一元一次方程常见考点归纳
一元一次方程(行程问题)
一元一次方程(行程问题)考点1、相遇问题:【基础知识回顾】相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路,行车还是物体的移动,总是要涉及到三个量--------路程、速度、时间。
相遇问题的核心就是速度和。
路程、速度、时间三者之间的数量关系,不仅可以表示成:路程= 速度×时间,还可以变形成下两个关系式:速度= 路程÷时间, 时间= 路程÷速度.一般的相遇问题: 甲从A地到B地,乙从B地到A地,然后两人在A地到B地之的某处相遇,实质上是甲,乙两人一起走了AB这段路程,如果两人同时出发,那有:(1) 甲走的路程+乙走的路程= 全程(2) 全程= (甲的速度+乙的速度) ×相遇时间= 速度和×相遇时间相遇问题的基本题型1、同时出发(两段)2、不同时出发(三段)相遇问题的等量关系S甲+S乙=S总(全程)S先+S甲+S乙=S总(全程)【典型例题】1、电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车的5倍还快20千米/时,半小时后两车相遇,两车的速度各是多少?[变式训练]1、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?考点2、追及问题【基础知识回顾】两个速度不同的人或车,慢的先行(领先)一段,然后快的去追,经过一段时间快的追上慢的。
这样的问题一般称为追及问题。
有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题,因为这两种情况都满足速度差×时间=追及(或领先的)路程。
追及问题的核心就是速度差。
追及问题追及问题的基本题型1、不同地点同时出发2、同一地点不同时出发追及问题的等量关系1、追及时快者行驶的路程-慢者行驶的路程=相距的路程2、追及时快者行驶的路程=慢者行驶的路程或慢者所用时间=快者所用时间+多用时间追击问题的等量关系:1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间【典型例题】1. 跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?[变式训练]1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为________________.2、某人从家里骑自行车到学校。
一元一次方程知识点归纳
一元一次方程方程的有关概念夯实基础一.等式用等号(“=”)来表示相等关系的式子叫做等式。
温馨提示①等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等,所以等式可以表示不同的意义。
②不能将等式与代数式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能作为等式的一边。
如x x 2735-=+才是等式。
二.等式的性质性质1:等式两边同时加(或减)同一个数(或式子),结果仍相等。
即如果b a =,那么c b c a ±=±。
性质2:等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
即如果b a =,那么bc ac =;如果b a =()0≠c ,那么cb c a =。
温馨提示①等式类似天平,当天平两端放有相同质量的物体时,天平处于平衡状态。
若在天平的两端各加(或减)相同质量的物体,则天平仍处于平衡状态。
所以运用等式性质1时,当等式两边都加上(或减去)同一个数或同一个整式时,才能保证所得的结果仍是等式,应特别注意“都”和“同一个”。
如31=+x ,左边加2,右边也加2,则有2321+=++x 。
②运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母。
③等式性质的延伸:a.对称性:等式左、右两边互换,所得结果仍是等式,即如果b a =,那么a b =。
b.传递性:如果c b b a ==,,那么c a =(也叫等量代换)。
例1:用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式哪一条性质,以及怎样变形得到的。
(1)如果51134=-x ,那么+=534x ; (2)如果c by ax -=+,那么+-=c ax ;(3)如果4334=-t ,那么=t 。
三.方程含有未知数的等式叫做方程。
温馨提示 方程有两层含义:①方程必须是一个等式,即是用等号连接而成的式子。
②方程中必有一个待确定的数,即未知的字母,这个字母就是未知数。
一元一次方程的笔记
一元一次方程的笔记
一、概念
1.一元一次方程:只含有一个未知数,并且未知数的次数是1的
方程。
2.方程的解:使方程左右两边相等的未知数的值。
二、一元一次方程的解法
1.去分母:在方程两边都乘以各分母的最小公倍数,把分式方程
转化为整式方程。
2.去括号:利用分配律去括号,注意括号前面是“一”号时,去掉
括号后,括号里的各项都要改变符号。
3.移项:根据等式的基本性质1,将方程两边的同类项分别合并。
4.合并同类项:把方程化成ax=b(a≠0)的形式。
5.系数化成1:根据等式的基本性质2,方程两边都除以未知数的
系数a,得到方程的解x=b/a。
三、解一元一次方程的应用
1.实际问题中的一元一次方程:根据实际问题的条件列出一元一
次方程,然后求解。
2.列方程解决实际问题的步骤:审题、设未知数、找相等关系、
列方程、解方程、写出答案。
四、注意事项
1.解一元一次方程时,要注意去分母、去括号、移项和合并同类
项的顺序,不能颠倒。
2.解一元一次方程时,要注意检验解的合理性,不符合实际意义
的解要舍去。
3.列一元一次方程解决实际问题时,要注意分析问题的条件和要
求,找出相等关系,列出正确的方程。
4.解一元一次方程时,要注意解题的格式和规范,写清解题过程
和结果。
第08讲一元一次方程的概念与解法(8大考点)(原卷版)
第08讲一元一次方程的概念与解法(8大考点)一、方程和一元一次方程的概念 1)方程:含有未知数的等式。
如何判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.例:3x=5y+2;100x=200;3x 2+2y=3等2)一元一次方程:只含有一个未知数(元,隐含未知数系数不为0),未知数的次数是1(次),等号两边都是整式(整式:未知数的积,而非商)的方程。
如何判断一元一次方程:①整式方程;②只含一个未知数,且未知数的系数不为0;③未知数的次数为1. 例:3112=+x ;3112=+x ;3m-2n=5;3m=5;6x 2-12=0 二、方程的解与解方程1)方程的解:使方程两边相等的未知数的值 解方程:求方程的解的过程 三、等式的性质1)等式两边同加或同减一个数(或式子),等式仍然成立。
即:c b c a ±=±=,则若b a (注:此处字母可表示一个数字,也可表示一个式子)2)等式两边同乘一个数(或式子),或同除一个不为零的数(式子),等式仍然成立。
即:⎩⎨⎧≠÷=÷⨯=⨯=0c c b c a cb c a b a ,,则若(此处字母可表示数字,也可表示式子)例:3x+7=2-2x 3x+7+2x=2-2x+2x 3x+7+2x-7=2-2x+2x-7 5x=-5 5x ÷5=-5÷5 x=-13)其他性质:①对称性:若a=b ,则b=a ;②传递性:若a=b ,b=c ,则a=c 。
四、合并同类项解一元一次方程(1)合并同类项:将同类项合并在一起的过程 方法:1)合并同类项;2)系数化为1 五、移项解一元一次方程 (1)移项 例:2x-3=4x-72x-3+3=4x-7+3(利用等式的性质) (左边的﹣3变到右边变成了+3) 2x=4x-4考点考向2x-4x=4x-4-4x (利用等式的性质) (右边的4x 变到左边变成了-4x ) -2x=-4 x=24−− x=2①我们发现,利用等式两边同加或同减一个数(式子),等式不变的性质,可以将方程化为同类项在同一边的情形(即未知数在一边,数值在另一边)。
一元一次方程(知识点完整版)
第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程.注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次); ③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0. 例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等.即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等.即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b,那么a —c=b-cB 、如果a=b,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解例7、解方程284=-练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)
