二重积分的计算法
二重积分的计算法
I f ( x, y)dxdy
D
y
d y
x1 (y)
c
x2(y)
D
0 x
I=
x ( y) f ( x , y)dx x ( y )
二重积分计算的两种积分顺序
D: x1(y) x x2(y) cyd
I f ( x, y)dxdy
D
y
d y
x1 (y)
I =
d
dy
x ( y) f ( x , y)dx
c
x ( y )
I=
y ( x) f ( x, y)dy y ( x )
二重积分计算的两种积分顺序
D: x1(y) x x2(y) cyd
I f ( x, y)dxdy
D
D: y1(x) y y2(x)
axb
y
d y
x1 (y)
c
cyd
z
0
c
z=f (x,y)
y
x=(y)
d
y
D
x=(y) x
I f ( x, y)dxdy
D
D: (y) x (y)
cyd
ψ( y)
Q( y ) = f ( x, y)dx φ( y) d I = c Q( y)dy
x
z
z f (x, y)
y y
.
z=f (x,y)
0
c
Q( y) x=(y)
D
D1
D2
D3
例1 求 ( x2 y)dxdy,其中D是抛物线y x2和
D
x y2 所围平面闭区域. 解 两曲线的交点
y
y x2
x (1,1)
二重积分的计算方法
若区域如图, 则必须分割.
在分割后的三个区域上分别 使用积分公式
D3 D1
D2
.
D
D1
D2
D3
例 1
改变积分
1
dx
1 x
f ( x, y)dy 的次序.
00
解 积分区域如图
原式
1 1 y
dy f ( x, y)dx.
(6)若D对称于原点,且f ( x, y) f ( x, y)则
f ( x, y)d 0.
D
(7)若D对称于直线y x,则 f ( x, y)d f ( y, x)d .
D1
D2
(或 f ( x, y)d f ( y, x)d ). 对称于直线y x
(t
1 2
sin
2t
)
|04
1
4 说明:
(11分)
形如积分 f ( x, y) d , max{ f ( x, y), g( x, y)}d ,
D
D
min{ f ( x, y), g( x, y)}d , sgn{ f ( x, y) g( x, y)}d
D
D
等的被积函数均应当做分区域函数看待,利用积分的
的可加性分区域积分。
(17)(本题满分 11 分)2008 年数学二、三 y
计算 max{xy,1}dxdy,其中
D
D={(x, y) | 0 x 2,0 y 2}.
解 曲线xy 1将区域D分成
2
D2 D1
o
2x
两个区域D1和D2
D
二重积分计算法
2
12
22
dy f (x, y)dx dy f (x, y)dx
11
1 y2
2y
计算二重积分时,可以先对x积分后对y积分,也
可以先对y积分后对x积分,先对哪个变量积分,要视
积分域D及被积函数f(x,y)的不同情况而定.
例8 求两个底圆半径相等的直角圆柱面所围成的立体 的体积. 解 : 设圆柱的底半径为R,两个圆柱面的方程为
x2 y2 R2, x2 z2 R2 它们在第一象限的图形如下
二、利用极坐标系计算二重积分
由二重积分的定义知
n
D
f
(x,
y)d
lim
0 i 1
f
(i ,i ) i
极坐标与直角坐标之间的关系
__
__
i ri cos i , i ri sin i
n
lim
0
i1
f
(i
,i
)
i
n_
__ _ _
D
c 1(y)
上式右端的积分叫做先对x、后对y的二次积分,这
个积分也常记作
d 2 (y)
f (x,y)d dy f (x, y)dx 2'
Dc 1(y)来自二重积分化为二次积分时,确定积分限是解题关键.
若将其交换积分次序,先对x积分后对y积分,则其积分 区域如下图
交换积分次序为
2x
dx f (x, y)dy
lim
0
i1
f
(ri
cosi
,
ri
sin
i
)
ri
ri
i
即: f (x, y)d f (r cos ,r sin )rdrd
二重积分的计算法
二重积分的计算法二重积分(Double integral)是微积分中的一种重要计算方法,用于计算平面区域上一些函数在该区域上的积分值。
在二维平面上,我们可以将区域划分为无数个小矩形,然后计算每个小矩形内函数的函数值乘以其面积,再将所有小矩形的积分值求和,即可得到二重积分的近似值。
为了更好地理解和计算二重积分,我们将其分为三个部分进行讨论:积分区域的确定、积分函数的选择和积分计算方法。
一、积分区域的确定:确定二重积分的积分区域是计算的第一步。
在平面上,积分区域可以是一个有界闭区域、一个有界开区域或者无穷区域。
积分区域的确定需要根据具体问题进行分析、绘图和建立坐标系。
对于有界闭区域,通常可以直接利用给定的区域边界方程建立坐标系,进而确定积分区域。
对于有界开区域,可以通过给定的边界方程建立坐标系,然后再引入限制条件来确定积分区域。
例如,给定条件是$x>0$,$y>0$,则可以建立第一象限坐标系,并按照给定的边界方程绘制积分区域。
对于无穷区域,可以通过适当的变量替换将其转化为有界区域,然后再进行积分计算。
例如,将积分区域$x>0$,$y>0$转换为极坐标系下的∞半径的极坐标区域。
二、积分函数的选择:选择正确的积分函数是二重积分计算的关键。
积分函数的选择需要根据具体问题中函数的性质和所要计算的目的进行合理选择。
常见的积分函数包括多项式函数、三角函数、指数函数和对数函数等。
对于具体问题,可以根据函数的性质选择合适的积分函数。
在选择积分函数时,还需要考虑积分区域的特点。
如果积分区域对称,可以考虑选择合适的奇偶函数进行积分计算,减少计算量。
三、积分计算方法:根据实际情况,二重积分可以采用不同的计算方法。
1.直角坐标系下的二重积分:在直角坐标系下,可以通过定积分的计算方法进行二重积分的计算。
其中,积分区域可以用水平边界和垂直边界的方程表示,从而确定积分的上下限。
如果积分区域为有界区域,可以采用上下限函数的自变量依次固定的方法进行计算。
二重积分的计算法
24 3
6 1 8
整理ppt
15
例6. 计算 sinxdxdy, 其中D 是直线 yx,y0, Dx
x所围成的闭区域.
