复变函数与积分变换》教学大纲

合集下载

《复变函数与积分变换》课程教学大纲(48学时)

《复变函数与积分变换》课程教学大纲(48学时)

《复变函数与积分变换》课程教学大纲(48学时)《复变函数与积分变换》课程教学大纲一、课程基本信息课程编号:0911009课程中文名称:复变函数与积分变换课程英文名称:Complex Function and Integral Transformation课程性质:公共基础理论必修课考核方式:考试开课专业:全校理工科各专业开课学期:3总学时:48学时(全部为理论学时)总学分:3学分二、课程目的复变函数与积分变换是工科类及应用理科类有关专业的基础课。

通过本课程的学习,使学生初步掌握复变函数的基本理论和方法,掌握保形映射的理论和方法,傅里叶变换与拉普拉斯变换的特性与应用,为学习相关专业课程及以后实际应用提供必要的数学基础。

三、教学基本要求1.熟练掌握复数的各种表示方法及其运算;了解点集、区域的概念;理解复变函数的概念,了解复变函数的极限和连续性的概念。

2.理解复变函数的导数概念及求法,理解解析函数的概念,掌握柯西—黎曼条件判断解析性,了解某些初等解析函数的基本性质;了解调和函数与解析函数的关系,掌握从解析函数的实(虚)部求其虚(实部)的方法。

3.理解积分的定义与性质,会求复变函数的积分;掌握柯西定理,会用柯西定理和复合闭路定理计算定积分;掌握柯西积分公式和高阶导数公式计算积分。

4.理解复数项级数、幂级数(绝对收敛、条件收敛)的概念,了解幂级数的基本性质;了解收敛圆概念、会求收敛半径;了解泰勒定理及其初等函数的马克劳林展式,并利用它们将一些简单解析函数展开为幂级数;理解洛朗级数,掌握简单函数在不同圆环域内展开为洛朗级数的间接方法。

5.理解孤立奇点及其分类及函数在各类奇点邻域内的性质;留数的概念及留数定理;掌握极点处留数的求法及用留数求闭路积分和某些实积分的方法。

6.了解导数的几何意义及保角映射的概念;掌握分式线性映射的保圆性、保对称性等映射性质及幂函数、指数函数的映射特点;会求一些简单区域(如半平面、角形域、圆域、带形域等)之间的保形映射。

复变函数与积分变换课程教学大纲

复变函数与积分变换课程教学大纲

复变函数与积分变换课程教学大纲1. 课程概述本课程旨在介绍复变函数与积分变换的基本理论和应用。

通过学习本课程,学生将掌握复变函数的性质、解析函数与调和函数的概念以及积分变换的原理与计算方法。

2. 知识要点及教学目标2.1 复变函数的基本概念与性质了解复变函数的定义、光滑性、奇点等基本概念,掌握复变函数的导数、积分、级数展开等性质。

2.2 解析函数与调和函数理解解析函数与调和函数的含义与性质,认识解析函数与调和函数的关系,学习利用调和函数解决实际问题。

2.3 积分变换的基本原理与方法理解积分变换的定义与基本原理,学习拉普拉斯变换、傅里叶变换等常用积分变换的计算方法与应用。

2.4 应用举例与综合训练通过具体实例,分析和解决实际问题,培养学生综合运用所学知识的能力。

3. 教学内容与教学方法3.1 复变函数的基本概念与性质3.1.1 复数与复平面3.1.2 复变函数的定义与性质3.1.3 复变函数的导数与积分3.1.4 复变函数的级数展开教学方法:通过数学示例和图示辅助,引导学生理解和掌握复变函数的基本概念与性质。

3.2 解析函数与调和函数3.2.1 解析函数的定义与性质3.2.2 调和函数的定义与性质3.2.3 解析函数与调和函数的关系3.2.4 应用:调和函数在电磁学中的应用教学方法:结合具体实例,引导学生理解和运用解析函数与调和函数的概念与性质。