清单03 一元一次方程(五大考点梳理+题型解读+解决实际问题12种题型)【知识导图】【知识清单】考点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.【例1】(2022秋•颍州区期末)下列各式中,是方程的个数为()①x=0;②3x﹣5=2x+1;③2x+6;④x﹣y=0;⑤=5y+3;⑥a2+a﹣6=0.A.2个B.3个C.5个D.4个2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.细节剖析:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.【例2】(2022秋•汉台区期末)已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2B.m=﹣3C.m=±3D.m=13.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.【例3】(2023春•蒸湘区校级期末)若x=﹣1是方程2x+m﹣6=0的解,则m的值是()A.﹣4B.4C.﹣8D.8【变式】(2022秋•宁阳县期末)若一元一次方程ax+b=0的解是x=1,则a,b的关系为()A.相等B.互为相反数C.互为倒数D.互为负倒数4.解方程:求方程的解的过程叫做解方程.考点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.【例4】(2022秋•雅安期末)下列等式变形错误的是()A.若,则x﹣1=2xB.若x﹣1=3,则x=4C.若x﹣3=y﹣3,则x﹣y=0D.若3x+4=2x,则3x﹣2x=﹣42.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.考点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bxa(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.【例5】(2022秋•东宝区期末)解方程:(1)4﹣2x=﹣3(2﹣x);(2).考点四、列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)【例6】(2022秋•汇川区期末)如图,已知数轴上有A,B两点,它们分别表示数a,b,且(a+6)2+|b﹣12|=0.(1)填空:a=,b=;(2)点C以2个单位长度/秒的速度从点A向点B运动,到达点B后停止运动.若点D为AC中点,点E为BC中点,在点C运动过程中,线段DE的长度是否发生改变?若不变,求线段DE的长度,若变化,请说明原因;(3)在(2)的条件下,点P以1个单位长度/秒的速度同时从原点O向点B运动,P点到达B点后停止运动,问点P运动多少秒后,点P与点C相距2个单位长度?【例7】(2022秋•秦淮区期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(元/千瓦时)不超过150千瓦时的部分a 超过150千瓦时,但不超过300千瓦时的部分b 超过300千瓦时的部分a +0.32015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费125元. (1)求上表中a 、b 的值;(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费285元?【例8】.(2022秋•常州期末)列方程解决问题:小华和妈妈一起玩成语竞猜游戏,商定如下规则:小华猜中1个成语得2分,妈妈猜中1个成语得1分,结果两人一共猜中了30个成语,得分恰好相等.请问小华猜中了几个成语?考点五、用一元一次方程解决实际问题的常见类型 1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+ 7.数字问题;8.分配问题; 9.比赛积分问题;10.水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度水流速度).题型1.配套问题1.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?2.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型2.销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
一元一次方程知识点总结
一元一次方程知识点总结1等式(1)还有等号的式子叫做等式(2)性质①等式两边同时加上(或减去)同一个式子等号两边不变。
若a=b ,那么a+c=b+c②等式两边同乘以1个数,或除以同一个不为零的数,结果仍相等。
若a=b 则ac=bc a÷c=b÷c(c≠0)③对称性a=b,则b=a④传递性a=b,b=c 则a=c(3)拓展①等式两边取相反数,结果任相等②等式两边不等于零时,两边取倒数,结果仍相等。
2方程(1)一元一次方程(2)解一元一次方程的一般步骤及根据①去分母②去括号③移项④合并同类项⑤系数化为一⑥检验――把方程的解分别带入等式左右两边,看结果是否相同3一元一次方程的应用①设未知数②找等量关系③列方程4题型分类【行程问题(相遇与追及问题)】(1)行程问题中的三个基本量及其关系路程=速度×时间时间=路程÷速度速度=路程÷时间(2)行程问题,基本类型①相遇问题:快行距+慢行距=原距②追击问题:快行距-慢行距=原距1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8000米,公交车的速度为每小时四十千米,设甲乙两地相距x千米,列方程()2.一列客车车长200米,一列货车长280米.在平行轨道上相向行驶从车头相遇到车尾,完全离开经过16秒,两车的速度之比是3:2。
那么两车的速度是多少?3【环形跑道与时钟问题】1在六点和七点之间,什么时刻时针的分针和时针重合?2甲乙两人在400米的环形跑道上跑步,甲每分钟跑240米,乙每分钟跑200米两人同时同地同向出发,几分钟后两人相遇。
若背向跑,几分钟后两人相遇?【行船与飞机飞行问题】(1)顺水(风)速度=静(风)水速度+水流(风)速度(2)逆水(风)速度=静水(风)速度-水流(风)速度(3)水流速度=(顺水速度-逆水速度)÷21一艘船在两个码头之间航行,水流的速度为3000米每小时,顺水航行需要两小时,逆水航行需要三小时,求两个码头之间的距离?2某船从a码头顺水航行到b码头,再逆水航行到c码头。
一元一次方程知识点及经典例题
一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
一元一次方程(知识点完整版)
第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程。
注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次);③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0。
例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等。
即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等。
即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b ,那么a-c=b-cB 、如果a=b ,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b ,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解 方法:步骤具体做法 依据 注意事项1.去分母在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号; 2.去括号先去小括号,再去中括号,最后去大括号 去括号法则、分配律括号前面是“+”号,括号可以直接去,括号前面是“-”号,括号里的每一项都要变号3.移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(移项一定要变号)等式基本性质1 移项要变号,不移不变号;4.合并同类项将方程化简成()0≠=a b ax合并同类项法则计算要仔细5.化系数为1 方程两边同时除以未知数的系数a ,得到方程的解 等式基本性质2 计算要仔细,分子分母勿颠倒例7、解方程2583243=--+x x练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
七年级数学上册一元一次方程重点
七年级数学上册一元一次方程重点
一元一次方程是初中数学的重要内容,也是解方程的基础。
下面是七年级数学上册中关于一元一次方程的重点内容:
1. 方程的概念:方程是用等号连接的含有未知数的代数式。
一元一次方程指只含有一个未知数,并且该未知数的最高次数为1的方程。
2. 解一元一次方程的基本方法:通过逆运算的方式将方程变形,使得未知数单独出现在等号的一边,从而求得未知数的值。
3. 消元法:当方程中存在多个未知数时,可以利用加减消元和倍加倍减消元的方法,将方程化简为只含有一个未知数的一元一次方程,然后进行解方程。
4. 方程的解的判定:解方程时需要注意方程是否有解,以及解的唯一性。
如果一个方程没有解,我们称其为无解方程;如果一个方程有无限多个解,我们称其为恒等方程;如果一个方程只有一个解,我们称其为一般方程。
