现代仪器分析方法及应用
现代仪器分析实验
目录实验一电位滴定分析——氢氧化钠滴定磷酸 (2)实验二库仑分析法——维生素C片中C V含量的测定 (6)实验三离子选择电极分析法——自来水中氟离子含量的测定 (8)实验四荧光分析法——核黄素()2B V含量的测定 (11)实验五苯酚的紫外光谱的绘制及定量测定 (14)实验六分光光度法测定铬和钴的混合物 (16)实验七归一化法测定苯和甲苯混合物组成 (18)实验八循环伏安法测定铁氰化钾的电极反应过程 (21)实验一 电位滴定分析——氢氧化钠滴定磷酸一、实验目的1、了解在酸碱滴定中用电位法确定滴定终点的原理和方法。
2、掌握用电位滴定装置、pH 复合电极测定溶液pH 值的方法。
3、学会绘制电位滴定曲线和确定滴定终点的方法。
二、实验原理电位分析法是通过在零电流条件下,测定两电极间的电位差(即所构成原电池的电动势)进行分析测定。
它包括电位测定法和电位滴定法。
在酸碱滴定法中,确定滴定终点通常有两种方法,一是指示剂法,一是电位滴定法。
电位滴定法是根据指示电极的电位或pH 值产生突跃,以确定滴定终点的一种方法。
用NaOH 滴定H 3PO 4时,随着NaOH 的不断加入,溶液pH 值不断变化,若在此溶液中插入一支电极电位随H +浓度(准确说随H +活度)而变化的指示电极(如玻璃电极),和一支电极电位恒定的参比电极(如甘汞电极),组成原电池,由于参比电极的电位值是已知的,通过测定电池的电动势就可以知道指示电极的电位。
因为指示电极的电位与溶液的pH 值成线性关系,从而可测出溶液的pH 值。
再由NaOH 的加入量和溶液的pH 作图,可以得到NaOH -H 3PO 4滴定曲线,曲线在pH 4.0~5.0,和9.0~10.0范围内出现第一和第二突跃,由突跃可以确定终点时NaOH 的体积,从而计算H 3PO 4的含量。
电位滴定中,确定滴定终点通常有以下三种方法,现以表1-1的实验数据为例,加以说明。
表1-1 0.1mol/LNaOH 滴定20毫升0.1mol/L H 3PO 4第一计量点附近的实验数据1、绘制pH -V 滴定曲线法 以滴定剂的体积V 为横坐标,pH 为纵坐标作图,得到V NaOH pH △V △pH △pH/△V △2pH/△V 210.00 2.87 4.00 0.25 0.063 7.7 14.00 2.62 4.00 0.92 0.23 18.20 3.54 0.10 0.10 1.00 18.30 3.64 8.0 0.10 0.18 1.80 18.40 3.82 19.0 0.10 0.37 3.70 18.50 4.19 21.0 0.10 0.58 5.80 18.60 4.77 -25.0 0.10 0.33 3.30 18.70 5.10 -13.0 0.10 0.20 2.00 18.80 5.30 -4.00.10 0.16 1.60 18.90 5.461.20 0.30 0.25 20.10 5.76 3.90 0.64 0.16 24.00 6.40 4.000.390.1028.008.79pH -V 滴定曲线,如图1-1,在滴定曲线两端平坦转折处作AB 、CD 两条切线,在曲线部分作EF 切线与AB 及CD 两线相交于P 、Q 两点,通过P 、Q 两点做PG 和QH 两条线平行于横坐标,然后在此两条线之间作垂直线,在垂线之半的O 点处,作OO /线平行于横坐标,此O /点作为拐点,即为计量点,此点垂直相交于pH 坐标线,分别得到计量点的pH 值和滴定剂的体积(mL ),例如图1-1中,计量点的pH 为4.35,NaOH 的体积为18.35mL 。
现代仪器分析-研究生
原子吸收光谱法是一种常用的定量分析方法,具有高灵敏度、高精度和低检测限等特点。
详细描述
原子吸收光谱法基于原子能级跃迁的原理,通过测量特定元素原子对特征谱线的吸收程度,实现对元 素含量的定量分析。该方法广泛应用于环境监测、食品分析、药物分析等领域,可有效检测重金属、 微量元素等物质。
原子荧光光谱法及应用
促进科学研究
在化学、生物学、医学、环境科学等 领域,现代仪器分析为科学研究提供 了强有力的支撑。
现代仪器分析的历史与发展
历史回顾
自20世纪初以来,随着科技的不断进步,现代仪器分析经历 了多次技术革新,如光谱、色谱、质谱等技术的发展。
发展趋势
未来,随着新材料、新技术的不断涌现,现代仪器分析将朝 着更高精度、更高灵敏度、更自动化和更智能化的方向发展 。同时,多技术联用和微型化也将成为现代仪器分析的重要 发展方向。
质谱分析原理
总结词
质谱分析是利用电磁场将物质离子化,根据 离子的质荷比进行分离和检测的方法。
详细描述