解: 由被积函数可知, 先对 x 积分不行,
因此取D 为X – 型域 sinxdxdy Dx
:
0
D
:
0
dx
0
x
y x
x sin x 0x
d
y
y yx
D x
o x
0
sinxdx
x
x x yd 1
y 2 1
1 2
x
y
2
x dx
1
2 y
yx
1
2
1
12x312xdx
9 8
解法2. 将D看作Y–型区域,
则D
:
1y2o yx2
1 x2x
2
I d y
1
2yx y d
x
2 1
1 2
x
2
y
2
2
dy
y
1
2y1 2y3
dy
9 8
整理ppt
14
例5. 计算 Dxyd, 其中D 是抛物线
解 y 2ax x y 2
2a
y 2axx2 xaa2y2 2a
Dx:
0x2a 2axx 2axx2
a 2a
整理ppt
12
0 ya
Dy1
: y2 2a
x
a
a2 y2
2a
Dy2:2ax0ayaa2y2
a
a y 2a
Dy3
:
y2 2a
x
2a
a 2a
= 原式
二重积分的计算方法
二重积分的计算方法二重积分是微积分中的一个重要概念,用于计算平面上某个区域的面积、质量、质心等问题。
在本文中,我们将介绍二重积分的计算方法,包括直角坐标系下的二重积分和极坐标系下的二重积分。
一、直角坐标系下的二重积分计算方法在直角坐标系下,二重积分的计算通常通过累次积分的方式进行。
设有一个二元函数 f(x, y) 在某一闭区域 D 上连续,则 D 可以表示为水平投影区域 D' 在直角坐标系上的投影区域,并且可以将 D 划分成许多小的面积 dA。
二重积分的计算可以表示为:∬Df(x, y)dA = ∫∫Df(x, y)dxdy其中,D 表示闭区域 D 上的面积,f(x, y) 是定义在 D 上的二元函数,dA 表示面积元素。
根据累次积分的原理,上式可以改写为:∬Df(x, y)dxdy = ∫[a, b]∫[c(x), d(x)]f(x, y)dydx其中,[a, b] 表示 x 的取值范围,c(x) 和 d(x) 分别表示 D' 在 x 轴上的投影区间的下边界和上边界。
根据具体问题,我们可以选择先对 x进行积分,再对y 进行积分,或者先对y 进行积分,再对x 进行积分。
通过这样的累次积分方式,可以计算得到二重积分的结果。
二、极坐标系下的二重积分计算方法在某些问题中,使用极坐标系进行二重积分的计算更加方便。
对于闭区域 D 在极坐标系下的表示,我们可以将二重积分的计算公式改写为:∬Df(x, y)dA = ∫∫Df(r, θ)rdrdθ其中,D 表示闭区域 D 上的面积,f(r, θ) 是定义在 D 上的二元函数,dA 表示面积元素。
根据累次积分的原理,上式可以改写为:∬Df(r, θ)rdrdθ = ∫[α, β]∫[g(θ), h(θ)]f(r, θ)rdrdθ其中,[α, β] 表示θ的取值范围,g(θ) 和h(θ) 分别表示 D 在极坐标系下的投影区间的内半径和外半径。
同样地,通过选择先对θ进行积分,再对r进行积分,或者先对r进行积分,再对θ进行积分的方式,可以计算得到二重积分的结果。
计算二重积分的几种简便方法
计算二重积分的几种简便方法
1. 直接计算法:
这是最常见的计算二重积分的方法。
直接按照积分的定义,将被积函数与微元面
积相乘后进行求和即可。
一般来说,要根据具体的被积函数和积分区域的形状,选择合适
的坐标系来进行计算。
3. 对称性法:
如果被积函数在某个轴或者平面上具有一定的对称性,可以利用对称性简化计算。
如果被积函数关于某个轴对称,可以将积分区域分成两部分,然后只计算其中一部分的积分,最后再乘以2。
类似地,如果被积函数关于某个平面对称,可以将积分区域分成两个
对称的部分,然后只计算其中一个部分的积分,最后再乘以2。
4. 等值线法:
对于一些复杂的被积函数,可以通过画出函数的等值线图来简化计算。
通过观察
等值线的形状和分布,可以选择合适的积分路径和积分限,使得函数在该路径上的积分更
容易计算。
5. 枚举法:
当积分区域非常复杂、函数表达式非常复杂或者积分路径不容易选择时,可以考
虑使用枚举法进行计算。
将积分区域分成若干个简单的子区域,然后分别计算每个子区域
的积分,最后将它们相加得到最终的积分值。
二重积分计算方法
二重积分计算方法
二重积分是指同时计算两个复杂变量,如空间或一维时间尺度上均有复杂变量,即进行双重多元积分运算。
二重积分法是科学研究和工程分析的β解析最常用的
计算方法。