5. 方程的应用:一元一次方程在实际生活中有很多应用,例如物品的定价、速度与时间之间的关系等。
通过解方程可以求解这些实际问
题。
一元一次方程所有知识点
一元一次方程所有知识点一、一元一次方程的概念。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
- 例如:2x + 3=5x - 1是一元一次方程,它只含有一个未知数x,x的次数是1,等号两边2x + 3和5x-1都是整式。
- 一般形式:ax + b = 0(a≠0),其中a是未知数x的系数,b是常数项。
2. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
- 例如:对于方程2x+3 = 7,当x = 2时,左边=2×2 + 3=4 + 3 = 7,右边=7,所以x = 2就是方程2x+3 = 7的解。
二、一元一次方程的解法。
1. 移项。
- 把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
- 例如:在方程2x+3 = 5x - 1中,为了求解x,我们将5x移到左边变为-5x,3移到右边变为-3,得到2x-5x=-1 - 3。
- 移项的依据是等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
2. 合并同类项。
- 将方程中含有相同字母且相同字母的指数也相同的项合并在一起。
- 例如:在2x-5x=-1 - 3中,2x-5x=-3x,-1-3 = -4,方程变为-3x=-4。
3. 系数化为1。
- 在方程ax = b(a≠0)的形式下,将方程两边同时除以a,得到x=(b)/(a)。
- 例如:对于方程-3x=-4,两边同时除以-3,得到x=(4)/(3)。
三、一元一次方程的应用。
1. 行程问题。
- 基本公式:路程=速度×时间。
- 相遇问题:两者路程之和等于总路程。
例如:甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是v_1,乙的速度是v_2,经过t小时相遇,AB两地间的距离s=(v_1 + v_2)t。
- 追及问题:两者路程之差等于初始距离。
例如:甲、乙两人同向而行,甲的速度是v_1,乙的速度是v_2(v_1>v_2),开始时甲、乙相距s_0,经过t小时甲追上乙,则s_0=(v_1 - v_2)t。
专题07 一元一次方程篇(解析版)
专题07 一元一次方程考点一:一元一次方程之概念1. 方程的概念:含有未知数的等式叫做方程。
2. 一元一次方程的概念:只含有一个未知数,且未知数次数是1的整式方程是一元一次方程。
一般形式为:()00≠=+abax。
必须同时满足三个条件:①只含有一个未知数。
②未知数的次数是1。
③是整式方程。
3. 方程的解与一元一次方程的解:是方程(一元一次方程)左右两边成立的未知数的值叫做方程(一元一次方程)的解。
1.(2022•贵阳)“方程””.如:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程x+4y=23,则表示的方程是 x+2y=32 .【分析】认真审题,读懂图中的意思,仿照图写出答案.【解答】解:根据题知:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,一个竖线表示一个,一条横线表示一十,所以该图表示的方程是:x+2y=32.考点二:一元一次方程之等式的性质1. 等式的性质:性质1:等式的左右两边同时加上(减去)同一个数(或式子),等式仍然成立。
即:cb c a b a ±=±=,则性质2:等式的两边同时乘上(或除以)同一个(不为0的)数,等式仍然成立。
即:()()0≠÷=÷==c c b c a bc ac b a ,则。
2.(2022•青海)根据等式的性质,下列各式变形正确的是( )A .若c b c a =则a =bB .若ac =b c ,则a =bC .若a 2=b 2,则a =bD .若﹣31x =6,则x =﹣2【分析】根据等式的性质,进行计算逐一判断即可解答.【解答】解:A 、若=,则a =b ,故A 符合题意;B 、若ac =bc (c ≠0),则a =b ,故B 不符合题意;C 、若a 2=b 2,则a =±b ,故C 不符合题意;D 、﹣x =6,则x =﹣18,故D 不符合题意;故选:A .3.(2022•滨州)在物理学中,导体中的电流I 跟导体两端的电压U 、导体的电阻R 之间有以下关系:I =RU ,去分母得IR =U ,那么其变形的依据是( )A .等式的性质1B .等式的性质2C .分式的基本性质D .不等式的性质2【分析】根据等式的性质,对原式进行分析即可.【解答】解:将等式I =,去分母得IR =U ,实质上是在等式的两边同时乘R ,用到的是等式的基本性质2.故选:B.考点三:一元一次方程之解一元一次方程1. 解一元一次方程的步骤:①去分母——等式左右两边同时乘分母的最小公倍数。
一元一次方程知识点总结与典型例题(人教版初中数学)
一元一次方程知识点总结与典型例题一、一元一次方程 1、等式:用“=”表示相等关系的式子,叫做等式. 2、方程:含有未知数的等式叫做方程. 3、一元一次方程:只含有一个未知数,并且未知数的次数都是1,等号的两边都是整式,这样的方程叫做一元一次方程.4、判断一元一次方程的条件: ⑴首先必须是方程;⑵其次必须只含有一个未知数,且未知数的指数是1; ⑶分母中不含有未知数. 5、方程的解:使方程左右两边的值相等的未知数的值叫做方程的解.说明:方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论 6、一元一次方程都可以化为一般形式:)0(0≠=+a b ax ※典型例题知识点1:方程的概念1、下列各式中( )是方程.A .x-6B .3×6=18C .x-6=3D .20÷5=4 2、下列式子中( )是方程.A .2+3-xB .3+x >5C .3-y=1D .以上都不是 3、下列式子是方程的个数有( )A .1个B .2个C .3个D .4个 4、下列各式中,是方程的个数为( )A .1个B .2个C .3个D .4个 5、在下列各式中,方程的个数为( )A .1B .2C .3D .4 知识点2:列方程6、语句“x 的3倍比y 的21大7”用方程表示为:________________. 7、一根细铁丝用去32后还剩2m ,若设铁丝的原长为xm ,可列方程为:_________________. 8、x 的10%与y 的差比y 的2倍少3,列方程为:_____________________.9、一件衣服打八折后,售价为88元,设原价为x 元,可列方程为:__________________. 10、某校长方形的操场周长为210m ,长与宽之差为15m ,设宽为xm ,列方程为:___________________.11、若单项式是同类项,可以得到关于x 的方程为:_________________. 知识点3:方程的解12、下列方程中,2是其解的是( ) A.042=-x B.021=-x C.011=-+x x D.02=+x 13、x=1是下列哪个方程的解( )A.01=+xB.1112-=-x x x C.1=+y x D.0433=-+x x 知识点4:一元一次方程的概念14、下列方程中是一元一次方程的是( ) A.23+=+y x B.x x -=+33 C.11=xD.012=-x 15、已知下列方程:其中一元一次方程有( ) A .2个 B .3个 C .4个 D .5个16、已知是关于x 的一元一次方程,则( )A .m=2B .m=-3C .m=±3D .m=117、方程是关于x 的一元一次方程,则m ( )A .m=±1B .m=1C .m=-1D .m ≠-1 18、若方程是关于x 的一元一次方程,则a 的值为( )A.0B.21- C.1 D.2119、方程是一元一次方程,则a 和m 分别为( )A .2和4B .-2和4C .2和-4D .-2和-420、下列关于x 的方程一定是一元一次方程的是( ) A.11=-x xB.()b x a =+12 C.b ax = D.31=+x 21、若方程是关于x 的一元一次方程,则m 的值是( )二、等式的性质1、等式的性质:⑴等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质1:如果b a =,那么c b c a ±=±⑵等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.等式的性质2:如果b a =,那么bc ac =;如果()0≠=c b a ,那么cb c a = 2、解以x 为未知数的方程,就是把方程逐步转化为a x =(常数)的形式,等式的性质是转化的重要依据. ※典型例题知识点5:等式的性质1、运用等式性质进行的变形,不正确的是( )A .如果a=b ,那么a-c=b-cB .如果a=b ,那么a+c=b+cC .如果a=b ,那么cbc a = D .如果a=b ,那么ac=bc 2、下列结论错误的是( )A .若a=b ,则a-c=b-cB .若a=b ,则1122+=+c bc a C .若x=2,则x x 22= D .若ax=bx ,则a=b 3、下列说法正确的是( )A .如果ac=bc ,那么a=bB .如果cbc a =,那么a=b C .