数学建模赛题分析建模方法
2016年全国大学生数学建模竞赛B题解题分析与总结
![2016年全国大学生数学建模竞赛B题解题分析与总结](https://img.taocdn.com/s3/m/6639e5e8c0c708a1284ac850ad02de80d4d806ce.png)
2016年全国大学生数学建模竞赛B题解题分析与总结2016年全国大学生数学建模竞赛B题解题分析与总结一、题目分析2016年全国大学生数学建模竞赛B题是一个与经济学、金融学相关的问题,要求参赛者通过对问题的深入分析和建模,以及对模型的求解和结果的解释,提出合理的结论。
二、问题描述本题的题目为《贷款利率调控模型》。
题目给出了一组数据,包括贷款利率、消费者价格指数、人均可支配收入、外汇储备等指标,要求参赛者针对这些指标进行分析,并建立合适的模型来解释这些指标之间的关系。
三、解题思路1. 数据分析:首先,我们需要对给定的数据进行分析。
通过绘制图表和计算一些统计量,我们可以对这些数据的变化和趋势进行初步了解。
2. 建立模型:在了解了数据的基本特征之后,我们需要以此为基础,建立起合适的数学模型。
这个模型应该能够描述贷款利率与消费者价格指数、人均可支配收入、外汇储备之间的关系,并能够进行预测。
3. 参数估计:建立好模型之后,我们需要对模型中的参数进行估计。
这需要依赖于数学推导和数据拟合的方法,通过最小二乘法等方法,确定模型的参数。
4. 模型求解:有了模型和参数之后,我们可以使用计算机软件进行模型的求解。
通过数值计算的方法,我们可以得到模型的解析解或数值解,并进行结果的分析和解释。
5. 结论与反思:最后,我们需要根据模型的结果,对问题进行结论和反思。
我们可以分析模型的合理性、可靠性,以及对解决实际问题的指导意义。
同时,我们也可以对模型的不足之处进行总结,并提出改进的建议。
四、模型建立与结果解释在解题的过程中,我们可以考虑建立如下的模型:贷款利率=消费者价格指数+人均可支配收入+外汇储备。
通过对这三个指标的分析,我们可以发现它们之间存在着一定的关系。
消费者价格指数和人均可支配收入可以反映经济的收入水平和购买力,而外汇储备可以反映国家的经济实力。
在建立了模型之后,我们可以对模型进行求解,并得到相应的结果。
根据模型的求解结果可以得出以下结论:贷款利率与消费者价格指数、人均可支配收入和外汇储备之间存在着一定的关系。
数学建模常用的十种解题方法
![数学建模常用的十种解题方法](https://img.taocdn.com/s3/m/ab05e446f11dc281e53a580216fc700abb6852a2.png)
数学建模常用的十种解题方法 摘要当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。
这个建立数学模型的全过程就称为数学建模。
数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。
关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。
在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。
一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。
通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。
本文给出算例, 并用MA TA LA B 实现。
1蒙特卡罗计算重积分的最简算法-------均匀随机数法二重积分的蒙特卡罗方法(均匀随机数)实际计算中常常要遇到如的()dxdy y x f D ⎰⎰,二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。
全国大学生数学建模竞赛常用建模方法总结
![全国大学生数学建模竞赛常用建模方法总结](https://img.taocdn.com/s3/m/0d36ee403c1ec5da50e27056.png)
邯郸学院本科毕业论文题目全国大学生数学建模竞赛常用建模方法探讨学生柴云飞指导教师闫峰教授年级2009级本科专业数学与应用数学二级学院数学系(系、部)邯郸学院数学系2013年6月郑重声明本人的毕业论文是在指导教师闫峰的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明.论文经“中国知网”论文检测系统检测,总相似比为5.80%.毕业论文作者(签名):年月日全国大学生数学建模竞赛常用建模方法探讨摘要全国大学生数学建模竞赛作为全国高校规模最大的基础性学科竞赛,越来越受到人们的重视,所以建模竞赛的方法也就变得尤为重要.随着竞赛的不断发展,赛题的开放性逐步增大,一道赛题可用多种解法,各种求解的算法有时会相互融合,同时也在向大规模数据处理方向发展,这就对选手的能力提出了更高的要求.由于建模方法种类众多,无法一一介绍,所以本文主要介绍了四种比较常用的数学建模竞赛方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论方法,并结合历年赛题加以说明.关键词:数学建模竞赛统计学方法数学规划图论Commonly Used Modeling Method ofChina Undergraduate Mathematical Contest in ModelingChai yunfei Directed by Professor Yan fengABSTRACTThe China undergraduate mathematical contest in modeling has been attention by more and more people as a basic subject of the largest national college competition. The method of modeling competition has become more and more important. Open questions gradually increased with the development of competition. Most of the games can be solved by lots of solutions. Sometimes these methods can be used together. And there is also a lot of data which puts forward higher requirement on the ability of players. The modeling methods is too numerous to mention, so this article mainly four kinds Commonly used modeling method are introduced that differential and difference equations modeling method, Mathematical programming modeling method, Statistics modeling method, graph theory and interprets with calendar year’s test questions.KEY WORDS:Mathematical contest in modeling Statistics method Mathematical programming Graph theory目录摘要 (I)英文摘要 (II)前言 (1)1微分方程与差分方程建模 (2)1.1微分方程建模 (2)1.1.1微分方程建模的原理和方法 (2)1.1.2微分方程建模应用实例 (3)1.2差分方程建模 (4)1.2.1 差分方程建模的原理和方法 (4)1.2.2 差分方程建模应用实例 (5)2数学规划建模 (5)2.1线性规划建模的一般理论 (6)2.2线性规划建模应用实例 (7)3统计学建模方法 (8)3.1聚类分析 (8)3.1.1 聚类分析的原理和方法 (8)3.1.2 聚类分析应用实例 (8)3.2回归分析 (9)3.2.1 回归分析的原理与方法 (9)3.2.2 回归分析应用实例 (10)4图论建模方法 (10)4.1两种常见图论方法介绍 (11)4.1.1 模拟退火法的基本原理 (11)4.1.2 最短路问题 (11)4.2图论建模应用实例 (12)5小结 (13)参考文献 (13)致谢 (14)前言全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛.参赛者需要根据题目要求,在三天时间内完成一篇包括模型假设、模型建立和求解、计算方法的设计和实现、模型结果的分析和检验、模型的改进等方面的论文.通过参加竞赛的训练和比赛,可以提高学生用数学方法解决实际问题的意识和能力,而且在培养团队精神和撰写科技论文等方面都会得到十分有益的锻炼.竞赛题目的涉及面比较宽,有工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等.竞赛选手不一定预先掌握深入的专业知识,而只需要学过高等数学的相关课程即可,并且题目具有较大的灵活性,便于参赛者发挥其创造能力.近年来,竞赛题目包含的数据较多,手工计算一般不能实现,所以就对参赛者的计算机能力提出了更高的要求,如2003年B题,某些问题的解决需要使用计算机软件;2001年A题,问题的数据读取需要计算机技术,并且对于给出的图像,需要用图像处理的方法获得;再如2004年A题则需要利用数据库数据,数据库方法,统计软件包等等.竞赛题目的总体特点可大致归纳如下:(1)实用性不断加强,问题和数据来自于实际,解决方法需要切合实际,模型和结果可以应用于实际;(2)综合性不断加强,解法多样,方法融合,学科交叉;(3)数据结构越来越复杂,包括数据的真实性,数据的海量性,数据的不完备性,数据的冗余性等;(4)开放性也越来越突出,题意的开放性,思路的开放性,方法多样,结果不唯一等.总体来说,赛题向大规模数据处理方向发展,求解算法和各类现代算法相互融合.纵观历年的赛题,主要用到的建模方法有:初等数学模型、微分与差分方程建模、组合概率、数据处理、统计学建模、计算方法建模、数学规划、图论方法、层次分析、插值与拟合、排队论、模糊数学、随机决策、多目标决策、随机模拟、计算机模拟法、灰色系统理论、时间序列等.本文不一一列举竞赛题目中涉及的所有方法,只是重点讨论其中一些比较常用的方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论建模方法,并结合案例说明建模方法的原理及应用.1 微分方程与差分方程建模在很多竞赛题目中,常常会涉及很多变量之间的关系,找出它们之间的函数关系式具有重要意义.可在许多实际问题中,我们常常不能直接给出所需要的函数关系,但可以得到含有所求函数的导数(或微分)或差分(即增量)的方程,这样的方程称为微分方程或差分方程. 建立微分方程或差分方程的数学模型是一种重要的建模方法.如1996年A 题“最优捕鱼策略”,1997年A 题“零件参数设计”,2003年A 题“SARS 的传播”,2007年A 题“中国人口增长预测”,2009年A 题“最优捕鱼策略”等赛题中,都用到了这种方法.1.1 微分方程建模1.1.1 微分方程建模的原理和方法一般来说,任何时变问题中随时间变化而发生变化的量与其它一些量之间的关系经常以微分方程的形式来表现.例1.1 有一容器装有某种浓度的溶液,以流量1v 注入该容器浓度为1c 的同样溶液,假定溶液立即被搅拌均匀,并以2v 的流量流出混合后的溶液,试建立反映容器内浓度变化的数学模型.解 注意到溶液浓度=溶液体积溶液质量,因此,容器中溶液浓度会随溶质质量和溶液体积变化而发生变化.不妨设t 时刻容器中溶质质量为()t s ,初始值为0s ,t 时刻容器中溶液体积为()t v ,初始值为0v ,则这段时间()t t t ∆+,内有⎩⎨⎧∆-∆=∆∆-∆=∆t v t v V t v c t v c s 212211, (1) 其中1c 表示单位时间内注入溶液的浓度,2c 表示单位时间内流出溶液的浓度,当t ∆很小时,在()t t t ∆+,内有≈2c =)()(t V t s tv v V t s )()(210-+. (2) 对式(1)两端同除以t ∆,令0t ∆→,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00212211)0(,)0(V V s s v v dtdV v c v c dt ds . (3) 即所求问题的微分方程模型.虽然它是针对液体溶液变化建立的,但对气体和固体浓度变化同样适用.实际应用中,许多时变问题都可取微小的时间段t ∆去考察某些量之间的变化规律,从而建立问题的数学模型,这是数学建模中微分方程建模常用手段之一.常用微分方程建模的方法主要有:(1)按实验定律或规律建立微分方程模型.此种建模方法充分依赖于各个学科领域中有关实验定律或规律以及某些重要的已知定理,这种方法要求建模者有宽广的知识视野,这样才能对具体问题采用某些熟知的实验定律.(2)分析微元变化规律建立微分方程模型.求解某些实际问题时,寻求一些微元之间的关系可以建立问题的数学模型.如例1.1中考察时间微元t ∆,从而建立起反应溶液浓度随时间变化的模型.此建模方法的出发点是考察某一变量的微小变化,即微元分析,找出其他一些变量与该微元间的关系式,从微分定义出发建立问题的数学模型.(3)近似模拟法.在许多实际问题中,有些现象的规律性并非一目了然,或有所了解亦是复杂的,这类问题常用近似模拟方法来建立问题的数学模型.一般通过一定的模型假设近似模拟实际现象,将问题做某些规范化处理后建立微分方程模型,然后分析、求解,并与实际问题作比较,观察模型能否近似刻画实际现象.近似模拟法的建模思路就是建立能够近似刻画或反映实际现象的数学模型,因此在建模过程中经常做一些较合理的模型假设使问题简化,然后通过简化建立近似反映实际问题的数学模型.1.1.2 微分方程建模应用实例例1.2(2003年高教社杯全国大学生数学建模竞赛A 题) SARS 传播的预测. 2003年爆发的“SARS ”疾病得到了许多重要的经验和教训,使人们认识到研究传染病的传播规律的重要性.题目给出了感病情况的三个附件,要求对SARS 的传播建立数学模型:(1)对SARS 的传播建立一个自己的模型,并说明模型的优缺点;(2)收集SARS 对经济某个方面影响的数据,建立相应的数学模型并进行预测.问题求解过程分析 由于题目具有开放性,故选择文献[1]中的求解思路分析. 传染病的传播模式可近似分为自由传播阶段和控后阶段,然后将人群分为易感者S ,感病者I ,移出者R 三类.由三者之间的关系可得到下列微分方程:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=-=-=NR I S hI dt dR hI kIS dt dI kISdt dS , 利用附件中给出的数据,可以将上述方程变形为I hI kNI dtdI λ=-=, 其中h kN -=λ,其解为t e I t I λ-=0)(.其中0I 为初始值.但此模型只适用于病例数与总人口数具有可比性的情况,当病例数远小于总人口数时,感病人数将随时间以指数增长.这是按实验定律或规律建立的微分方程模型.为进一步改进模型,用计算机跟踪病毒的个体传播情况,又建立计算机模拟模型.然后用计算机模拟北京5月10日之前SARS 的传播情况,并对5月10日以后的传播情况进行预测.但是得到的有效接触率与实际统计数据有所偏差,所以统计数据,为参数的确定寻求医学上的支持,并以随机模拟取代完全确定性的模拟,对原模型进行改进,建立随机模拟模型.通过计算机编程,产生正态分布的随机数,并对传染情况进行500次模拟,即可进行预测,并可得出对SARS 疫情控制提出的相应建议.1.2 差分方程建模1.2.1 差分方程建模的原理和方法差分方程在数学建模竞赛中应用的频率极高,所以要对这种方法引起足够的重视.它针对要解决的目标,引入系统或过程中的离散变量.具体方法是:根据实际的规律性质、平衡关系等,建立离散变量所满足的关系式,从而建立差分方程模型.差分方程可以分为不同的类型,如一阶和高阶差分方程,常系数和变系数差分方程,线性和非线性差分方程等等.建立差分方程模型一般要注意以下问题:(1)注意题中的离散变化量,对过程进行分析,尤其要注意形成变化运动过程的时间或距离的分化而得到离散变量;(2)通过对具体变化过程的分析,列出满足题意的差分方程,其中入手点是找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程.1.2.2差分方程建模应用实例例1.3(2007年高教社杯全国大学生数学建模竞赛A题)中国人口增长预测.题目要求从中国的实际情况和人口增长的特点出发,参考附录中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测,特别要指出模型中的优点与不足之处.问题求解过程分析由于题目具有开放性,故选择文献[2]中的求解思路分析.通过分析题中相关的数据,考虑到我国近年来人口发展的总趋势,因为涉及到人口的增长和变换,所以可以先用微分方程来建立模型,并对我国人口增长的中短期和长期趋势做出预测.