sup曲线拟合与回归分析 ppt课件

合集下载

曲线拟合PPT演示文稿

曲线拟合PPT演示文稿
第四讲 曲线拟合
1
第四讲主要知识点
1、曲线拟合的概念 2、曲线拟和的方法 3、解矛盾方程组
2
函数插值问题回忆
• 设已知某个函数关系y f (x) 在某些离散点上的函数值:
x x0 x1 y y0 y1
x n 1 x n y n 1 y n
• 插值问题:根据这些已知数据来构造函数 y f (x)
合函数形式为 pm (x)a0a1xam xm (mn1) , 求系数 a0*,a1*, ,am * ,使得
n
n
m
( a 0 ,a 1 , ,a m )[ y i p m ( x i) ] 2 [ y ia k x ik ] 2
p m * (x ) i 1 a 0 * a 1 * x a m * x i m 0
15
拟合例题
例2 有一滑轮组,要举起W公斤的重物需要用 F公斤的力,实验所得的数据如下表。
求适合上述关系的近似公式。
16
拟合例题
解 首先,将这些数据画在直角坐标系中,从图形上 看,数据点的分布大致呈一条直线,所以设所求
的拟合直线为 yabx ,
得关于a和b的线性方程组
17
其他类拟合问题
最小二乘法并不只限于多项式,也可用于任 何具体给出的函数形式。特别重要的是有些非线 性最小二乘拟合问题通过适当的变换可以转化为 线性最小二乘问题求解。
确定a和b取何值时,二元函数
的值最小?
N
Q(a,b) [yi (abxi)]2 i1
11
直线拟合
由微积分的知识可知,这一问题的求解, 可归结为求二元函数
Q (a, b) 的极值问题,即 a 和 b
应满足:
12
直线拟合

第八章 曲线拟合、回归和相关讲解

第八章 曲线拟合、回归和相关讲解

t
( y0 yp ) n 2
sy.x n 1 [n(x0 x)2 / sx2 ]
有n-2个自由度的t分布。由此能求得预报得总体值
得置信限
2 预报的平均值的假设检验
设y0是x=x0时y的预报值,它是从样本回归方程得到 的估计,即y0=a+bx0。设y p记对总体而言对应x=x0的y 的预报平均值,那么统计量
y=+x。下面是与正态分布有关的一些检验:
1 假设=c的检验
为了检验假设:回归系数等于某一特定值c,使
用统计量
t b n2
sy.x / sx
它具有n-2自由度的t分布。此结论也可用于从样本 值求总体回归系数的置信区间
2 预报值的假设检验
设y0是x=x0时y的预报值,它是从样本回归方程得到 的估计,即y0=a+bx0。设yp记对总体而言对应x=x0的y的 预报值,那么统计量
将所有点代入直线方程后相加,我们得到
y=an+bx(或 y a b x)
以及 xy=ax+bx2
这两个方程称为最小二乘的正规方程。由上 面的方程组我们可以达到a,b分别为:
a

yx2 nx2
xxy (x)2
,
b

nxy nx2
xy (x)2
, 其中b也可以写成
最小二乘法
若在近似n个数据点的集合
时,对一给定的曲线族的全
部曲线,其中有一条曲线的
性质:
d12

d
2 2
...

d
2 n
达最小值,则称该曲线为给 定曲线族中的最佳拟合曲 线。 有这样性质的一条曲线称为 在最小二乘意义上对数据的 拟合,该曲线称为最小二乘 回归曲线

回归分析曲线拟合通用课件

回归分析曲线拟合通用课件
生物医学研究
研究生物标志物与疾病之间的 关系,预测疾病的发生风险。
金融市场分析
分析股票价格、利率等金融变 量的相关性,进行市场预测和 风险管理。
社会科学研究
研究社会现象之间的相关关系 ,如教育程度与收入的关系、 人口增长与经济发展的线性回归模型
线性回归模型是一种预测模型,用于描 述因变量和自变量之间的线性关系。
SPSS实现
SPSS实现步骤 1. 打开SPSS软件; 2. 导入数据;
SPSS实现
01
3. 选择回归分析命令;
02
4. 设置回归分析的变量和选项;
03
5. 运行回归分析;
04
6. 查看并解释结果。
THANKS
感谢观看
回归分析曲线拟合通用课件
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 曲线拟合方法 • 回归分析的实践应用 • 回归分析的软件实现
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变异关系, 找出影响因变量的主要因素,并 建立回归方程,用于预测和控制 因变量的取值。
线性回归模型的假设包括:误差项的独立性、误差项的同方差性、误差 项的无偏性和误差项的正态性。
对假设的检验可以通过一些统计量进行,如残差图、Q-Q图、Durbin Watson检验等。如果模型的假设不满足,可能需要重新考虑模型的建立 或对数据进行适当的变换。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
回归分析的分类
01
02
03
一元线性回归

