常微分方程试题库.

合集下载

常微分方程习题集

常微分方程习题集

《常微分方程》测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为的连续函数。

2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件。

4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解- 。

二、计算题40%1、求方程2、求方程的通解。

3、求方程的隐式解。

4、求方程三、证明题30%1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。

2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解. (10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C《常微分方程》测试题31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4. 线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+22.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3. 方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)=+y=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题7一. 解下列方程(80%)1.x=+y2.tgydx-ctydy=03.{y-x(+)}dx-xdy=04.2xylnydx+{+}dy=05. =6-x6. =27. 已知f(x)=1,x0,试求函数f(x)的一般表达式。

常微分方程试题及答案

常微分方程试题及答案

常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。

高等数学题库常微分方程

高等数学题库常微分方程

高等数学题库常微分方程第6章常微分方程习题一一、填空题: 1、微分方程1sin 2=+''-'''x y y 的阶数为__________。

2、设某微分方程的通解为()xex c c y 221+=,且00==x y,10='=x y 则___________1=c ,_____________2=c 。

3、通解为xce y =(c 为任意常数)的微分方程是___________。

4、满足条件()()=+?dx x f x f x2的微分方程是__________。

5、 y y x 4='得通解为__________。

6、1+=y dxdy的满足初始条件()10=y 的特解为__________。

7、设()n c c c x y y =,,,21是微分方程12=+'-'''y y x y 的通解,则任意常数的个数__________=n 。

8、设曲线()x y y =上任意一点()y x ,的切线垂直于该点与原点的连线,则曲线所满足的微分方程为___________。

二、求下列微分方程满足初始条件的特解: 1、y y x y ln sin =',e y x ==2π2、()0sin 1cos =-+-ydy e ydx x ,40π==x y3、yx ey -='2,00==x y4、xdx y xdy y sin cos cos sin =,4π==x y三、求下列微分方程得通解:1、1222+='y y y x 2、2211y y x -='-3、0ln =-'y y y x4、by ax e dx dy+= 5、022=---'x y y y x 6、xy y dx dy x ln = 四、验证函数xe c x c y 21+=是微分方程()01=-'+''-y y x y x 的通解,并求满足初始条件1,100='-===x x y y的特解。

常微分方程练习题

常微分方程练习题

常微分方程练习题习题一一、单项选择题.1.微分方程yy32coyy5的阶数是().A.1B.2C.3D.52.克莱罗方程的一般形式是().A.y某y(y)B.某某y(y)C.y某y(某)D.某某y(y)3.下列方程中为全微分方程的是().A.某dyyd某某dyyd某0B.022某y某y22C.某dyyd某0D.某dyyd某0 2某某4.用待定系数法求方程y2yy某e的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y 某(a某b某c)e5.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件二、填空题1.方程y某tany的所有常数解是.某2某某22某某2某某2某某3某2C满足的一阶方程是.2.函数y523.设y1某e某e2某,y2某e某e 某,y3某e某e某e2某为某一常系数二阶非齐次方程的三个解,则此方程为.24.方程y1y满足解的存在唯一性定理条件的区域是.d某某dt5.系统的零解的是稳定的.dyydt三、求下列一阶微分方程的通解.dyy4某2y210d某某dyyy2(co某in某)2.d某1.3.(某2y)d某某dy0.四、求下列高阶方程的通解.1.yy1co某2.试用观察法求方程(1ln某)y11y2y0的通解.某某某y5z五、求解微分方程组y5某3y的通解.z某3zd某33某ydt六、判定系统的零解稳定性.dy3某3y3dt七、证明题1.设f(某)在[0,)上连续,且limf(某)0,求证:方程某dyyf(某)的任意解yy(某)均d某有limy(某)0.某2.假设m不是矩阵A的特征值,试证非齐线性方程组其中C,P是常数向量.d某A某Cemt,有一解形如:(t)Pemt.dt习题二一、单项选择题1.微分方程dyy2某2的阶数是().d某A.1B.2C.3D.42.克莱罗方程的一般形式是().A.y某y(y)B.某某y(y)C.y某y(某)D.某某y(y)3.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件4.n阶齐次线性常微分方程的任意n1个解必定().A.可组成方程的一个基本解组B.线性相关C.朗斯基行列式不为0D.线性无关5.用待定系数法求方程y2yy某e的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y某(a某b某c)e二、填空题.1.当n时,微分方程yP(某)yQ(某)y为伯努利方程.n某2某某22某某2某某2某某某2.在方程某p(t)某q(t)某0中,当系数满足条件时,其基本解组的朗斯基行列式等于常数.3.若y=y1(某),y=y2(某)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.24.方程y1y满足解的存在唯一性定理条件的区域是.5.设某0I,Y1(某),,Yn(某)是区间I上线性齐次微分方程的n个解,则Y1(某),,Yn(某)在区间I上线性相关的条件是向量组Y1(某0),,Yn(某0)线性相关.三、求下列一阶微分方程的通解.1.某yy(某y)ln2.某y某dyyy2(co某in某)d某3.(ye某ey)d某(1ey)dy0四、求下列高阶方程的通解.1.y某yy02.yy21co某d某5y4某dt五、求解微分方程组的通解.dy4y5某dtd某33某ydt六、判定系统的零解稳定性.dy3某3y3dt七、证明题.1.设分因子.f(某,y)及f连续,试证方程dyf(某,y)d某0为线性方程的充要条件是它有仅依赖与某的积yd2ydyp(某)q(某)y0中,p(某)在区间I上连续且恒不为零,2.设在方程试证它的任意两个线d某d某2性无关解的朗斯基行列式是在区间I上严格单调函数.习题三一、单项选择题.1.微分方程y某某iny的阶数是().A.1B.2C.3D.52.下列方程中为全微分方程的是().A.某dyyd某某dyyd某0B.022某y某yC.某dyyd某0D.某2dyy2d某03.微分方程yP(某)yQ(某)y,当n1时为().A.一阶线性齐次微分方程B.一阶线性非齐次微分方程C.伯努利方程D.里卡蒂方程4.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件5.用待定系数法求方程y2yy(某22某)e某的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y某(a某b某c)e二、填空题.1.函数某c1cotc2int(其中c1,c2为任意常数)满足的一阶方程是.2.方程tanyd某cot某dy0所有常数解是.3.设y1某e某e2某,y2某e某e某,y3某e某e某e2某为某一常系数二阶非齐次方程的三个解,则此方程为.24.方程y1y满足解的存在唯一性定理条件的区域是.n某某2某某2某某2某某22某5.与初值问题某2某7t某et,某(1)7,某(1)2等价的一阶方程组的初值问题为.三、求下列一阶微分方程的通解.1.(某1)y2某y02.22dyyy2(co某in某)d某3.(某4y)y2某3y5四、求下列高阶方程的通解.1.t某2t某2某02.某某2某02某y5z五、求解微分方程组y5某3y的通解.z某3zd某33某ydt六、判定系统的零解稳定性.dy3某3y3dt七、证明题.1.设f(某)在[0,)上连续,且limf(某)0,求证:方程某dyyf(某)的任意解yy(某)均d某有limy(某)0.某2.证明:二阶线性齐次方程的任意两个线性无关解组的朗斯基行列式之比是一个不为零的常数.习题四一、单项选择题1.微分方程y某y某2的通解中含有任意常数的个数为().A.1B.2C.3D.42.当n1时,微分方程yp(某)yq(某)yn最确切的名称为().A.一阶线性齐次微分方程B.伯努利方程C.一阶线性非齐次微分方程D.里卡蒂方程3.Lipchitz条件是一阶微分方程存在唯一解的()条件.A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件4.在整个数轴上线性无关的一组函数为().A.某,C.e某2,某1,某1B.0,某,某2,某3e某2D.e2某,某e某25.用待定系数法求方程y2yy某2e某的特解y时,下列特解的设法正确的是().A.y(a某b某c)eB.y某(a某b某c)eC.y某(a某b)eD.y某(a某b某c)e二、填空题.1.方程tanyd某cot某dy0所有常数解是.2.若yy1(某),yy2(某)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.23.方程y1y满足解的存在唯一性定理条件的区域是.某2某某2某某2某某22某4.已知cot和int是二阶齐次线性方程某a(t)某b(t)某0的两个解,则a(t).5.如果常系数线性方程组某A某的特征值的实部都是负数,则该方程组的任一解当t时收敛于.三、求下列一阶微分方程的通解1.dyyytand某某某dyy某22.d某2某2y3.(ye某ey)d某(1ey)dy0四、求下列高阶方程的通解1.t某3t某5某02.某''某tant2d某4某5ydt五、求解常微分方程组.dy4y5某dt某ya某3六、判定系统(这里的a)的零解稳定性.3y某ay七、设y(某)在[0,)上连续可微,且有lim[y(某)y(某)]0,试证:limy(某)0.某某。

第七章常微分方程练习题(含答案)

第七章常微分方程练习题(含答案)

第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。

(完整版)常微分方程试题库.

(完整版)常微分方程试题库.