质谱分析通过将样品离子化后,根据离子的 质荷比进行分离,然后测量离子的质量和强 度,推断物质的组成和结构信息。该方法在 药物研发、环境监测等领域有广泛应用。
03
现代仪器分析技术及应 用
原子吸收光谱法及应用
特点
具有高精度、高灵敏度、高分辨率和 自动化程度高等特点,能够满足各种 复杂样品和痕量组分的分析需求。
现代仪器分析的重要性
解决复杂样品分析难题
保障人类健康与安全
现代仪器分析能够解决传统分析方法 难以处理的复杂样品,如生物样品、 环境样品等。
在食品安全、药品检测、环境保护等 领域,现代仪器分析为保障人类健康 与安全提供了可靠的检测手段。
《现代仪器分析》教案
一、教案基本信息教案名称:《现代仪器分析》适用课程:分析化学课时安排:45分钟教学目标:1. 了解现代仪器分析的基本概念和原理。
2. 掌握常见现代仪器分析方法及其应用。
3. 培养学生的实验操作能力和分析问题能力。
教学内容:1. 现代仪器分析的基本概念和原理。
2. 紫外-可见光谱分析法。
3. 原子吸收光谱分析法。
4. 红外光谱分析法。
5. 质谱分析法。
教学方法:1. 讲授法:讲解基本概念、原理和仪器操作方法。
2. 案例分析法:分析具体案例,加深学生对仪器分析方法应用的理解。
3. 实验操作法:引导学生进行实验操作,培养实际操作能力。
教学准备:1. 教材或教学资源。
2. 实验仪器和设备。
3. 投影仪或白板。
教学过程:1. 引入:介绍现代仪器分析在科学研究和工业生产中的重要性。
2. 讲解:讲解现代仪器分析的基本概念、原理及各种分析方法的原理和应用。
3. 案例分析:分析具体案例,展示各种仪器分析方法在实际中的应用。
4. 实验操作:引导学生进行实验操作,培养实际操作能力。
5. 总结:总结现代仪器分析的方法及其在实际中的应用。
二、紫外-可见光谱分析法教学目标:1. 了解紫外-可见光谱分析法的原理。
2. 掌握紫外-可见光谱分析法的应用。
教学内容:1. 紫外-可见光谱分析法的原理。
2. 紫外-可见光谱分析法的应用。
教学方法:1. 讲授法:讲解紫外-可见光谱分析法的原理。
2. 案例分析法:分析具体案例,展示紫外-可见光谱分析法的应用。
教学准备:1. 教材或教学资源。
2. 实验仪器和设备。
教学过程:1. 引入:介绍紫外-可见光谱分析法在化学分析中的应用。
2. 讲解:讲解紫外-可见光谱分析法的原理。
3. 案例分析:分析具体案例,展示紫外-可见光谱分析法的应用。
4. 实验操作:引导学生进行实验操作,培养实际操作能力。
5. 总结:总结紫外-可见光谱分析法的原理及其应用。
三、原子吸收光谱分析法教学目标:1. 了解原子吸收光谱分析法的原理。
现代化学仪器分析方法及其应用
现代化学仪器分析方法及其应用现代化学仪器分析方法的发展为化学领域的研究提供了强有力的支持。
这些先进的仪器能够提供准确、快速和敏感的分析结果,广泛用于材料科学、环境科学、食品安全等领域。
本文将介绍几种常见的现代化学仪器分析方法及其应用。
一、质谱仪质谱仪是一种能够实时检测和定量分析样品中的分子结构和组成的仪器。
它利用样品中的分子在高能量电子轰击下分解成离子,根据离子的质量-电荷比进行分析。
质谱仪广泛应用于化学、生物、医药等领域。
例如,在药物研发过程中,质谱仪可以确定化合物的分子结构、分子量,从而帮助研究人员验证合成目标的成功率。
二、核磁共振仪核磁共振仪是一种利用核磁共振现象来研究物质结构和性质的仪器。
核磁共振指的是在外加磁场和射频辐射作用下,原子核会发生能级跃迁,从而产生共振信号。
核磁共振仪广泛应用于有机化学、生物化学等领域。
例如,在有机化学中,核磁共振仪可以通过分析化合物中不同原子的信号强度和化学位移,确定化合物的结构和组成。
三、气相色谱仪气相色谱仪是一种用于分离和检测混合物的分析仪器。
它利用样品中化合物在固定相和流动相之间的分配系数不同来实现分离,并通过检测器对化合物进行定量分析。
气相色谱仪广泛应用于环境监测、食品安全等领域。
例如,在环境监测中,气相色谱仪可以快速分析空气、水体中的有机污染物,帮助监测人员了解环境质量。
四、液相色谱仪液相色谱仪是一种利用样品溶液中化合物在固定相和流动相之间的分配系数不同来实现分离和定量分析的仪器。
它广泛应用于生物化学、食品安全等领域。
例如,在药物研发中,液相色谱仪可以用于分析药物中的杂质,确保药物的质量和安全性。
综上所述,现代化学仪器分析方法的应用范围十分广泛,为各个领域的研究提供了有力的工具和支持。
质谱仪、核磁共振仪、气相色谱仪和液相色谱仪等仪器的发展和应用,不仅提高了化学分析的准确性和速度,也推动了科学研究的进步。
随着技术的不断创新和发展,相信化学仪器分析方法将在未来发挥更加重要的作用。
现代仪器分析测试方法.