如果a=b ,那么22cb c a = D .如果y x63=-,那么x=-2y4、已知xy=mn ,则把它改写成比例式后,错误的是( ) A.y m n x = B.x n m y = C.nym x = D.y n m x =5、在公式中,以下变形正确的是( )A. B.C. D.6、根据下图所示,对a 、b 、c 三中物体的重量判断正确的是( )A .a <cB .a <bC .a >cD .b <c7、如图a 和图b 分别表示两架处于平衡状态的简易天平,对a ,b ,c 三种物体的质量判断正确的是( )A .a <c <bB .a <b <cC .c <b <aD .b <a <c 8、下列结论中不能由a+b=0得到的是( )A.ab a -=2 B .|a|=|b| C .a=0,b=0 D.22b a = 9、若2y-7x=0(xy ≠0),则x:y 等于( ) A .7:2 B .4:7 C .2:7 D .7:410、已知等式3a=2b+5,则下列等式中不一定成立的是( ) A .3a-5=2b B .3a+1=2b+6 C .3ac=2bc+5 D.11、下列说法:其中正确的结论是( )A .只有①②B .只有②④C .只有①③④D .只有①②④12、能不能由()13-=+b x a 得到等式,为什么?反之,能不能由得到()13-=+b x a ,为什么? 知识点6:利用等式的性质解方程 13、利用等式的性质解下列方程:14、已知:x=2是方程2x+m-4=0的解,则m 的值为( ) A .8 B .-8 C .0 D .215、要使关于x 方程mx=m 的解为x=1,则( ) A .m ≠0 B .m 可为任何有理数C .m >0D .m <016、若x=-3是方程k (x+4)-2k-x=5的解,则k 的值是( )A .2B .-3C .3D .-217、已知y=4是方程的解,则的值为( )A.B .8C .289D .22518、若关于x 的方程是一元一次方程,则这个方程的解是( )A .x=0B .x=3C .x=-3D .x=2 19、若方程是一元一次方程,则方程ax+b=1的解是( )A .x=6B .x=-6C .x=-8D .x=8 20、已知关于x 的方程的解满足|x|=1,则m 的值是( )A .-6B .-12C .-6或-12D .6或12 21、对|x-2|+3=4,下列说法正确的是( )A .不是方程B .是方程,其解为1C .是方程,其解为3D .是方程,其解为1,322、下列各判断句中,错误的是( ) A .方程是等式,但等式不一定是方程B .由ax=ay 这个条件不能得到x=y 一定成立的结论C .在整数范围内,方程6x=3无解D .5x =0不是方程23、若是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数24、已知关于x 的方程ax+b=c 的解是x=1,则|c-a-b-1|=_______. 25、若-2是关于x 的方程的解,则=-1001001a a________.26、已知等式(x-4)m=x-4且m ≠1,求的值.三、解一元一次方程——合并同类项与移项 1、合并同类项通过合并同类项可以把一元一次方程化为最简形式:b ax =,其中未知数的系数a 满足的条件是0≠a . 2、系数化为1:解方程系数化为1这一步的理论根据是等式的性质2. 3、移项:把等式一边的某项变号后移动到另一边,叫做移项. 4、移项的目的: 通过移项,含有未知数的项与常数项分别在等号的两边,使方程更接近b ax =的形式. 5、移项的理论根据是等式的性质1. ※典型例题知识点7:解一元一次方程——合并同类项与移项1、下列方程变形正确的是( )A .由3+x=5得x=5+3B .由7x=-4得x=47- C .由021=y 得y=2 D .由3=x-2得x=2+3 2、如果3x+2=8,那么6x+1=( ) A .11 B .26 C .13 D .-11 3、当x=3时,代数式的值为7,则a 等于( )A .2B .-2C .1D .-14、关于x 的方程2-3x=a (x-2)的解为x=-1,则a 的值为( ) A .5 B .-1 C .-5 D .35-5、如果代数式5x-7与4x+9的值互为相反数,则x 的值等于( ) A .29 B .29- C. 92 D. 92- 6、如果与是同类项,则n 是( )A .2B .1C .-1D .0 7、若与是同类项,则m 、n 的值分别为( ) A .2,-1 B .-2,1C .-1,2D .-2,-18、若“※”是新规定的某种运算符号,得x ※y=x 4+y ,则(-1)※k=6中k 的值为( ) A .-3 B .3 C .-5 D .59、已知:,则方程2m+x=n 的解为( )A .x=-4B .x=-3C .x=-2D .x=-110、解下列方程:⑴925=-x x ⑵163-=+x x ⑶x x 23273-=+ ⑷1453+=+x x⑸105.03=+-x x ⑹535.25.47-⨯=-x x ⑺1233+=-x x ⑻766531-=-x x 四、解一元一次方程——去括号与去分母1、去括号法则:括号前面是“+”号,去括号时符号不变,括号前面是“-”号,去括号时各项都变号. 2、去括号的理论根据是:乘法分配律. 3、去分母:去分母的理论根据是:等式的性质2. 4、去分母注意事项:⑴方程两边同乘的数是各分母的最小公倍数; ⑵不要漏乘不含分母的项;⑶当分子是多项式时分别乘以每一项.5、解一元一次方程的一般步骤:⑴去分母:方程两边同乘各分母的最小公倍数. ⑵去括号:按去括号法则和分配律. ⑶移项:把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号. ⑷合并同类项:把方程化成()0≠=a b ax 形式.⑸系数化为1:在方程两边都除以未知数的系数a ,得到方程的解ab x = 知识点8:解一元一次方程——去括号与去分母 1、解下列方程:⑴()0112=+-x ⑵()()72225+=+x x ⑶()()x x x 8723--=- ⑷16112131+=⎪⎭⎫ ⎝⎛--x x⑸5174732+=--x x ⑹32261+-=--x x x ⑺()()()[]6121223=+--++x x x⑻1.02.112.06.055.05.14x x x -=+--- ⑼0455.005.02.02.005.01.0=+--+x x ⑽32213415xx x --+=- 2、若方程的解与关于x 的方程的解相同,则k 的值为( )A.95 B.95- C.35 D.35- 3、如果的倒数是3,那么x 的值是( ) A .-3B .1C .3D .-14、已知关于x 的方程的解满足方程,则m 的值为( )A.21 B.2 C.23D.3 5、若单项式是同类项,则mn=( )A .28B .-14C .28或-14D .以上都不对6、对于实数a ,b ,c ,d 规定一种运算:x=( )A.413-B.427C.423-D.43-7、如果则x 的值为( )A.2-B.35 C.3 D.31 8、已知关于x 的方程2x=8与x+2=-k 的解相同,则代数式的值是( )A.49-B.94C.94-D.94±9、方程的解的个数是( )A .0B .1C .2D .3 10、如果3754123-+x x 与互为相反数,则代数式2964123++x 的值是( ) A.1 B.2 C.3 D.4 11、方程的解是( )A .2007B .2009C .4014D .4018五、实际问题与一元一次方程1、列方程解一元一次方程的步骤: ⑴审——审题:找出等量关系;⑵设——设未知数:根据提问,巧设未知数; ⑶列——列方程:利用已找出的等量关系列方程; ⑷解——解方程:解所列的方程,求出未知数的值; ⑸检——检验所求的未知数的值是否是方程的解,同时要注意该值是否符合实际情况; ⑹答——作答.参考答案:知识点1:方程的概念1、C2、C3、B4、C5、B 知识点2:列方程6、7、8、 9、10、11、知识点3:方程的解12、A 13、D知识点4:一元一次方程的概念14、B 15、B16、思路点拨:17、B 18、D 19、B 20、思路点拨:21、思路点拨:知识点5:等式的性质1、C2、D3、B4、C5、思路点拨:6、思路点拨:7、思路点拨:8、C9、思路点拨:10、C 11、D12、思路点拨:知识点6:利用等式的性质解方程14、C 15、A 16、D 17、D 18、A 19、A 20、C 21、思路点拨:22、D 23、A24、思路点拨:25、思路点拨:26、思路点拨:知识点7:解一元一次方程——合并同类项与移项1、D 2、C3、思路点拨:4、D5、D6、A7、思路点拨:8、思路点拨:9、思路点拨:知识点8:解一元一次方程——去括号与去分母2、思路点拨:3、C4、B5、思路点拨:6、D7、思路点拨:8、C9、思路点拨:10、C11、思路点拨:。
一元一次方程知识点总结
