2020-2021年高二数学第六章不等式教材分析 新课标 人教版

合集下载

人教版高二数学第六章不等式结课教案-第六章-不等式

人教版高二数学第六章不等式结课教案-第六章-不等式

第六章 不等式小 结学习目标1. 理解不等式的性质,并能证明;2. 掌握两个正数的算术平均数不小于它们的几何平均数定理,并会简单地应用;3. 掌握证明不等式的常用方法,如:比较法、分析法、综合法、反证法等等。

4. 培养我们的逻辑思维能力、分析问题和解决问题的能力。

学习过程一、本章的基本内容 1.不等式的性质定理1:如果a>b ,那么b<a ;如果b<a ,那么a>b ; 定理2:如果a>b 且b>c ,那么a>c .定理3:如果b a >,那么c b c a +>+ (加法单调性)反之亦然 推论1:如果b a >且d c >,那么d b c a +>+(相加法则) 推论2:如果b a >且d c <,那么d b c a ->-(相减法则)定理4:如果b a >且0>c , 那么bc ac >;如果b a >且0<c 那么bc ac <(乘法单调性) 推论1 : 如果0>>b a 且0>>d c ,那么bd ac >(相乘法则) 推论1:(补充)如果0>>b a 且d c <<0,那么dbc a >(相除法则) 推论2 如果0>>b a , 那么nnb a >)1(>∈n N n 且 定理5:如果0>>b a ,那么nn b a >)1(>∈n N n 且2.几个重要不等式定理1: 如果R b a ∈,,那么(当且仅当时取“=”) 定理2:如果a ,b 是正数,那么ab ba ≥+2(当且仅当时取“=”)定理3:如果+∈R c b a ,,,那么,(当且仅当时取“=”)推论:如果+∈R C b a ,,,那么33abc c b a ≥++(当且仅当时取“=”)推广:(均值不等式):≥,3.极值定理:已知y x ,都是正数,则(1) 如果积xy 是定值p ,那么当y x =时和y x +有最小值p 2;(2) 如果和y x +是定值s ,那么当y x =时积xy 有最大值241s 。

高中数学人教A版《不等式》教材分析与教学建议

高中数学人教A版《不等式》教材分析与教学建议

人教A版必修5《不等式》教材分析与教学建议1.课程目标不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。

不等关系在现实世界和日常生活中大量存在,任何人都需要对发生在我们周围的事物作出某种判断,判断有时需借助于量与量的比较来实现,这就是不等关系在本章的地位与作用。

在本章中,学生将通过具体情境感受不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。

我们将重点研究一元二次不等式、二元一次不等式(组)、基本不等式三种不等式模型,在了解不等式实际背景的前提下,重点研究不等式的应用。

2.课标内容(1)不等关系:通过具体情境,感受在现实世界和日常生活中大量存在的数量关系,了解不等式(组)的实际背景,了解不等式的一些基本性质。

(2)一元二次不等式:经历从实际情景中抽象出一元二次不等式模型的过程;通过函数图象了解一元二次不等式与相应函数、方程的联系;会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题:从实际情景中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情景中抽象出一些简单的二元线性规划问题,并能加以解决。

(4)基本不等式:探索基本不等式的证明过程;会用基本不等式解决简单最值问题。

3.教学要求3.1基本要求(1)了解不等式(组)的实际背景;(2)理解不等式(组)对于刻划不等关系的意义和价值;(3)会用不等式(组)表示实际问题中的不等关系,能用不等式(组)研究含有不等关系的实际问题;(4)了解从实际情境中抽象出一元二次不等式模型的过程;(5)理解一元二次不等式的概念;(6)理解并掌握一元二次不等式、二次函数及一元二次方程之间的关系;(7)理解并掌握解一元二次不等式的过程;(8)会求一元二次不等式解集;(9)掌握求解一元二次不等式的程序框图及隐含的算法思想;(10)了解从实际情境中抽象出二元一次不等式(组)模型的过程;(11)理解二元一次不等式(组)、二元一次不等式(组)的解集的概念;(12)了解二元一次不等式的几何意义,理解(区域)边界的概念及实线、虚线边界的含义;(13)会用二元一次不等式(组)表示平面区域,能画出给定的不等式(组)表示的平面区域;(14)了解线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解的概念;(15)掌握简单的二元线性规划问题的解法;(16)了解基本不等式的代数背景、几何背景以及它的证明过程;(17)理解算术平均数,几何平均数的概念;(18)会用基本不等式解决简单的最大(小)值的问题;(19)通过基本不等式的实际应用,感受数学的应用价值。

2021年人教A版高中数学教材目录(全)

2021年人教A版高中数学教材目录(全)

必修1欧阳光明(2021.03.07)第一章集合与函数概念1.1 集合1.2 函数及其表示 1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体 1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质 2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n 项和2.4等比数列2.5等比数列的前n 项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式 3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数 3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

新高中数学新课程标准2021年版

新高中数学新课程标准2021年版

新高中数学新课程标准2021年版我是AI语言模型,以下是改写后的文章:新课标数学课程标准2021版一、课程的根本理念新课标的理念是以学生为本,落实立德树人根本任务,培养和提升学生的数学核心素养。

