基于abaqus的齿轮模态分析
采用ABAQUS进行齿轮接触应力分析
采用ABAQUS进行齿轮接触应力分析采用ABAQUS进行齿轮接触应力分析 1 接触理论介绍及其在航空领域中的应用接触问题是土木、建筑、水利工程、石油化工、机械工程等领域中普遍存在的力学问题。
不管在接触边界之间是否有间隙存在,接触作用的出现对结构受载之后的接触状态和应力分布都有直接的影响,一方面通过接触可以提高整个结构的承载力和刚度或者可以起到减震作用;而另一方面也正是因为由于接触的存在,伴随着局部高应力,很容易使材料屈服或发生裂缝,如果再受到循环载荷的影响,还可能产生疲劳失效。
所以了解结构的接触状态和应力状态,对结构设计、施工及其补强措施,都有重要的意义。
两个物体在接触面上的相互作用是复杂的高度非线性力学现象,也是发生损伤失效和破坏的主要原因。
接触问题存在两个较大的难点:其一,在用户求解问题之前,不知道接触区域;其二,大多数的接触问题需要计算摩擦,可供挑选的几种摩擦定律和模型都是非线性的,使问题的收敛变得困难。
在飞机结构中,缝翼的运动是通过相互啮合的齿轮的旋转带动的,发动机带动齿轮的旋转是缝翼机构运动的动力来源。
齿轮是机械中广泛应用的传动零件之一,它具有功率范围大,传动效率高、传动比准确、使用寿命长等特点。
但从零件的失效情况来看,齿轮也是最容易出现故障的零件之一。
据统计,在各种机械故障中,齿轮失效就占总数的60%以上,其中齿面损坏又是齿轮失效的主要原因之一。
传动齿轮复杂的应力分布情况和变形机理又是造成齿轮设计困难的主要原因。
为此,人们对齿面接触及其应力分布进行了大量的研究。
有限元理论和各种有限元分析软件的出现,让普通设计人员无需对齿轮受力作大量的计算和研究就可以基本掌握齿轮的受力和变形情况,并可利用有限元软件进行结果分析,找出设计中的薄弱环节,进而达到对齿轮进行改进设计的目的。
2 采用ABAQUS进行齿轮接触分析的合理性齿轮结构对缝翼的运动起着决定性的作用,如果齿轮的接触不能满足强度要求,缝翼机构的运动将会受到严重影响。
半轴齿轮的ABAQUS有限元模拟实验
Vol. 33,No. 1Mar. 2021第33卷第1期2021年3月河南工程学院学报(自然科学版)JOURNAL OF HENAN UNIVERSITY OF ENGINEERING 半轴齿轮的ABAQUS 有限元模拟实验徐滨(合肥职业技术学院机电工程学院,安徽合肥238000 )摘要:车桥半轴齿轮是差速器的重要组成部分,在差速器工作中扮演着十分重要的角色。
针对断裂的半轴齿轮进行断 口形貌、成分及硬度分析,并结合有限元模拟分析齿轮失效的原因。
结果表明:齿轮渗碳层厚度约0.8 mm,渗碳层显微组织主 要为硬度较高的针状马氏体和部分残留奥氏体,硬度达785. 1 N/mm 2 ,表面硬化处理与渗碳处理基本符合工况要求。
通过 ABAQUS 模拟发现半轴齿轮最易断裂处位于齿根最靠近边角的部位,与实际工况吻合。
关键词:半轴齿轮;模拟分析;失效分析;ABAQUS中图分类号:TB115 文献标志码:A 文章编号= 1674 - 330X (2021 )01 -0059 - 03ABAQUS finite element simulation analysis of half shaft gearXU Bin(School of Mechanical and Electrical Engineering , Hefei Polytechnic University, Hefei 238000, China )Abstract : Axle gears are an important part of the differential mechanism , and play a very important role in the work of the differ ential mechanism. In this paper, the morphology analysis , composition analysis and hardness analysis of the fractured half-shaft gear are earned out, and the cause of the gear failure is analyzed in conjunction with the finite element simulation analysis. The results show that the thickness of the carburized layer of the gear is about 0. 8 mm. The microstmcture of the carburized layer is mainly needle- shaped martensite with higher hardness and part of retained austenite. The hardness reaches 785. 1 N/mm 2. The surface hardening treatment and carburization treatment are basically meet the requirements of working conditions. Through ABAQUS simulation , it is f ()uncl that the most easily broken part of the half-shaft gear is located at the lowermost comer of the tooth root , which is consistent with the actual working condition where the fracture occurs.Keywords :half-shaft gear ; simulation analysis ; failure analysis ; ABAQUS差速器的精度和可靠性是国内研究的难点。
abaqus模态分析操作流程
abaqus模态分析操作流程Modal analysis in Abaqus is a crucial step in understanding the dynamic behavior of a structure. 模态分析是在Abaqus中理解结构动态行为的关键步骤。