3.3 积分变换的基本原理与方法3.3.1 积分变换的定义与性质3.3.2 拉普拉斯变换的定义与计算方法3.3.3 傅里叶变换的定义与计算方法3.3.4 应用:积分变换在信号处理中的应用教学方法:以具体应用场景为背景,引导学生理解积分变换的原理、计算方法及其在工程实践中的作用。

3.4 应用举例与综合训练通过一些典型案例和综合性题目,让学生运用所学知识分析和解决实际问题,培养学生的综合能力。

教学方法:通过解析与讨论,引导学生独立思考问题,并运用相关知识进行分析和求解。

(完整版)复变函数与积分变换课程教学大纲

(完整版)复变函数与积分变换课程教学大纲

《复变函数与积分变换》课程教学大纲课程名称:复变函数与积分变换课程代码:ELEA3035英文名称:Function of Complex Variable and Integral Transformation课程性质:专业必修课程学分/学时:2学分/36学时开课学期:第3学期适用专业:电气工程及其自动化先修课程:高等数学后续课程:自动控制原理、信号与系统、检测技术与仪表开课单位:机电工程学院课程负责人:杨歆豪大纲执笔人:周纯大纲审核人:余雷一、课程性质和教学目标(在人才培养中的地位与性质及主要内容,指明学生需掌握知识与能力及其应达到的水平)课程性质:《复变函数与积分变换》的理论和方法广泛应用于电气工程、通讯工程、自动化等相关学科,并且已经成为解决众多理论和实际问题的强有力工具,成为了电气工程及其自动化专业一门重要的基础理论课程,而高等数学的是它的必须的先修课程。

对于本专业而言,是学习《自动控制原理》、《现代控制理论》、《线性系统理论》、《信号与系统》等许多相关课程的必须先修课程之一。

教学目标:通过本课程的讲授和学习,使学生在学习高等数学的基础上,系统的掌握《复变函数与积分变换》中必要的基础理论和常用的计算方法,培养学生比较熟练的运算能力,能比较熟练运用复变函数、积分变换的方法来有效地比较系统地解决一些问题。

并且逐步培养能够建立比较复杂系统数学模型的能力,在此基础上,进一步地提升分析问题、解决问题的水平和能力。

并为后续的专业基础课程、专业课程的学习,以及将来从事教学、科研及其它实际工作打下必要相当水准的理论知识基础。

本课程的具体教学目标如下:1.熟练掌握复数与复变函数、解析函数、复变函数积分、复级数、留数、傅里叶变换和拉普拉斯变换的基本概念、基本理论、基本方法和某些相关的应用,为进一步学习打下坚实的理论基础。

2.大致了解理想典型电子线性器件的时域和频域的数学模型,为后续课程比较复杂的线性电气系统或者比较复杂的线性力学系统的数学模型的建立、分析和控制做好理论、学识上准备。

《复变函数与积分变换》课程教学大纲(48学时)

《复变函数与积分变换》课程教学大纲(48学时)

《复变函数与积分变换》课程教学大纲一、课程基本信息课程编号:0911009课程中文名称:复变函数与积分变换课程英文名称:Complex Function and Integral Transformation课程性质:公共基础理论必修课考核方式:考试开课专业:全校理工科各专业开课学期:3总学时:48学时(全部为理论学时)总学分:3学分二、课程目的复变函数与积分变换是工科类及应用理科类有关专业的基础课。

通过本课程的学习,使学生初步掌握复变函数的基本理论和方法,掌握保形映射的理论和方法,傅里叶变换与拉普拉斯变换的特性与应用,为学习相关专业课程及以后实际应用提供必要的数学基础。

三、教学基本要求1.熟练掌握复数的各种表示方法及其运算;了解点集、区域的概念;理解复变函数的概念,了解复变函数的极限和连续性的概念。

2.理解复变函数的导数概念及求法,理解解析函数的概念,掌握柯西—黎曼条件判断解析性,了解某些初等解析函数的基本性质;了解调和函数与解析函数的关系,掌握从解析函数的实(虚)部求其虚(实部)的方法。