一元一次方程知识点总结一、等式与方程1.等式:1定义:含有等号的式子叫做等式.2性质:①等式两边同时加上或减去同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷0c≠③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.3拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:1定义:含有未知数的等式叫做方程.2说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:1定义:只含有一个未知数元且未知数的指数是1次的整式方程叫做一元一次方程.2一般形式:0ax b+=a,b为常数,x为未知数,且0a≠.3注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:1方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.2解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.3移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.4解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等在草纸上5一般方法:①去分母, 程两边同时乘各分母的最小公倍数.②去括号, 一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项, 方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.一般都是把未知数移到一起④合并同类项,合并的是系数,将原方程化为ax b=0a≠的形式.⑤系数化1, 两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.6注意:对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号整体思想;③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号打草稿认真计算;⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.7补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:1解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.2分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系3设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.4找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.比如多,少,倍,分,共解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系;线段图能使抽象的数量关系具体化,使隐蔽的数量关系明朗化.对于较复杂的题目,同学们可借助线段图找等量关系.5列一元一次方程解应用题的基本步骤及注意点:①“审”要沉着冷静,耐下心去,慢读细读多读,透彻理解题意.即弄清已知量、未知量及其相互关系.②“设”设一个恰当的未知数,若有单位一定加单位,表示多项式加单位括号.③“列”根据等量关系列出方程,即所列的方程应满足两边的量要相等;方程两边的代数式的单位统一,用题目中的原数;题中条件应充分利用,不能漏也不能将一个条件重复利用,重复用一个条件会得到恒等式,解不出来.④“解”解出方程,一定在草纸上一步步认真计算,先化简往往会简化计算.⑤“验”检验两方面,一是解得是否正确,用代入法;二是是否符合实际情况.⑥“答”写出答案,一定要答完整,有单位要加单位.6解应用题关键与核心:根据题意找出能够表示应用题全部含义的一个相等关系这是关键一步.就是抓住问题中的有关数量的相等关系,列出方程.核心是设出适当未知量,根据关系表示出其它量,表示出等量关系中的各个部分,从而列出方程.8实际问题的常见题目类型:基本量、基本关系、等量关系:①“和、差、倍、分类问题”:弄清和谁比,比谁多,比谁少增长量=原有量×增长率, 现有量=原有量+增长量.②“等积变形问题”:锻造前的体积=锻造后的体积长方体的体积=长×宽×高, 圆柱的体积=底面积×高.③“打折利润问题”:利润是和成本比的利润进价, 售价=标价×折扣.利润=售价-进价, 利润率=÷④“行程问题”:相遇问题和追及问题路程=时间×速度,时间=÷路程速度,速度=÷路程时间.注意单位:路程——米、千米;时间——秒、分、时;速度——米/秒、米/分、千米/小时⑤“销售问题”总价=单价×数量, 总钱数=各部分钱数和.⑥“利率息问题”本息和=本金+利息, 利息=本金×利率×时间期数.⑦“工程问题”工作总量=工作时间×工作效率, 工作总量=各部分工作量的和.⑧数字问题包括日历中数字规律⑨比例分配问题⑩调配问题注意:应用题分类只是帮助同学们理解记忆,切不可死记题型,生搬硬套,实际上法无定法,要多加练习,培养分析问题解决问题的能力,熟练掌握列方程解应用题的一般方法.。
专题13解一元一次方程(七大考点)(原卷版)
专题13解一元一次方程1.能利用移项、合并同类型、去分母和去括号解一元一次方程;2.能找出具体问题中的已知数和未知数,分析数量关系,列出方程解一元一次方程的步骤:1.去分母:两边同乘最简公分母2.去括号:(1)先去小括号,再去中括号,最后去大括号;(2)乘法分配律应满足分配到每一项 注意:特别是去掉括号,符合变化3.移项:(1)定义:把含有未知数的项移到方程的一边,不含有未知数的项移到另一边;(2)注意:①移项要变符号;②一般把含有未知数的项移到左边,其余项移到右边.4.合并同类项:(1)定义:把方程中的同类项分别合并,化成“ax b =”的形式(0a ≠);(2)注意:合并同类项时,把同类项的系数相加,字母不变.5.系数化为1:(1)定义:方程两边同除以未知数的系数a ,得b x a=;(2)注意:分子、分母不能颠倒 考点01移项及去括号1.阅读下面解方程()()33122x x +=-的步骤,完成填空:解:去括号,得9324x x +=-.移项,得9243x x -=--.依据 ;合并同类项,得77x =-.系数化为1,得x = .2.如果用c 表示摄氏温度()C ︒,用f 表示华氏温度()F ︒.根据表中数据,写出c 的值为 ,f 的值为 .0 3.用等式的性质解下列方程: (1)429x -=; (2)1234x -=. 4.解方程:(1)265x =; (2)2111134x ÷-=. 5.解方程:(1)410624x x +=-(2)()543113x x +-=6.解方程:(1)58x +=(2)3452x x +=-(3)()()()8211221x x x ---=--7.解下列方程:(1)52183x x +=- (2)()()32243x x +=--考点02去分母8.如果方程17236x x ++-=的解也是方程203a x --=的解,那么a 的值是( ) A .7B .5C .3D .以上都不对9.解方程:(1)3425x x -=+;(2)321142x x -+-=. 10.解下列方程:(1)()()42135114x x --+=;(2)7531124x x --=-.11.解方程:(1)37322x x +=-;(2)()()3252x x -=-+; (3)1524x x +-=; (4)1213323x x x --+=-. 12.解方程(1)37322x x +=-(2)()()371323x x x --=-+ (3)352123x x +-= (4)1213323x x x --+=- 13.小红在解方程741136x x -=+时,第一步出现了错误:(1)请在相应的方框内用横线划出小红的错误处.(2)写出你的解答过程.考点03已知解求参数 14.已知2x =-是方程63ax a -=+的解,则=a .15.已知关于x 的方程290ax x +-=的解是3x =,则a 的值为 .16.若方程2(1)60x --=与3103a x --=的解互为相反数,则a 的值为( ) A .13- B .13 C .73 D .1-17.关于x 的方程2120mx x +-=的解为3x =,则m 的值为( )A .2B .6C .-2D .318.小刚同学在做作业时,不小心将方程()331x x --=+■中的一个常数涂黑了,在询问老师后,老师告诉她方程的解是7x =,请问这个被涂黑的常数■是( )A .6B .5C .4D .119.若5x =-是关于x 的方程285x x a +=-的解,求22a a +的值. 20.若方程5443x x +=-的解比方程()()2122x m m +-=--的解大1,求m 的值.考点04构造一元一次方程21.若代数式742x -比212x -的值大32相等,则 x 的值是( ) A .1 B .32 C .23 D .222.代数式2x 比代数式13x -大1,则x = . 23.若代数式112x -的值为3,则x = . 24.若代数式51x -的值与2-互为相反数,则x = .25.k 取何值时,代数式13k -的值比代数式332k +的值大4? 26.当x 为何值时,代数式22x -的值与13x +的值的和等于3? 考点05同解方程27.若关于x 的方程426x -=-与()3228x k -+=的解相同,则k 的值是( )A .3B .2-C .12-D .1-28.如果方程22x =和方程2123a x a x ++=-的解相同,那么a 的值为( ). A .1B .5C .0D .5- 29.若方程42832x x -+-=-的解与关于x 的方程()431621x a x a -+=+-的解相同,则代数式1a a-的值为 . 