首先,根据灰色系统理论,使用灰色关联分析模型法对人口系统结构进行关联分析,找出影响人口增长的主要因素;其次使用年龄推算法进行短期预测.在建立和求解长期预测模型时,根据人口阻滞增长模型(Logistic模型),可以考虑对中国人口老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素建立新的人口增长的差分方程模型.但是它仅给出了人口总数的变化规律,反映不出各类人口的详细信息,所以我们需要建立离散化的模型,并进一步可以得到全面系统地反应一个时期内人口数量状况的差分方程,可以用微分和差分方程理论来表现和模拟人口数量的变化规律.从而对人口分布的状况、变化趋势、总体特征等有更加详细和科学的了解.在模型的求解过程中,用到了MATLAB软件,并做参数估计,利用所得结果和题目给出的近五年来的人口数据,对我国人口发展趋势进行了预测,得到了在老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素影响下,未来我国人口发展预测情况.2 数学规划建模数学规划是指在一系列条件限制下,寻求最优方案,使得目标达到最优的数学模型,它是运筹学的一个重要分支.数学规划的内容十分丰富,包括许多研究分支,如:线性规划、非线性规划、整数规划、二次规划、0-1规划、多目标规划、动态规划、参数规划、组合优化、随机规划、模糊规划、多层规划问题等.在1993年A 题“非线性交调的频率设计”,1993年B 题“足球队排名”,1995年A 题“飞行管理问题”,1996年B 题“节水洗衣机”,1997年A 题“零件的参数设计”,1998年A 题“一类投资组合问题”,1999年B 题“钻井布局”,2001年B 题“公交车调度问题”,2002年A 题“车灯线光源的优化”,2006年A 题“出版社书号问题”,2007年B 题“城市公交线路选择问题”等赛题中,都用到了规划的方法.在此以线性规划为例,对规划的方法进行探讨.2.1 线性规划建模的一般理论线性规划建模方法主要用于解决生产实际中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法.一般的优化问题是指用“最好”的方式,使用或分配有限的资源即劳动力、原材料、机器、资金等,使得费用最小或利润最大.优化模型的一般形式为:()m ax m in 或 ()x f z = (4)().0..≤x g t s ()m i ,,2,1 = (5)()()12,,T n x x x x =,.由(4)、(5)组成的模型属于约束优化.若只有(4)式就是无约束优化.()x f 称为目标函数,()0g x ≤称为约束条件.在优化模型中,如果目标函数()x f 和约束条件中的()g x 都是线性函数,则该模型称为线性规划.建立实际问题线性规划模型的步骤如下:(1)设置要求解的决策变量.决策变量选取得当,不仅能顺利地建立模型而且能方便地求解,否则很可能事倍功半.(2)找出所有的限制,即约束条件,并用决策变量的线性方程或线性不等式来表示.当限制条件多,背景比较复杂时,可以采用图示或表格形式列出所有的已知数据和信息,从而避免“遗漏”或“重复”所造成的错误.(3)明确目标要求,并用决策变量的线性函数来表示,标出对函数是取极大还是取极小的要求.需要特别说明的是,要使用线性规划方法来处理一个实际问题,必须具备下面的条件:(1)优化条件:问题的目标有极大化或极小化的要求,而且能用决策变量的线性函数来表示.(2)选择条件:有多种可供选择的可行方案,以便从中选取最优方案.(3)限制条件:达到目标的条件是有一定限制的(比如,资源的供应量有限度等),而且这些限制可以用决策变量的线性等式或线性不等式表示出来.此外,描述问题的决策变量相互之间应有一定的联系,才有可能建立数学关系,这一点自然是不言而喻的.线性规划模型的求解可用图解法或单纯形法.随着计算机的普及和大量数学软件的出现,可以利用现成的软件MATLAB或LINGO等求解,在此不再叙述.2.2线性规划建模应用实例例2.1(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目给出了美国某艾滋病医疗试验机构公布的两组数据,数据涉及到了病人CD4和HIV的浓度含量的测试结果.根据所给的资料需要参赛者完成以下问题:(1)利用附件1的数据,预测继续治疗的效果,或者确定最佳治疗终止时间;(2)利用附件2的数据,评价4种疗法的优劣(仅以4CD为标准),并对较优的疗法预测继续治疗的效果,或者确定最佳治疗终止时间;(3)如果病人需要考虑4种疗法的费用,对评价和预测有什么影响.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.首先对题目所给数据进行分析,考虑到治疗的效果与患者的年龄有关,将患者按年龄分组,如25~35岁及45岁以上4组.每组中按照4种疗法和4个25岁,45~~14岁,35治疗阶段(如1020周,4030周),构造16个决策单元.取4~~~~0周,2010周,30种药品量为输入,治疗各个阶段末患者的4CD值的比值为输出.CD值与开始治疗时4然后建立相应的数学模型,利用相对有效性评价方法,建立分式规划模型并经过变换,转化为线性规划模型求解,对各年龄组患者在各阶段的治疗效率进行评价.计算结果:对第1年龄组疗法2和4在整个治疗中效率较高,在第4阶段仍然有效;对第2年龄组疗法1在第1,2阶段有效;对第3年龄组疗法1,2,3在第1阶段有效;对第4年龄组疗法1,2在第1,2阶段有效.表明只有2514岁的年4种轻患者,才能在治疗的最~后阶段仍然有有效的疗法.随后,由线性规划模型的对偶形式建立预测模型,对各年龄组各种疗法下一阶段的疗效进行预测.若由某决策单元得到的实际输出大于预测输出,则该决策单元相对有效;反之,说明该种疗法对该组患者在治疗的未来阶段不再有效,应该转换疗法.3 统计学建模方法在数学建模竞赛中,常常会涉及到大量的数据,因此,我们就需要用统计学建模方法对这些数据进行处理.此类方法主要包括统计分析、计算机模拟、回归分析、聚类分析、数据分类、判别分析、主成分分析、因子分析、残差分析、典型相关分析、时间序列等.如2004年A题“奥运会临时超市网点设计问题”,2004年B题“电力市场的输电阻塞管理问题”,2007年A题“人口增长预测问题”,2008年B题“大学学费问题”,2012年A题“葡萄酒的评价”等都用到了这种建模方法.在此选取其中两类方法进行阐述.3.1聚类分析3.1.1聚类分析的原理和方法该方法说的通俗一点就是,将n个样本,通过适当的方法选取m聚类中心,通过研究各样本和各个聚类中心的距离,选择适当的聚类标准,通常利用最小距离法来聚类,从而可以得到聚类.结果利用sas 软件或者spss 软件来做聚类分析,就可以得到相应的动态聚类图.这种模型的的特点是直观,容易理解.聚类分析的类型可分为:Q型聚类(即对样本聚类)和R型聚类(即对变量聚类).通常聚类中有相似系数法和距离法两种衡量标准.聚类方法种类多样,有可变类平均法、中间距离法、最长距离法、利差平均和法等.在应用时要注意,在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理.主要的方法步骤大致如下:(1)首先把每个样本自成一类;(2)选取适当的衡量标准,得到衡量矩阵;(3)重新计算类间距离,得到衡量矩阵;(4)重复第2步,直到只剩下一个类.3.1.2聚类分析应用实例例3.1(2012年高教社杯全国大学生数学建模竞赛A题)葡萄酒的评价.题目的附件中给出了某一年份一些葡萄酒的评价结果,和该年份这些葡萄酒的和酿酒葡萄的成分数据.要求参赛者建立数学模型解决以下问题:(1)分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信;(2)根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级;(3)分析酿酒葡萄与葡萄酒的理化指标之间的联系;(4)分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量.问题求解过程分析由于题目具有开放性,故选择文献[4]中的求解思路分析.由于给定了酿酒葡萄的理化指标,首先可将附录2和附录3中的一些数据进行处理.并可以据此对各种酿酒葡萄进行聚类分析,但是,由于题目中所给的数据庞大,所以可通过主成分分析法,简化并提取大部分有效信息,再用聚类分析对酿酒葡萄进行分级.最后根据酿酒葡萄对应葡萄酒质量的平均值大小进行比较,排序分级.接下来针对问题中分析酿酒葡萄与葡萄酒理化指标之间的联系,及上面整理好的数据,采用回归分析原理,在SPSS中得到酿酒葡萄与葡萄酒的理化指标之间的联系.