课程面向全体学生,实现人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

高中数学课程内容表达现代社会的需求、数学学科的特征、高中学生的认知规律,根据数学课程目的,特别是数学核心素养,精选课程内容。

在课程内容安排上,注重处理好数学核心素养与课程内容、过程与结果、直接经历与间接经历的关系,注意与其他学科的联系,还关注与义务教育课程的衔接。

高中数学教学活动的关键是启发学生学会数学思考,引导学生学会数学、会用数学。

根据数学学科的特点,深化挖掘数学的育人价值,增强数学教学的育人功能。

树立以发展学生数学核心素养为导向的课程意识与教学意识,将核心素养贯穿于数学教学的全过程。

在教学中,老师应结合相应的教学内容,落实“四基”(根底知识、根本技能、根本思想、根本活动经历),培养“四能”(从数学角度发现和提出问题的才能、分析和解决问题的才能),促进学生数学核心素养的形成与发展。

评价的根据是相应研究阶段学生数学核心素养的发展程度。

应建立目的多元、方法多样的评价体系。

二、课程目的新旧课程的目的没有较大的差异,新的课程着重提出了数学核心素养的概念。

新课程目的是获得进一步研究以及将来发展所必需的“四基”(根底知识、根本技能、根本思想、根本活动经历),提高“四能”(从数学角度发现和提出问题的才能、分析和解决问题的才能),增强创新意识和应用能力。

开发数学核心素养(数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析),学会用数学眼光观察世界,用数学思维分析世界,用数学语言表达世界。

提高研究数学的兴趣,增强学好数学的自信。

要养成良好的数学研究惯和科学精神,树立敢于质疑、擅长考虑、严谨务实的态度,并认识数学的科学、应用和文化价值。

考点06 基本不等式(考点详解)-备战2021年新高考数学一轮复习考点微专题

考点06 基本不等式(考点详解)-备战2021年新高考数学一轮复习考点微专题

考点06 基本不等式
基本不等式作为代数式求解最值问题的重要途径和方法,经常作为高考的命题点,常结合函数的基本性质和导数等知识综合考查,多以选择题和填空题形式出现,难度中等。

考试要求
1.
掌握基本不等式ab ≤a +b 2
(a ,b≥0); 2.结合具体实例,能用基本不等式解决简单的最大值或最小值问题.
一、利用基本不等式求最值;
二、基本不等式的综合应用;
三、基本不等式的实际应用。

【易错警示】
1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.
2.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +m x (m >0)的单调性.
3.若两个正数的和为定值,则这两个正数的积不一定有最大值.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值.
4.函数y =x +1x 的最小值一定不是2,因为函数y =x +1x
的定义域是{x |x ≠0},当x <0时,y <0,所以函数y =x +1x
无最小值.
利用基本不等式求最值
1.基本不等式:ab ≤a +b 2
(1)基本不等式成立的条件:a >0,b >0.
(2)等号成立的条件:当且仅当a =b 时取等号.。

高二数学专题一:含参不等式及参数问题 知识精讲 人教版

高二数学专题一:含参不等式及参数问题 知识精讲 人教版

高二数学专题一:含参不等式及参数问题 知识精讲 人教版一. 本周教学内容:专题一:含参不等式及参数问题二. 重点、难点:含参数的不等式有着丰富的内容,解决含参数不等式的问题不仅需要很熟练的运算能力,而且还需要有明确的数学思想指导,灵活深刻的思维品质。

应注意以下几个问题: 1. 解含有参数的不等式。

2. 已知不等式成立的条件,求参数的X 围。

3. 不等式恒成立,能成立,恰成立的问题。

【典型例题】[例1] 解不等式012>+-x x ax 。

解:0)1(2>+-⇔x x ax(1)当0=a 时,0)1(>-x x 解为)1,0(∈x(2)当0>a 时,0)11(2>+-⋅ax a x xa a 412-=∆①),41(∞+∈a 时,解为),0(∞+∈x②41=a 时,解为),2()2,0(∞+⋃∈x③)41,0(∈a 时,解为),2411()2411,0(∞+-+⋃--∈a a a a x (3)0<a 时,0)11(2<+-x a x a x 0412>-=∆a a解为:)2411,0()2411,(aaa a --⋃-+-∞ [例2] 设na n n x f x x x x ⋅+-++++=)1(321lg )( ,其中R a ∈,2≥n ,*N n ∈,n为常数。

若)(x f 在(∞-,1)上成立,求a 的取值X 围。

解:依题意:0)1(21>+-+++nan n x x x 即0)1(21>+-++a n n x x x ])1()2()1[(x x x n n n n a -+++-> 令])1()1[()(xx nn n x g -++-=x n y )1(=↓……↓-=x nn y )1(∴)(x g y = R 上↑∴∈x (∞-,1) 21)1(max ng y -== ∴21n a ->∴∈a (21n-,∞+) [例3] }09log 5log 1|{<-+=x x x A ,}0)2(2|{2<+--=a a x x x B ,若B B A =⋃,求a 的取值X 围。

新教材2020-2021学年高中数学人教A版必修第一册:2.2 第1课时 基本不等式

新教材2020-2021学年高中数学人教A版必修第一册:2.2 第1课时 基本不等式

关键能力·攻重难
题型探究 题型一 利用基本不等式判断命题真假
例 1 下列不等式一定成立的是( C )
A. x2+14> x(x>0)
B.x+1x≥2(x≠0)
C.x2+1≥2|x|(x∈R)
D.x2+1 1>1(x∈R)
[解析] 选项 A 中,x2+41≥x(当且仅当 x=12时,x2+14=x),故选项 A 不正确;选项 B 中,x+1x≥2(x>0),x+1x≤-2(x<0),故选项 B 不正确; 选项 C 中,x2-2|x|+1=(|x|-1)2≥0(x∈R),故选项 C 正确;选项 D 中, x2+1≥1,则 0<x2+1 1≤1,故选项 D 不正确.
第二章
一元二次函数、方程和不等式
2.2 基本不等式
【素养目标】 1.了解基本不等式的代数和几何背景.(数学抽象) 2.理解并掌握基本不等式及其变形.(逻辑推理) 3.会用基本不等式解决简单的最大(小)值问题.(数学运算) 4.会用基本不等式进行代数式大小的比较及证明不等式.(逻辑推 理) 5.会用基本不等式求最值问题和解决简单的实际问题.(数学运算)
理的拆、凑、配等变换.
基础自测
1.判断正误(对的打“√”,错的打“×”)
(1) 两 个 不 等 式
a2 + b2≥2ab