30.小明做题时发现有一个方程“243x x +=-■”题中■处不清晰,于是问老师,老师只是说:“■是一个有理数,该方程的解与()211x x -=-的解相同.”依据老师的提示,请你帮小明找到“■”这个有理数,则■= . 31.如果方程42832x x -+-=-的解与关于x 的方程()23551220ax a x a -+=++的解相同,确定字母a 的值. 32.已知关于x 的方程42x m +=与方程231184x m x -=-的解相同,求m 的值. 33.已知:关于x 的方程323m x m x --+=和()3221x x -=+的解相同.求代数式()()202220232521m m ----的值. 考点06解含绝对值的一元一次方程34.已知23x -的绝对值与6x +的绝对值相等,则x 的相反数为( )A .9B .1C .1或9-D .9或1-35.已知2x3的绝对值为5,x 在原点左侧,则x= .36.若2132a a +=-,则=a .37.若 95a - 的绝对值与 123a + 的绝对值相等,则 a 的值是多少? 38.解下列绝对值方程: (1)14x -= (2)231x +=39.(1)已知23x -的绝对值与6x +的绝对值相等,求x 的相反数是多少?(2)已知3x =,7y =.若0xy <,求x y -的值.考点07定义新运算40.在实数范围内定义运算“♥”:()a b a a b b =-+♥,若()()319x --=♥,则x 的值是 . 41.给出定义如下:我们称使等式1a b ab -=+成立的一对有理数a ,b 为“相伴有理数对”,记为()a b ,.如:1133122-=⨯+,2255133-=⨯+,所以数对132⎛⎫ ⎪⎝⎭,,253⎛⎫ ⎪⎝⎭,都是“相伴有理数对”. (1)数对123⎛⎫- ⎪⎝⎭,,132⎛⎫-- ⎪⎝⎭,中,是“相伴有理数对”的是 ___________; (2)若()1,5x +是“相伴有理数对”,则x 的值是 ___________;42.定义一种新运算:()()222(),,2.a b a b f a b b a a b ⎧->⎪=⎨-≤⎪⎩(1)填空:()0,6f =___________;(2)求20.5,3f ⎛⎫-- ⎪⎝⎭的值; (3)若(,4)17f x =,求x 的值.43.定义一种新的运算:对于任意的有理数a ,b ,c ,d 都有a bad bc c d =-,应用新运算计算:(1)求2341--的值;(2)如果235325x x -+=--,求x 的值. 44.定义一种新的运算“⊗”:32m n m n ⊗=- 例如: ()()52352215419⊗-=⨯-⨯-=+=.(1)求23-⊗的值;(2)若()()3216x x -⊗+=,求x 的值.45.用“☆”定义一种新运算:对于任意有理数a 和b .规定22a b ab ab a =++☆.如:21313213116=⨯+⨯⨯+=☆(1)求()23-☆的值;(2)若3612a ⎛⎫= ⎪⎝⎭+☆,求a 的值. 46.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“和谐方程”.例如:方程48x =和10x +=为“和谐方程”.(1)若关于x 的方程30x m +=与方程4210x x -=+是“和谐方程”,则m =______;(2)若两个“和谐方程”的解相差2,其中较小的一个解为n ,则n =______.(3)若关于x 的两个方程03x m +=与3252x x m -+=是“和谐方程”,求m 的值. 基础过关练1.下列方程的变形中,正确的是( )A .由49x ,得49x =-B .由105x =,得5x = C .由726x =--,得267x =-D .由34x =-,得34x =+ 2.解关于x 的一元一次方程(21)4a x x m -=+时,不论a 为何值,x 的解都相同,则m 的值为( ) A .2- B .0 C .12 D .23.若2x =是关于x 的方程()()251 331a x x a --=-+的解,则a 等于( )A .1B .2C .3D .44.如果3x =是关于x 的方程326m x -=的解,则m 的值是 .5.已知关于x 的一元一次方程1(2)100k k x---=||,则x =( ) A .3 B .3或0 C .5 D .5-6.嘉淇在解关于x 的方程:529x x -=时,误将方程中的“2x -”看成了“2x +”,求得方程的解为97x =,则原方程的解为 . 7.已知方程96542x x +=+的解比关于x 的方程730x a -=的解小1,则a 的值为 . 8.对于实数a ,b ,c ,d ,规定一种运算a bad bc c d =-,如()()404202822=⨯--⨯=--,那么当()()()()122731x x x x ++=--时,则x = . 9.解方程:(1)()1324x --= (2)2151136x x +--= (3)12 1.20.30.5x x -+-= (4)3172x --=10.小红在解方程741136x x -=+时,第一步出现了错误: (1)请在相应的方框内用横线划出小红的错误处;(2)写出你的解答过程.11.已知关于x 的方程()4168x mx --+=的解比方程()2531x x +=+的解大1,求m 的值.12.用“※”定义一种新运算:规定a 22b ab ab b =+-※,如:23132133121※.(1)求(2)4-※的值;(2)若(1)312x -=※,求x 的值.能力提升练1.已知方程(2)2x x a --=的解是正数,则a 的最小整数解是( )A .1B .2C .3D .42.马小虎同学在解关于x 的方程()122x x a -=--时,误将等号右边的“2a -”看作“2a +”,其他解题过程均正确,从而解得方程的解为5x =-,则原方程正确的解为( )A .2x =B .3x =C .4x =D .5x =3.我们规定,对于任意两个有理数x ,y 有231x y x y *=-+,如132*********=⨯-⨯+=-+=-.若(4)(25)14a a +*-=-,则a 的值为( )A .2-B .1-C .1D .04.补全解方程()()()543212121x x x --+=--的过程:解:去括号,得 .移项,得 .合并同类项,得 .系数化为1,得 .5.对于两个不相等的有理数a ,b ,我们规定符号{}min ,a b 表示a ,b 两数中较小的数,例如{}min 2,44-=-.则方程{}min ,34x x x -=+的解为 .6.关于x 的方程()()321a x x +=+(其中2a ≠)的解是 .7.若关于x 的一元一次方程化成ax b =后的解满足2a b x a-=,则称该方程为“绝配方程”,例如:方程62x =的解为13x =,而123266-=⨯,则方程62x =为“绝配方程”. (1)①186x =,②32x =,③1124x =三个方程中,为“绝配方程”的是______(填写序号); (2)若关于x 的一元一次方程13288x x m ++=-化成ax b =后是“绝配方程”,求m 的值. 8.定义:对于一个有理数x ,我们把[]x 称作x 的对称数.若0x ≥,则[]2x x =-;若0x <,则[]2x x =+.例:[]1121=-=-,[]2220-=-+=.(1)求[]0,12⎡⎤-⎢⎥⎣⎦的值; (2)已知有理数0a >,0b <,且满足[][]1a b =-,试求代数式()22b a -的值; (3)解方程:[]321x x =-.。
第三章 一元一次方程 复习资料
第三章 一元一次方程一、知识梳理 1.方程(1)方程的定义:含有未知数的等式叫做方程.(2)方程的解:能够使方程左、右两边的值相等的未知数的值叫做方程的解. (3)解方程:求方程解的过程叫做解方程. 2.一元一次方程:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程. 3.解一元一次方程的步骤:①去分母,在方程的两边都乘以各分母的最小公倍数,注意不要漏乘不含分母的项,分子为多项式的要加上括号;②去括号,一般先去小括号,再去中括号,最后去大括号,注意不要漏乘括号里的项,当括号前是“-”时,去掉括号时注意括号内的项都要变号;③移项,将含有未知数的项移到方程的一边,不含未知数的项移到方程的另一边,注意移项要变号,移项和交换位置不同;④合并同类项,将同类项合并成一项,把方程化为ax=b (a ≠0) 的形式,注意只合并同类项的系数;⑤系数化为1,在方程ax=b 的两边都除以a ,求出方程的解x=ab ,注意符号,不要把方程ax=b 的解写成x=ba 。
4.列方程解应用题的步骤:(1)读题找相等关系:认真读题,理解题意,分清已知与未知,找出相等关系.(2)设出适当的未知数:根据问题的实际情况,设未知数可以直接设未知数,也可以间接设未知数.(3)列方程:根据问题中的一个相等关系列出方程. (4)解方程:解所列的方程,求出未知数的值.(5)写出所求解的答案:求到方程的解,要检验它是否符合实际意义,如果符合实际意义,要写出完整的答案. 5.实际问题的常见类型(1)利息问题:①相关公式:本金×利率×期数=利息(未扣税);②相等关系:本息=本金+利息.(2)利润问题:①相关公式:利润率=利润÷进价;②相等关系:利润=售价-进价.(3)等积变形问题:①相关公式:长方体的体积=长×宽×高;圆柱的体积=底面积×高. ②相等关系:变形前的体积=变形后的体积. (4)工程问题①数量关系:工作量=工作时间×工作效率.②相等关系:总工作量=各部分工作量的和.(5)行程问题:①相关数量关系:路程=时间×速度;②相等关系: (相遇问题)两者路程和=总路程;(追及问题)两者路程差=相距路程. 二、思想方法总结1.方程的思想:方程的思想就是把末知数看成已知数,让代替未知数的字母和已知数一样参与运算,这是一种很重要的数学思想,很多问题都能归结为方程来处理。