现代仪器分析测试方法现代分析有分离分析法、热分析法、光学分析法、质谱分析法、电分析化学法、分析仪器联用技术这集中类型。
具体有:核磁共振(NMR),红外光谱(IR),紫外光谱(UV),质谱(MS),气相色谱(GC),液相色谱(LC),气相色谱与质谱联用(GC/MS)技术和液相色谱与质谱联用(LC/MS)技术。
核磁共振(NMR)核磁共振主要是由原子核的自旋运动引起的。
不同的它们可以用核的自旋量子数I来表示。
自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况。
原子核的自旋核磁共振用NMR(Nuclear Magnetic Resonance)为代号。
I为零的原子核可以看作是一种非自旋的球体,I为1/2的原子核可以看作是一种电荷分布均匀的自旋球体,1H,13C,15N,19F,31P的I均为1/2,它们的原子核皆为电荷分布均匀的自旋球体。
I大于1/2的原子核可以看作是一种电荷分布不均匀的自旋椭圆体。
核磁共振现象原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。
μ=γP公式中,P是角动量,γ是磁旋比,它是自旋核的磁矩和角动量之间的比值,当自旋核处于磁场强度为B0的外磁场中时,除自旋外,还会绕B0运动,这种运动情况与陀螺的运动情况十分相象,称为拉莫尔进动,见图8-1。
自旋核进动的角速度ω0与外磁场强度B0成正比,比例常数即为磁旋比γ。
式中v0是进动频率。
ω0=2πv0=γB0微观磁矩在外磁场中的取向是量子化的,自旋量子数为I的原子核在外磁场作用下只可能有2I+1个取向,每一个取向都可以用一个自旋磁量子数m来表示,m与I之间的关系是:m=I,I-1,I-2…-I原子核的每一种取向都代表了核在该磁场中的一种能量状态,其能量可以从下式求出:正向排列的核能量较低,逆向排列的核能量较高。
它们之间的能量差为△E。
一个核要从低能态跃迁到高能态,必须吸收△E的能量。
《现代仪器分析教学》3.原子发射光谱分析法
2、光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为: I=ac
a为常数(与蒸发、激发过程等有关),考虑到发射光谱 中存在着自吸现象,需要引入自吸常数 b ,则:
I acb
(自吸:原子在高温时被激发,发射某一波长的谱 线,而处于低温状态的同类原子又能吸收这一波长的 辐射,这种现象称为自吸现象整理)课件
3.激发电位:原子中的电子从基态跃迁至激发态所需的 能量称为激发电位。
整理课件
4、原子发射光谱的产生:气态原子或离子的核外层电 子当获取足够的能量后,就会从基态跃迁到各种激发 态,处于各种激发态不稳定的电子(寿命<10-8s)迅速回 到低能态时,就要释放出能量,若以电磁辐射的形式
释放能量,即得到原子发射光谱。
(quantitative spectrometric analysis)
1.光谱半定量分析
与目视比色法相似;测量试样中元素的大致浓度范 围;
谱线强度比较法:将被测元素配制成质量分数分别 为1%,0.1%,0.01%,0.001%四个标准。将配好的标样 与试样同时摄谱,并控制相同条件。在摄得的谱线 上查出试样中被测元素的灵敏线,根据被测元素的 灵敏线的黑度和标准试样中该谱线的黑度,用目视 进行比较。
2)光栅摄谱仪
光栅摄谱仪采用衍射光栅代替棱镜作为色散元件。 特点:适用波长范围广,色散和分辨能力大
整理课件
3.4 发射光谱分析的应用
3.4.1 光谱定性分析
1、定性依据:元素不同→电子结构不同→光谱不同 →特征光谱 2、定性分析基本概念 分析线:复杂元素的谱线可能多至数千条,只选择其 中几条特征谱线检验,称其为分析线; 最后线:浓度逐渐减小,谱线强度减小,最后消失的 谱线;
现代仪器分析与应用
现代仪器分析与应用引言:现代仪器分析是研究化学物质和生物系统的基本组成、结构及其性质的一种重要手段。
随着科学技术的不断发展,各种先进的仪器和分析方法逐渐应用于化学分析、环境监测、药物研发、生物学研究等领域。
本文将对现代仪器分析与应用领域进行探讨。
一、现代仪器分析的发展历程现代仪器分析的发展可以追溯到19世纪,当时以化学分析为主要手段。
20世纪初,光谱学的发展使得我们可以通过物质的光谱特性来分析其组成和结构。
20世纪60年代后,质谱仪的出现引发了一场仪器分析的革命。
随着计算机技术的发展,各种仪器的自动化和智能化程度不断提高,使得仪器分析的速度和准确性有了显著提高。
二、常见的现代仪器分析方法1.质谱法:质谱法是一种通过分析物质的质谱图谱来确定其分子结构和组成的方法。
质谱法广泛应用于生物医学、食品安全、环境监测等领域。
2.核磁共振(NMR):核磁共振是通过测量分子中的原子核在磁场中的共振现象来确定物质的结构和性质。
核磁共振广泛应用于有机合成、药物研发以及材料科学领域。