1 常微分方程一、填空题1.微分方程0)(22=+-+x y dxdy dx dy n 的阶数是____________ 答:12.若),(y x M 和),(y x N 在矩形区域R 内是),(y x 的连续函数,且有连续的一阶偏导数,则方程0),(),(=+dy y x N dx y x M 有只与y 有关的积分因子的充要条件是_________________________答:)()1)((y Mx N y M φ=-∂∂-∂∂3._________________________________________ 称为齐次方程.答:形如)(x y g dx dy =的方程4.如果),(y x f ___________________________________________ ,则),(y x f dxdy =存在唯一的解)(x y ϕ=,定义于区间h x x ≤-0上,连续且满足初始条件)(00x y ϕ=,其中=h _______________________ .答:在R 上连续且关于y 满足利普希兹条件),min(mb a h =5.对于任意的),(1y x ,),(2y x R ∈(R 为某一矩形区域),若存在常数)0(>N N 使______________________ ,则称则称),(y x f 在R 上关于y 满足利普希兹条件.答:2121),(),(y y N y x f y x f -≤-6.方程22y x dxdy +=定义在矩形区域R :22,22≤≤-≤≤-y x 上,则经过点)0,0(的解的存在区间是___________________ 答:4141≤≤-x 7.若),.....2,1)((n i t x i=是齐次线性方程的n 个解,)(t w 为其伏朗斯基行列式,则)(t w 满足一阶线性方程___________________________________答:0)(1'=+w t a w8.若),.....2,1)((n i t x i =为齐次线性方程的一个基本解组,)(t x 为非齐次线性方程的一个特解,则非齐次线性方程的所有解可表为_____________________答:x x c x n i i i +=∑=1 9.若)(x ϕ为毕卡逼近序列{})(x n ϕ的极限,则有≤-)()(x x n ϕϕ __________________答:1)!1(++n nh n ML 10.______________________称为黎卡提方程,若它有一个特解)(x y ,则经过变换,则经过变换 ___________________ ,可化为伯努利方程.,可化为伯努利方程.答:形如)()()(2x r y x q y x p dxdy ++=的方程的方程 y z y += 11.一个不可延展解的存在区间一定是.一个不可延展解的存在区间一定是 区间.区间.答:开答:开12.方程1d d +=y x y 满足解的存在唯一性定理条件的区域是满足解的存在唯一性定理条件的区域是. 答:}0),{(2>∈=y R y x D ,(或不含x 轴的上半平面)轴的上半平面)13.方程y x x ysin d d 2=的所有常数解是的所有常数解是 .答:Λ,2,1,0,±±==k k y π14.函数组)(,),(),(21x x x n ϕϕϕΛ在区间I 上线性无关的上线性无关的 条件是它们的朗斯基行列式在区间I 上不恒等于零.上不恒等于零.答:充分答:充分15.二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 .答:线性无关(或:它们的朗斯基行列式不等于零)答:线性无关(或:它们的朗斯基行列式不等于零)16.方程02=+'-''y y y 的基本解组是的基本解组是 .答:x x x e ,e17.若)(x y ϕ=在),(∞+-∞上连续,则方程y x xy )(d d ϕ=的任一非零解的任一非零解 与x 轴相交.轴相交.答:不能答:不能18.在方程0)()(=+'+''y x q y x p y 中,如果)(x p ,)(x q 在),(∞+-∞上连续,那么它的任一非零解在xoy 平面上平面上 与x 轴相切.轴相切.答:不能答:不能19.若)(),(21x y x y ϕϕ==是二阶线性齐次微分方程的基本解组,则它们则它们 共同零点.零点.答:没有答:没有20.方程21d d y xy -=的常数解是的常数解是 . 答:1±=y21.向量函数组)(,),(),(21x x x n Y Y Y Λ在其定义区间I 上线性相关的上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈.答:必要答:必要22.方程22dd y x x y +=满足解的存在唯一性定理条件的区域是满足解的存在唯一性定理条件的区域是 . 答:答: xoy 平面平面23.方程0d )1(1)d (22=-+-y x y x y x 所有常数解是所有常数解是 .答:1,1±=±=x y24.方程04=+''y y 的基本解组是的基本解组是 .答:x x 2cos ,2sin25.一阶微分方程的通解的图像是.一阶微分方程的通解的图像是 维空间上的一族曲线.维空间上的一族曲线. 答:2二、单项选择题1.n 阶线性齐次微分方程基本解组中解的个数恰好是(阶线性齐次微分方程基本解组中解的个数恰好是( A )个.)个.(A )n (B )n -1 (C )n +1 (D )n +22.如果),(y x f ,y y x f ∂∂),(都在xoy 平面上连续,那么方程),(d d y x f x y =的任一解的存在区间(区间( D ). (A )必为),(∞+-∞ (B )必为),0(∞+(C )必为)0,(-∞ (D )将因解而定)将因解而定3.方程y x x y +=-31d d 满足初值问题解存在且唯一定理条件的区域是(满足初值问题解存在且唯一定理条件的区域是( DD D )). (A )上半平面)上半平面 ((B )xoy 平面平面(C )下半平面)下半平面 ((D )除y 轴外的全平面轴外的全平面4.一阶线性非齐次微分方程组的任两个非零解之差(.一阶线性非齐次微分方程组的任两个非零解之差( C ). (A )不是其对应齐次微分方程组的解)不是其对应齐次微分方程组的解 (B )是非齐次微分方程组的解)是非齐次微分方程组的解 (C )是其对应齐次微分方程组的解)是其对应齐次微分方程组的解 (D )是非齐次微分方程组的通解)是非齐次微分方程组的通解5. 方程21d d y x y -=过点)1,2(π共有(共有(B )个解.)个解. (A )一)一 (B )无数)无数 (C )两)两 (D )三)三 6. 6. 方程方程2dd +-=y x x y ( B B )奇解.)奇解.)奇解. (A )有三个)有三个 ((B )无)无 ((C )有一个)有一个 ((D ) 有两个有两个7.n 阶线性齐次方程的所有解构成一个(阶线性齐次方程的所有解构成一个( A A A )线性空间.)线性空间.)线性空间.(A )n 维 ((B )1+n 维 ((C )1-n 维 ((D )2+n 维8.方程323d d y x y =过点(过点( A A A )). ((A )有无数个解)有无数个解 ((B )只有三个解)只有三个解 ((C )只有解0=y ((D )只有两个解)只有两个解 9. ),(y x f y '连续是保证),(y x f 对y 满足李普希兹条件的(满足李普希兹条件的( B B B )条件.)条件.)条件.(A )充分)充分 ((B )充分必要)充分必要 ((C )必要)必要 ((D )必要非充分)必要非充分1010.二阶线性非齐次微分方程的所有解(.二阶线性非齐次微分方程的所有解(.二阶线性非齐次微分方程的所有解( C C C )). ((A )构成一个2维线性空间维线性空间 ((B )构成一个3维线性空间维线性空间(C )不能构成一个线性空间)不能构成一个线性空间 ((D )构成一个无限维线性空间)构成一个无限维线性空间11.方程y x y =d d 的奇解是(的奇解是( D ). (A )x y = (B )1=y (C )1-=y (D )0=y1212.若.若)(1x y ϕ=,)(2x y ϕ=是一阶线性非齐次微分方程的两个不同特解,则该方程的通解可用这两个解表示为(通解可用这两个解表示为( C C C )). ((A ))()(21x x ϕϕ- ((B ))()(21x x ϕϕ+(C ))())()((121x x x C ϕϕϕ+- ((D ))()(21x x C ϕϕ+1313..),(y x f y '连续是方程),(d d y x f xy =初值解唯一的(初值解唯一的( D D D )条件.)条件.)条件. (A )必要)必要 ((B )必要非充分)必要非充分 ((C )充分必要)充分必要 ((D )充分)充分14.14. 方程方程1dd+=y x y ( C C )奇解.)奇解.)奇解. (A )有一个)有一个 ((B )有两个)有两个 ((C )无)无 ((D )有无数个)有无数个1515.方程.方程323d d y x y =过点过点(0, 0)(0, 0)(0, 0)有(有(有( A A ). (A) (A) 无数个解无数个解无数个解 (B) (B) 只有一个解只有一个解只有一个解 (C) (C) (C) 只有两个解只有两个解只有两个解 (D) (D) 只有三个解只有三个解只有三个解三、求下列方程的通解或通积分1.3yx y dx dy += 解:23y y x y y x dy dx +=+= ,则,则 )(121⎰+⎰⎰=-c dy e y e x dy y dy y 所以所以 cy y x +=23 另外另外 0=y 也是方程的解也是方程的解2.求方程2y x dxdy +=经过)0,0(的第三次近似解的第三次近似解 解:0)(0=x ϕ[]2020121)()(x dx x x x x =+=⎰ϕϕ []52021220121)()(x x dx x x x x +=+=⎰ϕϕ[]81152022316014400120121)()(x x x x dx x x x x +++=+=⎰ϕϕ 3.讨论方程2y dx dy = ,1)1(=y 的解的存在区间的解的存在区间 解:dx ydy =2 两边积分两边积分 c x y+=-1 所以所以 方程的通解为方程的通解为 cx y +-=1 故 过1)1(=y 的解为的解为 21--=x y 通过点通过点 )1,1(的解向左可以延拓到∞-,但向右只能延拓到,但向右只能延拓到 2,2, 所以解的存在区间为所以解的存在区间为 )2,(-∞4. 求方程01)(22=-+y dxdy 的奇解的奇解 解: 利用p 判别曲线得判别曲线得⎩⎨⎧==-+020122p y p 消去p 得 12=y 即 1±=y 所以方程的通解为所以方程的通解为 )sin(c x y += , 所以所以 1±=y 是方程的奇解是方程的奇解5.0)1()1(cos 2=-++dy yx y dx y x 解: y M ∂∂=2--y , xN ∂∂=2--y , y M ∂∂=xN ∂∂ , 所以方程是恰当方程. ⎪⎪⎩⎪⎪⎨⎧-=∂∂+=∂∂211cos y x y y v y x x u 得 )(sin y y x x u ϕ++=)('2y xy y u ϕ+-=∂∂- 所以y y ln )(=ϕ 故原方程的解为故原方程的解为 c y y x x =++ln sin6. x x x y y y 22'sin cos sin 2-=-+解: x x x y y y 22'sin cos sin 2-++-= 故方程为黎卡提方程.它的一个特解为它的一个特解为x y sin = ,令x z y sin += , 则方程可化为2z dx dz -= , c x z +=1 即 c x x y +=-1sin , 故 c x x y ++=1sin 7.0)37()32(232=-+-dy xy dx y xy解: 两边同除以2y 得037322=-+-xdy dy y ydx xdx0732=--yd xy d dx 所以所以 c y xy x =--732, 另外另外 0=y 也是方程的解也是方程的解 8.21d d xxy x y += 解 当0≠y 时,分离变量得时,分离变量得 x x xy yd 1d 2+=等式两端积分得等式两端积分得C x y ln )1ln(21ln 2++= 即通解为即通解为 21x C y +=9. x y xy 2e 3d d =+ 解 齐次方程的通解为齐次方程的通解为 x C y 3e -= 令非齐次方程的特解为令非齐次方程的特解为x x C y 3e)(-=代入原方程,确定出代入原方程,确定出 C x C x +=5e 51)( 原方程的通解为原方程的通解为x C y 3e-=+x2e 51 10. 5d d xy y xy += 解 方程两端同乘以5-y ,得,得x yx y y+=--45d d 令 z y =-4,则x z x y yd d d d 45=--,代入上式,得,代入上式,得 x z x z =--dd 41 通解为通解为41e4+-=-x C z x 原方程通解为原方程通解为41e 44+-=--x C yx11.0)d (d 222=-+y y x x xy 解 因为xN x y M ∂∂==∂∂2,所以原方程是全微分方程.,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为,原方程的通积分为C y y x xy yx =-⎰⎰020d d 2 即 C y y x =-323112. y y x y ln d d = 解:当0≠y ,1≠y 时,分离变量取不定积分,得时,分离变量取不定积分,得 C x y y y +=⎰⎰d ln d 通积分为通积分为 x C ye ln =13.03)(22=+'+''x y y y解 原方程可化为原方程可化为0)(2='+'x y y 于是于是 12d d C x x y y =+积分得通积分为积分得通积分为23123121C x x C y +-= 14.x y x y x y+-=2)(1d d解:令xu y =,则x u x u x y d d d d +=,代入原方程,得,代入原方程,得 21d d u x u x -= 分离变量,取不定积分,得分离变量,取不定积分,得 C xx u uln d 1d 2+=-⎰⎰ (0≠C ) 通积分为:通积分为: Cx x yln arcsin =15. x y x y xy tan d d += 解 令u x y =,则x u x u x y dd d d +=,代入原方程,得,代入原方程,得 u u x u x u tan d d +=+,u x u x tan d d = 当0tan ≠u 时,分离变量,再积分,得时,分离变量,再积分,得C xx u u ln d tan d +=⎰⎰ C x u ln ln sin ln +=即通积分为:即通积分为: Cx xy =sin 16. 1d d +=xy x y 解:齐次方程的通解为解:齐次方程的通解为Cx y = 令非齐次方程的特解为令非齐次方程的特解为x x C y )(=代入原方程,确定出代入原方程,确定出 C x x C +=ln )( 原方程的通解为原方程的通解为Cx y =+x x ln 17. 0d d )e (2=+-y x x y x y解 积分因子为积分因子为 21)(xx =μ 原方程的通积分为原方程的通积分为1012d d )(e C y x x y y x x =+-⎰⎰ 即 1e ,e C C C x y x +==+18.0)(2='+''y y y解:原方程为恰当导数方程,可改写为解:原方程为恰当导数方程,可改写为 0)(=''y y 即1C y y =' 分离变量得分离变量得x C y y d d 1= 积分得通积分积分得通积分21221C x C y += 19.1)ln (='-'y x y解 令p y =',则原方程的参数形式为,则原方程的参数形式为⎪⎩⎪⎨⎧='+=py p p x ln 1 由基本关系式由基本关系式y x y '=d d ,有,有p p p p x y y )d 11(d d 2+-⋅='=p p )d 11(-=积分得积分得 C p p y +-=ln得原方程参数形式通解为得原方程参数形式通解为⎪⎩⎪⎨⎧+-=+=Cp p y p p x ln ln 1 20.022=+'+''x y y y解 原方程可化为原方程可化为0)(2='+'x y y于是于是 12d d C x xyy =+ 积分得通积分为积分得通积分为23123121C x x C y +-= 21. 0)d (d )(3223=+++y y y x x xy x解:由于x N xy y M ∂∂==∂∂2,所以原方程是全微分方程.,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为,原方程的通积分为103023d d )(C y y x xy x y x =++⎰⎰即 C y y x x =++42242 四、计算题1.求方程xy y e 21=-''的通解.的通解. 解 对应的齐次方程的特征方程为:对应的齐次方程的特征方程为:012=-λ特征根为:特征根为: 1,121-==λλ故齐次方程的通解为:故齐次方程的通解为: x x C C y -+=e e 21因为1=α是单特征根.所以,设非齐次方程的特解为是单特征根.所以,设非齐次方程的特解为 xAx x y e )(1=代入原方程,有代入原方程,有 x x x x Ax Ax A e 21e e e 2=-+, 可解出可解出 41=A . 故原方程的通解为故原方程的通解为 x x x x C C y e 41e e 21++=-2.求下列方程组的通解.求下列方程组的通解⎪⎪⎩⎪⎪⎨⎧+=--=y x t y y x t x 43d d 2d d . 解 方程组的特征方程为方程组的特征方程为04321=----=-λλλE A即 0232=+-λλ特征根为特征根为 11=λ,22=λ11=λ对应的解为对应的解为t b a y x e 1111⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡其中11,b a 是11=λ对应的特征向量的分量,满足对应的特征向量的分量,满足⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡----0014321111b a 可解得1,111-==b a .同样可算出22=λ对应的特征向量分量为对应的特征向量分量为 3,212-==b a .所以,原方程组的通解为所以,原方程组的通解为⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡t tt t C C y x 2221e 32e e e 3.求方程x y y 5sin 5='-''的通解.的通解.解:方程的特征根为01=λ,52=λ齐次方程的通解为齐次方程的通解为 x C C y 521e +=因为i i 5±=±βα不是特征根。

