯一的一个单调(递增或递减)区间,则f (x )称单调函数.2. 函数的单调性与其导函数的正负有如下关系:在某个区间(,)a b 内,如果/()0f x >,那么函数()y f x =在这个区间内是单调递增; 如果/()0f x <,那么函数()y f x =在这个区间内是单调递减。

二、函数的奇偶性 3.奇偶性概念如果对于函数f (x )定义域内的任意x ,①都有f (-x )=-f (x ),则称f (x )为奇函数;②都有f (-x )= f (x ),则称f (x )为偶函数;③如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.④如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

注意:函数f (x )具有奇偶性的必要条件是其定义域关于原点对称。

4.性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称。

5.函数f (x )为奇函数,且在0x =处有定义,则(0)0f =三、函数的周期性 6.周期性概念如果存在一个非零常数T ,使得对于函数定义域内的任意x ,都有f (x+T )= f (x ),则称f (x )为周期函数。

T 是f (x )的一个周期。

若f (x )的周期中,存在一个最小的正数,则称它为f (x )的最小正周期。

高考数学复合函数知识点归纳

高考数学复合函数知识点归纳

高考数学复合函数知识点归纳不是任何两个函数都可以复合成一个复合函数,只有当Mx∩Du≠?时,二者才可以构成一个复合函数。

下面是小编为大家精心推荐数学复合函数知识点总结,希望能够对您有所帮助。

高考数学复合函数知识点归纳1.复合函数定义域若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:⑴当为整式或奇次根式时,R的值域;⑵当为偶次根式时,被开方数不小于0(即≥0);⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

注:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1_2,任一周期可表示为k_1_2(k属于R+)2.复合函数单调性依y=f(u),μ=φ(x)的单调性来决定。

即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。

⑴求复合函数的定义域;⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);⑶判断每个常见函数的单调性;⑷将中间变量的取值范围转化为自变量的取值范围;⑸求出复合函数的单调性。

三角函数诱导公式记忆口诀“奇变偶不变,符号看象限”。

函数基本性质题型及解题技巧

函数基本性质题型及解题技巧

函数基本性质题型及解题技巧函数基本性质题型及解题技巧一、函数解析式的求法:1.配凑法:将关系式配凑成括号内的形式。

例如,已知$f(x+)=\frac{x^2}{2}$,求解析式$f(x)$。

解:因为$f(x+)=\frac{x^2}{2}=(x+)^2-2$,所以$f(x)=x^2-2$,$x\in(-\infty,-2]\cup[2,\infty)$。

2.换元法:令括号内的部分等于$t$,然后解出$x$,带入得到关于$t$的解析式,最后再换回$x$。

例如,已知$f(x+1)=x+2x$,求$f(x)$的解析式。

解:令$t=x+1$,则$x=(t-1)^2$,$(t\geq1)$,因此$f(t)=(t-1)^2+2(t-1)=t^2-1$。

所以$f(x)=x^2-1$,$(x\geq1)$。

3.待定系数法:根据已知函数类型,设相应的函数解析式,然后根据已知条件算出相应系数。

例如,已知$f(x)$是二次函数,且$f(0)=2$,$f(x+1)-f(x)=x-1$,求$f(x)$。

解:设$f(x)=ax^2+bx+c$,由$f(0)=2$得$c=2$,由$f(x+1)-f(x)=x-1$,得恒等式$2ax+a+b=x-1$,解得$a=\frac{1}{2}$,$b=-\frac{1}{2}$。

因此,所求函数的解析式为$f(x)=\frac{1}{2}x^2-\frac{1}{2}x+2$。

4.消元法(方程组法):若函数方程中同时出现$f(x)$与$f(-x)$,则一般用$x$代之或用$-x$代之,构造另一个方程,然后联立解方程组得到$f(x)$。

例如,已知$3f(x)+2f(-x)=x+3$,求$f(x)$。

解:因为$3f(x)+2f(-x)=x+3$,令$x=-x$得$3f(-x)+2f(x)=-x+3$,消去$f(-x)$得$f(x)=\frac{x}{5}+\frac{3}{5}$。