3.液相色谱法(HPLC):液相色谱法是利用溶液中固定相和液相之间的相互作用来分离和鉴定化合物的方法。
液相色谱法广泛应用于药物分析、环境监测以及食品安全检测等领域。
4.气相色谱法(GC):气相色谱法是通过将样品挥发成气体,然后通过固定相中一系列与样品成分有选择的相互作用进行分离和鉴定的一种方法。
气相色谱法广泛应用于石油化工、环境监测以及食品安全检测等领域。
三、现代仪器分析在不同领域的应用1.化学分析:现代仪器分析在化学分析领域的应用非常广泛。
它可以通过测量物质的光谱、质谱、核磁共振谱等来确定其组成和结构,同时还可以测量物质的各种化学性质。
化学分析在无机化学、有机化学、生物化学、分析化学等领域都有重要应用。
2.环境监测:现代仪器分析在环境监测领域的应用主要用于监测大气、水体、土壤等环境中的污染物。
通过使用质谱仪、液相色谱仪、气相色谱仪等仪器,可以精确测量出环境中的微量污染物,为环境保护和资源利用提供科学依据。
现代仪器分析方法及应用
现代仪器分析方法及应用一、分光光度法分光光度法利用物质对光的吸收、散射、干涉、闪烁等现象进行分析。
常用的分光光度法有紫外可见分光光度法、红外吸收分光光度法、原子吸收分光光度法等。
分光光度法广泛应用于药物分析、环境分析、食品分析等领域。
二、电化学方法电化学方法通过测定电极上物质的电荷转移过程或与电极表面发生的电化学反应来进行分析。
常用的电化学方法有电位滴定法、电化学溶液分析法、恒定电流伏安法等。
电化学方法在药物分析、环境分析、金属离子检测等方面具有广泛应用。
三、质谱分析法质谱分析法通过测定样品中物质的质量与电荷比来进行分析。
常用的质谱分析法有质子化质谱法、电喷雾质谱法、时间飞行质谱法等。
质谱分析法在有机化合物的结构分析、食品中农药残留的检测以及毒性物质的鉴定等方面具有重要应用。
四、色谱分析法色谱分析法通过分离和测定化合物混合物中不同组分的相对含量来进行分析。
常用的色谱分析法有气相色谱法、液相色谱法、超高效液相色谱法等。
色谱分析法广泛应用于药物分析、食品分析、环境分析等领域。
五、核磁共振法核磁共振法利用原子核间的磁耦合和原子核的磁共振现象来进行分析。
常用的核磁共振法有氢核磁共振波谱法、碳核磁共振波谱法等。
核磁共振法在有机化合物结构鉴定、药物分析和生物分子结构研究等方面具有重要应用。
六、质量光谱法质量光谱法通过测定物质的质量与电荷比来进行定性和定量分析。
常用的质谱法有线性离子阱质谱法、四级杆质谱法等。
质谱法广泛应用于有机物质的结构分析、药物代谢研究以及环境污染物的检测等领域。
以上是现代仪器分析方法的几个主要方向,这些方法在现代化学分析中具有重要的地位和作用。
随着科学技术的不断发展,这些方法将进一步提高其灵敏度、准确性和快速性,为化学分析提供更多的选择和可能性。
同时,仪器分析方法的应用范围也将进一步拓展,为人类社会的发展与进步做出更大的贡献。
现代仪器分析与应用
现代仪器分析与应用文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)XRD分析:是利用X射线的被动性和晶体内部结构的周期性进行晶体结构分析。
ICP分析法:采用电感耦合等离子体(ICP)为光源的原子发射光谱测定物质的化学成分的方法。
GC-MS分析法:将气相色谱仪器(GC)与质谱仪(MS)通过适当接口相连接,借助计算机技术,进行联用分析的方法。
TEM分析法(透射电子显微镜):将加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射形成明暗不同的影像的分析方法。
原子吸收分光谱法(AAS):是基于被测元素基态原子在蒸汽状态对其原子共振辐射的吸收进行元素定量分析的一种方法,具有灵敏度高、准确度高、选择性高、分析速度块等优点,但不能多元素同时分析。
IR分析法:是根据不同物质会有性的吸收红外光区的电磁辐射来进行结构分析,对各种吸收红外光的化合物的定量和定性分析的一种方法,可以定性定量鉴定分析物质、进行物质结构分析。
BET分析:BET法是BET比表面积检测法的简称,比表面积是指每克物质中所有颗粒总外表面积之和。
SEM分析法(扫描电子显微镜):扫描电子显微镜是利用细聚焦电子束在样品表面逐行扫描时激发出来的各种物理信号来调制成像的,主要用于观察固体厚试样的表面形貌,具有很高的分辨力和连续可调的放大倍数。
(色谱分析中的)标准加入回收:在测定样品的同时,于同一样品的子样中加入一定量的标准物质进行测定,将其测定结果扣除样品的测定值,以计算回收率通常回收率(记作R)计算的定义公式:R=(加标试样测定值-试样测定值)/加标量×100原子发射光谱分析法:原子发射光谱法是是利用元素发射的特征谱线的位置和强度进行定性和定量分析的一种光学方法。
根据流动相与固定相极性的差别,将色谱分为正相色谱:流动相极性低,固定相极性高的分配色谱。
反相色谱:流动相极性高,固定相极性低的分配色谱。
现代仪器分析方法(实例集)