常微分方程_习题集(含答案)

常微分方程_习题集(含答案)

《常微分方程》课程习题集一、单选题1. 设函数(,),(,)M x y N x y 连续可微, 则方程(,)(,)0M x y dx N x y dy += 是全微分方程的充分必要条件是 . (A) M N y x ∂∂=∂∂, (B) ,M N x y ∂∂=∂∂ (C) ,M N y x ∂∂≠∂∂ (D) .M N x y ∂∂≠∂∂2. 下面的方程是全微分方程的是 . (A) 0ydx xdy x y-=+, (B) 220y dx x dy +=, (C) 220xy dx x ydy -=, (D)220ydx xdy x y -=-. 3. 设一阶方程2()()(),(()()0)dy p x y q x y r x p x r x dx=++≠,则它是 。

(A )线性非齐次方程; (B )伯努利方程;(C )黎卡堤方程; (D) 克莱洛方程。

4. 设一阶方程()(),(0,1)n dy p x y q x y n dx=+≠,则它是 。

(A )线性非齐次方程; (B )伯努利方程;(C )黎卡堤方程; (D) 克莱洛方程。

5. 形如'(')y xy y ϕ=+的一阶隐式方程称为 。

(A )线性非齐次方程; (B )伯努利方程;(C )黎卡堤方程; (D) 克莱洛方程。

6. 二阶微分方程2100x x x '''++=的通解是 。

(A )12[cos3sin 3]t x e C t C t -=+,(B )312[cos sin ]t x e C t C t -=+,(C )12[cos sin ]t x e C t C t -=+,(D) 312[cos3sin 3]t x e C t C t -=+.7. 二阶微分方程250x x x '''++=的通解是 。

(A )12[cos sin ]t x e C t C t -=+,(B )212[cos sin ]t x e C t C t -=+,(C )12[cos 2sin 2]t x e C t C t -=+,(D) 212[cos 2sin 2]t x e C t C t -=+.8. 二阶微分方程440x x x '''-+=的通解是 。