二、绝对值图像的画法:5.对于函数$y=ax^2+b|x|+c$,找出$x=0$的点和两个对称轴上的点,然后将它们连起来。

复合函数的单调性

复合函数的单调性

复合函数的单调性一、复合函数的概念如果y 是u 的函数,u 又是x 的函数,即()y f u =,()u g x =,那么y 关于x 的函数(())y f g x =叫做函数()y f u =和()u g x =的复合函数,其中u 是中间变量,自变量为x 函数值为y 。

例如:函数212xy += 是由2u y =和21u x =+ 复合而成立。

二、复合函数单调性判定方法:在复合函数 (())y f g x =中,若()u g x =在区间[],a b 上是单调增(减)函数,()y f u =在区间[](),()g a g b 上(或在区间[](),()g b g a 上)是单调增(减)函数,那么复合函数(())y f g x =在区间[],a b 上一定是单调函数,它的增减性如下表:规律:同增异减三、基本初等函数的单调性、1一次函数 y=kx+b (k ≠0)的单调区间是 。

2.反比例函数(0)ky k x=≠的单调区间是 。

3.二次函数2y ax bx c =++(a ≠0)的单调区间是 。

4、指数函数xy a =(a >0,a ≠1)的单调区间是 。

5、对数函数log a y x =(a >0,a ≠1)的单调区间是 。

例1 求下列函数的单调区间: y=log 4(x 2-4x+3)例2 求下列复合函数的单调区间: y=log 31 (2x -x 2)例3 求y=267x x --的单调区间.例4求y=122)21(--x x 的单调区间练习题求下列复合函数的单调区间.1.y=log 3(x 2-2x);2.y=log 21(x 2-3x+2);3.y=652-+-x x , 4.y=x17.0;5.y=232x-; 6.y=3)31(+x , 7.y=x2log 3; 8.y=)4(1log 2x x -π;9.y=426x x -; 10.y=227x x -;函数的基本性质一、典型选择题 1.在区间上为增函数的是( )A .B .C .D .(考点:基本初等函数单调性)2.函数是单调函数时,的取值范围 ( )A .B .C .D .(考点:二次函数单调性) 3.如果偶函数在具有最大值,那么该函数在有 ( )A .最大值B .最小值C .没有最大值D . 没有最小值(考点:函数最值) 4.函数,是( )A .偶函数B .奇函数C .不具有奇偶函数D .与有关(考点:函数奇偶性) 5.函数在和都是增函数,若,且那么( )A .B .C .D .无法确定(考点:抽象函数单调性) 6.函数在区间是增函数,则的递增区间是 ( )A .B .C .D .(考点:复合函数单调性)7.函数在实数集上是增函数,则()A.B.C. D.(考点:函数单调性)8.定义在R上的偶函数,满足,且在区间上为递增,则()A. B.C.D.(考点:函数奇偶、单调性综合)9.已知在实数集上是减函数,若,则下列正确的是()A. B.C. D.(考点:抽象函数单调性)二、典型填空题1.函数在R上为奇函数,且,则当,.(考点:利用函数奇偶性求解析式)2.函数,单调递减区间为,最大值和最小值的情况为 . (考点:函数单调性,最值)三、典型解答题1.(12分)已知,求函数得单调递减区间.(考点:复合函数单调区间求法)2.(12分)已知,,求.(考点:函数奇偶性,数学整体代换的思想)。

2函数的基本性质(单调性、奇偶性、周期性)(含答案)

2函数的基本性质(单调性、奇偶性、周期性)(含答案)

函数的基本性质一、知识点1.对函数单调性的理解(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域; (2)一些单调性的判断规则:①若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)即“同加异减”减时和第一个单调性相同。

②复合函数的单调性规则是“同增异减”。

2.函数的奇偶性的定义:(1)对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-,则称)(x f 为 . 奇函数的图象关于 对称。

(2)对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-,则称)(x f 为 . 偶函数的图象关于 对称。