3.理解积分的定义与性质,会求复变函数的积分;掌握柯西定理,会用柯西定理和复合闭路定理计算定积分;掌握柯西积分公式和高阶导数公式计算积分。

4.理解复数项级数、幂级数(绝对收敛、条件收敛)的概念,了解幂级数的基本性质;了解收敛圆概念、会求收敛半径;了解泰勒定理及其初等函数的马克劳林展式,并利用它们将一些简单解析函数展开为幂级数;理解洛朗级数,掌握简单函数在不同圆环域内展开为洛朗级数的间接方法。

5.理解孤立奇点及其分类及函数在各类奇点邻域内的性质;留数的概念及留数定理;掌握极点处留数的求法及用留数求闭路积分和某些实积分的方法。

6.了解导数的几何意义及保角映射的概念;掌握分式线性映射的保圆性、保对称性等映射性质及幂函数、指数函数的映射特点;会求一些简单区域(如半平面、角形域、圆域、带形域等)之间的保形映射。

7.理解Fourier变换的概念,会求函数的Fourier变换,了解δ函数及其性质;掌握Fourier 变换性质和卷积定理。

《复变函数与积分变换》课程教学大纲

《复变函数与积分变换》课程教学大纲

复变函数与积分变换课程教学大纲(Complex Function and Integral Transform)一、课程概况课程代码:0801010学分:3学时:48(其中:讲授学时48 ,实验学时0 ,上机学时0 )先修课程:高等数学适用专业:工科各专业建议教材:《复变函数》,西安交通大学,高等教育出版社,2014.7课程归口:理学院课程的性质与任务:本课程是工科专业的通识必修课。

通过本课程的学习,使学生系统地获得复变函数与积分变换的基本知识、必要的基础理论和常用的运算方法;提高学生的运算能力、抽象思维能力、逻辑推理能力;并能运用数学知识、理论、方法解决相关的实际应用问题;提高学生的数学素养,为学生学习后续相关课程及终身学习奠定必要的数学基础。

二、课程目标目标1.能够获得课程基本概念与性质。

目标2. 能够掌握本课程要求的计算方法。

目标3. 能够具有一定的抽象概括、逻辑推理等能力。

目标4. 能够具有一定的运算能力。

目标5. 能够具有一定的数学思维与分析能力。

本课程支撑专业人才培养方案中毕业要求1-1,对应关系如表所示。

三、课程内容及要求(一)复数与复变函数1.教学内容(1)能够理解复数的各种表示方法及其运算(2)能够了解区域、简单曲线的概念(3)能够掌握用复数式表达常见区域、简单曲线的方法(4)能够了解复球面与无穷远点(5)能够理解复变函数及映射的概念(6)能够理解复变函数的极限和连续的概念(7)能够了解闭区域上连续函数的性质2.基本要求(1)重点与难点:复变函数及映射、复变函数的极限和连续。

(2)教学方法:启发式互动讲授结合多媒体辅助;适当课堂练习;及时了解学生的作业状况并对共同的问题作及时解答;安排好课后答疑。

3.思政内容注重理论联系实际,尊重客观规律,树立社会主义核心价值观,增强专业素养,强调理论对实践的指导意义。

(二)解析函数1.教学内容(1)能够理解复变函数的导数及复变函数解析的概念(2)能够掌握复变函数解析的充要条件(3)能够了解调和函数的概念及其与解析函数的关系(4)能够掌握利用解析函数的实(虚)部求其(实)部(5)能够理解指数、三角、双曲、对数函数及幂函数的定义、性质与计算2.基本要求(1)重点与难点:复变函数的导数及复变函数解析,从解析函数的实(虚)部求其(实)部。

《复变函数与积分变换》教学大纲

《复变函数与积分变换》教学大纲

《复变函数与积分变换》教学大纲一、课程基本信息课程名称:复变函数与积分变换英文名称:Complex Variable Functions and Integral Transformations课程编号:06209C课程类型:专业限选课课程总学时:48 (理论 40,实验 8 )学分:2适用专业:信息与计算科学开课系部:应用数学系先修课程:数学分析(高等数学)二、课程的性质和任务复变函数与积分变换是数学分析(或高等数学)的后继课。