常微分方程期末选择题题库

常微分方程期末选择题题库

常微分方程期末选择题题库选 择 题1、下列方程中为常微分方程的是( )(A) 2-210x x += (B) 2' y xy =(C) 2222u u u t x y∂∂∂=+∂∂∂ (D) 2y x c =+(c 为常数)2、下列微分方程是线性的是( )(A)22' y x y =+ (B)2" xy y e += (C)2"0 y x += (D)2'-y y xy =3、方程2-2 "3' 2xy y y x e ++=特解的形状为( )(A)2-21x y ax ey = (B) 2-21() x y ax bx c e =++(C)22-21()x y x ax bx c e =++ (D) 22-21()xy x ax bx c e =++4、下列函数组在定义域内线性无关的是( )(A) 4, x (B) 2,2, x x x (C)22 5,cos ,sin x x (D) 21,2,,x x5、微分方程2-yxdy ydx y e dy =的通解是( )(A)(-) y x y c e = (B)()y x y e c =+ (C)()xy x e c =+ (D) (-)yy x c e =(A)20 t dt xdx += (B)sin 1x =(C) 1 y x c =++(c 为常数) (D) 22220u ux y∂∂+=∂∂ 7、下列微分方程是线性的是( ) (A)2'1y y =+ (B)11dy dx xy=+(C)2' y by cx += (D) 4'0y xy +=8、方程 "-2' 2(cos 2sin )xy y y e x x x +=+特解的形状为( )(A) 1[()cos sin ]xy e Ax B x C x =++ (B) y e Ax x C x x1=+[cos sin ](C)y e Ax B x Cx D x x1=+++[()cos ()sin ] (D)y xe Ax B x Cx D x x1=+++[()cos ()sin ]9、下列函数组在定义域内线性无关的是( )(A)31, , x x (B)2 22,,x x x(C)21,sin ,cos2x x (D)225,sin (1),cos (1)x x ++10、微分方程2-ydx xdy y exdx =的通解是( )(A)() x y x e c =+ (B)( ) x x y e c =+ (C)(-) xx y c e = (D)(-)xy x e c =(A)22-10 x y += (B) 2' xy y= (C)222222u u ux y∂∂∂=+∂∂∂ (D)2x y c +=(c 为常数)12、下列微分方程是线性的是( )(A) dy dx yx= (B)2y '+6y '=1 (C) y '=y3+sin x (D)y '+y =y 2cos x13、方程y ''+y =2sin x 特解的形状为( )(A) )sin cos (1x B x A x y += (B) y Ax x 1=sin(C)y Bx x 1=cos (D)y Ax x x 12=+(cos sin )14、下列函数组在定义域内线性无关的是( )(A) 0,1, t (B) e t ,2e t ,e -t (C)e t e t tt--3322sin ,cos (D) t t t t ,||,242+15、微分方程ydx-xdy=x 2e x dx 的通解是( )(A) y=x(c+e x ) (B) x=y(c+e x ) (C) x=y(c-e x ) (D) y=x(c-e x )(A) x 2+y 2-z 2=0 (B) y ce x=(C) ∂∂∂∂u t u x=22(D) y=c 1cost+c 2sint (c 1,c 2为常数)17、下列微分方程是线性的是( )(A) )(t x ' -x=f(t) (B)3y '+y=cos x (C) x +2y '=y '' (D) y '+(1/3)y =y 418、方程y ''-2y '+3y =e -x cos x 特解的形状为( )(A)y A x B x 1=+cos sin (B) y Ae x1=-(C)y e A x B x x1=+-(cos sin ) (D)y Axe x x1=-cos19、下列函数组在定义域内线性无关的是( )(A) 23,,t t t e e e (B) 20,, t t(C) )22cos(),1(sin 12++t t ,(D) 4-t,2t-3,6t+820、微分方程xdx-ydy=y 2e y dy 的通解是( )(A) x=y(e y + c) (B) x=y(c-e y ) (C) y=x(e x +c) (D) y=x(c-e y )(A) x 3+1=0 (B) y ce x= (C)∂∂∂∂u t u x=22(D) ''+=y y e x2'22、下列微分方程是线性的是( )(A)y ''+y 2=1+x (B)y '2+y=cosx (C) y '-2y=2x 2 (D) xdx+ydy=023、方程''-+=-y y y e x69163'特解的形状为( )(A) 31xy Ae = (B)y Ax e x123=(C) y Axe x13= (D) y e A x B x x1333=+(sin cos )24、下列函数组在定义域内线性无关的是( )(A)2,,x x x e xe x e (B) 222,cos , cos x x (C) 21,2,x (D) 5420,,x x e x e x25、微分方程ydx-xdy=2x 2e x dx 的通解是( )(A) y=x(c-2e x ) (B) x=y(c+2e x ) (C) x=y(c-2e x ) (D) y=x(c+2e x )26、微分方程dy dx y x tg yx=+的通解为( ) (A)1sin yxcx= (B) sin yx =x +c (C)sin y x =c x (D) sin x y=c x 27、微分方程2y y ''=(y ')2的通解()(A) (x-c )2 (B) c 1(x -1)2+c 2(x +1)2 (C) c 1+(x -c 2)2 (D) c 1(x -c 2)228、微分方程xdy-ydx=y 2e y dy 的通解为()(A) y=x(e x +c) (B) x=y(e y +c) (C) y =x(c-e x ) (D) x=y(c-e y )29、微分方程y ''-2y '-3y =0的通解*y 为()(A) c x c x 123+ (B) c x c x123+ (C) c e c e x x123+- (D)c e c e x x123-+30、微分方程y ''-3y '+2y =2x -2e x 的特解y *的形式是()(A) (ax+b)e x (B) (ax+b)xe x (C) (ax+b)+ce x (D) (ax+b)+cxe x31、通过坐标原点且与微分方程dy dxx =+1的一切积分曲线均正交的曲线方程是( )(A) e x y-=+1 (B) e x y++=10 (C) e x y=+1 (D) 222y x x =+32、设y(x)满足微分方程(cos 2x)y ¹+y=tgx 且当x=π/4时y=0,则当x =0时y =( )(A) π/4 (B) -π/4 (C) -1 (D) 133、已知y=y(x) 的图形上点M(0,1)处的切线斜率k=0,且y(x)满足微分方程''=+y y 12('),则y(x)=( )(A) sin x (B)cos x (C) shx (D) chx34、微分方程y ''-2y '-3y =0的通解是y =( )(A)33x x ++ (B) c x c x123+ (C) c e c e x x123+- (D) c e c e xx123-+35、设y x y x y x 123(),(),()是线性非齐次方程d y dxa x dydx b x y f x 22++=()()()的特解, 则y c c y x c y x c y x =--++()()()()11211223(A) 是所给微分方程的通解 (B) 不是所给微分方程的通解(C) 是所给微分方程的特解(D) 可能是所给微分方程的通解 也可能不是所给微分方程的通解,但肯定不是特解36、设 y(x)满足 y 'sinx=yLny ,且y (π/2)=e ,则y (π/4)=( )(A) e /2 (B)-1e (C) e 21- (D) e 23-37、微分方程2cos 0yn ytgx y x -+=的通解是( )(A) arctgx c + (B)1x ()arctgx c + (C) 1arctgx c x+ (D)1arctgx c x++38、微分方程(1+y 2)dx=(arctgy-x)dy 的通解为( )(A) x arctgy ce arctgy=-+-1 (B) x arctgy ce arctgy=-++1(C) x arctgy ce c arctgy=-++ (D) x arctgy ce c arctgy=-+39、微分方程''+=y y x 4212cos 的通解为y=( )(A) e c x c x c x+++1223(B) c x c x c 1223++(C) c e c x c x 123++ (D) c x c x c 13223++40、微分方程''-''+=y y y x 76sin 的通解是 y =( )(A) e x x x-++574774sin cos (B) c e c x c e c x x x1234+++-sin cos(C) ()()c c x e c c x e x x1233+++- (D) ()sin ()cos c c x x c c x x 1233+++41、通过坐标原点且与微分方程dy dx x =+1的一切积分曲线均正交的曲线方程是( )(A) e x y-=+1 (B) e x y++=10 (C) e x y=+1 (D) 222y x x =+42、设y(x)满足微分方程xy ¹+y-y 2Lnx=0且当y(1)=1,则y(e)=( )(A) 1/e (B) 1/2 (C) 2 (D) e43、已知()y y x =满足()()x xy y dx y xy x dy 2222220+-++-=,且(1)1y =则y 122+⎛⎝ ⎫⎭⎪=( ) (A) 1 (B) 1/2 (C) 22 (D) 122+ 44、微分方程''=+y xy x 212'满足初始条件yx ==01,y x '==03的特解是y=( )(A)x x 33++ (B) x x 331++ (C) x x 23++ (D) x x 231++45、微分方程''++=y y y 6130'的通解是y=( )(A) e c x c x x-+31222(cos sin ) (B) e c x c x x21233(cos sin )-(C)e c x c x x 31222(cos sin )- (D)e c x c x x -+21233(cos sin )46、微分方程y y x c '++=20满足y x ==20的特解y =( )(A) 4422xx -(B)x x2244-(C))2ln (ln 2-x x(D))2ln (ln 12-x x47、微分方程y ytgx yx 'cos -+=2的通解是( )(A) 1()cos x c x y=+ (B) ()cos y x c x =+(C)1cos x x c y=+(D) cos y x x c =+48、微分方程(y 2-6x )y ' +2y=0的通解为( )(A) 2x-y 2+cy 3=0 (B) 2y-x 3+cx 3=0 (C) 2x-cy 2+y 3=0 (D) 2y-cx 3+x 3=049、微分方程''+=y y x 4212cos 的特解的形式是y=( )(A) cos2a x (B) cos2ax x (C)sin2cos2 a x b x + (D)sin2cos2 ax x bx x +50、满足微分方程''-''+=y y y x 76sin 的一个特解 y*=( )(A)e x xx -++574774sin cos (B)ex xx++574774sin