a+b 2

ab 成 立 的 条 件 是 相 同
的.( × )
(2)当 a>0,b>0 时,a+b≥2 ab.( √ )
(3)当 a>0,b>0 时,ab≤(a+2 b)2.( √ )
(4)函数 y=x+1x的最小值是 2.( × )
[解析] (1)不等式 a2+b2≥2ab 成立的条件是 a,b∈R;不等式a+2 b ≥ ab成立的条件是 a>0,b>0.

新课标人教A版数学必修5全部课件:不等式的性质

新课标人教A版数学必修5全部课件:不等式的性质
第1课时 不等式的性质及比较 法证明不等式
要点·疑点·考点 课 前 热 身 能力·思维·方法
延伸·拓展
误 解 分 析
要点·疑点·考点
1.不等式的性质是证明不等式和解不等式的理论基础,通 过本节复习,要求理解不等式的性质,会讨论有关不等式 命题的充分性和必要性,正确判断命题的真假. 不等式有如下8条性质: 1.a>b b<a.(反身性) 2.a>b,b>c =>a>c.(传递性) 3.a>b a+c>b+c.(平移性) 4.a>b,c>0 => ac>bc; a>b,c<0 => ac<bc.(伸缩性) 5.a>b≥0 => n a n b ,n∈N,且n≥2.(乘方性) 6.a>b≥0 => a>nb,n∈N,且n≥2.(开方性) 7.a>b,c>d => a+c>b+d.(叠加性) 8.a>b≥0,c>d≥0 => ac>bd.(叠乘性)
2.掌握用比较法证明不等式的方法,熟悉它的变形过程.用 比较法证明不等式的步骤是:作差——变形——定号.其中 的“变形”可以变成平方和,也可以变成因式的积或常数; 有关指数式的比较法通常用作商法,步骤是作商——变形 ——与1比较大小.
返回
课前热身
1.设a<0,-1<b<0,则a,ab,ab2三者的大小关系为 a<ab2<ab ____________. 2.设A=1+2x4,B=2x3+x2,x∈R且x≠1,则A,B的大小关系 为A____B. >
b2
【解题回顾】(1)用比较法证明不等式,步骤是:作差(商)— —变形——判断符号(与“1”比较);常见的变形手段是通分、 因式分解或配方等;常见的变形结果是常数、若干个因式的 积或完全平方式等.应注意的是,商比法只适用于两个正数比 较大小. (2)证法2的最后一步中,也可用基本不等式来完成:

2022年高考数学(文)一轮复习文档:第六章 不等式 第3讲基本不等式 Word版含答案

2022年高考数学(文)一轮复习文档:第六章 不等式 第3讲基本不等式 Word版含答案

第3讲 基本不等式,)1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它们的几何平均数.3.利用基本不等式求最值问题 已知x >0,y >0,则(1)假如积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)假如和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)1.辨明两个易误点(1)使用基本不等式求最值,“一正,二定,三相等”三个条件缺一不行; (2)连续使用基本不等式求最值要求每次等号成立的条件全都. 2.活用几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +ab≥2(a ,b 同号且都不为0);ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R );⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ). 3.巧用“拆”“拼”“凑”在运用基本不等式时,要特殊留意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.1.教材习题改编 将正数m 分成两个正数a 与b 之和,则ab 的范围为( )A .(0,m 22]B .(0,m 24]C .[m 22,+∞)D .[m 24,+∞)B a +b =m ≥2ab , 所以ab ≤m 24,故选B.2.教材习题改编 函数f (x )=x +1x的值域为( )A .B .∪ 当x >0时,x +1x≥2x ·1x=2.当x <0时,-x >0. -x +1-x≥2(-x )·1(-x )=2.所以x +1x≤-2.所以f (x )=x +1x的值域为(-∞,-2]∪ 设折成的矩形的两边分别为x ,y (x >0,y >0).则x +y =a2.由于x +y ≥2xy , 所以xy ≤14(x +y )2=a 216,即S 矩形≤a 216. 当且仅当x =y =a 4时,(S 矩形)max =a 216.故选D.4.若x >1,则x +4x -1的最小值为________. x +4x -1=x -1+4x -1+1≥4+1=5. 当且仅当x -1=4x -1, 即x =3时等号成立. 55.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为______.由于xy =1,所以y =1x,所以x 2+2y 2=x 2+2x2≥2x 2·2x2=2 2.即x 2+2y 2的最小值为2 2. 2 2利用基本不等式求最值(高频考点)利用基本不等式求最值是高考的常考内容,题型主要为选择题、填空题. 高考对利用基本不等式求最值的考查主要有以下三个命题角度: (1)知和求积的最值; (2)知积求和的最值; (3)求参数的值或范围.(1)(2021·安徽合肥二模)若a ,b 都是正数,则⎝⎛⎭⎪⎫1+b a ⎝⎛⎭⎪⎫1+4a b 的最小值为( )A .7B .8C .9D .10(2)(2021·安徽安庆二模)已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为( )A .4B .2 2C .8D .16【解析】 (1)由于a ,b 都是正数,所以⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b=5+b a +4a b≥5+2b a ·4ab=9,当且仅当b =2a >0时取等号.故选C.(2)由a >0,b >0,a +b =1a +1b =a +b ab ,得ab =1,则1a +2b≥21a ·2b =2 2.当且仅当1a =2b ,即a =22,b =2时等号成立.故选B.【答案】 (1)C (2)B角度一 知和求积的最值1.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4C 由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22, 当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”, 所以ab 的最小值为2 2. 角度二 知积求和的最值 2.已知函数y =ax +3-2(a >0,a ≠1)的图象恒过定点A ,若点A 在直线x m +y n=-1上,且m ,n >0,则3m+n 的最小值为________.易知函数y =ax +3-2(a >0,a ≠1)恒过定点(-3,-1),所以A (-3,-1).又由于点A 在直线x m +yn=-1上,所以3m +1n=1.所以3m +n =(3m +n )·⎝ ⎛⎭⎪⎫3m +1n=10+3m n +3n m≥10+23m n ·3nm=16,当且仅当m =n 时,等号成立, 所以3m +n 的最小值为16. 16角度三 求参数的值或范围 3.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x+ax y≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号, 所以(x +y )·⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2,于是(a +1)2≥9恒成立. 所以a ≥4. 4利用基本不等式解决实际问题小王高校毕业后,打算利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流淌成本为W (x )万元,在年产量不足8万件时,W (x )=13x2+x (万元).在年产量不小于8万件时,W (x )=6x +100x-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流淌成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? 【解】 (1)由于每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值L (6)=9万元,当x ≥8时,L (x )=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15,此时,当且仅当x =100x,即x =10时,L (x )取得最大值15万元.由于9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域. (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 由于售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为.(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.,)——忽视最值取得的条件致误(1)已知x >0,y >0,且1x +2y=1,则x +y 的最小值是________.(2)函数y =1-2x -3x(x <0)的最小值为________.【解析】 (1)由于x >0,y >0,所以x +y =(x +y )⎝ ⎛⎭⎪⎫1x +2y=3+y x+2xy≥3+22(当且仅当y =2x 时取等号),所以当x =2+1,y =2+2时,(x +y )min =3+2 2. (2)由于x <0,所以y =1-2x -3x =1+(-2x )+(-3x)≥1+2(-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 的最小值为1+2 6. 【答案】 (1)3+2 2 (2)1+2 6(1)利用基本不等式求最值,肯定要留意应用条件,如本例(2)易忽视条件x <0而误用基本不等式得2x +3x≥2 6.(2)尽量避开多次使用基本不等式,若必需多次使用,肯定要保证等号成立的条件全都.当3<x <12时,函数y =(x -3)(12-x )x的最大值为________.y =(x -3)(12-x )x=-x 2+15x -36x=-⎝⎛⎭⎪⎫x +36x +15≤-2x ·36x+15=3.当且仅当x =36x, 即x =6时,y max =3. 3,)1.(2021·海口调研)已知a ,b ∈(0,+∞),且a +b =1,则ab 的最大值为( ) A .1B .14C .12D .22B 由于a ,b ∈(0,+∞), 所以1=a +b ≥2ab , 所以ab ≤14,当且仅当a =b =12时等号成立.2.已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4C 由于x <0,所以f (x )=-⎣⎢⎡⎦⎥⎤(-x )+1(-x )-2≤-2-2=-4, 当且仅当-x =1-x,即x =-1时取等号.3.(2021·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .4A 由于正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1;又1xy≥M 恒成立,所以M ≤1,即M 的最大值为1.4.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b 等于( ) A .-3 B .2 C .3D .8C y =x -4+9x +1=x +1+9x +1-5, 由于x >-1,所以x +1>0,9x +1>0. 所以由基本不等式, 得y =x +1+9x +1-5≥2(x +1)·9x +1-5=1, 当且仅当x +1=9x +1,即(x +1)2=9,即x +1=3,x =2时取等号, 所以a =2,b =1,a +b =3.5.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为( ) A .2 B .4 C .6D .8C 由已知得x +3y =9-xy , 又由于x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时,即x =3,y =1时取等号,(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6即x +3y ≥6.6.某车间分批生产某种产品,每批产品的生产预备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产预备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件B 若每批生产x 件产品,则每件产品的生产预备费用是800x 元,仓储费用是x 8元,总的费用是800x +x8≥2800x ·x8=20, 当且仅当800x =x8,即x =80时取等号.7.(2021·郑州检测)已知a >0,b >0,a +2b =3,则2a +1b的最小值为________.由a +2b =3得13a +23b =1,所以2a +1b =⎝ ⎛⎭⎪⎫13a +23b ⎝ ⎛⎭⎪⎫2a +1b=43+a 3b +4b 3a ≥43+2a 3b ·4b 3a =83. 当且仅当a =2b =32时取等号.838.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =________. f (x )=4x +a x≥24x ·a x =4a ,当且仅当4x =a x,即a =4x 2时取等号,则由题意知a =4×32=36.369.正实数x ,y 满足x +2y =2,则3x +9y的最小值是______. 利用基本不等式可得3x +9y =3x +32y ≥23x ·32y =23x +2y.由于x +2y =2, 所以3x +9y ≥232=6,当且仅当3x =32y,即x =1,y =12时取等号.610.不等式x 2+x <a b +b a对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是________.依据题意,由于不等式x 2+x <a b +b a对任意a ,b ∈(0,+∞)恒成立,则x 2+x <⎝ ⎛⎭⎪⎫a b +b a min,由于a b +ba ≥2a b ·b a=2,当且仅当a =b 时等号成立,所以x 2+x <2,求解此一元二次不等式可知-2<x <1,所以x 的取值范围是(-2,1).(-2,1)11.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. (1)由2x +8y -xy =0, 得8x +2y=1,又x >0,y >0,则1=8x +2y ≥28x ·2y=8xy.得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝⎛⎭⎪⎫8x +2y·(x +y )=10+2x y +8yx≥10+22x y ·8yx=18.当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.12.(2021·东北育才学校模拟)设OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b的最小值是( )A .4B .92C .8D .9D 由于AB →=OB →-OA →=(a -1,1), AC →=OC →-OA →=(-b -1,2),若A ,B ,C 三点共线, 则有AB →∥AC →,所以(a -1)×2-1×(-b -1)=0,所以2a +b =1, 又a >0,b >0,所以2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a+2ab≥5+22b a ·2ab=9,当且仅当⎩⎪⎨⎪⎧2b a =2a b ,2a +b =1,即a =b =13时等号成立.13.已知x >0,y >0,且2x +5y =20. 求:(1)u =lg x +lg y 的最大值; (2)1x +1y的最小值.(1)由于x >0,y >0,所以由基本不等式,得2x +5y ≥210xy . 由于2x +5y =20,所以210xy ≤20,xy ≤10, 当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.所以u =lg x +lg y =lg(xy )≤lg 10=1.所以当x =5,y =2时,u =lg x +lg y 有最大值1. (2)由于x >0,y >0,所以1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝⎛⎭⎪⎫7+2 5y x ·2x y =7+21020. 当且仅当5y x =2xy时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.所以1x +1y 的最小值为7+21020.14.(2021·常州期末调研)某学校为了支持生物课程基地争辩植物生长,方案利用学校空地建筑一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值. (1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450).(2)由于8<x <450, 所以2x +7 200x≥22x ×7 200x=240.当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676 m 2.。