生物统计学课件--17曲线拟合(回归)

生物统计学课件--17曲线拟合(回归)

一、对数函数曲线的拟合
1、对数方程的一般表达式: yˆ a b lg x
2、对数曲线 yˆ a b lg x 的图象
3、 yˆ a b lg x 直线化方法:
若令 lg x x` ,则有 yˆ a bx`
4、求 a 和 b 的值:
b SSx`y , SSx`
a y b x`
将up= y`= 0 代入 y`= a + bx`, 则有 :0 = a + bx`,
则有:x`= -a/b,
a
因为 x` = lgx,所以 x 10 b
此时的x即为半致死剂量,用LD50表示。
a
LD50 10 b
例题:用不同剂量的 射线照射小麦品种库斑克, 调查死苗率,得到以下结果:
剂量(Kr)x 14
a 10a` 101.6706 0.0214 b 10b` 100.1181 1.3125
yˆ 0.0214 1.3125 x
350
300
250
200
150
100
50
0
15
20
25
30
35
40
回归关系的检验:可以利用 b` 或者 r 进行检验,主要是对线 性关系的检验,线性回归或相关显著,则指数回归关系的拟 合就显著。
答:半致死剂量为18.6(Kr)
五、曲线的检验
有时将同一组数据,我们将其做指数函数或幂函数形式的变 换,都能得到X与Y的拟合曲线,并且可能在做线性回归关 系检验的时候,线性关系都显著,那么,究竟哪一条拟合曲 线是最好的呢?
一般情况下,以剩余平方和或称之为误差平方和的大小来判
断,即SSe最小时的拟合曲线为最好的曲线。
第五节 曲线拟合(非线性回归分析)

回归分析法PPT课件

回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。

《曲线拟合》PPT课件

《曲线拟合》PPT课件
曲线拟合
Curve fitting
医学研究中X和Y的数量关系常常不是线性的,如毒 物剂量与动物死亡率,人的生长曲线,药物动力学等, 都不是线性的。如果用线性描述将丢失大量信息,甚至 得出错误结论。
此时可以用曲线直线化估计(Curve estimation) 或非线性回归(Nonlinear regression) 方法分析。
散点图辨析
预后指数Y
60 50 40 30 20 10
0 0
对数曲线 指数曲线
10 20 30 40 50 60 70 病人住院天数X
如果条件允许最好采用非线性回 归(Nonlinear Regression)拟合幂 函数曲线与指数函数曲线
注意绘制散点图,并结合专业知 识解释
采用SAS进行曲线拟合
①幂函数: Yˆ ea X b 或 ln(Yˆ) a bln(X )
②对数:
Yˆ a bln(X )
③指数函数: Yˆ eabX
或 ln(Yˆ) a bX
④多项式: Yˆ a b1X b2 X 2 bn X n
⑤logistic:

1/(1
eabX
)

ln[

/(1
Yˆ)]
-8.0196 -4.0604 0.0000 3.9012 7.6049 11.1860 -12.8898

7.23 12.62 15.77 18.01 19.75 21.16 22.36
23.40
残差平方
0.1380 0.1017 0.0053 0.0361 1.0921 0.0563 0.0566 0.1597
(lnX)2 Y2
2.5902 57.76 0.8396 151.29 0.2609 246.49 0.0498 331.24 0.0000 349.69 0.0332 457.96 0.1132 510.76 0.2209 566.44 4.1078 2671.63

