深圳大学图像的灰度变换与空域滤波

合集下载

数字图像处理期末考试答案

数字图像处理期末考试答案

《数字图像处理》复习指南选择题1、采用幕次变换进行灰度变换时,当幕次取大于1 时,该变换是针对如下哪一类图像进行增强。

( B )A 图像整体偏暗B 图像整体偏亮C 图像细节淹没在暗背景中D 图像同时存在过亮和过暗背景2、图像灰度方差说明了图像哪一个属性( B )A 平均灰度B 图像对比度C 图像整体亮度D 图像细节3、计算机显示器主要采用哪一种彩色模型(A )A、RGBB、CMY 或CMYKC、HSID、HSV4、采用模板[-1 1]T主要检测(A)方向的边缘。

A.水平B.450C.垂直D.13505、下列算法中属于图象锐化处理的是:( C )A.低通滤波B.加权平均法C.高通滤波D. 中值滤波6、维纳滤波器通常用于( C )A、去噪B、减小图像动态范围C、复原图像D、平滑图像7、彩色图像增强时,(C)处理可以采用RGB 彩色模型。

A. 直方图均衡化B. 同态滤波C. 加权均值滤波D. 中值滤波8、 B 滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。

A. 逆滤波B. 维纳滤波C. 约束最小二乘滤波D. 同态滤波9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以便引入一些低频分量。

这样的滤波器叫( B )。

A. 巴特沃斯高通滤波器B. 高频提升滤波器C. 高频加强滤波器D. 理想高通滤波器10、图象与灰度直方图间的对应关系是( B )A.一一对应B.多对一C.一对多D.都不11、下列算法中属于图象锐化处理的是:( C)A.低通滤波B.加权平均法C.高通滤波D. 中值滤波12、一幅256*256 的图像,若灰度级数为16,则存储它所需的比特数是:(A)A. 256KB.512KC. 1M C.2M13、一幅灰度级均匀分布的图象,其灰度范围在[0,255],则该图象的信息量为:(D)a. 0b.255c.6d.814、下列算法中属于局部处理的是:(D)a.灰度线性变换b.二值化c.傅立叶变换d.中值滤波15、下列算法中属于点处理的是:(B)a.梯度锐化b.二值化c.傅立叶变换d.中值滤波16、下列算法中属于图象平滑处理的是:(C)a.梯度锐化b.直方图均衡c. 中值滤波placian 增强17、设灰度图中每一个像素点由1 个字节表示,则可表示的灰度强度范围是(B)A.128 B.256 C.36 D.9618、对椒盐噪声抑制效果最好的是下列那种图像增强技术?(D)A 低通滤波B Laplace 微分C 邻域平均D 中值滤波19、将图像“name.tif”存储到文件中的命令(C)A、imread(’name.tif’)B、loadC、imwrite(’name.tif’)D、imshow(’name.tif’)20.计算机显示设备使用的颜色模型是(A)A.RGBB.HSVC.CMYD.以上都不对21.下列关于直方图的叙述错误的是( D)A. 描绘了各个灰度级像素在图像中出现的概率B. 描述图像中不同灰度级像素出现的次数C. 没有描述出像素的空间关系D. 直方图均衡化不能增强图像整体对比度的效果22.锐化滤波器的主要用途不包括( B)A.突出图像中的细节增强被模糊了的细节B.超声探测成像分辨率低可以通过锐化来使图像边缘模糊C.图像识别中分割前的边缘提取D.锐化处理恢复过度钝化、暴光不足的图像23.假设f(x,y)是一幅图像,则下列有关f(x,y) 的傅里叶变换说法中不正确(C)A.在原点的傅里叶变换等于图像的平均灰度级B.一个二维傅里叶变换可以由两个连续一维的傅里叶运算得到C.图像频率域过滤可以通过卷积来实现D.傅里叶变换具有线性移不变性24. 列有关图像复原和图像增强的说法错误的是(D)A.与图像增强不同,图像复原的目的是提供给用户喜欢接收的图像B.图像增强主要是一个客观过程,而图像复原主要是一个主观过程C.图像增强被认为是一种对比度拉伸,图像复原技术追求恢复原始图像的一种近似估计值D.图像复原技术只能使用频率域滤波器实现25、下列哪一个模板可用于图像平滑(AA、1/9 1/9 1/9B、1 1 1C、1/3 1/3 1/3D、-1 -1 -11/9 1/9 1/9 1 -8 1 1/3 1/3 1/3 -1 8 -1 1/9 1/9 1/9 1 1 1 1/3 1/3 1/3 -1 -1 -1 26、对于含有孤立线噪声的图像,既要保证图像的边缘,又要去除噪声应该用那种滤波器(B)A、box 模板B、中值滤波器C、gauss 模板D、prewitt 模板27、对一幅二值图像做腐蚀的结果(B )A、图像面积放大B、图像面值缩小C、图像面积不变D、图像边界变圆28、下列算法中属于局部处理的是(D)A、灰度线性变换B、二值化C、傅里叶变换D、中值滤波判别正确、错误1. 图像按其亮度等级的不同,可以分为二值图像和灰度图像两种。