高二数学教案第六章不等式教材分析

高二数学教案第六章不等式教材分析

第六章不等式教材分析本章教材是在初中介绍了不等式的概念,学习了一元一次不等式,一元一次不等式组的解法,高一学习了一元二次不等式,简单的分式不等式和含绝对值不等式的解法的基础上,研究了不等式的性质,不等式的证明和一些不本章教学约需17课时,具体分配如下:6.1不等式的性质约3课时6.2算术平均数与几何平均数约2课时6.3不等式的证明约6课时6.4不等式的解法举例约2课时6.5含有绝对值的不等式约2课时小结与复习约2课时一、内容与要求式、方程、函数、三角等有密切的联系,在解因此,不等式是进一步学习数学的基础,是掌握现代科学(一)本章的主要内容是不等式的基本性质,不等式的证明,一些不等式的解法和含有绝对值不等式的定理等(二)章头引言安排了一个实际问题——问题是一个求函数的最小值的问题,可以用函数的知识来解决,但如果用算术平均数与几何第一小节是“不等式的性质”教科书首先通过数形结合,给出了比较实数大小的方法,在这个基础上,给出了不等式的性质,一共讲了五个定理和三个推论,并给出了严格的证明不等式的其他性质,都可由它们推导出来,另外,本小节还增加了两个利用不等式的性质证明不等式的例题,这一方面有利于学生运用、掌握不等式的性质及其推论,另一方面,也为第二小节是“算术平均平均数与几何平均数”教科书首先证明了一个重要的不等式,通过这一公式,得出了两个正数的算术平均数与几何平均数的定理,最后,通过几个例题,说明此定理在解决数学问题和实际问题中的应第三小节是“不等式的证明”教科书通过七个例题分别介绍了证明不等式的三种基本第四小节是“不等式的解法”教科书通过例1、例2,复习、总结了一元二次不等式、一元二次不等式组,简单的含有绝对值的不等第五小节是“含有绝对值的不等式”在这一小节里,教科书介绍了含有绝对值的不等式的一个定理及其证明,并给出了它的两个推(三)本章的教学要求1.理解不等式的性质及其证明2.掌握两个正数的算术平均数不小于它们的几何平均数的定理(不扩展到三个正数的算术平均数不小于它们的几何平均数的定理),3.掌握分析法、综合法、比较法等几种4.掌握某些简单不等式的解法5.理解不等式。

高二数学《基本不等式》教案分析

高二数学《基本不等式》教案分析

高二数学《基本不等式》教案分析高二数学《基本不等式》教案分析一、教材分析【教材地位及作用】基本不等式又称为均值不等式,选自北京师范大学出版社普通高中课程标准实验教科书数学必修5 第3 章第3 节内容。

教学对象为高二学生,本节课为第一课时,重在研究基本不等式的证明及几何意义。

本节课是在系统的学习了不等关系和掌握了不等式性质的基础上展开的,作为重要的基本不等式之一, 为后续进一步了解不等式的性质及运用,研究最值问题奠定基础。

因此基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

【教学目标】依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:知识与技能目标:理解掌握基本不等式,理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;过程与方法目标:通过探究基本不等式,使学生体会知识的形成过程,培养分析、解决问题的能力;情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

【教学重难点】重点:理解掌握基本不等式,能借助几何图形说明基本不等式的意义。

难点:利用基本不等式推导不等式. 关键是对基本不等式的理解掌握.二、教法分析本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。