2007-10-27
24
4
红外与拉曼谱图对比
红外光谱:基团; 拉曼光谱:分子骨架测定;
2007-10-27
Infrared and Raman Spectra of Benzene
IR
25
2007-10-27
Raman
26
拉曼光谱与红外光谱分析方法比较
拉曼光谱
红外光谱
光谱范围40-4000Cm-1
29
2007-10-27
30
5
红外和拉曼比较
Nylon 66的Raman与红外光谱图
红外光谱技术可鉴别化合物官能团,分子的非 对称性测定,化合物的反应机理和缔合作用, 高分子的链结构研究,物质的表面和界面成份 及结构分析研究。
拉曼光谱可用于水溶液,而红外光则被水严重 吸收 。
拉曼光谱可以看作是将红外光谱移动到可见光 波段。
2007-10-27
22
拉曼光谱与有机结构
由拉曼光谱可以获得有机化合物的各种结构信息:
1)同种分子的非极性键S-S,C=C,N=N,C≡C产生强拉曼 谱带, 随单键→双键→三键谱带强度增加。
2)红外光谱中,由C ≡N,C=S,S-H伸缩振动产生的谱带一 般较弱或强度可变,而在拉曼光谱中则是强谱带。
3)环状化合物的对称呼吸振动常常是最强的拉曼谱带。
UV
红外光谱
一、概述
近红外区: 中红外区: 远红外区:
波长(µm) 0.75 ~ 2.5 2.5 ~ 15.4 15.4 ~ 830
波数(cm-1) 13330 ~ 4000 4000 ~ 650 650 ~ 12
绝大多数有机化合物红外吸收波数范围:4000 ~ 665cm-1
如何学好现代仪器分析方法
如何学好现代仪器分析方法仪器分析是通过比较复杂和特殊的仪器设备,通过测量物质的某些物理或者物理化学性质的参数及其变化来确定物质的化学组成、成分分离及化学结构,并且各自形成相对独立的方法原理基础的一种分析方法。
随着新学科的不断融合和分析仪器的不断更新,现代仪器分析已经在多种学科方面获得日益广泛的应用,主要应用在材料、农林牧专业、土壤、环境与生态、矿物地质。
1、现代仪器分析法现代仪器分析方法主要依靠高精度的复杂仪器进行,所采用的分析仪器是化学、光学、电学、磁学、机械及计算机科学等现代科学综合发展的产物,仪器本身就是科学技术水平的标志。
若能充分利用现代仪器分析方法和技术, 就能更加全面、准确地认识物质世界, 进一步促进科学技术向纵深发展。
现代仪器分析方法内容丰富,种类繁多,每种方法都有相对独立的物理及物理化学原理,现已有三四十种,新的方法还在不断地出现。
为了便于学习和掌握,根据测量原理和信号特点,大致分为电化学分析法、色谱分析法、质谱分析法,光化学分析法和其他仪器分析法几类。
为了学好现代仪器分析首先要学好相关的理论知识。
1)、X射线衍射分析X射线的本质是电磁波,但其波长比可见光短得多,介于紫外线与γ射线之间,约为0.01—10 nm的范围,波长处于紫外线的上端,因此,不能用肉眼观察到,但是可以使照相底片显影。
衍射又称为绕射,光线照射到物体边沿后通过散射继续在空间发射的现象。
如果采用单色平行光,则衍射后将产生干涉结果。
相干波在空间某处相遇后,因位相不同,相互之间产生干涉作用,引起相互加强或减弱的物理现象。
衍射的条件,一是相干波(点光源发出的波),二是光栅。
衍射的结果是产生明暗相间的衍射花纹,代表着衍射方向(角度)和强度。
根据衍射花纹可以反过来推测光源和光珊的情况。
为了使光能产生明显的偏向,必须使“光栅间隔”具有与光的波长相同的数量级。
用于可见光谱的光栅每毫米要刻有约500到1500条线。
根据XRD的相关数据可以进行样品的定性和定量分析。
现代仪器分析方法与具体应用
现代仪器分析方法和具体应用
Content
引言 第一部分 核磁共振谱(NMR) 第二部分 红外光谱法(IR) 第三部分 质谱法(MS) 第四部分 紫外-可见光谱法(UV-Vis)
现代仪器分析方法和具体应用
引言
现代仪器分析方法和具体应用
2分.1 析引未言知化合物的步骤
?
C, H, O, …
现代仪器分析方法和具体应用
13 31
H被三个等价的H裂 分为四重峰,四重峰 的峰强比为1:3:3:1
Ha
Hb
J ac ≠ Jad
现代仪器分析方法和具体应用
n + 1 规律:一组化学等价的质子被一组数目为n的等 价质子裂分时,那么其吸收峰数目为n+1, 峰强比例符合二项式。
现代仪器分析方法和具体应用
现代仪器分析方法和具体应用
HH
H
HCC
HH
外磁场方向
121
H被两个等价的H 裂分为叁重峰, 叁重峰的峰强比 为1:2:1
信号的位置:化学位移 信号的裂分:偶合常数
信号的强度:积分曲线
现代仪器分析方法和具体应用
2.3.1 信号的位置:化学位移
相对于一个
基准物的相 低
对值
场
样品 - 标准 仪器
单位():ppm
现代仪器分析方法和具体应用
高 场
零点:TMS
CH3
CH3 Si CH3
CH3
原则1:等价的质子化学位移相同
化学环境相同 △E = hH有效/2