由于经常需要解决复杂的数学问题,因此二重积分的计算在现代科学和工程领域有着广泛的应用。
二重积分计算方法是以一维自变量再组合成双维自变量,它首先将单重积分划
分为两个子题,即沿着一个方向进行单重积分,其次再沿着另一个方向进行单重积分。
例如,有一个变量专为u,如果将u偏导后的复杂函数用二维变量X和y来表示,则:
du=f(x,y)dxdy
二重积分可以通过两个步骤来完成:在第一步中,x先作为自变量,上下限的
特定的h, k ,f (x, y) 求定积分,第二步中,y作为自变量,对每一个固定的x,求解特定h, k 等积分。
二重积分法在微分方程、概率理论、拟静力学,拉格朗日
方法以及费马多元法等领域得到了广泛应用。
此外,二重积分法可以进行在线计算,在互联网领域有着重要应用。
现代技术
在二重积分法方面取得了新的进展,特别是机器学习等技术对二重积分法的计算和应用有着深远的影响。
现有的技术可以更加聪明的理解和处理信息,这也大大提高了利用二重积分法研究互联网数据的效率。
综上所述,二重积分计算方法是一种数学运算的技术,在现代科学和工程领域,它被广泛应用于多种多样的领域,特别是在互联网领域,二重积分法为研究者提供了更大的可能性,研究互联网数据更快更有效地获取信息。
计算二重积分的几种简便方法
计算二重积分的几种简便方法一、极坐标法在二维平面上,如果点P在直角坐标系中的坐标为(x,y),那么以O点为极点,OP 线段所在直线为极轴的极坐标(r,θ)满足以下关系式:x=r*cosθy=r*sinθ将函数f(x,y)转化为g(r,θ)表示,则有:根据二重积分的定义式,可以得到用极坐标表示的二重积分:∬Df(x,y)dxdy=∬g(r*cosθ,r*sinθ)rdrdθ其中,D为定义域,r为极径。
二、对称性法对称性法即利用函数在定义域内的对称性简化计算。
具体方法如下:1. 翻折对称:如果定义域D为一个轴对称图形,那么可以将积分区域缩小一半,只计算一侧再乘以2。
3. 奇偶性:如果函数f(x,y)满足奇偶性,即满足f(-x,y)=-f(x,-y)或f(-x,-y)=f(x,y),则可以将定义域限定在一个象限内(通常是第一象限),依次计算再乘以4或2。
轮换对称法即利用极坐标系下的轮换对称性简化计算。
对于一个n边形,将其边每隔2π/n取一条,则这些边的边长相等,角度之和为2π,因此在极坐标系下具有轮换对称性。
具体方法如下:1. 将定义域D分成n份,每份的极角为(k-1)2π/n和k2π/n(k=1,2,...,n)。
2. 对于每份,取中心点和每条边上的一个点,计算这些点构成的区域上的积分。
3. 最后将n份的积分相加即得到原积分。
四、正交性法正交性法即根据正交性定理,将一些特殊的函数乘在被积函数上,使之变成正交函数的线性组合,从而简化计算。
常用的正交函数有勒让德多项式、柯西-斯瓦茨函数等。
1. 将f(x,y)表示为一些正交函数的线性组合。
2. 考虑在正交函数构成的正交系下计算积分。
3. 利用正交性定理,将积分转化为正交基上的系数计算,从而得到简化后的积分表达式。
五、变换法变换法即通过适当的变换将一些定义域较为复杂的积分转化为更加简单的形式。
常见的变换有参数化、奇异变换、极坐标变换等。
1. 找到适当的变换使定义域变得简单。
二重积分的计算与应用
二重积分的计算与应用二重积分是微积分中重要的计算工具之一,它在许多领域中都有广泛的应用。
本文将详细介绍二重积分的定义、计算方法和应用。
一、二重积分的定义二重积分是对二元函数在一个有界闭区域上的积分。
设函数f(x,y)在闭区域D上有定义,则二重积分的定义如下:∬D f(x,y) dA = lim Δσ→0 ∑ f(xi,yi) Δσ,其中D是平面上的一个有界闭区域,Δσ是D中的一个小面积,Δσ=ΔxΔy,xi和yi是Δσ的中点。
二、二重积分的计算方法1.直角坐标系中的二重积分直角坐标系中的二重积分可以通过重积分法进行计算,即首先对其中的一个变量积分,再对另一个变量积分。
2.极坐标系中的二重积分对于极坐标系中的二重积分,可以将二元函数表示为极坐标形式,再进行积分计算。
设D是在极坐标系下的一个有界闭区域,则有:∬D f(x,y) dA = ∫θ1^θ2 ∫r1^r2 f(rcosθ, rsinθ) r dr dθ,其中θ1和θ2是θ的取值范围,r1和r2是r的取值范围。
三、二重积分的应用二重积分在许多领域中都有广泛的应用,下面列举几个常见的应用。
1.面积计算二重积分可以用于计算平面区域的面积。