一元一次方程知识点汇总
一元一次方程知识点汇总【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次)的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等. 用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则 〔依据分配律:a (b+c )=ab+ac 〕1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a (或乘未知数的倒数),得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,找:明确各数量之间的关系;2. 设:设未知数(可分直接设法,间接设法), 表示出有关的含字母的式子;3. 列:根据题意列方程;4. 解:解出所列方程, 求出未知数的值;5. 检:检验所求的解是否是方程的解,是否符合题意;6. 答:写出答案(有单位要注明答案).七、有关常用应用题类型及各量之间的关系1. 和、差、倍、分问题(增长率问题): 增长量=原有量³增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现. 审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变(等积)为前提,是等量关系的所在.常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积.(2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积³高=S ²h =πr 2h②长方体的体积 V =长³宽³高=abc3. 劳力调配问题:从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量.这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题: 要正确区分“数”与“数字”两个概念, 同一个数字在不同数位上,表示的数值不同,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系列方程.列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和.(1)要搞清楚数的表示方法:一般可设个位数字为a ,十位数字为b ,百位数字为c ,十位数可表示为10b+a ,百位数可表示为100c+10b+a (其中a 、b 、c 均为整数,且0≤a ≤9, 0≤b ≤9, 1≤c ≤9).(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示.5. 工程问题(生产、做工等类问题):工作量=工作效率³工作时间 工作时间工作量工作效率= 工作效率工作量工作时间=合做的效率=各单独做的效率的和. 一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1.分析时可采用列表或画图来帮助理解题意。
初一数学一元一次方程知识点总结与例题练习
第一讲: 一元一次方程一、牢记概念1. 方程的概念: 方程是指含有未知数的等式。
2. 方程的解使方程左右两边的值相等的未知数的值, 叫做方程的解。
反过来, 已知方程的解, 则代入后, 方程左右两边的值相等(可以用于验算)3. 一元一次方程当一个方程中值含有一个未知数(元), 并且未知数的次数都是1, 这样的方程叫做一元一次方程。
4.等式的性质:(1) 等式两边加(或减)同一个数字(或式子), 结果仍相等。
(2) 等式两边乘同一个数, 或除以同一个不为0的数, 结果仍相等。
5. 解一元一次方程的一般步骤(1) 去分母: 方程两边同时乘以各项分母的最小公倍数;(2) 去括号: 可先去小括号, 再去中括号, 最后去大括号(也可以按照自己擅长的方式去括号);(3) 移项: 把含有未知数的项都移到等号的一边(通常是左边), 其他的常数项移到右边;移项的时候, 把某一项移动到等号的另外一边, 需要将该项原先的符号改变, 即“+”变为“-”, “-”变为“+”;(4) 合并同类项: 将含未知数的项和常数项都合并起来, 使得方程化成一般式的形式:(5) 系数化为1: 方程两边都除以未知数的系数a, 得到方程的解二、例题分析例1判断下列哪些是一元一次方程?(1)3+1=4 (2)2+5>3(3)5-3(4)3X+1=4(5)2X+5>3(6)5X-3(7)4X+2Y=6(8)72x +6=13(9)x 35-3=2(10)78-23=21X-3X (11)2x -3X=7(12)xy+3y=8例2解下列一元一次方程(1)3(x-2)=2-5(x-2) (2) 2x -13 =x+22+1(3) 143321=---m m (4)52221+-=--y y y三、练习(1) 3(1)2(2)23x x x +-+=+ (2) 3(2)1(21)x x x -+=--(3) 2x -13 =x+22 +1 (4) 12131=--x(5) x x -=+38 (6) 12542.13-=-x x(7) 310.40.342x x -=+ (8) 3142125x x -+=-(9) 31257243y y +-=- (10) 576132x x -=-+四、作业一. 填空题1.下列方程中, 解为-2的方程是( )A.3x-2=2xB.4x-1=2x+3C.3x+1=2x-1D.2x-3=3x+22. 下列变形式中的移项正确的是( )A.从5+x=12得x=12+5 B 、从5x+8=4x 得5x —4x=8C.从10x—2=4—2x得10x+2x=4+2D.从2x=3x—5得2x=3x—5=3x—2x=5 3.如果x=0是关于x的方程3x—2m=4的根, 则m的值是()A.2B.—2C.1D.—1二. 填空题1. 已知方程3x2n+3+5=0是一元一次方程, 则n=__________2. 若, 则x+y=___________3、设k为整数, 方程kx=4-x的解x为自然数, 则k=__________三、解下列方程(21)124362x x x-+--=(22)xx23231423=⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-(23) 112[(1)](1)223x x x--=-(24)27(3y+7)=2 -32y。
一元一次方程知识点
一元一次方程知识点
一元一次方程是指形式为ax + b = 0的方程,其中a和b是已
知实数,x是未知数。
以下是一元一次方程的关键知识点:
1. 方程的解:一元一次方程的解是使方程成立的数值。
解是方
程的根,可以通过解方程找到使方程成立的x的值。
2. 方程的系数:方程中的参数a和b是方程的系数。
它们是已知实数,决定方程的形式和解的特性。
系数a不能为0,否则方程将不再是一元一次方程。
3. 等式性质:一元一次方程中的等式性质成立。
即,方程两边同时加减、乘除一个数,仍保持相等。
通过利用等式性质,可以进行方程的
化简、合并同类项等操作。
4. 方程求解方法:解一元一次方程的常用方法有逆运算法和代入法。
逆运算法指通过逆向运算将方程转化为x = 某个数的形式,得到唯一解。
代入法指先假设一个解,将其代入方程,验证是否满足等式,若
满足则是方程的解。
5. 图形表示:一元一次方程可以通过图形来表示。
由于一元一次方程
的图像是一条直线,所以方程的解对应于直线与x轴的交点。
掌握了一元一次方程的相关知识,可以解决与实际问题有关的线
性关系的计算和分析,如求未知数的值、确定两个变量之间的关系等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程常见考点归纳
(一)、方程及一元一次方程的概念:
1、下列说法中,正确的是( )
A .方程是等式
B .等式是方程
C .含有字母的式子是方程
D .代数式是方程
2、下面的等式中,是一元一次方程的为( )
A .3x +2y =0
B .3+m =10
C .2(3P-2)=20+2(3P-2) D.x 2+2=10x
3、写出一个满足下列条件的一元一次方程:①某个未知数的系数是2;②方程的解是3;
这样的方程是 。
4、如果4x 2+3x -5=kx 2-20 x +20k 是关于x 的一元一次方程,那么k = ,方程的解是
5、已知关于X 的方程(m-2)x
|m|-1+2=0是一元一次方程,则m=
6、如果4x 2+3x -5=kx 2-20 x +20 k 是关于x 的一元一次方程,那么k = ,方程的解是
7、已知关于X 的方程(m-2)x
|m|-1+2=0是一元一次方程,则m=
(二)、方程的解:
1、下列等式一定成立的是( )
A. 若ac =bc ,则a =b
B. 若a 2=b 2,则a =b
2、已知方程mx +2=2(m -x )的解满足021=-
x ,则m 的值为____.