cos(C)e x xx -++6574774sin cos(D)e e x x xx--+++6574774sin cos51、初值问题"40,(0)0,'(0)1y y y y +===的解是()y x =( )(其中其通解为1212()sin 2cos2,,y x c x c x c c =+为任意常数)(A)1sin 23x (B)1sin 22x (C)1sin33x (D )1sin32x52、下列方程中为常微分方程的是( )(A)42310x x x +-+= (B) 2"'y y x +=(C) 2222u u ut x y∂∂∂=+∂∂∂ (D)2u v w =+53、下列微分方程是线性的是( )(A)2"'y xy y x ++= (B)22'y x y =+ (C)2"()y xy f x -= (D)3"'y y y -=54、已知(,)F x y 具有一阶连续偏导,且(,)()F x y ydx xdy +为某一函数的全微分,则( )(A) F F x y ∂∂=∂∂ (B)F F x y x y ∂∂=∂∂ (C)F F x y x y∂∂-=∂∂ (D)F Fy x x y∂∂=∂∂55、设123(),(),()y x y x y x 是二阶线性非齐次微分方程"()'()()y P x y Q x y f x ++=的三个线性无关解,12,c c 是任意常数,则微分方程的解为( )(A)11223c y c y y ++ (B)1122123(1)c y c y c c y ++--(C)1122123()c y c y c c y +-+ (D)1122123(1)c y c y c c y +---56、若连续函数()f x 满足关系式20()ln 22xt f x f dt ⎛⎫=+ ⎪⎝⎭⎰,则()f x 为( )(A)2xe ln (B)22xe ln (C)2xe ln + (D)22xe ln +57、若3312,xxy e y xe ==,则它们所满足的微分方程为( )(A)"6'90y y y ++= (B)"90y y -= (C)"90y y += (D)"6'90y y y -+=58、设123,,y y y 是二阶线性微分方程"()'()()y p x y q x y r x ++=的三个不同的特解,且1223y yy y--不是常数,则该方程的通解为( )(A)11223c y c y y ++ (B)1122231()()c y y c y y y -+-+(C)11232c y c y y ++(D)112223()()c y y c y y -+- 59、设()f x 连续,且满足方程()10()()f tx dt nf x n N =∈⎰,则()f x 为( )(A)1n n cx - (B)(c c 为常数) (C)sin c nx (D)s cco nx60、设12,y y 是方程"()'()0y p x y q x y ++=的两个特解,则1122y c y c y =+(12,c c 为任意常数)( )(A)是此方程的通解 (B)是此方程的特解 (C)不一定是该方程的解 (D)是该方程的解61、方程22(2)"(2)'(22)0x x y x y x y ---+-=的通解为( )(A)12xy c e c =+ (B)12xxy c e c e -=+ (C)212xy c e c x =+ (D)12xy c e c x =+62、微分方程"'1xy y e -=+的一个特解形式为( )(A)x ae b + (B)x axe bx + (C)xae bx + (D)xaxe b +63、方程22()(2)0pxy y dx qxy x dy --+=是全微分的充要条件是( )(A)4,2p q == (B)4,2p q ==- (C)4,2p q =-= (D)4,2p q =-=-64、表达式22[cos()][cos()3]x y ay dx by x y x dy +++++是某函数的全微分,则( )(A)2,2a b == (B)3,2a b == (C)2,3a b == (D)3,3a b ==65、方程"'"'xy y y y xe -+++=是特解形式为( )(A)()xax b e -+ (B)()xx ax b e -+(C)2()xx ax b e -+ (D)[()cos 2()sin 2]xe ax b x cx d x +++66、方程"2'xy y y xe -+=的特解*y 的形式为( )(A) x axe (B)()xax b e + (C)()x x ax b e + (D)2()xx ax b e +67、已知1cos y wx =与23cos y wx =是微分方程2"0y w y +=的解,则1122y c y c y =+是( )(A) 方程的通解 (B)方程的解,但不为通解 (C)方程的特解 (D)不一定是方程的解68、方程"3'232x y y y x e -+=-的特解*y 的形式为( )(A) ()x ax b e + (B)()x ax b xe + (C)()xax b ce ++ (D)()xax b cxe ++69、方程22"3'2xy y y x e -++=特解的形式为( )(A)22xy ax e -= (B)22()xy ax bx c e -=++(C)22()xy x ax bx c e -=++(D)222()xy x ax bx c e -=++70、下列函数在定义域内线性无关的是( )(A) 4x (B)22x x x ⋅⋅ (C)225cos sin x x ⋅⋅ (D)212x x ⋅⋅⋅71、微分方程2yxdy ydx y e dy -=的通解是( )(A)()yx y c e =- (B)()yx y e c =+ (C)()xy x e c =+ (D)()yy x c e =-72、方程5,3dx dyx y x dt dt=-+-=-的奇点为( ) (A)(0,0) (B) (0,5) (C) (5,5) (D) (5,0)73、(0,0)为系统,23dx dyy x y dt dt ==--的( ) (A) 鞍点 (B) 结点 (C) 中心 (D) 焦点74、方程dx dy dz xz yz xy==的首次积分是( ) (A)2xy z c-= (B)2x c y= (C)2xyz c-=(D)2xz xc-=75、方程22222dx dy dzxy z xy xz==--的首次积分是( )(A)2x y zc x ++= (B)222x y z c y++= (C)y c x=(D)z c x =76、系统22dxx y dt dy x y dt⎧=-+⎪⎪⎨⎪=--⎪⎩的奇点类型为( )(A) 稳定结点 (B) 不稳定结点(C) 稳定焦点 (D) 不稳定焦点 77、系统3474dx x y dt dy x y dt⎧=-⎪⎪⎨⎪=-⎪⎩的奇点类型为( )(A) 鞍点 (B) 焦点(C) 中心 (D) 结点78、方程"xy y xe -+=有形如( )特解(A)xy Axe -= (B)21()xy Ax Bx c e -=++(C)1()xy Ax B e -=+ (D)xAe -79、方程2"6'13(512)t x x x e t t ++=-+特解形状为( )(A)21()tx At Bt c e =++ (B)1()tx At B e =+(C)1tx Ate =80、方程"2'2cos xy y y e x --+=的特解形状为( )(A)1cos xy A xe -= (B)1sin xy A xe -=(C)1(cos sin )x y e A x B x -=+ (D)1xy Ae -=81、方程"2'2cos tx x x te t -+=的特解形状为( )(A)21()cos t x At Bt c e t =++ (B)21()sin tx At Bt c e t =++(C)1(cos sin )tx e A t B t =+ (D)221()cos ()sin t tx At Bt c e t Dt Et F e t =++++82、微分方程()()0x y y xye e dx xe e dy ---++=的通解为( )(A)x y ye xe c -= (B)y x ye xe c -= (C)x yye xe c --= (D)x yye xe c --=83、微分方程(sin 2sin )(cos 2cos )0x xe y y x dx e y x dy -++=的通解为( )(A)sin 2cos xe y y x c += (B)s 2cos xe co y y x c +=(C)sin cos xe y y x c += (D)s 2cos xe co y y x c +=84、微分方程(2)0y ye dx x xy e dy -+=的通解为( )(A)2y xe y c += (B)2ye y c x += (C)yxe xy c +=x85、方程2(3)20xe y dx xydy ++=的通解为( )(A)32xxe x y c += (B)232(2)xx x e x y c -+=(C)232(22)xx x e x y c --+= (D)232(2)xx e x y c -+=86、下列方程为常微分方程的是( )(A)2220x y z ++= (B)22u u ux y y∂∂∂+=∂∂∂ (C)sin sin y A t B t =+ (D)'xy Ae = 87、方程432422(22)(3)0yyxy e xy y dx x y e x y x dy +++--=的积分因子为( )(A)21()x x μ= (B)1()x xμ= (C)41()y y μ= (D)21()y y μ=88、方程(2)0yye x xy e dy -+=的积分因子为( )(A)21()x x μ= (B) 1()x xμ= (C)21()y y μ= (D)1()y yμ=89、方程2(3)20xe y dx xydy ++=的积分因子为( )(A) 1()x xμ= (B)2()x x μ= (C) 1()y yμ=(D)2()y y μ=90、方程(1)0y xy dx xdy --+=的积分因子为( )(A)()xx e μ= (B)()xx e μ-= (C)()yy e μ= (D)()yy e μ-=91、方程23(225)(22)0x y y dx x x dy ++++=的积分因子为( )(A) 1()x x μ= (B)21()1x xμ=+ (C) 1()y y μ= (D)21()1y y μ=+92、方程3222(1)0xy dx x y dy +-=的积分因子为( )(A) 1()x x μ= (B) 21()x xμ=(C) 1()y yμ=(D)21()y y μ=93、方程(2cos )0xxe dx e ctgx y y dy ++=的积分因子为( )(A)()sin x x μ= (B)()s x co x μ= (C)()sin y y μ= (D)()s y co y μ=94、方程22()0ydx x y x dy -++=的积分因子为( )(A) 21()x x μ= (B) 21()y y μ=(C)221(,)x y x y μ=+ (D)1(,)x y x yμ=+95、方程3222()0y dx x xy dy +-=的积分因子为( )(A) 21x μ= (B)1xy μ=(C)221x y μ= (D)21x y μ=《常微分方程》选择题及答案 1996、方程36330x y x dx dy y y x ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭的积分因子为( )(A)x μ= (B)y μ=(C)xy μ= (D)2x y μ=97、下列方程中为常微分方程的是( ) (A)2-210x x += (B) 2 ' y xy =(C) 2222u u ut x y ∂∂∂=+∂∂∂(D) 2 y x c =+(c 为常数)98、下列微分方程是线性的是() (A)22 ' y x y =+ (B)2 " x y y e +=(C)2"0 y x += (D)2 '-y y xy =。