设D是平面上的一个有界闭区域,用f(x,y)=1表示D上每一点的函数,那么二重积分∬Df(x,y)dA就等于D的面积。
2.质量、质心和转动惯量二重积分可以用于计算平面物体的质量、质心和转动惯量。
设D是平面上的一个有界闭区域,其上的密度函数为ρ(x,y),则二重积分∬Dρ(x,y)dA就等于D上物体的质量。
质心的坐标可以通过二重积分的计算得到,分别为Xc=∬Dxρ(x,y)dA/∬Dρ(x,y)dA,Yc=∬Dyρ(x,y)dA/∬Dρ(x,y)dA。
转动惯量的计算也可以类似地进行。
3.二维几何中心和弧长二重积分可以用于计算平面曲线的几何中心和弧长。
设曲线L由参数方程x=f(t),y=g(t)表示,其中a≤t≤b,则曲线的几何中心的x坐标为Xc=1/L ∫a^b x(t) ds,y坐标为Yc=1/L ∫a^b y(t) ds,其中L=∫a^b √[f'(t)^2+g'(t)^2] dt。
求二重积分的方法
求二重积分的方法在数学中,二重积分是一种重要的积分形式,它在物理、工程、经济学等领域都有广泛的应用。
求解二重积分的方法有很多种,本文将介绍几种常见的方法,希望能够帮助大家更好地理解和掌握二重积分的计算技巧。
一、直角坐标系下的二重积分。
在直角坐标系下,二重积分的计算通常采用先对x进行积分,再对y进行积分的方法。
对于给定的二元函数f(x,y),其在有界区域D上的二重积分可以表示为:∬f(x,y)dxdy。
其中积分区域D可以用不等式形式表示为D={(x,y)|a≤x≤b,g1(x)≤y≤g2(x)},此时二重积分可以表示为:∬f(x,y)dxdy=∫(∫f(x,y)dy)dx。
其中内层积分是对y进行积分,外层积分是对x进行积分。
在实际计算中,可以先对y进行积分,再对x进行积分,也可以反过来进行计算,选择合适的积分顺序可以简化计算过程。
二、极坐标系下的二重积分。
在某些情况下,使用极坐标系进行二重积分的计算会更加方便。
对于给定的二元函数f(x,y),其在极坐标下的二重积分可以表示为:∬f(x,y)dxdy=∫(∫f(rcosθ,rsinθ)rdrdθ。
其中积分区域D可以用极坐标形式表示为D={(r,θ)|α≤θ≤β, h1(θ)≤r≤h2(θ)}。
在极坐标系下,二重积分的计算可以简化为对r和θ的积分,适用于一些具有极向对称性的函数。
三、变量代换法。
对于一些复杂的二重积分,可以通过变量代换的方法来简化计算。
常见的变量代换包括直角坐标系到极坐标系的转换、直角坐标系到柱坐标系的转换、直角坐标系到球坐标系的转换等。
通过适当的变量代换,可以将原积分区域D变换为一个更简单的区域,从而简化积分的计算。
四、二重积分的性质。
在计算二重积分时,还可以利用二重积分的性质来简化计算。
例如,二重积分具有线性性质,可以将一个复杂的二重积分拆分为若干个简单的二重积分相加;二重积分的积分区域可以进行分割,将原积分区域分割为若干个简单的子区域,分别计算再相加等。
第二节_二重积分的计算法
第二节_二重积分的计算法二重积分:在平面上规定一个有界闭合区域D,对于D上的每一点P(x,y),都有一个标量函数f(x,y)与之对应。
则二重积分的数值就是由函数f(x,y)在区域D上所有点处的函数值决定的。
二重积分一般可以表示为∬Df(x,y)dA。
计算二重积分的方法主要有以下几种:直角坐标法、极坐标法、换元积分法和累次积分法。
1.直角坐标法:针对矩形、直角三角形、抛物线和折线边界的区域,可以直接使用直角坐标法来计算二重积分。
具体步骤如下:(1)写出二重积分的累加和形式:I=ΣΣf(x,y)ΔA。
(2)将区域D分成若干小矩形,计算每个小矩形的面积ΔA。
(3)在每个小矩形上选择代表点(x,y),计算f(x,y)的函数值。
(4)将函数值与相应小矩形的面积相乘,加和求和即可得到二重积分的数值。
2.极坐标法:当具有极坐标对称性的区域时,采用极坐标法可以简化计算。
具体步骤如下:(1) 确定极坐标变换:x=r*cosθ,y=r*sinθ。
(2) 根据变换的雅可比矩阵计算面积元素dA的极坐标形式:dA=rdrdθ。
(3) 将二重积分转化为极坐标下的累次积分:I=∫∫Df(x,y)dxdy=∫∫Df(r*cosθ,r*sinθ)rdrdθ。
(4)将极坐标下的积分区域和积分限进行变换,然后按照累次积分进行计算。
3.换元积分法:当二重积分区域D的边界方程比较复杂时,可以使用换元积分法来简化计算。
具体步骤如下:(1)根据边界方程对二重积分区域D进行变换,将原来的二重积分区域映射到一个新的坐标系中的区域G。