它的许多概念、理论和方法与数学分析有许多相似之处,但它又有许多独特的理论和方法,并不是数学分析理论在复数域中的简单平移。

它是本科院校理工科专业的重要专业课。

它的理论和方法在数学、自然科学和工程技术中有着广泛的应用,在流体力学、电磁学、热学、工程力学等领域中,都会遇到平面向量场的问题,对于这类场,复变函数是解决这类问题的有力工具,借助复变函数的理论和方法,可以较简捷、深刻、完美地研究这类具体问题。

积分变换的理论和方法不仅在某些数学分支中,而且在其它自然科学和工程技术中都有着广泛的应用。

如在数学上用积分变换可以很容易的解答一些微分方程和积分方程,还可以研究广义积分等难以解决的问题;在无线电技术中,当我们需要设计一个符合要求的放大器时,往往要利用傅里叶变换对信号进行频谱分析;在控制理论中,当我们需要进行系统分析时,可以通过拉普拉斯变换来分析系统的传递特性等。

因此,积分变换已成为现代科学技术领域中不可缺少的运算工具。

三、课程教学基本要求第一部分复数与复变函数教学内容:1.1 复数1.2 复数的三角表示1.3 平面点集的一般概念1.4 无穷大和复球面1.5 复变函数1、掌握复数的三种表示法,知道复平面的点集与区域。

2、理解复变函数的概念,了解其几何表示。

3、了解复变函数的极限与连续性的概念。

4、掌握复数的四则运算及乘方、开方运算及它们的几何意义,会进行一些不太复杂的运算第二部分解析函数教学内容:2.1 解析函数的概念2.2 解析函数和调和函数的关系2.3 初等函数基本要求:1. 理解复变函数导数的概念及其求法。

《复变函数与积分变换》教学大纲

《复变函数与积分变换》教学大纲

《复变函数与积分变换》教学大纲一、课程名称复变函数与积分变换(Functions of Complex Variable and Integral Transforms)二、学时与学分学时:40 学分:2.5三、授课对象理工科本科学生四、先修课程高等数学五、教学目的复变函数与积分变换是理工科相关专业的一门基础课,通过本课程的学习,使学生初步掌握复变函数的基础理论和方法,掌握傅里叶变换与拉斯变换的性质、方法,为学习有关后续课程和进一步扩大数学知识奠定必要的数学基础。

六、主要内容、基本要求及学时分配该课程介绍了复变函数与积分变换的一些基本知识,内容包含复变函数、解析函数、解析函数的级数表示、留数定理、保形映射以及工程上常用的傅里叶变换与拉普拉斯变换。

主要内容1.复数与复变函数(1)复数(2)复数的三角表示(3)平面点集的一般概念(4)无穷大与复球面(5)复变函数2.解析函数(1)解析函数的概念(2)解析函数和调和函数的关系(3)初等函数3.复变函数的积分(1)复积分的概念(2)柯西积分定理(3)柯西积分公式(4)解析函数的高阶导数4.解析函数的级数表示(1)复数项级数(2)复变函数项级数(3)泰勒级数(4)洛朗级数5.留数及其应用(1)孤立奇点(2)留数(3)留数在定积分计算中应用6.保形映射(1)保形映射的概念(2)保形映射的基本问题(3)分式线性映射(4)几个初等函数构成的保形映射7.傅里叶变换(1)傅里叶变换的概念(2)单位脉冲函数(δ函数)(3)傅里叶变换的性质8.拉普拉斯变换(1)拉普拉斯变换的概念(2)拉氏变换的性质(3)拉普拉斯逆变换(4)拉氏变换的应用及综合举例基本要求1.熟练掌握复数的各种表示方法及其运算;了解区域的概念;理解复变函数的概念,知道复变函数的极限和连续的概念。

2.理解复变函数的导数概念及解析函数的概念及解析函数与柯西—黎曼方程的联系,了解某些初等解析函数的基本性质;了解调和函数与解析函数的关系,掌握从解析函数的实(虚)部求其虚(实部)的方法。