空域滤波和频域滤波的关系

空域滤波和频域滤波的关系

空域滤波和频域滤波的关系空域滤波是一种基于像素级别的滤波方法,它通过直接处理图像中的像素值来实现滤波效果。

具体而言,空域滤波是基于图像的空间域进行操作,通过对图像中的像素进行加权平均或非线性处理,改变像素之间的关系来达到滤波的目的。

常见的空域滤波方法包括均值滤波、中值滤波和高斯滤波等。

频域滤波则是一种基于图像的频域进行操作的滤波方法,它通过对图像进行傅里叶变换,将图像从空域转换到频域,然后在频域中对图像进行滤波操作,最后再通过傅里叶反变换将图像转换回空域。

频域滤波方法主要利用了傅里叶变换的性质,通过滤波器的频率响应对图像的频谱进行调整,达到滤波的效果。

常见的频域滤波方法包括低通滤波、高通滤波和带通滤波等。

空域滤波和频域滤波有着密切的关系。

事实上,它们本质上是同一种滤波方法的不同表现形式。

在空域滤波中,滤波器直接作用于图像的像素值,通过对像素值进行处理来实现滤波效果;而在频域滤波中,滤波器则直接作用于图像的频谱,通过调整频谱的幅度和相位来实现滤波效果。

从这个角度来看,频域滤波可以看作是空域滤波在频域中的表现。

空域滤波和频域滤波各有其优点和适用场景。

空域滤波方法简单直观,易于理解和实现,适用于对图像的局部特征进行处理,例如去除噪声、平滑边缘等。

而频域滤波方法则适用于对图像的全局特征进行处理,例如图像增强、频谱分析等。

频域滤波方法通过傅里叶变换将图像转换到频域,可以更好地分析和处理图像的频域信息,对于频谱特征较为明显的图像处理问题具有较好的效果。

尽管空域滤波和频域滤波在原理和应用上有所差异,但它们并不是对立的关系。

事实上,这两种滤波方法常常结合使用,相互补充,以实现更好的滤波效果。

比如,在图像处理中,可以先使用空域滤波方法去除图像中的噪声和干扰,然后再将处理后的图像转换到频域进行进一步的滤波和增强。

这样的组合使用可以充分发挥两种滤波方法的优势,提高图像处理的效果和质量。

空域滤波和频域滤波是图像处理中常用的两种滤波方法。

实验三 空域图像增强

实验三 空域图像增强

实验三空域图像增强(灰度变换、直方图处理)一、实验目的1. 掌握灰度变换的基本原理。

2. 掌握直方图处理的基本原理。

3. 掌握Matlab中灰度变换和直方图处理的实现方法。

二、实验内容1. 灰度变换(直接正比变换)。

2. 灰度变换(截取式正比变换)。

3. 灰度变换(反比变换)。

4. 灰度变换(对比拉伸)。

5. 灰度变换(灰度切割)。

6. 灰度变换(对数变换)。

7. 灰度变换(幂次变换)。

8. 直方图处理(直方图均衡化)。

三、实验仪器、设备及材料1. 电脑一台(2G CPU、2GB RAM、50GB Disk及以上)。

2. Windows 2000 / Windows XP / Windows 7。

3. Matlab R2006b及以上版本。

4. 记录用的笔、纸。

四、实验原理1. 灰度变换灰度变换是一种点操作,根据原始图像中每个像素的灰度值,按照某种映射规则将其转化为另一灰度值。

其原理是将原图像f(x , y)中的每个像素的灰度按EH操作直接变换以得到目标图像g(x , y)。

若以s表示f(x , y),以t表示g(x , y),则灰度变换原理如下图所示:2. 直方图处理直方图变换可以清晰图像细节,突出目标物体,改善亮度比例关系,增强图像对比度。