再通过相关分析,得出相应的相关系数,从而得到相应的判断结论.在分析酿酒葡萄与葡萄酒的理化指标之间的联系时,还用到了多元线性回归分析.该模型用于生活实践中,也可以解决很多实际问题.3.2回归分析回归分析是利用数据统计原理,对大量数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程,并加以外推,用于预测今后的因变量的变化的分析方法.3.2.1回归分析的原理与方法回归分析是在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型;对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制.回归分析主要包括一元线性回归、多元线性回归、非线性回归.回归分析的主要步骤为:(1)根据自变量和因变量的关系,建立回归方程.(2)解出回归系数.(3)对其进行相关性检验,确定相关系数.(4)当符合相关性要求后,便可与具体条件结合,确定预测值的置信区间.需要注意的是,要尽可能定性判断自变量的可能种类和个数,并定性判断回归方程的可能类型.另外,最好应用高质量的统计数据,再运用数学工具和相关软件定量定性判断.3.2.2回归分析应用实例例3.2(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目同例2.1.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.问题2的解决就用到回归模型.首先分析数据知,应建立时间的一次与二次函数模型,并经过统计分析比较,确定哪种较好.所以可建立一个统一的回归模型,也可对每种疗法分别建立一个模型.以总体回归模型为例,分别用一次与二次时间函数模型进行比较,可知疗法3~1用一次模型较优,且一次项系数为负,即4CD在减少,从数值看疗法3优于疗法2和1;疗法4用二次模型较优,即4t左右达到最大.可以通过4条回归CD先增后减,在20曲线进行比较,显示疗法4在30周之前明显优于其它.最后再用检验法作比较,结果是疗法1与2无显著性差异,而疗法1与3,2与3,3与4均有显著性差异.4 图论建模方法图论建模方法在建模竞赛中也经常涉及,应用十分广泛,并且解法巧妙,方法灵活多变.如1990年B题“扫雪问题”,1991年B题“寻找最优Steiner树”,1992年B题“紧急修复系统的研制”,1993年B题“足球队排名”,1994年A题“逢山开路问题”,1994年B题“锁具装箱问题”,1995年B题“天车与冶炼炉的作业调度”,1997年B题“截断切割的最优排列”,1998年B题“灾情巡视最佳路线”,1999年B题“钻井布局”,2007年B题“城市公交线路选择问题”等都应用到了图论的方法.图论近几年来发展十分迅速,在物理、化学、生物学、地理学、计算机科学、信息论、控制论、社会科学、军事科学以及计算机管理等方面都有着广泛的应用.因此图论越来越受到了全世界数学界和工程技术界乃至经营决策管理者的重视.同时也成为了数学建模中一种十分重要的方法.图论问题算法很多,包括最短路、最大流、最小生成树、二分匹配、floyd、frim等.。
2020年第十七届中国研究生数学建模竞赛赛题
![2020年第十七届中国研究生数学建模竞赛赛题](https://img.taocdn.com/s3/m/50d90c8edb38376baf1ffc4ffe4733687e21fcad.png)
文章标题:深度解析2020年第十七届我国研究生数学建模竞赛赛题一、引言在2020年第十七届我国研究生数学建模竞赛中,参赛选手面对的赛题涉及到许多复杂的数学模型和实际问题。
本文将深度解析这些赛题,从简到繁地探讨其中的数学原理和建模方法,让我们一起来探索并理解这些有价值的题目。
二、赛题概述2020年第十七届我国研究生数学建模竞赛的赛题涉及到三个主要方面:航线规划、精准医疗和资源分配。
这些赛题涵盖了数学建模的多个领域,包括优化算法、数理统计、差分方程等。
选手需要通过建立数学模型和运用相应的算法,解决实际的、复杂的问题。
三、航线规划赛题分析在航线规划的赛题中,参赛选手需要根据航线的长度、飞行时间、飞行成本等因素,设计出最优的航线规划方案。
这涉及到图论、最短路径算法、动态规划等数学原理。
通过对航线规划问题的深入分析和建模,选手可以找到最优解,并为实际飞行工作提供参考和指导。
四、精准医疗赛题分析精准医疗赛题要求参赛选手运用数理统计、机器学习等方法,根据患者的基因数据和医疗记录,预测患者的治疗反应和疾病进展趋势。
这需要选手能够熟练地掌握回归分析、分类算法等数学模型,以实现对个体化治疗的精准预测和决策支持。
五、资源分配赛题分析资源分配赛题涉及到如何合理分配医疗资源以应对突发公共卫生事件或医疗需求的激增。
参赛选手需要利用排队论、整数规划等数学原理,设计出有效的资源分配方案。
这对选手的逻辑思维和数学建模能力提出了极大的挑战。
六、总结与回顾通过对2020年第十七届我国研究生数学建模竞赛赛题的深入分析,我们不仅了解了各个赛题涉及到的数学原理和模型方法,更加了解了这些数学模型与实际问题之间的联系。
数学建模竞赛为我们提供了一个锻炼数学建模能力和解决实际问题的评台,这对我们的学习和成长都有着极大的促进作用。
七、个人观点与理解参与数学建模竞赛,不仅能够提高我们的数学建模能力,更能够培养我们的创新思维和团队协作能力。
这也让我们深刻感受到数学在实际问题中的应用和价值。
全国大学生数学建模竞赛D题解析
![全国大学生数学建模竞赛D题解析](https://img.taocdn.com/s3/m/9d9cad36f342336c1eb91a37f111f18583d00cab.png)
汇报人:
CONTENTS
PRT ONE
PRT TWO
竞赛名称:全国大学生数学建模竞 赛
竞赛目的:培养大学生数学建模能 力提高解决实际问题的能力
添加标题
添加标题
竞赛级别:国家级
添加标题
添加标题
竞赛影响:促进大学生数学建模技 术的发展选拔优秀人才
竞赛起始于XXXX年 每年举办一次 参赛对象为全国大学生 竞赛目的是提高大学生数学建模能力和科技创新能力
组建合适的团队分工明确
制定详细的计划合理安排时间
充分准备所需的知识和技能
准备阶段:研究 题目收集资料建 立模型
实施阶段:编程 实现模拟实验优 化模型
总结阶段:撰写 论文整理思路提 炼经验
反思阶段:总结 得失分析原因改 进策略
赛题分析:对竞赛题目进行深入剖析明确解题思路和要点 经验教训:总结竞赛过程中遇到的问题和不足提出改进措施 团队协作:评估团队成员在竞赛中的表现和贡献提出优化建议 未来规划:根据竞赛经验和教训制定个人和团队未来的学习和发展计划
模型验证:通过对比实际数据和模型预测结果对模型的准确性和可靠性进行评估和改进
数据清洗:去除异常值、缺失值和重复值 数据筛选:根据需求筛选有效数据 数据转换:对数据进行必要的转换以适应分析需求 数据可视化:通过图表、图像等形式直观展示数据
确定问题类型和目 标函数
确定算法的输入和 输出
设计算法的流程图 和伪代码
培养团队协作精神 提升大学生数学应用能力
促进学科交叉融合
为国家和社会培养创新型人 才
PRT THREE
题目背景:全国大学生数学建模竞赛D题 题目要求:分析D题所涉及的数学建模方法和技巧 题目内容:对D题进行解析包括问题分析、模型建立、求解过程等 题目难度:对D题的难度进行评估并给出解题建议
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文
![《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文](https://img.taocdn.com/s3/m/8a55dc4d876fb84ae45c3b3567ec102de2bddf2a.png)
《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛(CUMCM)是面向全国各高校学生的大型数学建模类比赛。
在众多赛题中,B题以其复杂的实际问题背景和深入的应用数学知识引起了广泛关注。
本文旨在针对B题的解题过程进行详细分析,并做出相应的总结。
二、题目概述B题主要描述了一个实际生活中遇到的问题:基于网络平台的交通流量预测。
题目要求参赛者根据历史交通流量数据,分析交通流量的变化规律,并建立数学模型进行预测。
三、解题分析1. 数据收集与预处理首先,我们需要收集相关的历史交通流量数据。
这些数据可能包括时间、地点、交通流量等信息。
收集到的原始数据需要进行清洗和预处理,例如去除异常值、缺失值等,以获得更为准确的数据。