(2)根据变换的雅可比矩阵,计算新坐标系下的面积元素dA'。
(3) 将二重积分转化为新坐标系下的累次积分:I=∫∫Df(x,y)dxdy=∫∫Gf(x(u,v),y(u,v)),J(u,v),dudv,其中J(u,v)为雅可比行列式。
(4)对新坐标系下的累次积分按照直角坐标法或极坐标法进行计算。
4.累次积分法:当二重积分区域D可以通过垂直于坐标轴的直线进行划分时,可以使用累次积分法进行计算。
二重积分运算
二重积分运算
二重积分运算是微积分中的一个重要概念,它是对二元函数在一个有限区域内的积分运算。
在实际应用中,二重积分运算被广泛应用于物理、工程、经济学等领域,是解决实际问题的重要工具。
二重积分运算的定义是:设f(x,y)在闭区域D上连续,则在D上的二重积分为:
∬Df(x,y)dxdy
其中,D表示二元函数f(x,y)的定义域,dxdy表示对x和y的积分运算。
二重积分运算的结果是一个数值,表示在D上f(x,y)的积分值。
二重积分运算的计算方法有两种:直接计算和变量代换法。
直接计算法是将二元函数f(x,y)在D上分割成若干个小区域,然后对每个小区域进行积分运算,最后将所有小区域的积分值相加得到二重积分的结果。
变量代换法是将二元函数f(x,y)在D上的积分转化为在另一个区域上的积分,然后再进行计算。
二重积分运算在实际应用中有着广泛的应用。
例如,在物理学中,二重积分运算可以用来计算物体的质心、重心、转动惯量等物理量;在工程学中,二重积分运算可以用来计算材料的强度、应力、变形等参数;在经济学中,二重积分运算可以用来计算市场需求、供给、价格等经济指标。
二重积分运算是微积分中的一个重要概念,它在实际应用中有着广泛的应用。
掌握二重积分运算的计算方法和应用技巧,对于解决实际问题具有重要的意义。
二重积分的计算方法
二重积分的计算方法二重积分是微积分中的重要内容,用于计算平面上的曲线与坐标轴所围成的面积或求平面上的散布点的平均性质等。
在实际运用中,可以通过直接计算、换元法、极坐标法等多种方法来进行二重积分的计算。
一、直接计算法直接计算法是最常用也是最基础的计算二重积分的方法。
其基本步骤是将所给的二重积分转化为累次积分,先对一个变量进行积分,再对另一个变量进行积分。
1.内部积分内部积分即对于每个固定的y值,对x进行积分。
可以根据具体的题目决定如何进行内部积分,常用的有定积分、不定积分和积分换元等方法。
2.外部积分外部积分即对内部积分的结果再进行一次积分,这一步是对y进行积分。
同样的,可以根据具体题目决定如何进行外部积分,可以选择定积分、不定积分和积分换元等方法。
需要注意的是,直接计算法在面对比较复杂的函数或曲线时计算量较大,需要进行复杂的代数计算,常常需要对整个积分范围进行划分,或者使用边界定理简化计算。
二、换元法换元法是将二重积分变换到坐标系上的简单区域。
换元法分为直角坐标系的变换和极坐标系的变换两种情况。
1.直角坐标系的变换直角坐标系的变换是指将原先的积分变为关于新的变量的积分,使得积分计算更加简化。
常见的直角坐标系变换有平移变换、旋转变换和放缩变换等。
例如,当变量的变化范围较大或边界不规则时,使用平移变换可以将积分范围变为一个更加简单的区域,从而简化计算。
2.极坐标系的变换极坐标系的变换是将原先的直角坐标系变为极坐标系,使得计算过程更加简单明了。
极坐标系变换常用于对称图形或圆形区域进行积分计算。
极坐标系变换需要通过变量替换来实现,通常需要将原函数和积分上下限由直角坐标形式转换为极坐标形式,再进行计算。
换元法可以大大简化积分计算过程,但需要选择合适的坐标变换,有时会引入更多的计算量。
需要根据具体问题的特点来决定选择哪种变换。
三、几何意义根据题目所给的条件,可以确定积分范围和被积函数形式,将二重积分转化为面积或长度的几何问题。
二重积分与三重积分的计算方法
二重积分与三重积分的计算方法二重积分是求解平面上一块区域上的一些函数的积分,而三重积分是求解空间中一个区域上的一些函数的积分。
二重积分的计算方法包括直角坐标系下的直角坐标法和极坐标法,而三重积分的计算方法则包括直角坐标系下的直角坐标法和柱坐标法、球坐标法。
一、二重积分的计算方法:1.直角坐标法:设区域D在xoy平面上,函数f(x, y)在D上有定义且连续,直角坐标法的二重积分计算公式为:∬f(x, y)dσ = ∫∫f(x, y)dxdy其中积分区域D的边界可以由不等式关系来描述。
2.极坐标法:当函数f(x,y)在此区域上具有简单的表示形式f(r,θ)时,采用极坐标法可以简化计算。