直方图变换基于概率论。

直方图均衡化主要用于增强动态范围偏小的图像的反差。

其基本思想是把原图像的直方图转换为均匀分布的形式,增加像素灰度值的动态范围,增强图像整体对比度。

五、实验步骤1. 灰度变换(直接正比变换)(1) 程序源代码:close allclear15clcdisp('====E4_4_1.m====');I=imread('rice.png');subplot(3,3,1),imshow(I),ylabel('原图像');subplot(3,3,2),imhist(I);%方法1-系统函数J=imadjust(I,[40/255 204/255],[0 1]); %图像的最小灰度值为40,最大灰度值为204subplot(3,3,4),imshow(J),ylabel('变换图像(方法1)');subplot(3,3,5),imhist(J);%方法2-编程实现%把灰度值范围从[40,204]映射到[0,255]f0=0;g0=0; %分段曲线的第1个点f1=40;g1=0; %分段曲线的第2个点f2=204;g2=255; %分段曲线的第3个点f3=255;g3=255; %分段曲线的第4个点subplot(3,3,9),plot([f0,f1,f2,f3],[g0,g1,g2,g3]),xlabel('f'),ylabel('g'),axis([0 255 0 255]);%绘制变换曲线r1=(g1-g0)/(f1-f0); %曲线1的斜率b1=g0-r1*f0; %曲线1的截距r2=(g2-g1)/(f2-f1); %曲线2的斜率b2=g1-r2*f1; %曲线2的截距r3=(g3-g2)/(f3-f2); %曲线3的斜率b3=g2-r3*f2; %曲线3的截距[m,n]=size(I);K=double(I);for i=1:mfor j=1:nf=K(i,j);g(i,j)=0;if(f>=f0)&(f<=f1)g(i,j)=r1*f+b1; %曲线1的方程y=r1*x+b1elseif (f>=f1)&(f<=f2)g(i,j)=r2*f+b2; %曲线2的方程y=r2*x+b2elseif (f>=f2)&(f<=f3)g(i,j)=r3*f+b3; %曲线3的方程y=r3*x+b3endendendendend16subplot(3,3,7),imshow(uint8(g)),ylabel('变换图像(方法2)');subplot(3,3,8),imhist(uint8(g));(2) 观察并记录实验结果:作为实验报告的内容(3) 将“分段曲线的第2个点”更改为“f1=150;g1=0;”,观察并记录实验结果,分析产生该结果的原因:作为实验报告的内容。

空间滤波的实验原理是

空间滤波的实验原理是

空间滤波的实验原理是空间滤波是一种图像处理技术,用于图像降噪、锐化等应用领域。

其实验原理可以从以下几个方面解释。

1. 图像表示:图像是由一个个像素点组成的二维矩阵,其中每个像素点包含亮度信息。

在进行空间滤波前,需要将图像进行灰度化操作,将彩色图像转化为黑白图像。

2. 滤波器:空间滤波的核心是滤波器,也称为卷积核。

它是一个小矩阵,用于对图像的每个像素点进行操作。

滤波器中的数值称为权重,决定了每个像素点受到滤波器的影响程度。

滤波器的大小决定了影响像素点的范围,常见的滤波器有3x3、5x5等。

3. 滤波原理:空间滤波的原理基于图像中局部像素之间的相关性。

通过将每个像素与其周围像素加权求和,可以对图像进行平滑或锐化处理。

具体操作是将滤波器沿图像的每个位置进行平移,将滤波器与图像的对应位置进行元素乘积,再将乘积结果相加得到输出图像的像素值。

4. 常用滤波器:- 均值滤波器:滤波器中的权重均为1,用于平滑图像、去除噪声。

计算每个像素周围邻居像素的平均值,并将结果作为输出图像的像素值。

- 中值滤波器:滤波器中的权重根据周围像素的亮度进行排序,将中间值作为输出图像的像素值。

适用于去除椒盐噪声等。

- Sobel滤波器:用于边缘检测,通过计算每个像素点在X和Y方向上的亮度梯度,来检测图像中的边缘。

5. 实验步骤:- 载入图像:选择一个需要处理的图像,载入到图像处理软件中。

- 灰度化:将图像转化为黑白图像,每个像素点只包含亮度信息。

- 选择滤波器:根据需求选择合适的滤波器,比如均值滤波器、中值滤波器、Sobel滤波器等。

- 滤波处理:将滤波器沿图像的每个位置进行平移,与图像对应位置的像素进行乘积累加,得到输出图像的像素点。

- 保存结果:将处理后的图像保存,用于后续分析或展示。

6. 实验效果评估:根据实际需求,可以使用定量或定性的方法评估实验效果。

常见的评估指标包括峰值信噪比(PSNR)、结构相似性指数(SSIM)等。

数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)