试题集:常微分方程

试题集:常微分方程

1.常微分方程y′+2y=4e x的通解形式为?o A. y=2e x+Ce−2xo B. y=2e x+Ce2xo C. y=2e−x+Ce2xo D. y=2e−x+Ce−2x参考答案: A解析: 该方程为一阶线性常微分方程,通过积分因子法求解,积分因子为e2x,从而得到通解形式。

2.方程y″−4y′+4y=0的特征方程为?o A. r2−4r+4=0o B. r2+4r+4=0o C. r2−4r−4=0o D. r2+4r−4=0参考答案: A解析: 特征方程由方程的系数确定,对于y″−4y′+4y=0,特征方程为r2−4r+4=0。

3.方程y″+9y=0的解中包含的函数类型是?o A. 指数函数o B. 三角函数o C. 对数函数o D. 幂函数参考答案: B解析: 该方程的特征方程为r2+9=0,解得r=±3i,因此解中包含三角函数。

4.方程y′=2y+3的平衡点是?o A. y=−32o B. y=32o C. y=−3o D. y=3参考答案: A解析: 平衡点满足y′=0,解方程0=2y+3得y=−3。

25.方程y″+4y′+4y=e2x的特解形式为?o A. y=Ax2e2xo B. y=Axe2xo C. y=A2xe2xo D. y=Ae2x参考答案: B解析: 由于e2x的形式,特解形式应为Axe2x。

6.方程y′=y2−4的奇点是?o A. y=2o B. y=−2o C. y=0o D. y=2,y=−2参考答案: D解析: 奇点满足y′=0,解方程0=y2−4得y=2,y=−2。

7.方程y″−5y′+6y=0的特征根是?o A. r=2,r=3o B. r=−2,r=−3o C. r=2,r=−3o D. r=−2,r=3参考答案: A解析: 特征方程为r2−5r+6=0,解得r=2,r=3。

8.方程y′=3y+e x的通解中包含的函数是?o A. e3xo B. e−3xo C. e xo D. e−x参考答案: A解析: 该方程为一阶线性方程,通解中包含e3x。

(完整版)常微分方程试题及答案

(完整版)常微分方程试题及答案

第十二章 常微分方程(A)一、是非题1.任意微分方程都有通解。

( X )2.微分方程的通解中包含了它所有的解。

( X )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。

( O )4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解。

( X )5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21(C 为任意常数)。

(O ) 6.y y sin ='是一阶线性微分方程。

( X )7.xy y x y +='33不是一阶线性微分方程。

( O )8.052=+'-''y y y 的特征方程为0522=+-r r 。

( O )9.221xy y x dx dy+++=是可分离变量的微分方程。

( O )二、填空题1.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 是可分离变量微分方程。

②()()022=-++dy y x y dx x xy 是可分离变量微分方程。

③x yy dx dyx ln ⋅=是齐次方程。

④x x y y x sin 2+='是一阶线性微分方程。

⑤02=-'+''y y y 是二阶常系数齐次线性微分方程。

2.x x y x y cos sin =-'+'''的通解中应含 3 个独立常数。

3.x e y 2-=''的通解是21241C x C e x ++-。

4.x x y cos 2sin -=''的通解是21cos 2sin 41C x C x x +++-。

5.124322+=+'+'''x y x y x y x 是 3 阶微分方程。

6.微分方程()06='-''⋅y y y 是 2 阶微分方程。

《常微分方程》题库及答案

《常微分方程》题库及答案

《常微分方程》题库及答案一.求解下列方程1.求方程0sin cos =+x y dxdyx之通解; 2.求方程xx y ax dy cos 1tan =+之通解; 3.解初值问题2(1)20(0)1dy x xy dx y ⎧-+=⎪⎨⎪=⎩; 4.求方程()lndy x yxy x y dx x+-=+ 之通解; 5.求方程 yx xy y dx dy 321++= 的通解; 6. 求方程 0)3()3(2323=-+-dy y x y dx xy x 的通解; 7.求由以xxx x cos ,sin 为基本解组的线性齐次方程; 8.求方程 2)(22x dx dy xdx dy y +-=的通解及奇解; 9.求方程⎰+=+xx y x dt dtt dy 02)(2))((1 的通解; 10. 求方程 0)sin ()2sin (22=-++dy y xy dx x y x 的通解; 11.求由以 x x x ln , 为基本解组的线性齐次方程; 12.求方程 2222)(12dxdy y y dx y d += 的通解. 13.求方程y y dxdyln =之通解。

14.求方程xy dxdyy x 2)(22=+之通解。

15.求方程0)(222=-+dy y x xydx 之通解。

16. 求方程y x e dxdy-=之通解。

17. 求方程0)2(=+---dy xe y dx e yy 之通解。

18. 求方程x x y y sec tan '=+之通解。

二.1.解初值问题⎪⎩⎪⎨⎧-==y x e axdyy 20)1(2.求如下微分方程组之通解:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++-=--=z x dtdz z y x dtdyz y x dt dx2. 3.求出初值问题的逐次近似解21,0y y y :2(0)0dyx y dxy =+=⎧⎪⎨⎪⎩. 4. 求出微分方程0).().(=+dy y x N dx y x M 有形如)(22y x +=ϕυ的积分因子的充要条件。

(完整版)常微分方程练习试卷及答案

(完整版)常微分方程练习试卷及答案

常微分方程练习试卷一、填空题。

1.方程 x 3 d2x 10 是阶(线性、非线性)微分方程 .dt 22. 方程 x dyf (xy ) 经变换 _______ ,能够化为变量分别方程.y dx3.微分方程 d 3 y y 2x 0 知足条件 y(0) 1, y (0)2 的解有个 .dx 34. 设 常 系 数 方程 yy*2 xxx,则此方程的系数ye x 的 一个 特解 y ( x) eexe,, .5. 朗斯基队列式 W (t )0是函数组 x 1(t), x 2 (t),L , x n (t ) 在 a x b 上线性有关的条件 .6. 方程 xydx (2 x 2 3y 2 20) dy 0 的只与 y 有关的积分因子为.7. 已知 X A(t) X 的基解矩阵为 (t ) 的,则 A(t ).8. 方程组 x '2 0.0 x 的基解矩阵为59. 可用变换 将伯努利方程化为线性方程 .10 . 是知足方程 y2 y 5y y 1 和初始条件的独一解 .11. 方程的待定特解可取的形式 :12. 三阶常系数齐线性方程 y 2 y y 0 的特点根是二、计算题1. 求平面上过原点的曲线方程 , 该曲线上任一点处的切线与切点和点 (1,0) 的连线互相垂直 .dy x y 1 2.求解方程.dxx y 3d 2 x dx 2。

3. 求解方程 x2( )dt dt4.用比较系数法解方程 . .5.求方程y y sin x 的通解.6.考证微分方程(cos x sin x xy 2 )dx y(1 x2 )dy0 是适合方程,并求出它的通解.311A X 的一个基解基解矩阵(t) ,求dXA X7.设 A,,试求方程组dX241dt dt 知足初始条件x(0)的解 .8.求方程dy2x13y2经过点 (1,0)的第二次近似解 . dx9.求dy)34xy dy8y20 的通解(dxdx10. 若A 21试求方程组 x Ax 的解(t ),(0)141,并求expAt2三、证明题1.若(t), (t ) 是 X A(t) X 的基解矩阵,求证:存在一个非奇怪的常数矩阵 C ,使得(t)(t )C .2.设 ( x) (x0 , x) 是积分方程y(x)y0x2 y( )]d ,x0 , x [ , ] [x0的皮卡逐渐迫近函数序列 {n (x)} 在 [,] 上一致收敛所得的解,而(x) 是这积分方程在 [ ,] 上的连续解,试用逐渐迫近法证明:在[,] 上( x)( x) .3. 设都是区间上的连续函数 ,且是二阶线性方程的一个基本解组 . 试证明 :(i)和都只好有简单零点(即函数值与导函数值不可以在一点同时为零);(ii)和没有共同的零点;(iii)和没有共同的零点.4. 试证:假如(t ) 是dXAX 知足初始条件(t0 )的解,那么(t) exp A(t t 0 ) dt.答案一 . 填空题。

常微分方程试题库试卷库

常微分方程试题库试卷库

常微分方程期终考试试卷(1)一、 填空题(30%)1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。

有只含y 的积分因子的充要条件是______________。

2、_____________称为黎卡提方程,它有积分因子______________。

3、__________________称为伯努利方程,它有积分因子_________。

4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________。

5、形如___________________的方程称为欧拉方程。

6、若()t φ和()t ψ都是'()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是_____________________________。

7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。

二、计算题(60%) ~1、3()0ydx x y dy -+=2、sin cos2x x t t ''+=-3、若2114A ⎡⎤=⎢⎥-⎣⎦试求方程组x Ax '=的解12(),(0)t ηϕϕηη⎡⎤==⎢⎥⎣⎦并求expAt4、32()480dy dyxy y dx dx -+=5、求方程2dyx y dx =+经过(0,0)的第三次近似解6.求1,5dx dyx y x y dt dt =--+=--的奇点,并判断奇点的类型及稳定性.(三、证明题(10%)1、n 阶齐线性方程一定存在n 个线性无关解。