利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率.三、学法指导新课改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动,勇于探索的学习方法,因此,本课主要采取以自主探索与合作交流的学习方式,通过让学生想一想,做一做,用一用,建构起自己的知识,使学生成为学习的主人。

高中数学第六章不等式教案

高中数学第六章不等式教案

高中数学第六章不等式教案教学目标:学习并掌握不等式的基本概念,学会解决一元一次不等式和一元二次不等式;通过练习和应用,提高学生解题的能力和思维逻辑。

教学内容:1. 不等式的基本概念2. 一元一次不等式的解法3. 一元二次不等式的解法4. 不等式的综合运用教学重点和难点:一元一次不等式和一元二次不等式的解法,以及不等式的综合运用。

教学方法:讲授相结合,引导学生主动思考和解题练习。

教学过程:一、导入(5分钟)教师引导学生回顾上节课所学的不等式相关知识,激发学生对不等式的兴趣和好奇心。

二、讲解不等式的基本概念(10分钟)1. 引导学生理解不等式的定义和符号表示。

2. 介绍不等式的性质和基本性质。

三、讲解一元一次不等式的解法(15分钟)1. 讲解一元一次不等式的基本求解方法。

2. 通过例题解析,让学生掌握解题技巧和步骤。

四、讲解一元二次不等式的解法(15分钟)1. 引导学生理解一元二次不等式的定义和性质。

2. 通过例题讲解,让学生掌握一元二次不等式的解法方法。

五、综合训练(15分钟)1. 给学生提供一些练习题,让他们通过练习加深对不等式的理解。

2. 引导学生探讨不等式在生活和实际问题中的应用。

六、作业布置(5分钟)布置相应的作业,加强学生对不等式知识的巩固和提高。

七、课堂小结(5分钟)教师对今天的教学内容进行总结,并鼓励学生多多练习,提高解题的能力和思维逻辑。

教学反思:通过本节课的教学,学生应该能够掌握不等式的基本概念和解法方法,培养其解题思维和逻辑推理能力,进一步提高数学学习的兴趣和能力。

高中数学新教材第六章不等式教学思考

高中数学新教材第六章不等式教学思考

高中数学新教材第六章不等式教学思考新教材第六章《不等式》与数、式、方程、函数、三角等内容都有密切联系,讨论方程或方的解的情况,研究函数的定义域、值域、单调性、最大值、最小值,讨论线性规划问题等,都要经常不等式的知识,不等式在解决各类实际问题时也有广泛应用,可见,不等式在中学数学里占有重要地是进一步学习数学的基础知识。

一、把握教材层次,分层递进教学分层递进教学是根据学生学习可能达到的水平及其客观差异性.把教育对象、课堂教学目标和活动层次化,当然也包括对教学内容的层次化处理。

高中数学新教材第一章《集合与简易逻辑》中已经介绍了一元一次不等式(组)、一元二次不等简单分式不等式和简单绝对值不等式的解法,而第六章《不等式》是在高一学习的基础之上进一步深等式的性质、介绍不等式证明的常见方法和各种类型不等式的解法,在高三复习时,高二解析几何的学数形结合思想的渗透又会进一步深化学生对不等式的理解,从而增加不等式问题的处理方法,教材对不问题的处理方式体现了分层递进的教学策略,这样做有利于学生在学习过程中边学习、边巩固、再深入巩固。

那么在不等式这一章的教学中我们也应遵循这一原则,根据学生的能力水平提出适合学生实际的教学目标,不必急于补充过多知识。

二、渗透化归思想、强调等价变形一元一次不等式(组)、一元二次不等式的解法是解各种不等式(组)的基础,学生应当熟练掌解其他各种类型的不等式时,关键是善于根据有关的性质或定理,把它等价转化(即等价变形)为一元不等式、一元二次不等式(组)。

一般来讲:(1)如果不等式是超越不等式或含绝对值的不等式,则可把它等价转化成代数不等式(组)(2)如果代数不等式是无理不等式,则可把他等价化归成有理不等式(组)(3)如果有理不等式是分式不等式,则可把他化归成整式不等式(组)(4)如果整式不等式是高次不等式,则可把他等价化归成一元一次不等式、一元二次不等式(组)或用序轴标根法解不等式时,尤其是解无理不等式和对数不等式时更要注意变形的等价性。

2021高考高三数学一轮复习第六章-第4讲基本不等式

2021高考高三数学一轮复习第六章-第4讲基本不等式

A.9 B.12 C.18 D.24
2
11.设等差数列{an}的公差是 d,其前 n 项和是 Sn,若 a1=d=1,则Sn+8的最小值是________. an
(2)已知 x<5,则 f(x)=4x-2+ 1 的最大值为______.
4
4x-5
2.已知直线 ax+by+c-1=0(b,c>0)经过圆 x2+y2-2y-5=0 的圆心,
A.-3
B.2
C.3
D.8
(2)(新教材课后题改编)求 x10 2x 的最大值
.
(3) 已知 a>0,b>0,a+b=1,则1+1的最小值为________. ab
(4)若 a 0,b 0, lg a lg b lga b,则 a b 的最小值为
.
(5)函数 y x2 2 x 1 的最小值为
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件
D. 既不充分也不必要条件
7.【2017 年高考江苏卷】某公司一年购买某种货物 600 吨,每次购买 x 吨,运费为 6 万元/次,一年
的总存储费用为 4x 万元.要使一年的总运费与总存储费用之和最小,则 x 的值是___________.
8.已知各项均为正数的等比数列{an}满足 a7=a6+2a5,若存在两项 am,an 使得 aman=4a1,则 1 +4的 mn
.
x 1
【 训 练 2 】 (1) 已 知 x 0, y 0, x 3y xy 9 , 则 x 3y 的 最 小 值 为

.
(2)已知 x,y∈(0,+∞),2x-3=(1)y,若1+m(m>0)的最小值为 3,则 m=________.