替代原则
H有效=H0-H感应
CH4 CH3CH3
CH3aCH2bCH3a
CH3aCH2bCH2cCl
几种现代仪器分析方法简介
第十一章几种现代仪器分析方法简介通过特殊的仪器,测定物质的物理或物理化学性质从而进行定性、定量及结构分析的方法,称为仪器分析法。
仪器分析方法的种类繁多,内容广泛,本书第八、第九两章介绍了吸光光度分析和电化学分析,根据我国工、农业生产和科研的实际情况以及仪器分析的发展趋势,本章再简要介绍几种现代仪器分析方法。
第一节原子吸收光谱分析法一、概述原子吸收光谱分析法(atomic absorption spectrometry, AAS),简称原子吸收法。
它是基于物质所产生的基态原子蒸气对特征谱线的吸收来进行定性和定量分析的。
与吸光光度分析的基本原理相同,都遵循朗伯—比尔定律,在仪器及其操作方面也有相似之处。
目前,原子吸收分光光度法已成为一种非常有效的分析方法,并广泛地应用于各个分析领域,该法具有以下一些特点。
1.选择性好,方法简便吸收光辐射的是基态原子,吸收的谱线频率很窄,光源发出的是被测元素的特征谱线,所以,不同元素之间的干扰一般很小,对大多数样品的测定,只需要进行简单的处理,即可不经分离直接测定多种元素。
2.灵敏度高火焰原子吸收法对大多数金属元素测定的灵敏度为10—8~10—10g?mL—1;非火焰原子吸收法的绝对灵敏度可达10—10g。
3.精密度好,准确度高由于温度的变化对测定的影响较小,所以,该法有着较好的稳定性和重现性。
对微量、痕量元素的测定,其相对误差为0.1~0.5%。
由于原子吸收分光光度法有着灵敏、准确、快速等优点,因而其广泛地应用于农业、林业、国防、化工、冶金、地质、石油、环保、医药等部门,可以测定近70多种金属元素。
二、基本原理原子对光的吸收或发射,与原子外层电子在不同能级间的跃迁有关。
当电子从低能级跃迁到高能级时,必须从外界吸收相应于这两能级间相差的能量;从高能级跃迁到低能级时,则要放出这部分能量。
由于原子中的能级很多,电子按一定规律在不同的能级间跃迁,使原子吸收或发射一系列特征频率的光子,从而得到原子的吸收或发射光谱。
现代仪器分析在日常生活中的应用
现代仪器分析在日常生活中的应用生命科学学院生物技术131班卢婉华1314300076现代仪器分析是以物质的物理性质或物理化学性质及其在分析过程中所产生的分析信号与物质的内在关系为基础,并借助于比较复杂的或特殊的现代仪器,对待测物质进行定性,定量及结构分析和动态分析一类分析方法。
仪器分析在食品安全方面的应用现代仪器分析在食品安全领域发挥了重要的作用。
前几年,闹得沸沸扬扬的三聚氰胺事件,三聚氰胺是一种重要的有机化工中间产品,主要用来制作三聚氰胺树脂,具有优良的耐水性、耐热性、耐电弧性、优良阻燃性。
动物长期摄入三聚氰胺会造成生殖、泌尿系统的损害,膀胱、肾部结石,并可进一步诱发膀胱癌。
国家食品质量监督检测中心有关人士说,在现有的国家标准奶粉检测中,主要进行蛋白质、脂肪、细菌等检测。
三聚氰胺属于化工原料,是不允许添加到食品中的,所以现有标准不会包含相应内容。
也就是说,三聚氰胺不属于常规检测项目,正常情况下,很少有人会想到去检测它。
厂家为了检测时提高氮的含量,提高收益,不惜加入三聚氰胺这一有害物质,虽然能提高产品氮的含量,但却并不能提高奶粉的蛋白质含量,反而会给人体带来伤害。
在这时,我们可以用质谱分析法检测奶粉中的物质组成,根据结构分析能看出奶粉中含有哪几类的化学物质,从而得知三鹿集团是否有在奶粉中添加三聚氰胺这一有害物质。
也可以用气相色谱法,高效液相色谱,苦味酸法和升华法等方法来检测。
仪器分析在制药方面的应用仪器分析在制药领域也发挥了重要作用,近年来,仪器分析飞速发展,新方法、新技术、新仪器层出不穷,仪器分析的应用也日益普遍。
仪器分析逐渐向药学、医学、生物学等领域渗透,特别是在新药研究、药物分析、临床检验、病因研究等方面都大量使用了仪器分析方法,其在药学专业中的重要地位日渐突出。
仪器分析大致可以分为电化学分析法、光谱分析法、色谱分析法和核磁共振波谱法。
例如光谱分析法:其中紫外—可见分光光度法,是利用吸收光谱的特点可以进行药品与制剂的定量分析、纯物质的鉴别及杂质的检测。
现代仪器分析方法
物理方面:利用EPR对半导体掺杂的研究,可指导采用不同的掺杂技术获取不同性质的半导体。
EPR应用
◆质谱不属波谱范围
◆质谱图与电磁波的波长和分子内某种物理量 的改变无关
◆质谱是分子离子及碎片离子的质量与其相对 强度的谱, 谱图与分子结构有关
◆质谱法进样量少, 灵敏度高, 分析速度快
◆质谱是唯一可以给出分子量, 确定分子式的 方法, 而分子式的确定对化合物的结构鉴定是至关重要的。
分子中含有S, C数目=(9.80.8)/1.18
H数目=15432128=26
不合理 分子式为C8H10OS
例:化合物的质谱图如下,推导其分子式
1
设: 分子离子峰:72, 72–58=14 ?