2. 建立数学模型根据数据的特点和问题需求,我们选择合适的数学模型进行建模。
考虑到交通流量与时间的关系较为密切,我们可以选择时间序列分析模型,如ARIMA模型等。
此外,考虑到不同地点之间的交通流量可能存在相互影响,我们还可以引入空间相关性分析,如空间自回归模型等。
3. 模型优化与验证建立数学模型后,我们需要对模型进行优化和验证。
这包括调整模型的参数、对模型进行诊断分析等。
我们可以通过对比模型的预测值与实际值,计算误差指标(如均方误差、平均绝对误差等)来评估模型的性能。
同时,我们还可以使用交叉验证等方法来验证模型的稳定性。
4. 模型应用与结果展示最后,我们将建立的数学模型应用于实际问题中,对未来的交通流量进行预测。
我们将预测结果以图表等形式进行展示,方便评委和观众理解。
同时,我们还可以对结果进行解释和讨论,说明模型的优点和局限性。
四、总结通过本文总结:经过详细的分析与探讨,针对2016年全国大学生数学建模竞赛B题,我们采取了有效的解决策略。
从数据收集与预处理到模型建立与优化,每一步都紧密联系实际,充分考虑了交通流量数据的特性和问题需求。
在建模过程中,我们选择了合适的时间序列分析模型和空间相关性分析模型,旨在捕捉交通流量的变化规律。
全国大学生数学建模竞赛赛题基本解法
![全国大学生数学建模竞赛赛题基本解法](https://img.taocdn.com/s3/m/c34e5e3ae97101f69e3143323968011ca300f718.png)
全国大学生数学建模竞赛赛题基本解法全国大学生数学建模竞赛是中国高校中最具权威和影响力的学科竞赛之一。
该竞赛由教育部、中共中央组织部、中国科学院及其他部门共同主办。
该竞赛旨在促进青年学生对于数学和工程的综合应用,培养学生的创新能力和实践能力。
竞赛模式全国大学生数学建模竞赛一般分为两个阶段:第一阶段为选拔赛,第二阶段为决赛。
选拔赛一般在当年11月份进行,由各高校数学系作为考场。
每个参赛队伍由3名学生组成,比赛时间为两天。
选手可以使用任何工具,比如计算器、软件、读者,但是不得使用互联网。
决赛一般在翌年1月份或2月份举行,由主办单位确定比赛地点。
决赛选手数量有限制,根据各省市选手数量的比例确定。
赛题解法全国大学生数学建模竞赛的赛题涵盖的面非常广,包括应用数学、工程数学、运筹学、优化理论等多个领域。
以下是该竞赛可能出现的赛题及其基本解法:1. 背包问题背包问题是计算机科学和数学中的一个经典问题,指在给定约束条件下,从若干种物品中选择若干件物品装入背包,使得背包能够承载的重量最大或体积最大。
解法:背包问题可以用动态规划、贪心算法、分支定界等算法解决。
2. 最优路径问题最优路径问题也就是指在一个有向加权图中,找到从起点到终点的最短路径或者最长路径。
解法:最优路径问题通常可以用Dijkstra算法、Bellman-Ford算法、Floyd算法等解决。
3. 线性规划问题线性规划问题是运筹学中的一个重要问题,由一个线性目标函数和多个约束条件组成,目的是找出一组变量,使得目标函数最大或最小,并同时满足全部的约束条件。
解法:线性规划问题可以使用单纯性算法、内点法等算法进行解决。
4. 工程优化问题工程优化问题是指如何在给定资源的限制之下,设计和生产最符合要求的产品或系统。
工程优化问题常常包含多个目标和多个变量,并且这些变量之间具有复杂的相关性。
解法:工程优化问题可以使用遗传算法、蚁群算法、模拟退火等高级优化算法进行解决。
全国大学生数学建模竞赛赛题综合评析
![全国大学生数学建模竞赛赛题综合评析](https://img.taocdn.com/s3/m/7541757201f69e314332944f.png)
社会热点
叶其孝、周义仓
开放性强、社会关注性强,突出数据来源的可靠性、结论解释的合理性
数据收集与处理、问题的分析与假设,初等数学方法、一般统计方法、多目标规划、回归分析、综合评价方法、灰色预测
2009年
A题:制动器试验台的控制方法分析
工业问题
方沛辰、刘笑羽
问题具体、专业性强,要花时间读懂、理解清楚问题
出版社的资源配置
孟大志
艾滋病疗法的评价及疗效的预测
边馥萍
易拉罐形状和尺寸的最优设计(C题)
叶其孝
煤矿瓦斯和煤尘的监测与控制(D题)
韩中庚
2007年
中国人口增长预测
唐云
乘公交,看奥运
方沛辰、吴孟达
手机“套餐”优惠几何(C题)
韩中庚
体能测试时间安排(D题)
刘雨林
2008年
数码相机定位
谭永基
高等教育学费标准探讨
叶其孝、周义仓
地面搜索(C题)
肖华勇
NBA赛程的分析与评价(D题)
姜启源
2009年
制动器试验台的控制方法分析
方沛辰、刘笑羽
眼科病床的合理安排
吴孟达、毛紫阳
卫星和飞船的跟踪测控(C题)
周义仓
会议筹备(D题)
王宏健
2010年
储油罐的变位识别与罐容表标定
韩中庚
2010年上海世博会影响力的定量评估
杨力平
输油管的布置(C题)
1
6
8
付鹂
重庆大学
1
6
9
姜启源
清华大学
4
3
10
陈叔平
浙江大学、贵州大学
2
5
11
全国数学建模大赛历年题目分析以及参赛成功方法
![全国数学建模大赛历年题目分析以及参赛成功方法](https://img.taocdn.com/s3/m/e13f28255901020206409c06.png)
全国数学建模大赛历年题目分析以及参赛成功方法数学建模竞赛的赛题分析1. CUMCM历年赛题简析2. “彩票中的数学”问题3. 长江水质的评估、预测与控制问题4. 煤矿瓦斯和煤尘的监测与控制问题5. 其他几个数学建模的问题数学建模竞赛的规模越来越大,水平越来越高;竞赛的水平主要体现在赛题水平;赛题的水平主要体现:(1)综合性、实用性、创新性、即时性等;(2)多种解题方法的创造性、灵活性、开放性等;(3)海量数据的复杂性、数学模型的多样性、求解结果的不唯一性等。
纵览16年的本科组32个题目(专科组13个),从问题的实际意义、解决问题的方法和题型三个方面作一些简单的分析。
一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:1992年:(A)作物生长的施肥效果问题(北理工:叶其孝)(B)化学试验室的实验数据分解问题(复旦:谭永基)1993年:(A)通讯中非线性交调的频率设计问题(北大:谢衷洁)(B)足球甲级联赛排名问题(清华:蔡大用)1994年:(A)山区修建公路的设计造价问题(西电大:何大可)(B)锁具的制造、销售和装箱问题(复旦:谭永基等)1995年:(A)飞机的安全飞行管理调度问题(复旦:谭永基等)(B)天车与冶炼炉的作业调度问题(浙大:刘祥官等)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:1996年:(A)最优捕鱼策略问题(北师大:刘来福)(B)节水洗衣机的程序设计问题(重大:付鹂)1997年:(A)零件参数优化设计问题(清华:姜启源)(B)金刚石截断切割问题(复旦:谭永基等)1998年:(A)投资的收益和风险问题(浙大:陈淑平)(B)灾情的巡视路线问题(上海海运学院:丁颂康)1999年:(A)自动化机床控制管理问题(北大:孙山泽)(B)地质堪探钻井布局问题(郑州大学:林诒勋)(C)煤矸石堆积问题(太原理工大学:贾晓峰)一、CUMCM历年赛题的简析1.CUMCM 的历年赛题浏览:2000年:(A)DNA序列的分类问题(北工大:孟大志)(B)钢管的订购和运输问题(武大:费甫生)(C)飞越北极问题(复旦:谭永基)(D)空洞探测问题(东北电力学院:关信)2001年:(A)三维血管的重建问题(浙大:汪国昭)(B)公交车的优化调度问题(清华:谭泽光)(C)基金使用计划问题(东南大学:陈恩水)2002年:(A)汽车车灯的优化设计问题(复旦:谭永基等)(B)彩票中的数学问题(信息工程大学:韩中庚)(D) 球队的赛程安排问题(清华大学:姜启源)一、CUMCM历年赛题的简析1.CUMCM 的历年赛题浏览2003年:(A)SARS的传播问题(集体)(B)露天矿生产的车辆安排问题(吉林大:方沛辰)(D)抢渡长江问题(华中农大:殷建肃)2004年:(A)奥运会临时超市网点设计问题(北工大:孟大志)(B)电力市场的输电阻塞管理问题(浙大:刘康生)(C)酒后开车问题(清华大学:姜启源)(D)公务员的招聘问题(信息工程大学:韩中庚)2005年:(A)长江水质的评价与预测问题(信息工大:韩中庚)(B)DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦:谭永基)一、CUMCM历年赛题的简析1.CUMCM 的历年赛题浏览2006年:(A)出版社的资源管理问题(北工大:孟大志)(B)艾滋病疗法的评价及预测问题(天大:边馥萍)(C)易拉罐形状和尺寸的设计问题(北理工:叶其孝)(D)煤矿瓦斯和煤尘的监测与控制问题(信息工程大学:韩中庚)2007年:(A)中国人口增长预测问题(清华大学:唐云)(B)“乘公交,看奥运”问题(吉大:方沛辰,国防科大:吴孟达)(C)“手机套餐”优惠几何问题(信息工程大学:韩中庚)(D)体能测试时间的安排问题(首都师大:刘雨林)一、CUMCM历年赛题的简析一、CUMCM历年赛题的简析1.CUMCM 的历年赛题浏览2001年夏令营三个题:(A)三峡工程高坡开挖优化设计(三峡大学:李建林等)(B)城市交通拥阻的分析与治理(北京理工大学:叶其孝)(C)乳房癌的诊断问题(复旦大学:谭永基)2006年夏令营三个题:(A)教材出版业的市场调查、评估和预测方法问题(北工大:孟大志)(B)铁路大提速下的京沪线列车调度问题(信息工程大学:韩中庚)(C)旅游需求的预测预报问题(北京理工:叶其孝)2、从问题的实际意义分析32个问题从实际意义分析大体上可分为:工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等七个大类。