It involves determining the natural frequencies and mode shapes of a structure, which are essential for predicting its response to dynamic loads. 这涉及确定结构的固有频率和模态形状,这对于预测其对动态载荷的响应是必不可少的。
The process of conducting a modal analysis in Abaqus involves several steps, from defining the materials and geometry of the structure to interpreting the results. 在Abaqus中进行模态分析的过程涉及几个步骤,从定义结构的材料和几何形状到解释结果。
In this discussion, we will explore the operation flow of modal analysis in Abaqus, highlighting the key considerations and best practices for obtaining accurate and meaningful results. 在本讨论中,我们将探讨Abaqus中模态分析的操作流程,重点介绍获得准确而有意义结果的关键考虑因素和最佳实践。
The first step in conducting a modal analysis in Abaqus is to define the materials and geometry of the structure. 在Abaqus中进行模态分析的第一步是定义结构的材料和几何形状。
基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真
基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真————————————————————————————————作者: ————————————————————————————————日期:ﻩ基于ABAQUS的渐开线齿轮齿根裂纹扩展仿真齿轮传动是机械传动中最重要、应用最广泛的一种传动。
齿轮传动的主要优点有:传动效率高,工作可靠,寿命长,传动比准确,结构紧凑。
齿轮传动的失效一般发生在轮齿上,通常有齿面损伤和齿轮折断两种形式。
齿轮折断一般发生在齿根部位,包括疲劳折断和过载折断。
为了提高齿轮的可靠性和使用寿命,有必要对齿轮根部的断裂现象进行研究。
本文将从断裂力学角度出发,采用有限元的计算方法,研究齿根的断裂。
1 轮齿断裂分析应力强度因子是描述裂纹尖端的一个参数,它与载荷大小以及几何有关,共有3种断裂模型(图1),在任何应力下的裂尖应力场为ﻫ图1 断裂模型式中:r为距裂尖的距离;θ=arctan(x2/x1);KI为Ⅰ型(张开)裂纹应力强度因子;KⅡ为Ⅱ型(张开)应力强度因子。
KⅢ为Ⅲ型(撕开)应力强度因子。
对于二维裂纹,假定KⅡ为0。
裂纹扩展方向根据条件аσθθ/аθ=0或者γγθ=0,得到为了计算二维情况下的积分,ABAQUS定义了围线围绕着裂尖由单元组成的环形域(图2)。
图2 裂纹尖端环形域计算J积分时,围线外的节点处值为0,围线内的所有节点(裂纹扩展方向)的值为l,但外层单元的中间点除外,这些节点根据在单元中的位置被置于0和1之间。
裂纹扩展角度口可以参考裂纹平面计算,当裂纹扩展方向沿着初始裂纹方向时,θ=0;当K1>0时,θ<0;当K1<0时,θ>0。
裂纹扩展角度从q到n(图3)。
图3裂纹尖端扩展方向2轮齿断裂有限元仿真2.1应力分析2.1.1 模型的建立根据Pro/E参数化建模建立渐开线齿轮模型,选用的齿轮材料是普通的钢,弹性模量210GPa,泊松比为0.3(图4),然后定义一对啮合齿轮(图5),大齿轮齿数为100。
基于abaqus的齿轮模态分析
基于ABAQUS 的直齿圆柱齿轮模态分析余西伟(上海大学 机电工程与自动化学院,上海 200072)摘要:齿轮是最常用的零部件之一,起到了传递扭矩的作用。
为了研究齿轮固有频率和振型的影响因素,改善齿轮的动态特性,本文运用SolidWorks 三维建模软件建立齿轮建模,并运用ABAQUS 和振动分析理论对模型进行模态分析,用Lanczos 算法提取固有频率,得到齿轮的模态和振型,为优化齿轮的结构设计提供支持。
关键词:模态分析;ABAQUS;固有频率;振型Modal Analysis of Spur Gear Based on ABAQUS(School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)Abstract: T he gear is one of the most common parts, transferring the torque effect. In order to research the factors affecting the gear’s natural frequency and vibration mode and improving the dynamic characteristics.The gear model established by 3D model software SolidWorks was carried on modal analysis by the software ABAQUS and the vibration analysis theory. The modal andvibration model was extracted by using Lanczos algorithm ,providing support for the optimization design of gear.Key words: modal analysis; ABAQUS; natural frequency; vibration mode0引言齿轮是依靠齿的啮合传递扭矩的轮状机械零件。
基于Abaqus的齿轮传动系统模态分析
优化、设计等提供依据ꎮ