回归分析学习课件PPT课件

回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调

sup曲线拟合与回归分析 ppt课件

sup曲线拟合与回归分析 ppt课件

sup曲线拟合与回归分析
10
提示
左除的概念,可記憶如下:原先的方程式是 A*theta = y,我們可將 A移項至等號右邊, 而得到 theta = A\y。必須小心的是:原先 A 在乘式的第一項,所以移到等號右邊後,A 仍 然必須是除式的第一項。
若我們要解的方程式是 theta*A = y,則同樣 的概念可得到最小平方解 theta = A/ y。
範例10-2: census01.m
load census.mat
% 載入人口資料
plot(cdate, pop, 'o');
% cdate 代表年度,pop 代表人口總數
A = [ones(size(cdate)), cdate, cdate.^2];
y = pop;
theta = A\y;
% 利用「左除」,找出最佳的 theta 值
迴歸分析與所使用的數學模型有很大的關係
模型是線性模型,則此類問題稱為線性迴歸 (Linear Regression)
模型是非線性模型,則稱為非線性迴歸
(Nonlinear Regsurp曲es线s拟i合o与n回)归。分析
2
線性迴歸:曲線擬合
觀察資料是美國自 1790 至 1990 年(以 10 年為一單位)的總人口,此資料可由載入檔案 census.mat 得到
通常不存在一組解來滿足這 21 個方程式。
在一般情況下,只能找到一組 ,使得等號兩邊的
差異為最小,此差異可寫成
yA 2(yA )T(yA )
此即為前述的總平方誤差 E
MATLAB 提供一個簡單方便的「左除」(\)指
令,來解出最佳的
sup曲线拟合与回归分析
8

回归分析法PPT课件

回归分析法PPT课件
现代应用
随着大数据时代的到来,回归分析法在各个领域的应用越来越广泛,同 时也面临着新的挑战和机遇。
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关 系的数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + cdots + beta_pX_p + epsilon)
解释
非线性回归模型可以用于解释因变量和解释变量之间的关系,通过模型参数和图 形化展示来解释关系。
04
多元回归分析
多元回归模型
01
02
03
多元线性回归模型
描述因变量与多个自变量 之间的关系,通过最小二 乘法估计参数。
非线性回归模型
描述因变量与自变量之间 的非线性关系,通过变换 或使用其他方法实现。
教育研究
在教育学研究中,回归分析法可用于研究教育成果和教育 质量,通过分析学生成绩和教学质量等因素,提高教育水 平。
其他领域的应用案例
市场调研
在市场营销中,回归分析法可用于分析消费者行为和市场趋 势,帮助企业制定更有效的营销策略。
农业研究
在农业研究中,回归分析法可用于研究作物生长和产量影响 因素,提高农业生产效率。
线性回归模型的预测与解释
预测
使用已建立的线性回归模型预测因变量的值。
解释
通过解释模型参数的大小和符号来理解自变量对因变量的影响程度和方向。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
非线性回归模型的定义
线性回归模型在解释变量与因变量之间的 关系时可能不够准确,无法描述它们之间 的非线性关系。

回归分析和曲线拟合市公开课特等奖市赛课微课一等奖课件

回归分析和曲线拟合市公开课特等奖市赛课微课一等奖课件

i 1
N
_N
_
(xi x)2 ( yi y)2
i 1
i 1
lxy lxx l yy
22
第22页
(2)给定显著行水平,按自由度f=n-2,由相关系数
临界表中查处临界值ra, f。 (3)比较 | r | 与ra, f的大小。
若 | r | ra, f,认为x与y之间存在线性相关关系; 若 | r | ra, f,认为x与y之间不存在线性相关关系。
i 1
N
i 1
yi
求得a,b后,回归方程为:
^
y a bx
便可以确定,b称为回归系数
(6 5) (6 6)
11
第11页
三、回归方程检验方法
(一)方差分析法
回顾方差分析基本特点:
把所给数据总波动分解为两部分,一
部分反应水平改变引发波动,另一部分
反应因为存在试验误差而引发波动。然
后把各原因水平改变引发波动与试验误

5
第5页
二、一元线性回归方程确实定
数学上判定直线合理的原则: 如果直线与全部观测数据yi (i 1, 2,..., N )的离差平方和, 比任何其它直线与全部观测数据的离差平方和更小,该 直线就是代表x与y之间关系较为合理的一条直线,这条 直线就是x和y之间的回归直线。
6
第6页
设y* a bx是平面上的一条任意直线,(xi , yi )(i 1,2, ..., N )是变量x,y的一组观测数据。 那么,对于每一个xi,在直线y* a bx上确可以确定一 个yi* a bxi的值,yi*与xi处实际观测值yi的差:
4
25
16
2
5
6
25

回归分析曲线拟合讲解共75页

回归分析曲线拟合讲解共75页
回归分析曲线拟合讲解
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
46、我们若已接受最坏的,就再没有么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