(3)通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。

3.奇偶函数图象的对称性(1)若)(x a f y +=是偶函数,则⇔=-⇔-=+)()2()()(x f x a f x a f x a f )(x f 的图象关于直线a x =对称;(2)若)(x b f y +=是偶函数,则⇔-=-⇔+-=-)()2()()(x f x b f x b f x b f )(x f 的图象关于点)0,(b 中心对称;4.若函数满足()()x f a x f =+,则函数的周期为T=a 。

二、例题讲解1.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( ) A .||2x y = B .3y x = C .12+-=x y D .y =cosx 【答案】C 【解析】试题分析:偶函数需满足()()f x f x -=,由此验证可知A,C,D 都是偶函数,但要满足在区间(0,+∞)上单调递减,验证可知只有C 符合. 考点:偶函数的判断,函数的单调性.2.2()24f x x x =-+的单调减区间是 .【答案】(,1)-∞ 【解析】试题分析:将函数进行配方得22()24(1)3f x x x x =-+=-+,又称轴为1x =,函数图象开口向上,所以函数的单调减区间为(,1)-∞. 考点:二次函数的单调性.3.函数22log (23)y x x =+-的单调递减区间为( )A .(-∞,-3)B .(-∞,-1)C .(1,+∞)D .(-3,-1) 【答案】A 【解析】试题分析:由2230x x +->,得3x <-或1x >,∴()f x 的定义域为(,3)(1,)-∞-+∞.22log (23)y x x =+-可看作由2log y u =和223u x x =+-复合而成的,223u x x =+-=2(1)4x +-在(,3)-∞-上递减,在(1,)+∞上递增,又2log y u =在定义域内单调递增,∴22log (23)y x x =+-在(,3)-∞-上递减,在(1,)+∞上递增,所以22log (23)y x x =+-的单调递减区间是(,3)-∞-,故选A .考点:复合函数的单调性.4.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( )A.2a ≤-B.2a ≥-C.6-≥aD.6-≤a 【答案】B 【解析】试题分析:函数5)2(22+-+=x a x y 的图像是开口向上以2x a =-为对称轴的抛物线,因为函数在区间(4,)+∞上是增函数,所以24a -≤,解得2a ≥-,故A 正确。

函数的四大性质总结

函数的四大性质总结


(A)6
(B)-18
(C)-10
(D)10
4、函数 f x
x 1 a 是奇函数,则实数 a 的值为(

1 x2
(A)-1
(B)0
(C)1
(D)2
5、
Fx
1
2
2x
1
f
x(x
0)
是偶函数,且
f
x 不恒等于零,则
f
x(

(A)是奇函数
(B)是偶函数 (C)可能是奇函数也可能是偶函数 (D)非奇函数非偶函数
① f(x)关于(a,0)和(b,0)点对称,则 f(x)是周期函数,T=2
② f(x)关于直线 x=a 和 x=b 对称,则 f(x)是周期函数,T=2
③ f(x)关于点(a,0)和 x=b 点对称,则 f(x)是周期函数,T=4
专题训练
(一)函数的单调性
1、当 x 0, 1 ,下列式子中正确的是 2
(A) log x 1 x 1
(B)
1
1
x
1
1
x
2 2
(C) 1
3
x2
1
3
x2
(D) log 2 1 x 1
2、 f x x2 2a 1x 2在 ,4 上是减函数,则 a 的取值范围是(

(A) a 3 (B) a 3 (C) a 5 (D) a 3
3、设 P log2 3 , Q log3 2 , R log2 (log3 2) ,则( )
如果存在一个数 a,使得 f(x+a)=f(x)[记忆方法:括号里面相减等于一个定值 a],则 f (x)为周期函数,T=a。
周期函数有三种变形形式:

复合函数单调性、函数奇偶性

复合函数单调性、函数奇偶性

有关复合函数单调性的定义和解题方法一、复合函数的定义设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、函数的单调区间1.一次函数y=kx+b(k ≠0).解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间.2.反比例函数y=x k (k ≠0).解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.3.二次函数y=ax 2+bx+c(a ≠0).解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b2,+∞)是它的单调增区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b2,+∞)是它的单调减区间;4.指数函数y=ax(a >0,a ≠1).解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间.5.对数函数y=log a x(a >0,a ≠1).解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间.三、复合函数单调性相关定理引理1 :已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.(本引理中的开区间也可以是闭区间或半开半闭区间.)证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为u=g(x)在区间(a,b)上是增函数,所以g(x 1)<g(x 2),记u1=g(x 1),u2=g(x 2)即u 1<u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)], 故函数y=f [g(x)]在区间(a,b)上是增函数.引理2:已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f [g(x)]在区间(a,b)上是增函数.证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为函数u=g(x)在区间(a,b)上是减函数,所以g(x 1)>g(x 2),记u1=g(x 1),u2=g(x 2)即u 1>u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)],故函数y=f [g(x)]在区间(a,b)上是增函数.规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。

复合函数单调性、函数奇偶性.docx

复合函数单调性、函数奇偶性.docx

有关复合函数单调性的定义和解题方法一、复合函数的定义设y=f(u)的定义域为A, u=g(x)的值域为B,若AcB,则y关于x函数的y二f [g(x)] 叫做函数f与g 的复合函数,u叫中间量.二、函数的单调区间1.—次函数y=kx+b(kHO).解当k>0时,(一8, +8)是这个函数的单调增区间;当kVO时,(一°°, +8)是这个函数的单调减区间.2.反比例函数y二兀(kHO).解当k>0吋,(一8, 0)和(0, +°°)都是这个函数的单调减区间,当kVO吋,(一8, 0)和(0, +8)都是这个函数的单调增区间.3.二次函数y二ax'+bx+c (aHO)・b b解当a>l吋(一g, —2。

)是这个函数的单调减区间,(一2。

,+->)是它的单调b b增区间;当aVl时(一8, —2d)是这个函数的单调增区间,(一2d, +8)是它的单调减区间;4.指数函数y=ax(a>0, aHl).解当a>l时,(一8, +8)是这个函数的单调增区间,当OVaVl时,(一8, +8) 是这个函数的单调减区间.5.对数函数y=log a x(a>0, aHl).解当a>lW,(0, +«)是这个函数的单调增区间,当0Va<l吋,(0, +->)是它的单调减区间.三、复合函数单调性相关定理引理1 :已知函数y=f [g(x)] •若u=g(x)在区间(a, b)±是增函数,其值域为(c, d), 又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y二f [g(x)]在区fn] (a, b) ±是增函数.(木引理屮的开区间也可以是闭区间或半开半闭区间.)证明在区间(a, b)内任取两个数Xi, X2,使a<xi<x2<b.因为u=g(x)在区间(a, b)上是增函数,所以g(xj <g(x2),记ul=g(xi),u2=g(x2)即Ui< u2,且U1,比丘(c, d).因为函数y=f (u)在区间(c, d)上是增函数,所以f (ui) <f (u2),即f Lg(xi) ] Vf [f(X2)], 故函数y=f [g(x)]在区间(a, b)±是增函数.引理2:已知函数y=f [g(x)] •若u=g(x)在区间(a, b)±是减函数,其值域为(c, d), 又函数y二f(u)在区间(c, d) ±是减函数,那么,复合函数y二f [g(x)]在区间(a, b) ±是增函数.证明在区间(a, b)内任取两个数xi, X2,使a<xi<x2<b.因为函数U=g(x)在区间(a, b)±是减函数,所以g(xi) >g(x2),记ul=g(xi),u2=g(x2)即U1>U2,且Ui, U2W (c, d)・因为函数y=f (u)在区间(c, d)上是减函数,所以f (ui) <f (u2),即f Eg(xi) ] Vf [f(X2)], 故函数尸f [g(x)l在区I'可Q,b)上是增函数.I .y. ⑴孑- 增函数 规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其 复合函数为减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档