数学建模经典算法及试题分析
![数学建模经典算法及试题分析](https://img.taocdn.com/s3/m/7882964bf7ec4afe04a1df4b.png)
从网上找来的关于十大经典数学模型,看完之后感觉很有帮助,于是编辑了一下发到网上来,供数学建模爱好者们讨论学习,欢迎指导。
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)1、蒙特卡罗方法(MC)(Monte Carlo):蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。
数学建模比赛例题解析
![数学建模比赛例题解析](https://img.taocdn.com/s3/m/2ff051849fc3d5bbfd0a79563c1ec5da51e2d669.png)
数学建模比赛例题解析
数学建模比赛通常提供一些实际问题,要求参赛者使用数学方法进行分析和解决。
以下是一个典型的数学建模比赛例题以及解析示例:
例题:某城市树木的生长速度问题
问题描述:某个城市的市政部门想要了解该城市内树木的生长速度,以便合理安排树木修剪和绿化工作。
为了解答该问题,需要参赛者进行如下任务:
1. 收集并分析该城市内树木的生长数据;
2. 建立数学模型,描述树木生长的规律;
3. 根据模型,预测未来某个时间点树木的高度;
4. 提出合理的树木修剪和绿化方案。
解析示例:
1. 收集并分析数据:参赛者可以通过实地调查和测量,收集不同树木在不同时间点的高度数据。
例如,可以选择20棵树木
作为样本,每个月测量它们的高度,记录在数据表中。
2. 建立数学模型:参赛者可以通过分析数据,找到树木生长的规律,建立数学模型描述树木的高度与时间的关系。
例如,可以假设树木的生长速度是线性增加的,即高度随时间的增加而增加。
3. 预测未来高度:根据建立的数学模型,参赛者可以使用已有数据预测未来某个时间点树木的高度。
例如,可以根据已有数据的拟合曲线,计算未来6个月后树木的预计高度。
4. 提出修剪和绿化方案:参赛者可以根据已有数据和预测结果,提出合理的修剪和绿化方案。
例如,可以根据树木的生长速度
和最佳高度范围,制定修剪方案,并根据城市规划要求,提出绿化方案。
总结:数学建模比赛的例题通常要求参赛者通过数据分析和数学建模,解决实际问题。
参赛者需要收集数据、建立模型、预测结果和提出解决方案。
2023华数杯数学建模竞赛c题思路解析
![2023华数杯数学建模竞赛c题思路解析](https://img.taocdn.com/s3/m/ef8d4d5ec381e53a580216fc700abb68a882ad71.png)
2023华数杯数学建模竞赛c题思路解析一、题目分析2023华数杯数学建模竞赛C题的主题为“城市环境监测与治理”。
这是一个涉及城市管理、环境保护和数学建模的综合问题。
此题要求参赛者利用数学模型,对城市环境进行监测,分析问题,并提出治理方案。
二、解题思路1. 数据收集:首先,我们需要收集有关城市环境的数据。
这可能包括空气质量指数(AQI)、水质指标、噪音水平、垃圾数量等。
这些数据可以通过官方监测机构、传感器网络或市民上报获得。
2. 数据处理:收集到的数据可能存在误差或缺失,需要进行预处理。
这可能包括数据清洗、缺失值填充、异常值处理等。
同时,我们还需要对数据进行转换和归一化,使其适合用于后续的数学建模。
3. 模型选择:根据收集到的数据,我们可以选择不同的数学模型进行分析。
例如,对于空气质量指数,我们可以使用时间序列分析模型来预测未来一段时间的空气质量;对于水质指标,我们可以使用回归模型来分析影响水质的各种因素;对于噪音水平,可以使用噪声预测模型等。
4. 模型验证:在建立好模型后,我们需要对模型进行验证。
这可以通过将实际数据输入模型,并观察模型的预测结果是否与实际数据相符来进行。
如果模型效果不佳,我们需要根据实际情况对模型进行调整和优化。
5. 治理方案:根据模型的预测结果,我们可以提出治理方案。
这些方案可以包括提高垃圾分类和回收的宣传力度、调整交通路线以减少噪音污染、加强水源地的保护等。
为了使方案更具可行性,我们还可以考虑当地的实际情况和政策环境。
6. 方案实施与评估:最后,我们需要将提出的治理方案付诸实践,并定期评估实施效果。
这可以通过对比治理前后的数据来评估方案的实施效果。
如果效果不佳,我们可以再次调整方案或寻求其他解决方案。
三、关键步骤及技巧1. 数据收集:数据的质量直接影响着模型的准确度。
因此,我们需要尽可能收集准确、全面的数据。
同时,我们还需要注意数据的时效性,因为环境状况可能会随着时间而变化。
常用数学建模方法数学建模方法的流程图
![常用数学建模方法数学建模方法的流程图](https://img.taocdn.com/s3/m/ed2e7413bb4cf7ec4afed0f0.png)
常用数学建模方法数学建模方法的流程图数学建模少见微积分方法以及常见题型核心提示:数学建模方法一、机理分析法从基本磁学物理定律以及系统内的结构数据来推导出模型 1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3. 逻辑方法--是数学理论研的重要分析方法,对社会学和经济学等教育领域领域的实际缺陷,在决策,对策等重新得到学科中曾得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立" 瞬时变化率" 的表达式。
5. 偏微分方程--逐步解决因变量与两个以上自数学建模方法一、机理分析法以及基本物理定律从系统的结构数据来推导出模型1. 比例分析法--建立变量之间函数隔阂的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3. 逻辑方法--是数学理论研的关键性方法,人类学对社会学和经济学等领域的实际难题,在决策,对策等学科中所得到广泛应用。
4. 常微分方程--解决两个变量之间的癸日变化规律,关键是建立" 瞬时变化率" 的表达式。
5. 偏微分方程--解决因变量与四个以上自变量之间的变化规律。
二、数据分析法从大量的观测数据利用统计方法建立数学模型1. 回归分析法--用于对函数f (x )的一组观测值(xi,fi )I=1,2,…,n,确定函数的表达式,由于处理的是静态的独立资料,故称为数理统计方法。
2. 时序分析法--处理的是动态的相关数据,又称为原核细胞统计方法。
3. 回归分析法--用于对函数f (x )的一组观测值(xi,fi )I=1,2,…,n,确定函数的表达式,于处理统合的是静态的分立数据,故称为数理统计方法。
4. 时序分析法--处理的是动态的相关数据,又称为过程统计数据方法。
三、仿真和其他方法1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
数学建模的基本方法
![数学建模的基本方法](https://img.taocdn.com/s3/m/fe75777ab207e87101f69e3143323968011cf4c5.png)
数学建模的基本方法1.类比法数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思索者解决问题的意图。
类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该"类似'问题的数学方法,最终建立起解决问题的模型。
2.量纲分析法量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。