2
73, 73–58 = 15 合理
物理量
核能级 电子能级 分子振动-转动能级 电子自旋能级 核自旋能级
分子体系吸收的电磁辐射的能量,总是等于体系的两个允许状态能级的能量差,可用ΔE表示。与ΔE相匹配的辐射能的波长或频率可表示如:
ΔE=E2-E1
电磁波与光谱的关系:
范围 光区 光谱类型 跃迁类型 10-4~10-2nm -ray MÖssbauer谱 核能级跃迁 10-2~1 nm X-ray X-光电子能谱 核内层电子能级 100~400nm 紫外光区 紫外光谱 核外层电子(价 400~800nm 可见光区 可见光谱 电子或非键电子) 2.5~25m 红外光区 红外光谱 分子振动-转动 (4000~400cm-1) ~1 cm 微波区 微波谱 分子转动能级 顺磁共振谱 电子自旋能级 (磁诱导) 50~500cm 射频区 核磁共振谱 核自旋能级 (600~60MHz, 无线电波区) (磁诱导)
仪器分析的应用
仪器分析的应用13级生技426 仪器分析,它是以物质的物理和化学性质为基础建立起来的一种分析方法。
利用较特殊的仪器,对物质进行定性分析,定量分析,形态分析.仪器分析方法所包括的分析方法很多,目前有数十种之多。
每一种分析方法所依据的原理不同,所测量的物理量不同,操作过程及应用情况也不同。
其基本分类有:电化学分析法、核磁共振波谱法、原子发射光谱法、气相色谱法、原子吸收光谱法、高效液相色谱法、紫外—可见光谱法、质谱分析法、红外光谱法等。
还有它的基本特点有:灵敏度高、取样量少、在低浓度下分析的准确度较高、快速、可进行无损分析、能进行多信息或特殊功能的分析、专一性强、操作较为简便、仪器设备较为复杂和昂贵。
因此,仪器分析在多方面均可应用,比如:在食品安全检测、水质分析、医药研究、日常生活等等。
仪器分析在食品安全检测中的应用随着社会的进步和人民生活水平的提高,食品安全问题也越来越受到人们的关注。
但是食品中残留有农药,非法添加剂,重金属等安全问题仍然存在,屡禁不止,人们的健康面临着很大的隐患。
我们在好好反省的同时,建立起完善的监督体系,更要加强对食品安全的检测与监督。
但是,一般的样品基质复杂,检测组分含量低,使用常规的化学分析方法很难达到检测要求,但是仪器分析却能完成这个任务。
我们可以借助气相色谱仪对蛋白质、氨基酸、核酸、糖类、脂肪酸、农药多残留进行定性或者定量分析;液相色谱仪不仅可以对食品中各类营养成分及含量进行分离和测定,还能对食品中残留的一些有害的微量物质及在视屏腐败过程中产生的各种毒素进行分析,近年来,很多新型专用的高效液相色谱仪进入了人们的视线,如氨基酸分析仪、糖分析仪等,分别在检测食品中污染物质、营养成分、添加剂、毒素等方面得以充分应用。
仪器分析在水质分析中的应用随着科学技术的进步,现代化手段在水质监测分析中得到了广泛的应用。
分析方法从分光光度法、电位法发展到原子吸收法、原子荧光光谱法、气相色谱法和液相色谱法等;手动和半自动实验方法、分析仪器也正逐步被计算机控制技术与网络通信技术融合的在线或自动分析检测所代替.现代分析仪器为水质分析检测和科学研究提供了强有力的手段,目前水质分析呈现出向仪器分析方向发展的趋势.除常规分析仪器应用于水质分析外,为满足水质分析项目的特殊需要,一些水质专用测量仪器也相继出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低 场
高 场
零点:TMS
CH3
单位():ppm
CH3
Si
CH3
CH3
原则1:等价的质子化学位移相同 化学环境相同 替代原则
△E = hH有效/2 H有效=H0-H感应
CH4
CH3CH3
CH3aCH2bCH3a
CH3aCH2bCH2cCl
O CH3 CH2 C CH 2CH 3
原则2:不等价的质子化学位移不同
2.6
红外光谱与分子结构
2.5
红外光谱的基本原理与谱图总论
伸缩振动
弯曲振动
对应某一根键的某一种振动方式
信号的强度: 极性键出峰较强
C=O,O-H,C-H 等峰较强
C-C,C=C,C≡C 等峰较弱
极性变化大的振动方式,出峰较强
伸缩振动峰较强,弯曲振动峰较弱
峰强的表示方法
vs-很强 s-强 m-中 w-弱 v-可变
NMR仪器的基本组成
原子核的磁矩和磁共振
原子核的自旋运动和自旋量子数 I 相关。 核自旋量子数:I 原子核置于磁场中,将有:2I + 1 个取向
m=2 m = 1/2 m=1 m=1
m=0
m = -1/2 m = -1
m=0
m = -1 m = -2
I = 1/2
I=1
I=2
以I=1/2的核为例:
引
言
2.1 引言
分析未知化合物的步骤
?
C, H, O, …
C% H% O% , …
ห้องสมุดไป่ตู้
CmHnOy
利用其各种化学反应性质推测可能结构
分子的不同层次运动
Different motion
Translation Rotation Vibration Motion of the electron Motion of the nuclear far-infrared infrared ultraviolet & visible microwave
△E = hH有效/2 H有效=H0-H感应
处于不同化学环境中的质子外 层电子分布情况不同 产生的感应磁场也不同
2.3
1H-NMR(核磁共振氢谱)
信号的位置:化学位移
信号的裂分:偶合常数
信号的强度:积分曲线
2.3.1 信号的位置:化学位移
相对于一个 基准物的相 对值 样品 - 标准 仪器
I=1/2 I=0
13C-NMR 31P-NMR 15N-NMR 19F-NMR
问:跃迁(“核磁共振”)时所需要吸收的能量∆E为多少?