[C]、[K]均为对角矩阵ꎬ这就要求恰当地选择变换矩阵ꎮ 根
对于多自由度无阻尼自由振动系统ꎬ其运动方程为:
[ M] { x¨ } + [ K] { x} = {0}
基于ABAQUS的轴承-齿轮系统模态分析
基于ABAQUS的轴承-齿轮系统模态分析摘要建立轴承-齿轮系统的有限元模型。
齿轮啮合等效为弹簧-阻尼系统,并研究轴承和齿轮啮合的等效平均刚度和阻尼。
在ABAQUS软件中计算了轴承-齿轮系统的模态,最终为有限元分析提供一种新的思路。
关键词有限元法;ABAQUS;模态分析;轴承齿轮系统ABAQUS为用户提供了广泛的功能,且使用起来又非常简单。
大量的复杂问题可以通过选项块的不同组合很容易的模拟出来。
例如,对于复杂多构件问题的模拟是通过把定义每一构件的几何尺寸的选项块与相应的材料性质选项块结合起来。
在大部分模拟中,甚至高度非线性问题,用户只需提供一些工程数据,像结构的几何形状、材料性质、边界条件及载荷工况。
在一个非线性分析中,ABAQUS 能自动选择相应载荷增量和收敛限度。
他不仅能够选择合适参数,而且能连续调节参数以保证在分析过程中有效地得到精确解。
用户通过准确的定义参数就能很好的控制数值计算结果。
由于轴承-齿轮系统的每一级传动均是通过二级齿轮减速实现,是典型的齿轮系统。
在齿轮系统中齿轮副啮合效应、齿侧间隙、轴的弹性、轴承径向刚度和轴承径向间隙等因素相互耦合并影响了系统的动态特性,设计过程中要综合考虑这些因素,孤立地研究某一因素,都不能从整体上对系统进行把握。
通过该有限元的试验方法,设计人员可以综合考虑影响齿轮系统动态特性的各种因素,在产品的设计阶段就对产品的性能和存在的问题一目了然,从而为产品的改进设计提供了有效的技术途径,并且大大减少了物理样机试制的时间和研制经费的投入,提高了设计效率。
1理论依据本文中对轴承-齿轮系统的分析,主要是在非线性范围内进行,所以考虑采用Abaqus作为求解器。
Abaqus不仅功能强大,而且具有很高的软件兼容性,能为前处理完毕之后计算工作的提交带来诸多方便,此外,其求解结果经过简单转换就能被Hypermesh所读取,能为整个工作带来很大的便利。
2轴承-齿轮系统有限元模型建立该有限元模型以六面体单元、四边形壳单元为主,还有少部分的连接单元、弹簧阻尼单元、刚性单元。
基于ABAQUS的轴承—齿轮系统静力学分析
摘 要 :电力 变压 器是传输和分配电能的枢纽,其安全可靠的运行不仅 关系到用户的电
能质 量 。而且 对 整 个 电力 系统 的安 全也 是 至 关重要 的 。 因此 ,电 力 变压 器的安 装调 试 运行 必须遵循施工顺序和操作方法,达到现行的国家标准和验收规范的规定,方可运行 生产。 关 键 词 : 电力 变压 器 ;安 装 调 试 ;运 行 技 术 中图分类号 :T 0 文献标识码 :A 文章编号 :10 —8 3 2 1 )2 —0 1 —0 M4 5 0 0 16( 0 0 7 0 4 2
一
底 座
横滚
,
4 结果 与分析
; }
一
/ /
( 俯仰
/ /
在A Q BA US上计算 了该有限元模型的应力与位移 , 模拟 了
3种 工 况 。 见 图 3 图 4 、 、图 5 。
E
I 搿 嘲
图 1 轴承一 齿 轮 系统工作 原 理 图
轴承一齿 轮系统的每一 级运动都 由一个独立的伺服 电机驱 动。伺服电机经过两级齿轮减速 ,最后输 出到轴承一齿轮系统 的每一个 轴上 。在横滚 的传动中 ,电机和减速部分 固定不动 , 只有横滚 转体转动 ;而在俯 仰和方位的传动 中,伺服 电机和减 速部分跟着转体一起绕轴转动 。
1 变压 器 的安装
11 设备开箱检查 . ( ) 1 检查人员应 由建设单位、施工安装单位 、供货单位代 表组成 ,共同进行核验并做好记录。 () 2 根据设计图及设备技术文件 的清单 , 检查变压器附件 备件 的规格型号、数量是否符合设计 图要求 ,部件是否齐全 , 有无损坏丢失 。 ( ) 3 变压器出厂资料应齐全 , 所采用 的设备及器材均应符 合国家现行规范标准 。
abaqus有限元分析(齿轮轴)
Abaqus分析报告(齿轮轴)名称:Abaqus齿轮轴姓名:班级:学号:指导教师:一、简介所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。
齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。
图1.齿轮轴装配结构图二、模型建立与分析通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。
1.part针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。
2.材料属性材料为钢材,弹性模量210Gpa,泊松比0.3。
3.截面属性截面类型定义为solid,homogeneous。
4.组装组装时选择dependent方式。
5.建立分析步本例用通用分析中的静态通用分析(Static,General)。
6.施加边界条件与载荷对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。
边界条件:分别在三个轴径突变处采用固定约束,如图2。
载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。
均布载荷比计算:矩形键槽数据:长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm 键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm齿轮数据:=齿轮分度圆半径:R2 =14.7mm、压力角:20°、单个齿轮受力面积:S2 ≈72mm2通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷幅值,P2为齿轮均布载荷幅值。
键槽均布载荷幅值和齿轮均布载荷幅值之比约为P1:P2≈6.3 。
取键槽均布载荷幅值为1260,齿轮载荷幅值为200.由于键槽不是平面,所以需要切割,再施加均布载荷。
图3 键槽载荷施加比较保守考虑,此处齿轮载荷只施加到一个齿轮上。
采用ABAQUS进行齿轮接触应力分析