高二数学 第六章不等式教材分析

高二数学 第六章不等式教材分析

课题:不等式的性质(1)教学目的:1了解不等式的实际应用及不等式的重要地位和作用;2掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小.教学重点:比较两实数大小.教学难点:差值比较法:作差→变形→判断差值的符号授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、引入:人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的研究不等关系,反映在数学上就是证明不等式与解不等式实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章内容的基础,也是证明不等式与解不等式的主要依据因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系二、讲解新课:1.不等式的定义:用不等号连接两个解析式所得的式子,叫做不等式.说明:(1)不等号的种类:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等)(3)不等式研究的范围是实数集R.2.判断两个实数大小的充要条件对于任意两个实数a、b,在a>b,a= b,a<b三种关系中有且仅有一种成立.判断两个实数大小的充要条件是:a>bab-⇔>baa=b-=⇔ab<ba<-⇔由此可见,要比较两个实数的大小,只要考察它们的差的符号就可以了,这好比站在同一水平面上的两个人,只要看一下他们的差距,就可以判断他们的高矮了.三、讲解范例:例1比较(a+3)(a-5)与(a+2)(a-4)的大小分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要)并根据实数运算的符号法则来得出两个代数式的大小 把比较两个实数大小的问题转化为实数运算符号问题 本题知识点:整式乘法,去括号法则,合并同类项解:由题意可知:(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0∴(a +3)(a -5)<(a +2)(a -4)例2已知x ≠0,比较(x 2+1)2与x 4+x 2+1的大小分析:此题与例1基本类似,也属于两个代数式比较大小,但是其中的x 有一定的限制,应该在对差值正负判断时引起注意,对于限制条件的应用经常被学生所忽略本题知识点:乘法公式,去括号法则,合并同类项解:由题意可知:(x 2+1)2-(x 4+x 2+1)=(x 4+2x 2+1)-(x 4+x 2+1)=x 4+2x 2+1-x 4-x 2-1=x 2∵x ≠0 ∴x 2>0∴(x 2+1)2-(x 4+x 2+1)>0∴(x 2+1)2>x 4+x 2+1在例2中,如果没有x ≠0这个条件,那么意味着x 可以全取实数,在解决问题时,应分x =0和x ≠0两种情况进行讨论,即:当x =0时,(x 2+1)2=x 4+x 2+1当x ≠0时,(x 2+1)2>x 4+x 2+1此题意在培养学生分类讨论的数学思想,提醒学生在解决含字母代数式问题时,不要忘记代数式中字母的取值范围,一般情况下,取值范围是实数集的可以省略不写得出结论:例1,例2是用作差比较法来比较两个实数的大小,其一般步骤是:作差——变形——判断符号这样把两个数的大小问题转化为判断它们差的符号问题,至于差本身是多少,在此无关紧要 例3已知a>b>0,m>0,试比较m a m b ++与ab 的大小 解:)()()(m a a b a m m a a bm ab am ab a b m a m b +-=+--+=-++ ∵a>b>0,m>0,∴a-b>0,a+m>0∴0)()(>+-m a a b a m ∴m a m b ++a 从而揭示“糖水加糖甜更甜”的数学内涵例4 比较a 4-b 4与4a 3(a-b)的大小.解: a 4-b 4 - 4a 3(a-b)=(a-b)(a+b)(a 2+b 2) -4a 3(a-b)= (a-b)(a 3+ a 2b+ab 2+b 3-4a 3)=(a-b)[(a 2b-a 3)+(ab 3-a 3)+(b 3-a 3)]= - (a-b)2(3a 3+2ab+b 2) =- (a-b)20323322≤⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+b b a (当且仅当d =b 时取等号) ∴a 4-b 4≥4a 3(a-b)说明:“变形”是解题的关键,是最重一步和等是“变形”的常用方法 例5 已知x>y ,且y ≠0,比较y x 与1的大小 解:yy x y x -=-1 ∵x>y ,∴x-y>0当y<0时,y y x -<0,即yx <1 当y>0时,y y x ->0,即y x >1 说明:变形的目的是为了判定符号,此题定号时,要根据字母取值范围,进行分类讨论四、课堂练习:1在以下各题的横线处适当的不等号: (1)(3+2)2 6+26;(2)(3-2)2 (6-1)2;(3;(4)当a >b >0时,log 21a log 21b答案:(1)< (2)< (3)< (4)< 2选择题若a <0,-1<b <0,则有( )A a >ab >ab 2B ab 2>ab >aC >a >ab 2D ab >ab 2>a 分析:利用作差比较法判断a ,ab ,ab 2的大小即可∵a <0,-1<b <0∴ab >0,b -1<0,1-b >0,0<b 2<1,1-b 2>0∴ab -a =a (b -1)>0⇒ab >aab -ab 2=ab (1-b )>0⇒ab >ab 2a -ab 2=a (1-b 2)<0⇒a <ab 2故ab >ab 2>a 答案:D 3比较大小:(1)(x +5)(x +7)与(x +6)2;(2)log 2131与log 23解:(1)(x +5)(x +7)-(x +6)2=(x 2+12x +35)-(x 2+12x +36)=-1<0∴(x +5)(x +7)<(x +6)2 (2)解法一:(作差法)log 2131-log 2131=3lg 2lg 2lg 3lg 3lg 2lg 2lg 3lg 31lg 21lg 21lg 31lg 22-=-=-=3lg 2lg )2lg 3)(lg 2lg 3(lg -+>0∴log 2131>log 2131解法二:(中介法,常以“-1,0,1”作中介)∵函数y =log 21x 和y =log 31x 在(0,+∞)上是减函数且21>31 ∴log 2131>log 2121=1,log 3121<log 3131=1 ∴log 2131>log 312 4如果x >0,比较(x -1)2与(x +1)2的大小解:(x -1)2-(x +1)2=[(x -1)+(x +1)][(x -1)-(x +1)或[(x -2x +1)-(x +2x +1)]=-4x∵x >0 ∴x >0 ∴-4x <0 ∴(x -1)2<(x +1)2解:(a 2+2a +1)(a 2-2a +1)-(a 2+a +1)(a 2-a +1)=[(a 2+1)2-(2a )2]-[(a 2+1)2-a 2]=-a 2∵a ≠0,∴a 2>0 ∴-a 2<0故(a 2+2a +1)(a 2-2a +1)<(a 2+a +1)(a 2-a +1)五、小结 :本节学习了实数的运算性质与大小顺序之间的关系,并以此关系为依据,研究了如何比较两个实数的大小,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n 个因式之积或完全平方式或常数的形式 第二步:判断差值与零的大小关系,必要时须进行讨论第三步:得出结论在某些特殊情况下(如两数均为正,且作商后易于化简)还可考虑运用作商法比较大小它与作差法的区别在于第二步,作商法是判断商值与1的大小关系六、课后作业:1.已知142=+y x ,比较22y x +与201的大小 解: 241y x -= 22y x +-201=……=05)15(2≥-y ∴22y x +≥201 2.比较2sin θ与sin2θ的大小(0<θ<2π)解: 2sin θ-sin2θ=2sin θ(1-cos θ)当θ∈(0,π)时2sin θ(1-cos θ)≥0 2sin θ≥sin2θ当θ∈(π,2π)时2sin θ(1-cos θ)<0 2sin θ<sin2θ3.设0>a 且1≠a ,0>t ,比较t a log 21与21log +t a 的大小 解:02)1(212≥-=-+t t t ∴t t ≥+21当1>a 时t a log 21≤21log +t a ;当10<<a 时t a log 21≥21log +t a4.设0>a 且1≠a ,比较)1(log 3+a a 与)1(log 2+a a 的大小解: )1()1()1(223-=+-+a a a a当10<<a 时1123+<+a a ∴)1(log 3+a a >)1(log 2+a a当1>a 时1123+>+a a ∴)1(log 3+a a >)1(log 2+a a∴总有)1(log 3+a a >)1(log 2+a a七、板书设计(略)八、课后记:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高二数学第六章不等式教材分析新课标人教版本章教材是在初中介绍了不等式的概念,学习了一元一次不等式,一元一次不等式组的解法,高一学习了一元二次不等式,简单的分式不等式和含绝对值不等式的解法的基础上,研究了不等式的性质,不等式的证明和一些不等式的解法
本章教学约需17课时,具体分配如下:
6.1不等式的性质约3课时
6.2算术平均数与几何平均数约2课时
6.3不等式的证明约6课时
6.4不等式的解法举例约2课时
6.5含有绝对值的不等式约2课时
小结与复习约2课时
一、内容与要求
不等式主要研究数的不等关系它与数、式、方程、函数、三角等有密切的联系,在解决各类实际问题时也有广泛的应用因此,不等式是进一步学习数学的基础,是掌握现代科学技术的重要工具
(一)本章的主要内容是不等式的基本性质,不等式的证明,一些不等式的解法和含有绝对值不等式的定理等
(二)章头引言安排了一个实际问题——求一个长方体无盖贮水池的最低总造价这个
问题是一个求函数的最小值的问题,可以用函数的知识来解决,但如果用算术平均数与几何平均数的定理,则很容易
第一小节是“不等式的性质”教科书首先通过数形结合,给出了比较实数大小的方法,在这个基础上,给出了不等式的性质,一共讲了五个定理和三个推论,并给出了严格的证明不等式的其他性质,都可由它们推导出来,另外,本小节还增加了两个利用不等式的性质证明不等式的例题,这一方面有利于学生运用、掌握不等式的性质及其推论,另一方面,也为学生以后学习不等式的证明打下了基础
第二小节是“算术平均平均数与几何平均数”教科书首先证明了一个重要的不等式,通过这一公式,得出了两个正数的算术平均数与几何平均数的定理,最后,通过几个例题,说明此定理在解决数学问题和实际问题中的应用
第三小节是“不等式的证明”教科书通过七个例题分别介绍了证明不等式的三种基本方法——比较法、综合法和分折法
第四小节是“不等式的解法”教科书通过例1、例2,复习、总结了一元二次不等式、一元二次不等式组,简单的含有绝对值的不等式、简单的高次不等式和分式不等式的解法第五小节是“含有绝对值的不等式”在这一小节里,教科书介绍了含有绝对值的不等式的一个定理及其证明,并给出了它的两个推论,在例题中,介绍了它们的应用
(三)本章的教学要求
1.理解不等式的性质及其证明
2.掌握两个正数的算术平均数不小于它们的几何平均数的定理(不扩展到三个正数的算术平均数不小于它们的几何平均数的定理),并会简单的应用
3.掌握分析法、综合法、比较法等几种常用方法证明简单的不等式
4.掌握某些简单不等式的解法
5.理解不等式。

相关文档
最新文档