试卷答案一填空题1、()M Ny xx N ϕ∂∂-∂∂= ()M Ny xy Mϕ∂∂-∂∂=- 2、 2()()()dyp x y Q x y R x dx =++ y y z =+ 3、 ()()n dyp x y Q x y dx =+ (1)()(,)n p x dxn u x y y e --⎰= 4、12[(),(),,()]0n w x t x t x t ≠5、11110n n nn n nn d y d dyx a a a y dx dxdx ---++++=6、()()t t C ψφ=;7、零 稳定中心 二计算题1、解:因为1,1M Ny x∂∂==-∂∂,所以此方程不是恰当方程,方程有积分因子22ln 21()dyyy y ee y μ--⎰===,两边同乘21y 得320dx x y dy y y +-=所以解为 321x x y y dx dy c y y y⎡⎤∂⎢⎥-++-=⎢⎥∂⎢⎥⎢⎥⎣⎦⎰⎰22x y c y +=即22()x y y c =+另外y=0也是解2、线性方程0x x ''+=的特征方程210λ+=故特征根i λ=±1()sin f t t = i λ=是特征单根,原方程有特解(cos sin )x t A t B t =+代入原方程A=-12B=0 2()cos2f t t =- 2i λ=不是特征根,原方程有特解cos2sin2x A t B t =+代入原方程13A =B=0所以原方程的解为1211cos sin cos cos223x c t c t t t t=+-+ 3、解:221()69014p λλλλλ--==-+=-解得1,23λ=此时k=112n =12v ηηη⎡⎤==⎢⎥⎣⎦ 111123322120()()(3)()!i t i t i t t t e A E e t i ηηηηϕηηηη=⎡⎤+-+⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦⎣⎦∑ {由公式expAt= 10()!in t ii te A E i λλ-=-∑得[]33310111exp (3)01111ttt t t At e E t A E e t e t t ⎧-⎫-⎡⎤⎡⎤⎡⎤=+-=+=⎨⎬⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎩⎭4、解:方程可化为3284dy y dx x dy ydx ⎛⎫+ ⎪⎝⎭=令dy p dx =则有3284p y x yp +=(*) (*)两边对y 求导:322322(4)(8)4dpy p y p y p y p dy -+-=即32(4)(2)0dp p y y p dy --=由20dp y p dy -=得12p cy =即2()p y c =将y 代入(*)2224c p x c =+即方程的 含参数形式的通解为:22224()c px c p y c ⎧=+⎪⎪⎨⎪=⎪⎩p为参数又由3240p y -=得123(4)p y =代入(*)得:3427y x=也是方程的解5、解:00210022520041072511830002()4220()4400202204400160xx x y x y xdx x x x y x dx x x x x x x x y x dx ϕϕϕϕ===+==++=+=++++=+++⎰⎰⎰ 6、解:由1050x y x y --+=⎧⎨--=⎩解得奇点(3,-2)令X=x-3,Y=y+2则dxx y dt dy x y dt ⎧=--⎪⎪⎨⎪=-⎪⎩因为1111---=1+1 ≠0故有唯一零解(0,0)由221121122011λλλλλλ+=+++=++=-+得1i λ=-±故(3,-2)为稳定焦点。

常微分方程习题集

常微分方程习题集

《常微分方程》测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为的连续函数。

2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件。

4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解- 。

二、计算题40%1、求方程2、求方程的通解。

3、求方程的隐式解。

4、求方程三、证明题30%1.试验证=是方程组x=x,x=,在任何不包含原点的区间a上的基解矩阵。

2.设为方程x=Ax(A为n n常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的微分方程是.2、方程的通解中含有任意常数的个数为.3、方程有积分因子的充要条件为.4、连续是保证对满足李普希兹条件的条件.5、方程满足解的存在唯一性定理条件的区域是.6、若是二阶线性齐次微分方程的基本解组,则它们(有或无)共同零点.7、设是方程的通解,则.8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一解.9、设是阶常系数齐次线性方程特征方程的K重根,则该方程相应于的K个线性无关解是.10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解. (10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C《常微分方程》测试题31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e 时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e 时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4. 线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+22.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3. 方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)=+y=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题7一. 解下列方程(80%)1.x=+y2.tgydx-ctydy=03.{y-x(+)}dx-xdy=04.2xylnydx+{+}dy=05. =6-x6. =27. 已知f(x)=1,x0,试求函数f(x)的一般表达式。

常微分方程题库(附答案)4.1线性微分方程的一般理论

常微分方程题库(附答案)4.1线性微分方程的一般理论

【单选题】n 阶齐次线性微分方程的基本解组中所含解的个数恰好是________个.A 、n -1;B 、n ;C 、n +1;D 、n +2.答案:B【单选题】下了判断正确的是_______________.A 、一阶线性非齐次微分方程组的任意两个解之差不是对应齐次微分方程组的解;B 、一阶线性非齐次微分方程组的任意两个解之差是对应齐次微分方程组的解;C 、一阶线性非齐次微分方程组的任意两个解之和还是该非齐次微分方程组的解;D 、一阶线性非齐次微分方程组的任意两个解之和是对应齐次微分方程组的解.答案:B【计算题】解微分方程'''1211,,11t t x x x t x t x e t t+-=-==--. 答案:常数变易法令12()()t x c t t c t e =+是原方程的解,并代入原方程得''12''12()()0()()1t t c t t c t e c t c t e t ⎧+=⎨+=-⎩, 解得''12()1,()t c t c t te -=-=,所以1122(),()(1)t c t t c c t t e c -=-+=-++ 因此原方程的通解为2121t x c t c e t =+-- 其中21,c c 是任意常数. 【计算题】解微分方程2'''2312ln 4636,,t t x tx x x t x t t-+===. 答案:常数变易法 令2312()()x c t t c t t =+是原方程的解,并代入原方程得'2'312'2'123()()0ln 2()3()36c t t c t t t tc t t c t t ⎧+=⎪⎨+=⎪⎩, 解得334411229()412ln ,()9ln 4c t t t t c c t t t t c ----=++=--+ 因此原方程的通解为23111273ln 4x c t c t t t t --=+++ 其中21,c c 是任意常数 . 【计算题】已知方程220d x x dt-=有基本解组 ,t t e e -,试求此方程适合初值条件'(0)1,(0)0x x ==及'(0)0,(0)1x x ==的基本解组.答案:由题意知通解为12t t x c e c e -=+ ,则'12t t x c e c e -=-,分别把初值条件代入得121111(),()2222t t t t x t e e x t e e --=+=-.因此方程的标准基本解组为 121111(),()2222t t t t x t e e x t e e --=+=-.【证明题】证明n 阶非齐次线性微分方程1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dtdt---++++= 存在且最多存在1n +个线性无关的解. 答案:设齐次线性微分方程的n 个线性无关的解为12,,,n x x x ,设满足某初值条件的非齐次线性微分方程的解为x ,则显然12,,,,n x x x x x x x +++为非齐次微分方程的+1n 个解。

常微分试题及答案

常微分试题及答案

常微分试题及答案一、选择题1. 若微分方程 dy/dx = 3x^2,则它的通解为:A. y = x^3 + CB. y = x^2 + CC. y = x^3/3 + CD. y = x^4/2 + C答案:C2. 设 y = e^x 是微分方程 dy/dx - y = 0 的解,则该微分方程的通解为:A. y = e^xB. y = e^(2x)C. y = e^(3x)D. y = e^(4x)答案:A3. 设 y = x^2 是齐次微分方程 y'' - y' - 2y = 0 的解,则该微分方程的通解为:A. y = x^2B. y = x^2 + CC. y = e^x + CD. y = e^(2x) + C答案:B二、计算题1. 解微分方程 dy/dx = 2x + 1,并求出满足初始条件 y(0) = 1 的特解。

解:对微分方程进行分离变量得:dy = (2x + 1)dx两边同时积分得:∫dy = ∫(2x + 1)dxy = x^2 + x + C代入初始条件 y(0) = 1 得:1 = 0^2 + 0 + CC = 1特解为:y = x^2 + x + 12. 求微分方程 y'' + 2y' + y = 0 的通解。

解:首先设通解为 y = e^(rx),带入微分方程得:r^2e^(rx) + 2re^(rx) + e^(rx) = 0化简得:e^(rx)(r^2 + 2r + 1) = 0由指数函数的性质可知,e^(rx) 不等于 0,因此:r^2 + 2r + 1 = 0求解这个二次方程得:r = -1 (二重根)所以,通解为 y = (C1 + C2x)e^(-x)三、应用题有一容器中装有某种细菌,已知初始时刻容器中有 1000 个细菌,随着时间的推移,细菌的数量的变化率与它们的数量成正比。

经实验测得 2 小时后细菌的数量增加到 2000 个。

《常微分方程》期末考试试题库

《常微分方程》期末考试试题库

《常微分方程》期末考试试题目录《常微分方程》期末考试题(一) (1)《常微分方程》期末考试题(二) (6)《常微分方程》期末考试题(三) (13)《常微分方程》期末考试题(四) (18)《常微分方程》期末考试题(五) (24)《常微分方程》期末考试题(六) (31)《常微分方程》期末考试题库 (36)《常微分方程》期末考试题(一)一、填空题(每空2 分,共16分)。