采用ABAQUS进行齿轮接触应力分析采用ABAQUS进行齿轮接触应力分析 1 接触理论介绍及其在航空领域中的应用接触问题是土木、建筑、水利工程、石油化工、机械工程等领域中普遍存在的力学问题。
不管在接触边界之间是否有间隙存在,接触作用的出现对结构受载之后的接触状态和应力分布都有直接的影响,一方面通过接触可以提高整个结构的承载力和刚度或者可以起到减震作用;而另一方面也正是因为由于接触的存在,伴随着局部高应力,很容易使材料屈服或发生裂缝,如果再受到循环载荷的影响,还可能产生疲劳失效。
所以了解结构的接触状态和应力状态,对结构设计、施工及其补强措施,都有重要的意义。
两个物体在接触面上的相互作用是复杂的高度非线性力学现象,也是发生损伤失效和破坏的主要原因。
接触问题存在两个较大的难点:其一,在用户求解问题之前,不知道接触区域;其二,大多数的接触问题需要计算摩擦,可供挑选的几种摩擦定律和模型都是非线性的,使问题的收敛变得困难。
在飞机结构中,缝翼的运动是通过相互啮合的齿轮的旋转带动的,发动机带动齿轮的旋转是缝翼机构运动的动力来源。
齿轮是机械中广泛应用的传动零件之一,它具有功率范围大,传动效率高、传动比准确、使用寿命长等特点。
但从零件的失效情况来看,齿轮也是最容易出现故障的零件之一。
据统计,在各种机械故障中,齿轮失效就占总数的60%以上,其中齿面损坏又是齿轮失效的主要原因之一。
传动齿轮复杂的应力分布情况和变形机理又是造成齿轮设计困难的主要原因。
为此,人们对齿面接触及其应力分布进行了大量的研究。
有限元理论和各种有限元分析软件的出现,让普通设计人员无需对齿轮受力作大量的计算和研究就可以基本掌握齿轮的受力和变形情况,并可利用有限元软件进行结果分析,找出设计中的薄弱环节,进而达到对齿轮进行改进设计的目的。
2 采用ABAQUS进行齿轮接触分析的合理性齿轮结构对缝翼的运动起着决定性的作用,如果齿轮的接触不能满足强度要求,缝翼机构的运动将会受到严重影响。
Abaqus模态分析报告实验报告材料
Abaqus模态分析报告实验报告材料一、引言模态分析是结构动力学中的重要分析方法,它用于确定结构的固有频率和振型。
Abaqus 作为一款功能强大的有限元分析软件,为模态分析提供了高效、准确的解决方案。
本报告将详细介绍使用 Abaqus 进行模态分析的实验过程、结果以及相关分析。
二、实验目的本次实验的主要目的是通过 Abaqus 软件对给定的结构进行模态分析,获取其固有频率和振型,评估结构的动态特性,并为后续的结构设计和优化提供依据。
三、实验模型实验所分析的结构为一个简单的悬臂梁,其几何尺寸为长1000mm,宽 100mm,高 50mm。
材料属性为弹性模量 E = 21×10^11 Pa,泊松比ν = 03,密度ρ = 7800 kg/m³。
四、实验步骤1、模型建立在Abaqus/CAE 中创建部件,使用草图工具绘制悬臂梁的截面形状,然后通过拉伸操作生成三维实体模型。
定义材料属性,将弹性模量、泊松比和密度等参数输入到材料定义中。
划分网格,采用合适的网格类型和尺寸,以保证计算精度和效率。
2、边界条件设置在悬臂梁的固定端设置完全固定约束,即限制所有自由度。
3、分析步设置创建模态分析步,指定分析的模态阶数。
4、求解提交作业进行求解计算。
五、实验结果1、固有频率求解完成后,得到了悬臂梁的前 5 阶固有频率,分别为:一阶固有频率:f1 = 5234 Hz二阶固有频率:f2 = 31567 Hz三阶固有频率:f3 = 78912 Hz四阶固有频率:f4 = 125678 Hz五阶固有频率:f5 = 187534 Hz2、振型各阶固有频率对应的振型如下:一阶振型:悬臂梁在垂直方向上的弯曲振动,固定端振幅为 0,自由端振幅最大。
二阶振型:悬臂梁在水平方向上的弯曲振动,固定端振幅为 0,自由端振幅最大。
三阶振型:悬臂梁的扭转振动,固定端扭转角为 0,自由端扭转角最大。
四阶振型:悬臂梁在垂直和水平方向上的复合弯曲振动,振幅分布较为复杂。
基于Abaqus的模态分析方法对比及验证
基于Abaqus的模态分析方法对比及验证作者:史冬岩庄重高山宋经远来源:《计算机辅助工程》2013年第05期摘要:模态分析是目前研究结构动力学特性的重要方法,已经成为解决现代复杂结构动态特性设计的重要手段,模态分析对计算模型有效性验证和结构优化都能起到指导作用.在对比分析现有模态分析方法基础上,利用Abaqus对Lanczos方法下2种单元类型模型进行对比分析,并与理论值进行比较.关键词:薄板;模态分析; Abaqus中图分类号: O34;TB115.1文献标志码: B引言模态分析技术从20世纪60年代后期发展至今,已日趋成熟.它与有限元分析技术一起,成为结构动力学的2大支柱.模态分析是结构动力学中的一种“逆问题”分析方法,与传统的“正问题”方法(主要指有限元法)不同,其建立在试验(或实测)的基础上,采用试验与理论相结合的方法处理工程中的振动问题.目前,模态分析技术已发展成为解决工程中振动问题的重要手段,广泛应用在机械、航空航天、土木、建筑、造船和化工等领域.我国在这方面的研究,无论在理论上,还是在应用上,都已取得很大成果.本文基于Abaqus软件,针对软件中所给出的2种模态分析方法以及单元类型进行对比分析,并与理论结果进行对比,从而验证模态分析的有效性及其差异.[1]1模态分析方法概述1.1子空间迭代法子空间迭代法是求解大型矩阵特征值问题最常用、最有效的方法之一,子空间迭代法的目的是求出系统的前m阶特征解,满足2实例分析验证2.1薄板有限元模型建立为验证Abaqus软件所使用的模态分析方法的有效性,分别采用实体单元和壳单元对薄板进行模态分析,并与理论计算结果进行对比.按主汽轮机有限元建模方法建立薄板的有限元模型,所选取的薄板尺寸为1 m×1 m×0.04 m.薄板有限元模型见图1.2.2基于Abaqus的模态分析结果采用Lanczos法对薄板模型进行模态分析,提取前10阶模态.采用实体单元薄板和壳单元薄板的前5阶模态振型,见图2.可知,2种单元所计算出的模态振型除第4和5阶略有不同外,其余振型完全相同.[6]2种模型情况下,薄板的前10阶模态频率见表1,可知,2种单元所计算出的频率结果相差较小,最大频率差为0.166 3%.(a)实体单元薄板有限元模型(b)壳单元薄板有限元模型2.4结果对比所得到的3组频率数值见表2,可知,3组频率最大相差为1.848%,结果相差较小.3结论(1)Lanczos算法是一种新发展起来的特征值算法,是将向量迭代法与RayleighRitz法巧妙结合的一种方法,对于同样的问题,它比子空间迭代法快5~10倍.