3、当m = __________时,方程
的解为.
4、如果06312=+--a x
是一元一次方程,那么=a ,方程的解为=x
5、.当m 为何值时,关于x 的方程3x+m=2x+7的解比关于x 的方程4(x −2)=3(x+m)的解大9?
(三)、解方程:
(1)、x x 4.033.04-=- (2)、 253231+=-x x
(3)、 )1(7)12(3)2(4x x x -=---
(4)、32)]4(212[+=--+x x x
(5)、23-x -31
2+
x =1 (6)
、52221+-=--y y y
(7)、38
316.036.13.0.2+=--x x x x
(8)、x x =-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-82143223
(9)、 )
16(316)1(58
45+=⎥⎦⎤⎢⎣⎡+-x x (10)、5.09.04.0+x =25-x +03.002.003.0x +;
(四)一元一次方程的应用:
1、若单项式-3a
x +1b 4与9a 2x -1b 4 的和仍是单项式,则x =______.
2、x 为何值时,代数式4x+3与7x-6的值(1)x= 时,两代数式相等;
(2)x= 时,两代数式 互为相反数。
3、如果代数式-2x +6与12互为倒数,则x 的值是
3、当x =________时,)23(5x -与)23(4-x 互为相反数.
4、小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是 ,怎么办呢?小明想了一想便翻了书后答案,此方程的解是3
5-
=y ,很快补好了这个常数,
这个常数是( )
A. 1
B.2
C. 3
D. 4
5、m 为何值时,代数式3152--
m m 的值与代数式2
7m -的值的和等于5?
(五)、列方程: 1、根据条件列出方程(设某数为x )
(1)某数的2倍与它的
41的和等于16; (2)某数的65﹪与-2的差等于它的 53 ; (3)某数减去3再乘以2,等于某数加上15;
(4)已知某数的3倍比17少2;
(5)某数的3倍比这个数本身大2;
2、若两数和为15,它们的差等于3,求这两个数各是多少?
设较大的数为x ,则根据题意可得方程 。
3、 已知甲数比乙数的2倍大1,如果设甲数为x ,那么乙数可表示为 ;
如果设乙数为y ,那么甲数可表示为
4、 某工厂预计今年比去年增产15﹪,达到年产量60万吨,设去年的年产量为x 万吨,
则可列方程 ;
5、李强爸爸现年36岁,李强现年8岁,x 年前,父亲的年龄是儿子年龄的10倍,则x 应满足的方程是( )
6、做一批零件,如果每天做8个,将比每天做6个提前1天完成,这批零件共有______个.
7、一家商店将一种自行车按进价提高45%后标价,又以七折优惠卖出,结果每辆仍获利50元,这种自行车每辆的
进价是多少元?若设这种自行车每辆的进价是x 元,那么所列方程为( )
A .45%×(1+80%)x -x =50
B .80%×(1+45%)x -x =50
C .x -80%×(1+45%)x =50
D .80%×(1-45%)x -x =50
8、某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程 ( )
A.26222⨯=+x
B.)26(222x x -=+
C.x x -=+26)22(2
D.)26(222x -=
9、小明用50元钱购买了面值为1元和2元的邮票共30张,他买了多少张面值为1元的邮票?
若设小明买了x 张面值为1元的邮票,则可列方程
10、某市出租车的收费标准是:起步价为8元,起步里程为3km(3km 以内按起步价付费) ,3km 后每千米收2元.某
人乘出租车从甲地到乙地共付费16元,求甲、乙两地的路程.若设甲乙距离为xkm ,则可列方程
11、一个长方形的周长长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为x
cm ,可列方程是( )
A.2)26(1+-=-x x
B.2)13(1+-=-x x C.2)26(1--=+x x
D.2)13(1--=+x x
14.某商场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利
润率是15%,共获利278元,问甲、乙两种商品各购进多少件?若设甲商品有X 件,则可列出方程: 15、甲、乙、丙三数之比为2:3:7,这三个数的和为48,求这三个数,则甲数为___ __,乙数为___ ____,
丙数为 _ _____
16、一项工作,甲队独做10天可以完成,乙队独做15天可以完成,若两队合作完成这项工作需要的天数是
( ).
A. 25
B. 12.5
C. 6
D. 不确定
17、小明读一本科普书,第一天读了全书的13 多2页,第二天读了剩下的 12
少1页,这时还剩下38页没有读完. 这本书共有 页.
18、小华的妈妈为爸爸买了一件衣服和一条裤子,共用306元.其中衣服按标价打七折,裤子按标价打八折,衣服
的标价为300元,则裤子的标价为 元.
19、一项工程,A 独做10天完成,B 独做15天完成.若A 先做5天,再A 、B 合做,要完成全部工程的三分之二,
还需______天.
20、某水池有甲进水管和乙出水管,已知单开甲注满水池需6h ,单开乙管放完全池水需要9h ,当同时开放甲、乙
两管时需要 h 水池水量达全池的13。
21、一个两位数,个位上的数字与十位上的数字的和为13,若把个位上的数字与十位上的数字对调,则所得的数比
原数的2倍小4,求原来的两位数.若设原来两位数个位数字为x ,则可列方程为
22、《九章算术》是中国传统数学最重要的著作之一,其中记载:“今有共买物人出八,盈三;人出七,不足四问
人数、物价各几何?”译文:“几个人去购买物品,如果每人出 8 钱,则剩余 3 钱;如果每人出 7 钱,则差 4 钱问有多少人,物品的价格是多少”?设有 m 人,物品价格是 n 钱,下列四个等式:
A.①②B.②④ C.②③ D.③④。