1、方程22d d y x x y+=满足解的存在唯一性定理条件的区域是 xoy 平面 . 2. 方程组n x x xR Y R Y F Y∈∈=,),,(d d 的任何一个解的图象是 n+1 维空间中的一条积分曲线.3.),(y x f y '连续是保证方程),(d d y x f xy=初值唯一的 充分 条件. 4.方程组⎪⎪⎩⎪⎪⎨⎧=-=x ty y txd d d d 的奇点)0,0(的类型是 中心5.方程2)(21y y x y '+'=的通解是221C Cx y +=6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是()()x P y N 17.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是 线性无关8.方程440y y y '''++=的基本解组是x x x 22e ,e -- 二、选择题(每小题 3 分,共 15分)。

9.一阶线性微分方程d ()()d yp x y q x x+=的积分因子是( A ). (A )⎰=xx p d )(e μ (B )⎰=xx q d )(e μ (C )⎰=-x x p d )(e μ (D )⎰=-xx q d )(e μ10.微分方程0d )ln (d ln =-+y y x x y y 是( B )(A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( C ).(A) 1±=x (B)1±=y (C)1±=y , 1±=x (D)1=y , 1=x12.n 阶线性非齐次微分方程的所有解( D ).(A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( D )奇解.(A )有一个 (B )有无数个 (C )只有两个 (D )无三、计算题(每小题8分,共48分)。

常微分方程练习试卷及答案

常微分方程练习试卷及答案

常微分方程练习试卷及答案常微分方程练试卷一、填空题。

1.方程d2x/dt2+1=是二阶非线性微分方程。

2.方程xdy/ydx=f(xy)经变换ln|x|=g(xy)可以化为变量分离方程。

3.微分方程d3y/dx3-y2-x=0满足条件y(0)=1,y'(0)=2的解有一个。

4.设常系数方程y''+αy'+βy=γex的一个特解y(x)=e-x+e2x,则此方程的系数α=-1,β=2,γ=1.5.朗斯基行列式W(t)≠0是函数组x1(t),x2(t)。

xn(t)在[a,b]上线性无关的条件。

6.方程xydx+(2x2+3y2-20)dy=0的只与y有关的积分因子为1/y3.7.已知X'=A(t)X的基解矩阵为Φ(t),则A(t)=Φ(t)-1dΦ(t)/dt。

8.方程组x'=[2,5;1,0]x的基解矩阵为[2e^(5t),-5e^(5t);e^(5t),1]。

9.可用变换将伯努利方程y'+p(x)y=q(x)化为线性方程。

10.方程y''-y'+2y=2e^x的通解为y(x)=C1e^x+C2e^2x+e^x。

11.方程y'''+2y''+5y'+y=1和初始条件y(0)=y'(0)=y''(0)=0的唯一解为y(x)=e^-x/2[sin(5^(1/2)x/2)-cos(5^(1/2)x/2)]。

12.三阶常系数齐线性方程y'''-2y''+y=0的特征根是1,1,-1.二、计算题1.设曲线方程为y(x)=kx/(1-k^2),则曲线上任一点处的斜率为y'(x)=k/(1-k^2),切点为(0,0),切线方程为y=kx,点(1,0)的连线斜率为-1/k,因此k=-1,曲线方程为y=-x/(1+x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程
一、填空题
i•微分方程(dy)n dyyx2o的阶数是
dx dx
答:1
2.若M(x, y)和N(x,y)在矩形区域R内是(x,y)的连续函数,且有连续的一阶偏导数,则 方程M(x,y)dx N(x, y)dy0有只与y有关的积分因子的充要条件是
3.为齐次方程.
答:形如dyg(=)的方程
dx x
通解可用这两个解表示为(C
)•
13.
14.
15.
三、
(A)1(x)2(x)
(C)C(1(x)2(x))
1(x)
fy(x, y)连续是方程2
(B)必要非充分
(A)必要
方程屯、y
dx
(A)有一个
(B)1(x)2(x)
(D)C ,x)
2(X)
f(x,y)初值解唯一的(D)条件.
(C)充分必要
(D)充分
C)奇解.
答:f(x,yj f(x,y2)Ny!y? 2 y 2上,则经过点(0,0)的解的
dx
存在区间是
1
答:1
1
x_
4
7.若Xj(t)(i
4
1,2,.•…n)是齐次线性方程的n个解,w(t)为其伏朗斯基行列式,则w(t)满足
一阶线性方程
答:w a1(t)w 0
4•如果f (x, y)dyf (x, y)存在
dx
唯一的解y(x),定义于区间x x0h上,连续且满足初始条件yo(xo),其中
h.
答:在R上连续且关于y满足利普希兹条件h min(a,^)
m
5•对于任意的(x,如),(x, y2)R ( R为某一矩形区域),若存在常数N(N0)使
则称f(x,y)在R上关于y满足利普希兹条件.
8•若人(t)(i 1,2,••…n)为齐次线性方程的一个基本解组,X(t)为非齐次线性方程的一个
特解,则非齐次线性方程的所有解可表为
n
答:xcixix
i 1
9•若(X)为毕卡逼近序列n(X)的极限,则有(X).(刈
10.为黎卡提方程,若它有一个特解y(x),则经过变换
,可化为伯努利方程.
答:形如dyp(x)y2q(x)y r(x)的方程y z y
答:充分
15.二阶线性齐次微分方程的两个解y1(x), y2(x)为方程的基本解组充分必要条件
是.
答:线性无关(或:它们的朗斯基行列式不等于零)
16.方程y 2y y0的基本解组是
x x
答:e,xe
17.若y (x)在(,)上连续,则方程dy(x)y的任一非零解与
dx x轴相交.
答:不能
18.在方程y p(x)y q(x)y0中,如果p(x),q(x)在(,)上连续,那么它的
解:
0(X)
0
1(x)
x
x
0
2
0(x)dx
2(X)
x
x
0
2
1(x) dx
12_x2
12
—x
2
15
一x
20
1511118
—xxx
204400160
3.讨论方程
dy
dx
y(i)
1的解的存在区间
dx
(A)上半平面(B)xoy平面
(C)下半平面(D)除y轴外的全平面
一阶线性非齐次微分方程组的任两个非零解之差(
(A)不是其对应齐次微分方程组的解
(C)是其对应齐次微分方程组的解
方程dyJ_y2
dx
(A)一
方程dy. x y
dx
(A)有三个
过点(―,1)共有(
(B)无数
2(B)奇解.
(B)无
n阶线性齐次方程的所有解构成一个(
(B)有两个
(C)
(D)有无数个
方程dy3y3过点(0, 0)有(A
dx
).
(A)无数个解(B)只有一个解
(C)
只有两个解(D)
只有三个解
求下列方程的通解或通积分
解:竺」
dy y
xy2,则
y
1
—dy
ey(
1
—dy
ydy c)所以
3
y
xcy
2
另外y0也是方程的解
2.求方程芸
x y2经过(0,0)的第三次近似解
(A)n
(B)n-1
(C)n+1
(D)n+2
2.如果f (x, y),
都在xoy平面上连续,那么方程
y
dyf(x,y)的任一解的存在
dx
区间(D).
(A)必为(
(B)必为(0,
3.
4.
5.
6.
7.
8.
9.
(C)必为(
1
方程dyx3
dx
,0)
(D)将因解而定
y满足初值问题解存在且唯一定理条件的区域是(D).
任一非零解在xoy平面上与x轴相切.
答:不能
19.若y,x), y2(x)是二阶线性齐次微分方程的基本解组,则它们共同
零点・
答:没有
20.方程 矽..1一y2的常数解是.
dx
答:y1
21.向量函数组Y1(x),Y2(x),,Yn(x)在其定义区间I上线性相关的条件是
它们的朗斯基行列式W(x)0,x I.
(A)n维(B)n1维
方程dx3y3过点(a).
(A)有无数个解
C).
(B)是非齐次微分方程组的解
(D)是非齐次微分方程组的通解
)个解.
(C)两
(D)
(C)有一个
(D)有两个
(C)
)线性空间.
n1维
(D)n 2维
(B)只有三个解
(C)只有解
0(D)只有两个解
fy(x, y)连续是保证f(x, y)对y满足李普希兹条件的(
)条件.
(A)充分(B)充分必要
10.二阶线性非齐次微分方程的所有解
(A)构成一个2维线性空间
(C)不能构成一个线性空间
(C)必要
(D)必要非充分
(B)
).
构成一个3维线性空间
(D)
构成一个无限维线性空间
11.方程dy,y的奇解是(D).
(A) y x
(B)y 1
(C)y 1
(D)y 0
12.若y,x),y2(x)是一阶线性非齐次微分方程的两个不同特解,则该方程的
答:必要
22.方程dyx2y2满足解的存在唯一性定理条件的区域是
dx
答:xoy平面
23.方程x(y21)dx y(x21)dy 0所有常数解是.
答:y1,x1
24.方程y 4y 0的基本解组是.
答:sin 2x, cos2x
25.一阶微分方程的通解的图像是维空间上的一族曲线.
答:2
二、单项选择题
1.n阶线性齐次微分方程基本解组中解的个数恰好是(A)个.
dx
11.一个不可延展解的存在区间一定是区间.
答:开
12•方程dy、y1满足解的存在唯一性定理条件的区域是.
dx
答:D {(x,y) R2y 0},(或不含x轴的上半平面)
13.方程x2sin y的所有常数解是.
dx
答:y k ,k0, 1,2,
14.函数组1(x),2(x), ,n(x)在区间I上线性无关的条件是它们的朗 斯基行列式在区间I上不恒等于零.
相关文档
最新文档