(2)实体单元与壳单元在模态分析中所得到的振型基本相同,在计算薄板的模态分析中,二者最大频率差为0.166 3%,其与理论解的最大频率差为1.848%,均在可接受的范围内.(3)采用Abaqus软件对实体进行模态分析,能较准确地得到实体的模态振型以及各阶频率.对薄板等结构进行分析时,采用壳单元能够降低工作量并提高计算效率.参考文献:[1]傅志方,华宏星. 模态分析理论与应用[M]. 上海:上海交通大学出版社, 2000.[2]RAO S S. 机械振动[M]. 李欣业,张明路,译. 4版. 北京:清华大学出版社, 2009.[3]倪振华. 振动力学[M]. 北京:清华大学出版社, 2009.[4]许本文. 机械振动与模态分析基础[M]. 北京:机械工业出版社, 1998.[5]白化同,郭继忠. 模态分析理论与实验[M]. 北京:北京理工大学出版社, 2001.[6]CHAURL Ming,张巧寿. 用模态质量分布识别局部模态[J]. 国外导弹与航天运载器,1990(6): 8185.[7]赵均海. 弹性力学及有限元[M]. 武汉:武汉理工大学出版社, 2008.(编辑陈锋杰)。
基于ABAQUS的减速器齿轮的模态分析
基于ABAQUS的减速器齿轮的模态分析
为了研究齿轮固有频率的影响因素,改善齿轮的动态特性,利用有限元软件ABAQUS和振动理论对齿轮进行模态分析,结果表明:第1~6阶,齿轮的振型主要是弯曲振动和扭转振动,在同阶的情况下,弹性模量越大,齿轮的固有频率越大,腹板的倒角越大,齿轮的固有频率越大,为齿轮动态优化设计提供可靠的参考依据。
减速器是原动机和工作机之间的一个独立闭式传动装置,用来降低转速和传递转矩,在工作过程中,减速器中的齿轮可能会由于机械振动而发出噪音,这样可能会降低齿轮的啮合精度和传递效率,从而影响减速器的使用寿命。
模态分析可以确定零件的固有频率和振型,使设计师在设计零件的时候,尽量使系统的工作频率和固有频率偏差较大,以防止共振,从而减少振动和噪音。
模态分析的最终目标是识别系统的模态参数,为系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据,是结构动态设计及故障诊断的重要方法。
本文利用有限元软件ABAQUS,对减速器中的齿轮进行模态分析,来确定不同阶数下齿轮的固有频率和振型,通过选择不同的材料以及齿轮的腹板倒角,来分析齿轮固有频率的变化趋势,从而为齿轮大的结构优化提供参考依据,避免齿轮在工作时候发生共振,从而减少噪音。
一、有限元模态分析理论
对于一般的多自由度结构系统而言,运动都可以由其自由振动的模态来合成。
有限元的模态分析就是建立模态模型进行数值分析的过程。
由于结构的阻尼对其模态频率及振型的影响很小,所以模态分析的实质就是求解具有限个自由度的无阻尼及无载荷状态下得运动方程的模态适量。
系统的无阻尼多自由。
基于ABAQUS的谐波齿轮减速器齿式输出刚轮的应力分析
以 应 用 在 单 晶 炉 中 某 型 号 的 谐 波 齿 轮 减 速 器 为 例 , 齿 式 输 出 刚 轮 主 要 技 术 参 数 :模 数 为
成 。但 它 具 有 两个 刚轮 :一 个 固定 刚轮 和 一 个 齿
收稿日期:2 0 — 8 3 09 0— 1 作者简介:韩 敏 ( 9 9 ),女 ,辽 宁西丰 人,副 教授 ,主要从事机械设计及理论 的教学和研究工作 。 15 - [ 0 ] 第3 卷 18 2 第7 期 2 1—7 00
l
02 . mm;齿数 为 2 2 0 ;外 圆半 径 为9 mm;刚 轮和 两 4 个轴 承 相连 部 分 的 直径 分 别 为 1 mm与6 m;刚轮 2 a r
输 出端轴 长 度为4 rm;后侧 凸台半 径为 1rm。 5 a 4 a
匐 化
2 齿式输 出刚轮 的有 限元分源自 的运 动 参 数 的转 换 是 通 过 柔轮 的 波动 变 形 来 实 现 的 。它 具 有 同时 啮 合 的 齿数 多 、惯 量 小 、传 动 比
/ 短 柱 轮 圆柔
波 发 生
\ \出 输
钢 轮 b 2
大 、结构 紧凑 、运 动精 度 高 、噪音 低 等优 点川。齿
式 输 出刚 轮 在 传 动 中受 到 的 扭矩 比较 大 ,容 易 被
务l
訇 地
基于A AQ S B U 的谐 波齿轮减速器 齿式 输 出刚轮的应力分析
Fi t em entanal nie el ysi s ofTeet f m ulou p i - h-or t utStf gearj ar oni n H m c
G earReducerbas BAQ U S ed on A
abaqus模态分析课程设计
abaqus模态分析课程设计一、课程目标知识目标:1. 理解并掌握Abaqus软件中模态分析的基本原理和数学模型;2. 学习并掌握Abaqus进行模态分析的步骤和方法;3. 掌握如何解读Abaqus模态分析的结果,包括振型、固有频率等关键参数。
技能目标:1. 能够独立操作Abaqus软件,完成模态分析的模型建立、边界条件设置、求解及结果分析;2. 能够利用Abaqus进行简单的结构优化,提升结构动力性能;3. 能够将Abaqus模态分析结果与实际工程案例相结合,进行问题分析和解决。
情感态度价值观目标:1. 培养学生对工程问题分析的严谨态度,提高学生的工程素养;2. 激发学生对结构动力学研究的兴趣,培养学生的创新意识和探索精神;3. 强化团队合作意识,提升学生在团队项目中的沟通与协作能力。
本课程针对高年级本科生或研究生,结合学科特点和教学要求,注重理论知识与实际应用的结合。
通过本课程的学习,学生将能够掌握Abaqus模态分析的基本技能,为今后从事工程领域的研究和工作奠定坚实基础。
同时,课程设计注重培养学生的科学素养、创新能力和团队协作精神,使学生在知识、技能和情感态度价值观等方面得到全面提升。
二、教学内容1. Abaqus模态分析基本原理:介绍模态分析的概念、目的和数学模型,包括振动方程、固有频率和振型的求解方法。
教材章节:第2章 结构动力学基础理论。
2. Abaqus软件操作基础:讲解Abaqus软件界面、文件操作、模型建立和网格划分等基本操作。
教材章节:第3章 Abaqus软件操作基础。