极坐标法的二重积分计算公式为:∬f(x, y)dσ = ∫∫f(rcosθ, rsinθ)rdrdθ其中积分区域D的边界可以由不等式关系来描述。
二、三重积分的计算方法:1.直角坐标法:设区域V在xyz空间中,函数f(x, y, z)在V上有定义且连续,直角坐标法的三重积分计算公式为:∭f(x, y, z)dV = ∫∫∫f(x, y, z)dxdydz其中积分区域V的边界可以由不等式关系来描述。
2.柱坐标法:当函数f(x,y,z)在此区域上具有简单的表示形式f(ρ,θ,z)时,采用柱坐标法可以简化计算。
柱坐标法的三重积分计算公式为:∭f(x, y, z)dV = ∫∫∫f(ρcosθ, ρsinθ, z)ρdρdθdz其中积分区域V的边界可以由不等式关系来描述。
3.球坐标法:当函数f(x,y,z)在此区域上具有简单的表示形式f(ρ,θ,φ)时,采用球坐标法可以简化计算。
球坐标法的三重积分计算公式为:∭f(x, y, z)dV = ∫∫∫f(ρsinφcosθ, ρsinφsinθ,ρcosφ)ρ²sinφdρdθdφ其中积分区域V的边界可以由不等式关系来描述。
以上是二重积分和三重积分的计算方法的基本原理和公式,具体应用中还需要根据具体的题目和区域形状选择合适的计算方法。
二重积分的计算方法
二重积分的计算方法2. 二重积分的计算法目前所能接触到的方法是:将二重积分化为两次单积分将二重积分化为两次单积分_接下来介绍:①直角坐标系②极坐标③二重积分的换元法(至于二重积分的换元法,仅作简单介绍)2.1 利用直角坐标计算二重积分本质思想是通过画图来判断是先对x还是先对y积分。
(先对哪一个积分不绝对,需要具体问题具体分析,但仍需考虑图形,这里不过多解释为什么,仅给出相关题型的做法)下面的介绍中,默认f(x,y)≥0①有如下闭区域D:∬Df(x,y) dσ=∫abdx∫ϕ1(x)ϕ2(x)f(x,y) dy(先对y后对x)②∬Df(x,y) dσ=∫cddy∫ψ1(y)ψ2(y)f(x,y) dx(先对x后对y)(注:这里未考虑在立体空间中的形状,但只研究物体在xOy面上的投影即可解决问题)我们称①、②中的区域分别为X型区域、Y型区域。
(按先对、x、y中的哪个积分来命名)若闭区域D既是X型区域,又是Y型区域,则选择哪一种都可以(尽量找简单的)不管先对还是进行积分,要找准积分限不管先对x还是y进行积分,要找准积分限“每个人都有每个人的理解方式,这里我有些解释不出来,大家自行领会吧”注:在解题时,注意使用可加性"可加性",区间可以分为X型、Y型,既是X型又是Y型的,此时我们对其分别求二重积分即可。
这里给出一个例子来让大家认识到选择正确的积分次序的重要性:计算∬Dy1+x2−y2 dσ,其中区域D是由、、y=x、x=−1、y=1围成的闭区域。
显然D既是X型,又是Y型积分区域,现在我们用两种方法来看一下:①先对y后对x:∫−11dx∫x1y1+x2−y2 dσ(偶函数,想想为什么这里是)=−13∫−11[(1+x2−y2)32|x1] dx=−13∫−11(|x|3−1) dx_(偶函数,想想为什么这里是|x|3)=−23∫01(x3−1)dx=−23(x44−x)|01 =−23⋅(14−1)=12②先对x后对y:∫−11dy∫y1y1+x2−y2dx=∫−11[xy(1+x2−y2)12|1y−∫1yx d[y(1+x2−y2)12]]=∫−11[y2−y2−y2−∫1yx2y1+x2−y2 dx]dy此时还需求∫1yx2y1+x2−y2 dx,难免比较麻烦。
二重积分的计算法
二重积分的计算法二重积分是微积分中的重要概念之一,用于计算平面上的曲线或曲面的面积、质量、质心等物理量。
本文将以二重积分的计算法为主题,介绍二重积分的概念、计算方法以及一些应用。
一、二重积分的概念在平面上,设有一个有界闭区域D,可以将其分割为许多小的面积元素。
二重积分的概念就是将这些小的面积元素累加起来,从而求得整个区域D的面积。
一般来说,二重积分可以表示为:∬D f(x,y) dA其中,f(x,y)是定义在D上的一个函数,dA表示面积元素的微元。
二、二重积分的计算方法1. 通过直接定积分计算:如果D可以用简单的几何图形表示(如矩形、三角形等),那么可以通过直接计算定积分的方法求得二重积分的值。
具体计算方法如下:将D分割为若干个小矩形或小三角形,然后计算每个小面积元素的面积,最后将这些小面积元素的面积相加即可得到二重积分的值。