△E = hH0/2
:磁旋比(为各种核的特征常数) h:plank常数 H0:外加磁场强度
核磁共振时
△E = hH0/2 = h
△E = hH有效/2 H有效=H0-H感应
空间效应 场效应;空间位阻;环张力
4、氢键的影响:(分子内、分子间氢键)对峰位,峰强产 生极明显影响,使伸缩振动频率向低波数方向 移动,峰变宽、变强。
分子间氢键对—OH伸缩吸收 峰影响: 游离伯醇: 3640 cm-1 双分子缔合: 3550-3450 cm-1 多分子缔合: 3400-3200 cm-1
影响化学位移的因素:
原子核外电子云的分布:电负性 原子核所受的额外磁场:各向异性效应
△E = hH有效/2
电负性的影响:
邻近基团电负性 质子上电子云密度 H感应
H有效=H0-H感应
H有效
2.5
C-CH3
3.0
N-CH3
3.5
O-CH3
=0.77-1.88
CH3Cl =3.05
=2.12-3.10
2.4
13C-NMR(核磁共振碳谱)
1、信息
()、J( 一般 )、积分曲线( )
2、化学位移
H 0-10 ppm ± 5 ppm
C 0-250 ppm ± 100 ppm
3、 13C 同位素丰度较小
13C-NMR
vs 1H-NMR
常见碳原子的化学位移
10 C
20 C
0-30 ppm
Modern Spectrometry
第二章 现代仪器分析方法及应用
Organic Chemistry A (1)
By Prof. Li Yan-Mei
Tsinghua University
Content
引言 第一部分 第二部分 第三部分 第四部分 核磁共振谱(NMR) 红外光谱法(IR) 质谱法(MS) 紫外-可见光谱法(UV-Vis)
各种光谱分析方法
X ray
Ultraviolet
Visual
Infrared
Micro Radio wave wave
RFID
Electron Spectroscopy Ultraviolet 200~400 nm
Visual
Infrared 2.5μ~15μ
NMR 1n~5n
400~800 nm
定量分析
信号的位置:
A= cl
简 谐 振 动
+x
-x
Hooke 定律
1 m 2 k
m1m2 m1 m2
约合质量 振动频率
=/c
波数,单位:cm-1
K值越大,或值越小, 值越大
1350
官能团区
指纹区
与H结合的官能团 伸缩振动: O-H,N-H,C-H,S-H 力常数较大的键: 力常数大的键的伸缩振动: -CC-,-C N,-C=C=C-,-C=C=O, -N=C=O C=C,C=O,C=N,N=O
Solvent
Shift
(multiplicity)
JHD (Hz)
HOD in
13C
Chemical
solvent
Shift 178.99
20.0 206.68 29.92
JCD (Hz)
B.P. (oC) 118 57
M.P. (oC) 17 -94
(approx.) (multiplicity) 11.5 2.8
CH2Cl2 =5.30
= 3.24-4.02
CHCl3 =7.27
例如:
CH3aCH2bCH2cCl H > H > H
O CH3CH2 C CH 2CH 3
O CH 3CH 2 C OCH2CH 3
思考! H> H
各向异性效应的影响:
CH2
= 4.5-5.9 = 7.2
常见基团的红外吸收带
=C-H C-H C≡C C=C
O-H
O-H 氢键
C=O C-C, C-N, C-X P-H C≡N
S-H N-H
N-O N-N C=N
C-F
C-X
C-H, N-H, O-H
3500
3000
2500 特征区
2000
1500
1500
1000 指纹区
500
2.6
红外光谱与分子结构
short
wavelength
long
第一部分
核磁共振谱(NMR)
Nuclear Magnetic Resonance
2.2 2.3 核磁共振的基本原理
1H-NMR(核磁共振氢谱)
2.4
13C-NMR(核磁共振碳谱)
2.2
核磁共振的基本原理
600 MHz NMR
750 MHz NMR
800 MHz NMR
屏蔽 B与外磁场反平行
B不存在时,A的化学位移
偶合常数
2)裂分规律
• 相隔三根单键以上,一般J ≈ 0
O CH3CH2
C
CH3
• 等价质子(磁等价)互不裂分 CH4 CH3CH3 CH3CH2Cl
CH3c CH3d
• 具有沿共价键的意味
• n + 1 规律
J ac ≠ Jad
Ha Hb
n + 1 规律:一组化学等价的质子被一组数目为n的等 价质子裂分时,那么其吸收峰数目为n+1, 峰强比例符合二项式。
Chemical HOD in 13C Chemical JHD JCD B.P. Shift solvent Shift (Hz) (Hz) (oC) (multiplicity) (approx.) (multiplicity) 1 1 5 5 5 m 1 1 m 1 5 --1.9 1.9 1.9 ---1.7 4.8 -163.15 34.89 29.76 39.51 66.66 -56.96 17.31 -49.15 -3 7 7 7 5 -5 7 -5 -29.4 21.0 21.1 21.0 21.9 -22 19 -21.4 101.4
1、碳-碳伸缩振动
C≡C
2260-2100
>
C= C
1680-1600
>
C-C
于指纹区
2、碳-氢伸缩振动
C
sp-H
>
C
sp2-H
>
C
sp3-H
3320-3310
3090-3010
3000-2800
3、影响峰位变化的因素 诱导效应: 吸电子基团使吸收峰向高波数方向移动(蓝 移),反之向低波数方向移动(红移)
H
H H H C C H H
H
1
2
1 1 3 3 1
外磁场方向
H被两个等价的H 裂分为叁重峰, 叁重峰的峰强比 为1:2:1
H被三个等价的H裂 分为四重峰,四重峰 的峰强比为1:3:3:1
如果一组化学等价的质子被两组数目分别为n和n’的等 价质子裂分时,那么其吸收峰数目为(n+1)(n’+1),