3. 模态分析步骤及操作:详细讲解模态分析的步骤,包括模型建立、边界条件设置、求解设置和结果提取等。
教材章节:第4章 模态分析。
4. 结果分析与优化:教授如何解读模态分析结果,并对结构进行优化以提升动力性能。
教材章节:第5章 结果分析与优化。
5. 实际工程案例应用:结合实际工程案例,让学生运用所学知识解决实际问题。
abaqus 有限元分析(齿轮轴)
Abaqus分析报告(齿轮轴)名称: Abaqus齿轮轴姓名:班级:学号:指导教师:一、简介所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。
齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。
图1.齿轮轴装配结构图二、模型建立与分析通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。
1.part针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。
2.材料属性材料为钢材,弹性模量210Gpa,泊松比0.3。
3.截面属性截面类型定义为solid,homogeneous。
4.组装组装时选择dependent方式。
5.建立分析步本例用通用分析中的静态通用分析(Static,General)。
6.施加边界条件与载荷对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。
边界条件:分别在三个轴径突变处采用固定约束,如图2。
载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。
均布载荷比计算:矩形键槽数据:长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm齿轮数据:=齿轮分度圆半径:R2 =14.7mm、压力角:20°、单个齿轮受力面积:S2 ≈72mm2通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷幅值,P2为齿轮均布载荷幅值。
键槽均布载荷幅值和齿轮均布载荷幅值之比约为P1:P2≈6.3 。
取键槽均布载荷幅值为1260,齿轮载荷幅值为200.由于键槽不是平面,所以需要切割,再施加均布载荷。
图3 键槽载荷施加比较保守考虑,此处齿轮载荷只施加到一个齿轮上。
Abaqus模态分析实验报告
(一)创建部件1:模块:部件2:从菜单栏中选择部件→创建,弹出创建部件对话框,将名称修改为Dizuo,模型空间为三维,类型选择可变形,形状选择实体,类型为旋转。
采用SI(mm)量纲,将大约尺寸修改为200,比最大尺寸稍大。
3:点击继续,进入草绘模式,绘制如下截面草图。
4:按下鼠标中键退出草绘模式,弹出编辑旋转对话框,将角度修改为360度,点击确定。
5:旋转得到的实体如下6:点击创建实体:拉伸工具,为实体拉伸选择一个合适的平面,点选一条合适的边作为草绘的参照,进入草绘模式7:绘制如下的截面草图。
8:按下中键退出草绘模式,弹出编辑拉伸对话框,将类型修改为指定深度,深度修改为20,并选择正确的拉伸方向。
9:点击确定,完成拉伸10:点击创建基准平面:一线一点工具,选择一条直线,基准面将通过它;再选择已选直线外的一点,就可以将基准平面确定下来。
11:点击创建基准平面:从已有平面偏移工具,选择上一步创建的平面为偏移所参照的平面,选择输入大小以设定偏移,确定偏移方向,输入偏移距离为6,就可以将新的基准平面确定下来。
12:点击创建实体:拉伸工具,选择上一步创建的平面为草绘平面,点选一条合适的轴作为草绘参照,进入草绘模式,绘制如下截面13:按下鼠标中键退出草绘模式,弹出编辑拉伸对话框,类型为指定深度,深度为12,拉伸方向垂直屏幕向外14:点击确定,拉伸的结果如下图15:使用创建实体:拉伸命令和创建切削:拉伸命令依次创建剩下的特征,如下图所示最后的结果如下图(二)定义材料和截面属性1:模块:属性2:点击创建材料工具,弹出编辑材料对话框,名称改为steel,通用→密度,输入密度为7.85e-93:力学→弹性→弹性,输入弹性模量2.1e5,泊松比为0.3,点击确定4:点击创建截面工具,弹出创建截面对话框,将名称修改为Dizuo_Section,类别为实体,类型为均质点击继续,在弹出的编辑截面对话框中选择确定5:点击指派截面工具,选择整个部件为要指派截面的区域,点击完成,弹出编辑截面指派对话框点击确定,整个模型变为绿色(三)生成装配件1:模块:装配2:点击创建实例工具,弹出创建实例对话框,点击确定(四)定义分析步和指定输出要求1:模块:分析步2:点击创建分析步工具,弹出创建分析步对话框,修改名称为Dizuo_Load,程序类型选择线性摄动、频率。
采用ABAQUS进行齿轮接触应力分析
采用ABAQU进行齿轮接触应力分析采用ABAQU ffi行齿轮接触应力分析1接触理论介绍及其在航空领域中的应用接触问题是土木、建筑、水利工程、石油化工、机械工程等领域中普遍存在的力学问题。
不管在接触边界之间是否有间隙存在,接触作用的出现对结构受载之后的接触状态和应力分布都有直接的影响,一方面通过接触可以提高整个结构的承载力和刚度或者可以起到减震作用; 而另一方面也正是因为由于接触的存在,伴随着局部高应力,很容易使材料屈服或发生裂缝,如果再受到循环载荷的影响,还可能产生疲劳失效。
所以了解结构的接触状态和应力状态,对结构设计、施工及其补强措施,都有重要的意义。
两个物体在接触面上的相互作用是复杂的高度非线性力学现象,也是发生损伤失效和破坏的主要原因。
接触问题存在两个较大的难点: 其一,在用户求解问题之前,不知道接触区域; 其二,大多数的接触问题需要计算摩擦,可供挑选的几种摩擦定律和模型都是非线性的,使问题的收敛变得困难。
在飞机结构中,缝翼的运动是通过相互啮合的齿轮的旋转带动的,发动机带动齿轮的旋转是缝翼机构运动的动力来源。
齿轮是机械中广泛应用的传动零件之一,它具有功率范围大,传动效率高、传动比准确、使用寿命长等特点。
但从零件的失效情况来看,齿轮也是最容易出现故障的零件之一。
据统计,在各种机械故障中,齿轮失效就占总数的60%以上,其中齿面损坏又是齿轮失效的主要原因之一。
传动齿轮复杂的应力分布情况和变形机理又是造成齿轮设计困难的主要原因。
为此,人们对齿面接触及其应力分布进行了大量的研究。