2. 通过极坐标变换计算:当被积函数f(x,y)具有一定的对称性时,可以通过极坐标变换将二重积分转化为极坐标下的积分。
具体的计算方法如下:设有二重积分∬D f(x,y) dA,通过极坐标变换可以将其转化为∬D' g(r,θ) r dr dθ的形式,其中g(r,θ)是原函数f(x,y)在极坐标下的表示形式。
3. 通过变量代换计算:当被积函数f(x,y)在直角坐标系下比较复杂,难以直接计算时,可以通过变量代换的方法将其转化为简单的形式,从而计算二重积分的值。
具体的计算方法如下:设有二重积分∬D f(x,y) dA,通过变量代换可以将其转化为∬D' f(u,v) |J| du dv的形式,其中(u,v)是变量代换后的坐标,|J|是变换的雅可比行列式。
三、二重积分的应用1. 计算平面图形的面积:二重积分可以用来计算平面上的曲线或曲面的面积。
通过将曲线或曲面分割为小的面积元素,并将其面积相加,可以得到整个曲线或曲面的面积。
2. 计算质量和质心:对于有一定密度分布的平面图形,可以用二重积分来计算其质量和质心。
二重积分的计算方法
二重积分的计算方法二重积分是微积分中的重要概念,它在数学和物理学等领域中有着广泛的应用。
在本文中,我们将讨论二重积分的计算方法,包括直角坐标系下的二重积分和极坐标系下的二重积分。
首先,我们来看直角坐标系下的二重积分计算方法。
设函数f(x, y)在闭区域D上连续,要计算二重积分∬D f(x, y) dxdy。
其中D是有界闭区域,可以表示为D={(x, y)|a≤x≤b, c≤y≤d}。
我们可以将D分割成若干个小区域,每个小区域用矩形来逼近,然后计算每个小矩形的面积乘以函数值的和,再对所有小矩形的面积和进行求和,即可得到二重积分的近似值。
当小矩形的数量趋向于无穷大时,即可得到二重积分的精确值。
接下来,我们来看极坐标系下的二重积分计算方法。
在极坐标系下,二重积分的计算通常更加简便。
设函数f(r, θ)在闭区域D 上连续,要计算二重积分∬D f(r, θ) r drdθ。
其中D可以表示为D={(r, θ)|α≤θ≤β, g(θ)≤r≤h(θ)}。
在极坐标系下,我们可以直接利用极坐标系下的面积元素r drdθ来进行计算,即将函数f(r, θ)乘以r后再进行积分即可得到二重积分的值。
除了直角坐标系和极坐标系外,二重积分还可以在其他坐标系下进行计算,如柱坐标系、球坐标系等。
不同的坐标系下,二重积分的计算方法会有所不同,但原理都是类似的,即将闭区域分割成小区域,然后计算每个小区域的面积乘以函数值的和,再对所有小区域的面积和进行求和。
在实际应用中,二重积分常常用于计算平面图形的面积、质心、转动惯量等物理量,以及计算二元函数在闭区域上的平均值、方差等统计量。
因此,掌握二重积分的计算方法对于深入理解微积分的应用具有重要意义。
总之,二重积分的计算方法是微积分中的重要内容,通过对不同坐标系下的二重积分进行计算,可以更好地解决实际问题。
希望本文对读者对二重积分的计算方法有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
VaA(x)dx
即得
D D ff( (x ,y ) )d d a b a [ b d x 1 2 (( x x ) )1 2 (f( x x ) ()x f,y () x d ,y y ]) d d x y .
公式1
上式称为 y后先 x对 的对 二次积分
几点小结
Df(x ,y )d x d ya b [ 1 2 (( x x ))f(x ,y )d y ]d x
①通过体积作 ,实为 现过 了渡 二重积 计分 算的 方一 法种
通过计算两次(单 定积 积)来 分 分求. 解
②二重积分的计算关定键限是:投影穿线法
定限口诀
D X : a x b , 1 ( x ) y 2 ( x ).
后积先定限(投影)
(后积变量上下限必为常数)
限内划条线(穿线) 先交下限写
§10.2 二重积分的计算法(一)
一 利用直角坐标计算二重积分 二 小结 思考题
复习与回顾
n
(1)二重积分 Df(x,y)dl i0m i 1f(i,i) i
(2)回顾一元函数定积分的应用
平行截面面积为已知的立体的体积的求法
在点x处的平行截面的面积为: A(x)
oa
体积元素 dVA (x)dx A(x)
(2)[Y-型域] cyd, 1 (y ) x2 (y ).
d
x1(y)
c
D x2(y)
d
x1(y) D
c
x2(y)
[Y—型区域的特点]穿过区域且平行于x 轴的直线与区 域边界相交不多于两个交点.