它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。
2解题方法类比法:数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思索者解决问题的意图。
类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该"类似'问题的数学方法,最终建立起解决问题的模型。
量纲分析法:量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。
它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。
3层次结构法1. 递阶层次结构原理:一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2. 测度原理:决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而关于社会、经济系统的决策模型来说,经常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3. 排序原理:层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题4常见方法一、蒙特卡罗算法蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。
数学建模解题思路与方法
![数学建模解题思路与方法](https://img.taocdn.com/s3/m/266fb85553d380eb6294dd88d0d233d4b14e3f1c.png)
2、方法的选择
我们的选择:
关于排序:
层次分析法(我们的数据层次感不强,且层次 分析要主观确定权重)
主成分,因子(KMO检验没通过) ——多目标决策分析方法:TOPSIS 法。
关于预测:
回归分析差较小,但有时
有过拟合的现象——模糊粒子化)
3、数学建模常用的方法
遗传算法,神经网络)
推荐接触的方法
4、数学建模示例 例 出版社的资源配置问题
目标:获取最大总利润(数学中的最值,即最优化 问题) 出版社的总利润就等于各分社的利润之和。 Max(sum(分社的利润))
机理分析:
分社的利润=销售总额×C/(1+C)(由于本 文中的各课程书目具有同一的利润率C)
销售总额=卖出的书本数(销售量)×书本的 平均定价(单价)
2、方法的选择
层次分析法 统计分析 (主成分,因子,聚类) 判别分析 回归分析 模糊建模(GM(1,1)) 图论(略) 遗传算法(略) BP神经网络
2、方法的选择
大家已了解的方法: 层次分析法 统计分析 (主成分,因子,聚类) 判别分析 回归分析 模糊建模(GM(1,1)) 图论(略) 遗传算法(略) BP神经网络
整体思路的形成
对前两步形成的思路结合可得数据进行进一步细 化
——纵横比较(大方向) ——横向:经济影响(数据基本可得或 替代);纵向:由于时间的久远,举办 城市的经济数据难以查询,从世博会网 站可查阅世博会本身的数据,因而转为 考虑世博会自身的总体影响力(注意数 据指标要可以解释总体影响力——见原 文,排序)
分社的利润=分得的书号数×平均单位书号书 本数(单位销量)×书本的平均定价×C/ (1+C)
测试分析:确定来年的单位销量
全国大学生数学建模竞赛赛题特点、方法简析
![全国大学生数学建模竞赛赛题特点、方法简析](https://img.taocdn.com/s3/m/0b0f5636af45b307e871977b.png)
一,解法多样
车流波动理论、综合评价。
灰度矩阵理论、多维相关系数分
问题较为专业,具体的实际问 题,规范性强,具有开放性、
析、匹配模型、相关性分析、最
挑战性
优化问题、三线格基线、计算机
编程计算。
微分方程理论、微分方程数值解、
附件较多,过程比较复杂。模 型、算法及结论不集中
(无穷维的)优化问题、控制理
论、灵敏度分析、误差控制。
分表示
数据量大,数据需要提炼, 综合评价方法、回归分析、动态
有些无用数据,求解方法较多、加 时权 间的 序综 列合 方排 法序 、灰,色插预值测与、拟微合分、
挑战性强
方程、差分方程
数据量大,所提问题多,题意 满意度函数,概率模型、线性规 划、混合整数规划、抽样分析、
理解有一定难度 网络流,数值模拟
海量数据,数据不完备,信息 数据处理、满意度等指标函数,
A 题:血管的三 维重组
B 题:公交车调度
A 题:车灯线光 源的优化设计
B 题:彩票中的数
学
A 题:SARS 的传 播
B 题:露天矿生产
的车辆安排
题目 来源
社会 热点
国内 大事
工业 问题
工业 问题
国际 大事
国家 项目
行业 问题
社会 服务 工业 问题 社会 热点
国际 大事
工业 问题
特点
模型方法与算法
属社会关注热点问题,题目不 多目标规划、线性规划、非线性
序、模糊数学方法、非线性规划
微分方程模型、差分方程模型、 是社会关注的热点问题,具有 较大的开放性和时效性,数据 微分差分方程组合模型、插值与
拟合,时间序列方法,灰色预测、 量大、需要提炼,
2021数学建模国赛各题解法
![2021数学建模国赛各题解法](https://img.taocdn.com/s3/m/c89ed46b4a73f242336c1eb91a37f111f0850d76.png)
2021数学建模国赛各题解法一、概述2021年的数学建模国赛是一个极具挑战性的比赛,各题目涉及的知识面广泛,解题方法也多种多样。
本文将从数学建模国赛的各题解法入手,为大家详细介绍每个题目的解题思路和方法,帮助大家更好地理解这些题目并提升解题能力。
二、A题解法A题是一个典型的优化问题,要求考生根据给定的条件,设计一个合理的数学模型,以达到最优化的目标。
在解答A题时,首先要清晰地理解题目中的需求和限制条件,然后建立相应的数学模型,最后使用最优化算法进行求解。
常见的解题方法包括整数规划、线性规划、动态规划等。
三、B题解法B题常常涉及概率统计和数据分析的知识,要求考生根据给定的数据和情境,进行合理的推理和分析。
解答B题时,首先要对给定的数据进行充分的理解和分析,然后选取合适的概率统计方法进行分析,最后给出合理的结论。
常见的解题方法包括贝叶斯方法、蒙特卡洛模拟、假设检验等。
四、C题解法C题通常涉及到图论和网络流的知识,要求考生设计一个合理的网络模型,解决最大流、最短路等相关问题。
解答C题时,首先要将给定的问题抽象成图论模型,并根据实际情况建立相应的网络模型,然后使用相关算法进行求解。
常见的解题方法包括Ford-Fulkerson算法、Dijkstra算法、最小生成树算法等。
五、D题解法D题常涉及到数值计算和微分方程的知识,要求考生设计一个合理的数学模型,进行数值求解。
解答D题时,首先要建立问题的数学模型,然后选择合适的数值计算方法进行求解,最后对结果进行分析和验证。
常见的解题方法包括龙格-库塔方法、有限元法、迭代法等。
六、总结与展望2021数学建模国赛的各题解法涉及到不同的数学领域和解题方法,要求考生有广泛的数学知识和灵活的解题能力。
通过对每个题目的深入分析和总结,相信大家对这些题目的理解和掌握会更加深入和灵活,也会在以后的学习和工作中受益匪浅。
七、个人观点个人认为,数学建模国赛是一个很好的锻炼和提升数学能力的评台,通过参与解答各题目,不仅可以加深对数学知识的理解,还可以培养分析和解决实际问题的能力。
2023全国数学建模大赛 a题思路
![2023全国数学建模大赛 a题思路](https://img.taocdn.com/s3/m/28bf19808ad63186bceb19e8b8f67c1cfad6eeee.png)
2023全国数学建模大赛A题思路一、赛题概述2023全国数学建模大赛A题是一个关于城市交通管理的实际问题,要求参赛选手通过数学建模的方法,解决城市交通拥堵的问题,提出优化方案。
二、问题分析1. 了解题意在着手解题之前,首先需要仔细阅读题目,了解题目要求和限制条件,确保不会偏离赛题方向。
2. 确定问题范围城市交通管理是一个复杂而庞大的系统,因此需要通过细化问题范围,确定具体的研究对象和相关因素,以便有针对性地展开建模分析。
3. 收集数据在进行数学建模之前,需要收集相关的城市交通数据,包括车流量、交通拥堵情况、道路情况等,以便进行建模分析。
三、建模方法1. 确定数学模型根据收集的数据和问题范围,可以选择合适的数学模型,如图论模型、优化模型等,来描述和分析城市交通系统的特征和规律。
2. 建立数学关系根据实际情况和数学模型,建立城市交通要素之间的数学关系,并进行定量分析,以揭示交通拥堵的形成机制和发展规律。