有限元理论和各种有限元分析软件的出现,让普通设计人员无需对齿轮受力作大量的计算和研究就可以基本掌握齿轮的受力和变形情况,并可利用有限元软件进行结果分析,找出设计中的薄弱环节,进而达到对齿轮进行改进设计的目的。
2采用ABAQU进行齿轮接触分析的合理性齿轮结构对缝翼的运动起着决定性的作用,如果齿轮的接触不能满足强度要求,缝翼机构的运动将会受到严重影响。
基于Pro_E和ABAQUS的直齿轮强度分析_宋立伟
接触强度计算结果: 啮合过程中,当齿面接触在 ·69·
应用与试验
2014 年第 4 期 ( 第 27 卷,总第 132 期) ·机械研究与应用·
中精确建立该啮合齿轮的三维模型,将模型文件导入 Abaqus 软件,对齿轮啮合进行有限元强度分析,最后将两者的分
析结果进行对比。结果表明,利用有限元方法分析齿轮的强度是可行的。
关键词: 齿轮; 有限元; 接触应力; 弯曲应力; AGMA
中图分类号: TH132
文献标志码: A
文章编号: 1007-4414( 2014) 04-0068-03
Strength Analysis of Spur Gears Based on Pro / E and ABAQUS
SONG Li-wei,LI Feng-feng,ZHENG Tian-hu
( Technology Research Institute for Heavy Machinery of CFHI,Dalian Liaoning 116600,China)
齿数 Z1
25
齿数 Z2
80
模数 m / mm
5
表 1 齿轮几何参数
压力角 α/( °)
20
齿宽 b / mm
50
齿顶高系数 ha*
1
顶隙系数 c*
0.25
变位系数 X
0
2 AGMA 齿轮强度承载能力的计算
2.1 AGMA 接触强度计算理论[2] 接触强度计算公式以两曲面接触的赫兹接触应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于ABAQUS 的直齿圆柱齿轮模态分析余西伟(上海大学 机电工程与自动化学院,上海 200072)摘要:齿轮是最常用的零部件之一,起到了传递扭矩的作用。
为了研究齿轮固有频率和振型的影响因素,改善齿轮的动态特性,本文运用SolidWorks 三维建模软件建立齿轮建模,并运用ABAQUS 和振动分析理论对模型进行模态分析,用Lanczos 算法提取固有频率,得到齿轮的模态和振型,为优化齿轮的结构设计提供支持。
关键词:模态分析;ABAQUS;固有频率;振型Modal Analysis of Spur Gear Based on ABAQUS(School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)Abstract: T he gear is one of the most common parts, transferring the torque effect. In order to research the factors affecting the gear’s natural frequency and vibration mode and improving the dynamic characteristics.The gear model established by 3D model software SolidWorks was carried on modal analysis by the software ABAQUS and the vibration analysis theory. The modal andvibration model was extracted by using Lanczos algorithm ,providing support for the optimization design of gear.Key words: modal analysis; ABAQUS; natural frequency; vibration mode0引言齿轮是依靠齿的啮合传递扭矩的轮状机械零件。
齿轮通过与其它齿状机械零件(如另一齿轮、齿条、蜗杆)传动,可实现改变转速与扭矩、改变运动方向和改变运动形式等功能。
在工作过程中,齿轮可能会由于机械振动而产生噪声,这样会降低齿轮的啮合精度和传递效率,从而影响齿轮的寿命。
本文以ABAQUS 有限元分析软件为平台, 对齿轮进行模态分析, 提取了前6阶固有频率与振型, 通过不同材料和腹板倒角的齿轮选择,对固有频率与振型变化趋势的分析, 为齿轮的结构设计和优化及提供了设计依据, 同时为进一步的动力学分析奠定了基础。
1 模态分析的基本理论模态是机械结构的固有振动特性, 指结构在各频率下的动态响应, 一个系统的动态响应是其若干阶模态振型的综合。
对于一般的多自由度系统来说,运动都可以由其振动的模态来合成,有限元的模态分析就是建立模型模态进行数值分析的过程,其运动微分方程是 )}({)}(]{[)}(]{[)}(]{[t F t x K t x C t x M =++∙∙∙ (1) 其中{M}--质量矩阵;[C]--阻尼矩阵; [K]--刚度矩阵;X (t )--系统各点的位移响应向量; F (t )--系统各点的激励力向量;对于无阻尼无振动的自由系统来说,阻尼项和外力项都是零,于是上述微分方程可以化为 0)}(]{[)}(]{[=+∙∙t x K t x M (2) 由于弹性体的自由振动可以分为一系列的简谐运动的叠加,为了确定弹性体的自由振动固有频率和振型,考虑简谐运动的解为{}jwt e X t x }{)(= (3) 把(3)带入(2)[][](){}02=-jwt e X M w K (4) 这是一个关于{x (t )} 的n 元线性齐次代数方程组, 该方程组有非零解的充要条件是它的系数行列式等于0,即[][]02=-M w K (5)该行列式称为特征行列式。
将它展开可得到关于w 的n 次代数式此式称为系统频率方程 0...21)2(22)1(212=+++++---n n n n n a w a w a w a w (6) 假定系统的刚度矩阵和质量矩阵都是正定的实对称矩阵,在数学上可以证明,在这一条件下,频率方程(6)的n 个根均为正实根,他们对应系统的n 个固有频率,即这里假定各根互不相等,即没有重根,因此可以由小到大排列为w 12 <w 22 <w 32 <...w n 2,将求得的w i (i=1,2,3....n )带入(3)得相应的解{x (t )},这就是系统的模态向量或振型向量。