复变函数与积分变换教学大纲

复变函数与积分变换教学大纲

《复变函数与积分变换》课程教学大纲一、课程基本信息二、课程教学目标本课程的学习可以为学生学习后继课程和解决实际问题提供必要的数学基础。

同时,通过各教学环节,逐步培养学生具有比较熟练的基本运算能力,初步抽象概括问题的能力,自学能力以及一定的逻辑推理能力。

另外,通过教学使学生了解复变函数与积分变换的一些基本知识,逐步培养利用这些知识解决实际问题的能力。

第一,通过课程学习,提高学生的计算能力,主要是提高学生求解析函数、复积分、留数的计算能力。

第二,通过课程学习,提高学生的自学能力,主要是提高学生自主学习的能力。

第三,通过课程学习,提高学生的分析问题与解决问题的能力,主要是提高学生能利用所学的复变函数与积分变换知识去分析和解决一些实际问题的能力。

三、教学学时分配《复变函数与积分变换》课程理论教学学时分配表*理论学时包括讨论、习题课等学时。

四、教学内容和教学要求第一章复数与复变函数(7学时)(一)教学要求1.理解复数的概念,掌握复数的表示方法;2.掌握复数的四则运算、乘方与开方运算;3.了解复平面上点集的基本概念,理解区域的概念,了解无穷远点的概念;4.掌握复变函数的概念,了解复变函数极限与连续性。

(二)教学重点与难点教学重点:复数的表示方法,复数的四则运算、乘方与开方运算,区域,复变函数的概念。

教学难点:复数的乘方与开方运算,区域,复变函数的极限与连续性。

(三)教学内容第一节复数1.复数的概念2.共轭复数及复数的四则运算第二节复平面及复数的三角表达式1.复平面2.复数的模、辐角及三角表达式3.复数模的三角不等式4.利用复数的三角表达式作乘除法5.复数的乘方和开方第三节平面点集1.邻域与开集2.区域、简单曲线3.单连通区域与多连通区域4.无穷远点第四节复变函数1.复变函数的概念2.复变函数的极限和连续性本章习题要点:1.复数的模和辐角;2.复数的三角表达式;3.利用复数的三角表达式作乘除法、乘方和开方运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《复变函数与积分变换》教学大纲
课程名称:复变函数与积分变换
FunctionsofVariables&Transformations
课程性质:专业基础课
学分:3
总学时:48学时,其中,理论学时:48学时,实验(上机)学时:0学时,
适用专业:通信工程、电子信息工程等专业
先修课程:高等数学
一、教学目的与要求:
复变函数与积分变换是工科院校中数学要求较高专业的一门基础理论课程。

复变函数以及与它密切相关的积分变换,它的理论和方法不仅在数学的其他的许多分支中,而且在其他自然科学和工程技术如电力工程、自动控制、信号分析和图像处理、材料成型等领域内获得广泛的应用,已成为不可缺少的运算工具。

通过本课程的学习,使学生掌握复变函数的基本理论和基本方法,傅立叶变换和拉普拉斯变换的思想与运算技巧,并在此基础上培养学生应用这些知识解决实际问题的能力,为后继专业课程的学习提供必要的数学工具。

第一章复数与复变函数(8学时)
第一节复数的概念与运算
一、复数的概念、表示法和运算
二、区域
第二节复变函数
一、复变函数的概念
二、复变函数的极限和连续
本章重点:复数的表示法、方根运算公式
本章难点:复变函数的极限与连续性
本章教学要求:掌握复数的概念和它的各种表示方法及运算;熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式;了解区域的概念;理解复变数学的概念;理解复变函数的极限和连续的概念。

第二章解析函数(5学时)
第一节解析函数的概念
一、复变函数的导数和解析的概念
二、复变函数解析的充要条件
三、解析函数的基本性质
第二节初等函数的解析性
一、指数函数、三角函数、对数函数
本章重点:复变函数解析的充要条件
本章难点:复变函数解析的充要条件
本章教学要求:理解复变函数的导数及复变函数解析的概念;掌握复变函数解析的C-R条件,并能利用C-R条件判断复变函数的可导性和解析性;掌握解析函数的基本性质;了解指数函数、三角函数及对数函数的定义及它们的主要性质。