(3) [既非X-型域也非Y-型域]
则必须分割.
在分割后的三个区域上分别都 是X-型域(或Y—型域)
2(2yy3)dy11
1
2
8
1
o1
2x
例2 计算 y1x2y2d,D:由 yx,x1,
D
和 y1所围闭 . 区域
y
解 D 既是X—型域又是—Y型域 法1 DX :x1yx11
1
D y=x
-1 x o
1x
上 式 1 d x1y1 x2 y2 d y 1 x
12
1dx1(1x2y2)1 2d(1x2y2)
1 x
1 2
法2
DY
:11
y1 xy
原 式 1d yyy1 x 2 y 2 d x -1 D 1 1
1
y
yd y
1x2y2d x
1
1
y
1
y y=x
o
1x
-1
注意到先对x 的积分较繁,故应用法1较方便
注意两种积分次序的计算效果!
例3 计 x 算 d y ,其 D : 中 y2 由 x及 yx2 所围.闭
xyd0 1d xxxxd y1 4d xx x 2xd y
D
D1
D2
计算较繁
本题进一步说明两种积分次序的不同计算效果!
小结
以上三例说明,在化二重积分为二次积 分时,为简便见需恰当选择积分次序; 既要考虑积分区域 D 的形状,又要考 虑被积函数的特性(易积)
5.【简单应用】
例4
求两个底圆半径都等于R的直交圆柱面所围成的立体的
D
解 D既是X—型域 又是Y—型域 先求交点
由 y2x (11, 或 ) (4,2) yx2
法1
1y2 DY :y2 xy2
xd y2dyy2xd yx 1 y2
D
2
y2
ydy xdx
5
5
1
y2
8
法2 视为X—型域 D1:0xx1y x
则必须 D分 D 1D 割 2 1x4
D2:x2y x
x0[a,b]
作平x面 x0
x0[a,b]
yy22((xxz))z
yy
2(x0)
作平x面 x0
zzff((xx,,yy))
AA((xx0 )0 )
1(x0) oo aa xx00
xx
bbyy1(1x()x)
1(x0)
2(x0)
A A ((x x0)) 1 2 1 (2 ((x(x x)x 0 )0 ))ff(x (,xy 0,)y d)ydy
体积为
b
V A(x)dx
a
x xdx b
x
一、利用直角坐标系计算二重积分
1. [预备知识]
(1)[X-型域]
axb, 1 (x )y 2 (x ).
y2(x)
D
y1(x)
a
b
y2(x)
D
y1(x)
a
b
其中函数 1(、x) 在2(x区) 间 上[a连,b续] .
[X—型区域的特点] 穿过区域且平行于y 轴的直线与区 域边界相交不多于两个交点.
该线平行于坐Βιβλιοθήκη y标轴且同向后交上限见
oa
b
f
D
(x,
y)d
dx a
2(x)
f (x,y)d y
1(x)
y2(x)
D
y1(x)
x bx
(2)若积分 Y域 型为 域 :
y x1y
d
cyd, 1 (y ) x2 (y ). y
D x2y
c
f(x,y)dxdy d d y 2(y) f(x,y)dx
D3 D1
D2
由二重积分积分区域的可加性得
.
D
D1
D2
D3
2.【二重积分公式推导】
(1) 若积分区域为X-型域: axb, 1 (x )y2 (x ).
且f设 (x,y)0
则f (x, y)d的值等于D为 以底,以曲面
D
z f(x,y)为曲顶的曲顶柱积体.的体
方法 根据二重积分的几何意义以及计算“平行截面面积 为已知的立体的体积”的方法来求.
为计算方便,可选择积分次序, 必要时还可交换积分次序. (见后续补充例题)
(3) 若积分域较复杂,可将它分成若干 X-型域(或Y-型域)
D
D1
D2
D3
y D2
D1 D3
o
x
4. 【例题部分】
例1 计算 x d y ,其D : 中 y 由 1 ,x2 及 yx所围. 闭
D
解 Ⅰ
看作X-型域
DX
:
1 1
体积V.
z x2y2R2
解 设两个直圆柱方程为
x2y2R2, x2z2R2
R
利用对称性, 考虑第一卦限部分,
D
c
1(y)
o 公式2
x
即化二重积分 x后为 对 y的 先二 对次.积分
3.【二重积分的计算步骤可归结为】
①画出积分域的图形,标出边界线方程; ②根据积分域特征,确定积分次序; ③根据上述结果,化二重积分为二次积分并计算。
[说明] (1) 使用公式1必须是X-型域,公式2必须是Y-型域. (2) 若积分区域既是X–型区域又是Y –型区域 ,
x y
2 x
y
y=x D
Dxd y1 2dx1 xxd y y1 2[xy 2 2]1 xdx
2(x3x)dx11
12 2
8
o
y
1
y =1 x2
x
解Ⅱ
看作Y-型域
1 y 2 DY :y x 2
2
y
x=y
D
x=2
Dxd y1 2dyy 2xd y x1 2[yx 2 2]2 ydy