SPSS曲线回归多元分析等PPT课件

SPSS曲线回归多元分析等PPT课件

Yˆ 19.7451 7.7771(ln X ); R2 0.9922
2020/1/11
(四)比较决定系数,确定“最佳”方 程
30 y^ = 10.863x + 7.7607
25
R2 = 0.9391
20
15
10
5
0
0
0.5
1
1.5
30 25 20 15 10 5 0
0
y^ = 19.3248 x0.5367 R2 = 0.9823
2020/1/11
(一)53例接受手术的前列腺癌患者情况
2020/1/11
(二)26例冠心病病人和28例对照进 行病例对照研究

? 2020/1/11
26例冠心病病人和28例对照者进行 病例对照研究
2020/1/11
一、logistic回归模型
2020/1/11
概率预报模型
exp( 0 1 X1 p X p ) 1 exp( 0 1 X1 p X p )
逐步回归的重要选项 Method要选为Stepwise Options中要设定合适的选入选出标准(
注:Removal中设定的p值必须大于 Entry中的设定。)
2007年1月
202203/1/11
三、Logistic回归
Logistic regression
可编辑
第一节.非条件logistic回归 第二节.条件logistic回归 第三节. 应用及其注意事项
注意事项
1. 分类自变量的哑变量编码
为了便于解释,对二项分类变量一般 按0、1编码,一般以0表示阴性或较轻 情况,而1表示阳性或较严重情况。如 果对二项分类变量按+1与-1编码,那 么所得的OR exp,(2容 )易造成错误的解释 。

最新回归分析曲线拟合方案教学讲义ppt

最新回归分析曲线拟合方案教学讲义ppt

Cubic:拟合三次方程Y = b0+b1t+b2t2+b3t3; S:拟合S形曲线Y = exp(b0+b1/t); Exponential:拟合指数方程Y = b0 exp(b1t); Inverse:数据按Y =b0+b1/t进行变换; Power:拟合乘幂曲线模型Y = b0Xb1; Logistic:拟合Logistic曲线模型
估计的回归方程
(estimated regression equation)
1. 总体回归参数β0和β1是未知的,必须利用样本数 据去估计
2. 用样本统计量 bˆ0和 bˆ1代替回归方程中的未知参
数β0和β1 ,就得到了估计的回归方程
3. 一元线性回归中估计的回归方程为
yˆ = bˆ0 + bˆ1x
雇员对其主管满意度的调查
模型拟合度检验
方差分析
回归分析结果
拟合结果为:Y=A*X1+B*X2+C**X3+D ?
结果解读
剔除变量列表
共线性检验指标
共线性检验结果
曲线估计
基本原理 两变量之间的关系并不总是以线性形式表
现出来的,更多的时候呈现出非线性关系,利 用图形可表示为曲线。
引入或剔除变量表
表中显示回归分析的方法以及变量被剔除或引 入的信息。Method项为Enter,表明显示回归 方法用得是强迫引入法引入变量。这里自变量 只有一个,所以此表意义不大。
模型摘要
两变量相关系数为0.613,判定系数为0.375, 调整判定系数为0.352,估计值的标准误差为 360.997
Remove:剔除变量。不进入方程模型的被选变量剔除。 Backward:向后消去 Forward:向前引入
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通常不存在一組解來滿足這 21 個方程式。
在一般情況下,只能找到一組 ,使得等號兩邊的
差異為最小,此差異可寫成
yA 2(yA )T(yA )
此即為前述的總平方誤差 E
MATLAB 提供一個簡單方便的「左除」(\)指
令,來解出最佳的
2020/12/27
10
線性迴歸:曲線擬合
利用「左除」來算出最佳的 值,並同時畫出 具有最小平方誤差的二次曲線