3. 模型求解利用数学工具和计算机软件,对建立的数学模型进行求解,得到具体的优化方案和调控策略。
四、算法设计1. 选择合适的算法在进行模型求解的过程中,需要选择合适的算法来解决复杂的优化问题,如遗传算法、蚁裙算法等,以求得最优的交通管理方案。
2. 编写算法代码根据选定的算法,编写相应的求解程序,对模型进行求解,得到最优解或者近似最优解。
3. 算法优化对算法进行优化,提高计算效率和求解精度,确保得到合理可行的交通管理方案。
五、方案验证1. 模型验证对建立的数学模型进行验证,与实际观测数据进行比较,验证模型的合理性和准确性。
2. 方案评估对得到的交通管理方案进行评估,比较不同方案的优劣,选取最佳方案作为最终建议。
3. 实际应用将优化的交通管理方案应用到实际情况中,观察其实际效果,并不断进行调整和优化。
六、总结通过以上的建模分析和求解过程,得到了针对城市交通管理的优化方案,有效地缓解了交通拥堵问题,实现了交通系统的高效运行。
2021华为杯数学建模d题
![2021华为杯数学建模d题](https://img.taocdn.com/s3/m/e4c131e27e192279168884868762caaedc33ba47.png)
2021华为杯数学建模d题(原创实用版)目录1.2021 年华为杯数学建模竞赛概述2.比赛题目分析3.建模思路及方法4.模型建立过程5.模型压缩及分类6.总结与展望正文一、2021 年华为杯数学建模竞赛概述2021 年华为杯数学建模竞赛,是一场高水平的数学建模竞赛,吸引了众多优秀的数学建模爱好者参与。
该竞赛旨在发掘和培养学生的数学建模能力,提高学生运用数学知识解决实际问题的综合素质。
二、比赛题目分析本次竞赛共设有四道题目,分别为:1.选取感兴趣的 20 个变量2.建立回归模型3.建立五个因变量(admet)的分类模型4.每个变量对活性的定量分析三、建模思路及方法在解答本次竞赛题目时,首先需要选取感兴趣的 20 个变量。
对于729 个属性变量而言,建立回归和分类模型显得相对有点多,因此需要进行维度压缩。
常用的维度压缩方法有 PCA、DAN(深度自编码)等,但这样得到的维度压缩不会对应到相应的原有属性,类似于特征映射。
四、模型建立过程在建立模型过程中,首先需要选取合适的回归模型,例如线性回归、多项式回归等,以建立变量与活性之间的关系。
接着,建立分类模型,如决策树、随机森林等,以预测五个因变量(admet)的活性。
五、模型压缩及分类在建立模型后,为了提高模型的泛化能力和降低计算复杂度,需要对模型进行压缩。
通常使用的方法有 PCA、DAN 等。
在压缩后的模型中,每个变量对活性的定量分析可以更好地进行。
六、总结与展望本次 2021 年华为杯数学建模竞赛,不仅锻炼了参赛者的数学建模能力,还提高了大家运用数学知识解决实际问题的综合素质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、尽量使用线性模型,减少非线性约束和非线性变量的个数 (如x/y <5 改为x<5y)
4、合理设定变量上下界,尽可能给出变量初始值 5、模型中使用的参数数量级要适当 (如小于103)
优化建模如何创新?
• 方法1:大胆创新,别出心裁
简要提纲
• 应用数学与数学建模 ----- 建模及建模竞赛的意义 • 竞赛评阅标准 ----- 一般原则及主要问题 • 优化模型的创新 ----- 2007B题分析
数学:几个层次的理解
…… 数学美学 数学哲学 数学精神
…… 随机数学 代数与几何 微积分
…… 应用数学 数学技术 数学实验
数学应用 数学发现
---- 采用有特色的目标函数、约束条件等 ---- 你用非线性规划,我用线性规划 ---- 你用整数/离散规划,我用连续规划/网络优化 ---- ……
• 方法2:细致入微,滴水不漏
---- 对目标函数、约束条件处理特别细致 ---- 有算法设计和分析,不仅仅是简单套用软件 ---- 敏感性分析详细 / 全面 ---- ……
有的队罗列一系列假设或模型,又不作比较、评价, 希望碰上“参考答案”或“评阅思路”,弄巧成拙
有的论文参考文献不全,或引用他人结果不作交代
从论文评阅看学生参加竞赛中的问题
• 吃透题意方面不足,没有抓住和解决主要问题;
• 就事论事,形成数学模型的意识和能力欠缺;
• 对所用方法一知半解,不管具体条件,套用现成的 方法,导致错误; • 对结果的分析不够,怎样符合实际考虑不周; • 写作方面的问题(摘要、简明、优缺点、参考文献); • 队员之间合作精神差,孤军奋战; • 依赖心理重,甚至违纪(指导教师、 网络)。
数学知识 数学技巧
数学素质 数学文化
数学建模:实际与数学之间的桥梁
Mathematical Modeling
实际问题
数学
数学建模 的全过程
现实对象的信息 验证 现实对象的解答
表述
(归纳)
数学模型 求解 (演绎) 数学模型的解答
解释
美国大学生数学建模竞赛参赛队数1000 900 80 Nhomakorabea 700
美国MCM+ICM竞赛规模
简要提纲
• 应用数学与数学建模 ----- 建模及建模竞赛的意义 • 竞赛评阅标准 ----- 一般原则及主要问题 • 创新能力培养 ----- 2007B分析
优化问题的一般形式
• 有人统计: 优化问题占CUMCM赛题的一半以上(1/3~2/3)
• 优化问题三要素:决策变量;目标函数;约束条件
min s.t.
12000 10000 8000 6000 校数 队数
队数
600 400 200 0
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
4000 2000 0
年份
竞赛的反响
• 学生欢迎:“一次参赛,终身受益”
2007B命题背景
奥运相关的题目:(时代特性, 社会关注)
简要提纲
• 应用数学与数学建模 ----- 建模及建模竞赛的意义 • 竞赛评阅标准 ----- 一般原则及主要问题 • 创新能力培养 -----几个例子(结合优化模型)
CUMCM评阅标准
假设的合理性,建模的创造性, 结果的正确性,表述的清晰性。 合理性:关键假设;不欣赏罗列大量无关紧要的假设 创造性:特别欣赏独树一帜、标新立异,但要合理
参赛队数
600 500 400 300 200 100 0
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
总数 中国
年份
中国大学生数学建模竞赛 1000 800
校数
我国CUMCM竞赛规模
正确性:不强调与“参考答案”的一致性和结果的精度; 好方法的结果一般比较好;但不一定是最好的 清晰性:摘要应理解为详细摘要,提纲挈领 表达严谨、简捷,思路清新 格式符合规范,严禁暴露身份
CUMCM评阅标准: 一些常见问题
数学模型最好明确、合理、简洁: 有些论文不给出明确的模型,只是根据赛题的情况, 实际上是用“凑”的方法给出结果,虽然结果大致是 对 的,没有一般性,不是数学建模的正确思路。 有的论文过于简单,该交代的内容省略了,难以看懂
• 研究生导师们的认同
• 企业界的认同/赞助 • 教育改革同行的认同:“成功范例”
• 国际同行的认同
竞赛的反响(一例)
IBM 中国研究中心- 招聘条件 Position title: Business Optimization(BJ) 1.Background in industrial engineering, operations research, mathematics, Artificial Intelligence, management science etc. 2. Knowledge in network design, job scheduling, data analysis, simulation and optimization 3. Award in mathematical contest in modeling is a plus 4. Experience in industry is a plus 5. Experience in eclipse or programming model / architecture design is a plus --Feb. 18, 2006, /cn/ibm/crl/careers/condition.shtml
决策变量
2018/11/26
f ( x) hi ( x) 0, i 1,...,m g j ( x ) 0, j 1,...,l xD
n
目标函数
约 束 条 件
13
建模时需要注意的几个基本问题
1、尽量使用实数优化,减少整数约束和整数变量
2、尽量使用光滑优化,减少非光滑约束的个数