第三章复变函数的积分(6学时)
第一节复变函数的积分
一、复变函数的积分的定义与性质
第二节柯西定理与柯西公式
一、柯西积分定理、柯西积分公式
二、解析函数的高阶导数公式
本章重点:会求复变函数的积分,理解柯西积分定理
本章难点:掌握柯西积分公式、解析函数的高阶导数公式
本章教学要求:了解复变函数积分的定义及性质,会求复变函数的积分;理解柯西积分定理,掌握柯西积分公式;掌握解析函数的高阶导数公式;了解解析函数无限次可导的性质;会综合利用各定理计算闭路积分。

第四章级数(5学时)
第一节复级数的基本概念
一、复级数的一般概念
二、 幂级数在收敛圆内的性质
第二节泰勒级数和罗伦级数
一、罗伦级数与罗伦展开定理
本章重点:掌握将函数在解析区域内展开为幂级数,
本章难点:掌握用间接法将函数在圆环域内展开成罗伦级数
本章教学要求:了解复级数的一般概念;理解幂级数在收敛圆内的性质;掌握将函数在解析区域内展开为幂级数的方法,记住1,,sin ,cos 1
z e z z z -的幂级数展开法;掌握用间接展开法将函数在圆环域内展开为罗伦级数;理解函数的罗伦级数和罗伦展开定理。

第五章留数(6学时)
第一节孤立奇点及其分类
一、孤立奇点的概念和类型
第二节留数
一、留数的概念
二、不同奇点处留数的计算
三、留数定理
本章重点:掌握用留数定理,利用留数定理计算闭路积分
本章难点:掌握m 阶奇点处留数的计算
本章教学要求:理解孤立奇点的概念,会判断孤立奇点的类型;理解留数的概念;掌握不同奇点处留数的计算;掌握用留数定理,利用留数定理计算闭路积分。

第七章傅立叶变换(8学时)
第一节傅立叶积分公式
一、傅氏积分定理、傅氏积分公式
第二节傅立叶变换
一、傅立叶变换和傅立叶逆变换
二、δ函数的概念、性质及其傅立叶变换
第三节傅立叶变换的性质
本章重点:掌握傅氏变换的性质
本章难点:傅立叶积分公式、傅立叶积分定理
本章教学要求:掌握傅氏积分定理、理解傅氏积分公式;理解傅立叶变换及傅立叶逆变换的概念;了解δ函数的概念、性质及其傅氏变换,了解傅氏变换的物理意义;掌握傅氏变换的性质,熟悉常用傅氏变换对。

第八章拉普拉斯变换(10学时)
第一节拉普拉斯变换的概念
一、拉普拉斯变换的概念、拉普拉斯存在定理
第二节拉普拉斯变换的性质
第三节拉普拉斯逆变换
第四节卷积
第五节拉普拉斯变换的应用
本章重点:理解拉普拉斯变换的性质
本章难点:卷积定理、求拉普拉斯逆变换
本章教学要求:理解拉普拉斯变换及拉普拉斯逆变换的概念;了解拉普拉斯变换存在定理;掌握拉普拉斯变换的性质;掌握用留数求拉氏逆变换的方法;了解拉氏变换卷积概念及卷积定理;应用拉氏变换求解常微分方程及常微分方程组。

四、成绩考核方式:
综合平时的作业及测试成绩(30%)、和期末考试的成绩(70%)作为本课程的综合评定成绩。

五、教材与参考资料:
教材:
《复变函数与积分变换》(第二版),杨巧林等编着,机械工业出版社,
参考书:
《复变函数与积分变换》,华中理工大学数学系编着。

《工程数学—复变函数(第四版)》,西安交通大学高等数学教研室编,高教出版社
《工程数学—积分变换(第三版)》,南京工学院数学教研组编,高等教育出版社。

相关文档
最新文档