0
a
1、a
的一次式
2
令上述導式為零之後,我們可以得到一組三元一次
線性聯立方程式,就可以解出參數 佳值。
a
0、
a
1、a
的最
2
2020/12/27
8
線性迴歸:曲線擬合
假設 21 個觀察點均通過此拋物線,將這 21 個點帶入拋物線方程式,得到下列21個等式:
a0 a1 x1 a2 x12 y1 a0 a1 x2 a2 x2 2 y2
範例10-2: census01.m
load census.mat plot(cdate, pop, 'o');
% 載入人口資料 % cdate 代表年度,pop 代表人口總數
A = [ones(size(cdate)), cdate, cdate.^2];
y = pop; theta = A\y;
a0 a1 x21 a2 x212 y21
亦可寫成
1 1
x1
x2
x12 x22
1
2
y1
y2
1
x 21
x
212
3
y21
A
y
其中 2020/12/27
A、 y為已知,
為未知向量。
9
線性迴歸:曲線擬合
上述21個方程式
21 個方程式,只有 3 個未知數(1,2,3T,所以
2020/12/27
12
提示
左除的概念,可記憶如下:原先的方程式是 A*theta = y,我們可將 A移項至等號右邊, 而得到 theta = A\y。必須小心的是:原先 A 在乘式的第一項,所以移到等號右邊後,A 仍 然必須是除式的第一項。
若我們要解的方程式是 theta*A = y,則同樣 的概念可得到最小平方解 theta = A/ y。
1~21。當輸入為 x i
yi
模型的預測值為 f(x i;a 0 ,a 1 ,a 2 ) a 0 a 1 x i a 2 x i2
平方誤差: yi f(xi)2
總平方誤差 示如下:
E是參數
a 0 、a 1 、a 2 的函數則可表
E ( a 0 ,a 1 ,a 2 ) 2y 1 i f( x i) 2 2y 1 i a 0 a 1 x i a 2 x i22
50 0 1750
1800
1850
1900
年度
1950
5
2000
線性迴歸:曲線擬合
上圖資料點走勢,通過這些點的曲線可能是二 次拋物線,假設為 y f( x ;Байду номын сангаас 0 ,a 1 ,a 2 ) a 0 a 1 x a 2 x 2
其中y為輸出,x為輸入, a 0、 a 1 及 a 2 則為此模型
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
2020/12/27
4
線性迴歸:曲線擬合
觀察資料是美國自 1790 至 1990 年(以 10 年為一單位)的總人口,此資料可由載入檔案 census.mat 得到
的參數。
參數相對於y呈線性關係,所以此模型稱為「具有 線性參數(Linear-in-the-parameters)」的模型。
找出最好的參數值,使得模型輸出與實際資料 越接近越好,此過程即稱為線性迴歸(Linear Regression)
2020/12/27
6
線性迴歸:曲線擬合
線性迴歸
假設觀察資料可寫成 (xi , yi ),i= 時,實際輸出為 y i 。
200
預測人口數
美國人口總數
150
100
50
0 1750
1800
1850
1900
1950
2000
年度
由上述範例,我們可以找出最佳的
a 0 ,a 1 ,a 2 21 , 2 1 .5 3 ,0 3 .0 10 0 654
因此具有最小平方誤差的拋物線可以寫成:
y f(x ) a 0 a 1 x a 2 x 2 21 2 1 .5 3 x 3 1 0 .0 00 x 2654
範例10-1: censusPlot01.m
load census.mat plot(cdate, pop, 'o'); xlabel('年度'); ylabel('美國人口總數');
% 載入人口資料 % cdate 代表年度,pop 代表人口總數
250
200
美國人口總數
150
100
2020/12/27
迴歸分析與所使用的數學模型有很大的關係
模型是線性模型,則此類問題稱為線性迴歸 (Linear Regression)
模型是非線性模型,則稱為非線性迴歸
2020/12/2(7 Nonlinear Regression)。
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
% 利用「左除」,找出最佳的 theta 值
plot(cdate, pop, 'o', cdate, A*theta, '-'); legend('實際人口數', '預測人口數'); xlabel('年度'); ylabel('美國人口總數');
2020/12/27
11
線性迴歸:曲線擬合
250
實際人口數
i 1
i 1
2020/12/27
7
線性迴歸:曲線擬合
求得參數 a 0、a、1 a 2 的最佳值
求出E 對 a 0、a 1 、a 2 的導式,令其為零,即可解 出 a 0、 a 1、a 2 的最佳值。
平方誤差 E 為 a 0、a 1 、a 2 的二次式
導式
E 、E
a0 a1
及 E
a2

a
MATLAB 程式設計 曲線擬合與迴歸分析
2020/12/27
1
線性迴歸:曲線擬合
曲線擬合(Curve Fitting)
建立的數學模型是「單輸入、單輸出」(Singleinput Single-output,簡稱SISO)
其特性可用一條曲線來表示
在資料分析上都稱為迴歸分析(Regression Analysis),或稱為資料擬合(Data Fitting)
相关文档
最新文档