2 齿轮有限元模型的建立2.1.齿轮建模由于直接在abaqus 中建立齿轮的模型比较麻烦,故先在solidworks 中建立齿轮的三维模型,然后再导入abaqus 中。
图1 齿轮模型 Fig.1 Gear model2.2.齿轮边界约束对齿轮进行模态分析的目的主要是获得齿轮不同阶下的固有频率和振型,因而不需要对齿轮进行加载,只需约束其边界条件,根据齿轮的工作条件,对齿轮的内圆柱面和键槽面的x、y、z方向的平动位移进行约束。
2.3.齿轮网格划分对齿轮进行网格划分,最大整体尺寸为3,几何次数选择线性摄动,选取单元类型为四面体单元C3D4。
3有限元结果分析3.1.材料不同不同材料的弹性模量和泊松比及密度不同,进而会影响到齿轮的固有频率和振型,本文中选择灰口铸铁、球墨铸铁、铸钢、碳钢和合金钢。
通过模态分析查看不同材料对于齿轮固有频率的影响,因为低阶频率对于结构的振动影响较大,所以仅取了模态的前6阶模态分析结果,图2是齿轮的振型图以及最大位移振动变化,由于不同材料的振型图较多,故只选取碳钢的齿轮的1、3、5阶振型图作为示意。
一阶振型图三阶振型图五阶振型图图2 碳钢齿轮的1、3、5阶振型图Fig.2 the 1,3,5 vibration mode figure of steel gear由振型图可以很直观的看出齿轮的振动形态,观察到齿根处和轮齿为齿轮的薄弱环节,在低阶情况下,通过分析不同材料齿轮的振型图,可以发现齿轮的振型主要为扭转和弯曲振动,齿轮的阶数越高,振动的位移越大,齿轮振动越剧烈,噪音越大。
表1是不同材料的齿轮在不同阶下的固有频率,并将数据绘制成曲线图,如图3所示。
表1 不同材料齿轮的固有频率(单位:KHZ)Tab.1 The natural frequencies of the different materials gear材料阶数 1 2 3 4 5 6灰口铸铁 5.5929 5.6255 6.8564 6.9974 7.6153 7.6269球墨铸铁 6.1900 6.2260 7.5883 7.7443 8.4282 8.4410铸钢 6.6720 6.7108 8.1792 8.3474 9.0845 9.0983碳钢7.0104 7.0513 8.5941 8.7708 9.5454 9.5599合金钢7.1376 7.1792 8.7500 8.9299 9.7185 9.7333图3 不同材料与固有频率之间的关系Fig.3 The relationship between different materials and the natural frequency 曲线图3表明:对同一种材料,振动阶数越大,其固有频率越大在阶数相同的情况下,材料的弹性模量越大,其固有频率越大;并且在2-3阶之间,频率增大非常明显。
3.2.腹板厚度不同下面来研究腹板厚度对于齿轮固有频率的影响:齿轮的材料为碳钢,通过改变齿轮腹板的厚度来改变齿轮结构,通过腹板厚度的不同来分析齿轮固有频率的变化规律。
该模态分析中腹板厚度取值为D=4,8,12,16,20,由于振型图较多,下图4是选取齿轮腹板厚度D=4时的1、3、5阶振型图作为示意。
一阶振型图三阶振型图五阶振型图图4 腹板厚度D=4的齿轮1、3、5阶振型图Fig.4 The 1,3,5 mode figure of gears whose web thickness D = 4通过改变腹板厚度来改变齿轮的结构,来查看不同的齿轮结构对于齿轮的固有频率的影响,在齿轮铸造时候,可以作为腹板厚度的参考依据,选择合理的厚度,可以一步减轻齿轮的振动,减少齿轮振动时候的噪音,为齿轮结构的优化提供理论依据。
表2 不同腹板厚度齿轮的固有频率(单位:KHZ)Tab.2 Natural frequency of different web thickness gear板厚1 2 3 4 5 6阶数D20 10.555 12.186 12.340 13.777 15.681 15.756 D16 10.266 11.308 11.444 12.787 14.084 14.140 D12 9.3889 9.4487 9.6147 10.884 11.807 11.824D8 7.0104 7.0513 8.5941 8.7708 9.5454 9.5599 D4 4.4186 4.4656 6.4037 6.9477 7.8271 7.8394图5 不同腹板厚度与固有频率之间的关系Fig.5 The relationship between different thickness of web and the natural frequency从曲线图5表明:在阶数相同的情况下,齿轮腹板的厚度越大,则齿轮的固有频率越大。
随着阶数的增加,齿轮的固有频率会呈现递增的趋势;在腹板相同的情况下,阶数越高,则齿轮的固有频率越大。
4 结论从上述曲线和图形表明:(1)齿轮的固有频率与齿轮的材料有关,在相同阶数的情况下,齿轮材料的弹性模量越大,则齿轮的固有频率越大;(2)齿轮的固有频率和齿轮的结构有关,在相同阶数的情况下,齿轮的固有频率随腹板厚度的增大而增大;(3)齿轮的低阶振型主要为扭转振动和弯曲振动,阶数越高,振动位移越大,从振型图可以看出齿轮的薄弱环节在齿根处和轮齿接触面上,从而可以对齿轮进行针对性优化。
参考文献:[1] 王学林,徐岷,胡于进.机床模态特性的有限元分析[J].机床与液压,2005 (2) : 048-2.[2] 石亦平,周玉蓉.ABAQUS有限元分析实例详解[M ].北京:机械工业出版社,2006.[3] 王珺,魏志国等.基于ABAQUS 的数控转塔冲床送进横梁模态分析[J]. 锻压装备与制造技术, 2013.[4] 陈凯亮,李俊源,姜献峰.基于ABAQUS软件的多轴器动力座模态分析[J].轻工机械, 2010 (4) : 28-2.[5] 伍勇军,肖佩,杨红军.基于ABAQUS的车载雷达天线模态分析[J].设计与研究,2009, 34(11):26-28.[6] 叶友东,周哲波.基于ANSYS 直齿圆柱齿轮有限元模态分析[J].机械传动,2006(5)。