数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)

1.灰度变换与空间滤波一种成熟的医学技术被用于检测电子显微镜生成的某类图像。

为简化检测任务,技术决定采用数字图像处理技术。

发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2的范围,因此,技术人员想保留I1-I2区间范围的图像,将其余灰度值显示为黑色。

(5)将处理后的I1-I2范围内的图像,线性扩展到0-255灰度,以适应于液晶显示器的显示。

请结合本章的数字图像处理处理,帮助技术人员解决这些问题。

1.1问题分析及多种方法提出(1)明亮且孤立的点是不够感兴趣的点对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。

均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。

优点:速度快,实现简单;缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。

其公式如下:使用矩阵表示该滤波器则为:中值滤波:滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。

其过程为:a 、存储像素1,像素2.....像素9的值;b 、对像素值进行排序操作;c 、像素5的值即为数组排序后的中值。

优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。

缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。

数字图像处理03_灰度变换及空间滤波

数字图像处理03_灰度变换及空间滤波
根据灰度变换函数 T[r]选择方法的不同,灰度变换 可分为:直方图处理方法和直接灰度变换。
2020年5月28日
数字图像处理
13
频率域方法
在图像的某种变换域内,对图像的变换值进行处理。如, 先对图像进行二维傅立叶变换,再对图像的频谱进行某 种修正(滤波),最后将修正后的变换值逆变换到空间 域,从而获得增强后的图像。
2020年5月28日
数字图像处理
6
图像增强的主要方法
图像增强的处理方法
空间域方法:直接以图像中的像素操作为基础。
灰度变换(强度映射、点处理)
➢ 直接灰度变换(图像反转、对数变换、幂次变换、分段线性变换) ➢ 直方图处理(直方图均衡化、直方图匹配、局部直方图) ✓ 关键是寻找一个合适的变换函数T
(b)模板系数以及与图像 像素对应位置关系
f(x,y-1) f(x, y) f(x, y+1) f(x+1,y-1) f(x+1, y) f(x+1,y+1)
(a)模板下的图像像素
ab
g(x, y) w(s,t) f (x s, y t) sa tb
空域滤波的基本原理
2020年5月28日
数字图像处理
例如,伪彩色图像增强:将不同灰度的图像赋以不同的彩色,以 增强人类的视觉感知,在医学图像处理中经常采用;
又如,假彩色增强:不同波段获取的图像赋以不同的彩色,用 在对多波段遥感图像的假彩色显示等
图像的增强是综合和一般性地改善图像质量,解决图像 由于噪声、模糊退化和对比度降低等三类问题,获得最 好的视觉效果。
低质量图像(低对比度、高噪声、低清晰度)
2020年5月28日
数字图像处理
3
3.1 背景知识

毕业设计--基于双边滤波的图像去噪的方法

毕业设计--基于双边滤波的图像去噪的方法

学号:1008431110本科毕业论文(设计)(2014届)基于双边滤波的图像去噪方法院系电子信息工程学院专业通息工程姓名指导教师讲师2014年4月摘要双边滤波是非线性的滤波方法,是结合图像的像素值相似度空间邻近度和空间领近度的一种折衷处理,同时考虑灰度相似性和空域信息,达到保边去噪的目的。

双边滤波具有简单、非迭代、局部的特点。

双边滤波器的好处是可以做边缘保存,一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。

双边滤波比高斯滤波多了一个高斯方差,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。

但是由于保存了过多的高频信息对于彩色图像里的高频噪声,双边滤波器不能够彻底的滤掉,只能够对于低频信息进行较好的滤波。

其具体的操作方法有两个,第一个是高斯模版,用个模板对图像中的每一个像素值进行扫描,然后把某一点和其邻域内像素的加权平均值代替那一个中心的值高斯滤波器是根据高斯函数的形状来选择其权值的线性平滑滤波器,高斯滤波是线性平滑滤波的一种,最适合去除的噪声类型是服从正态分布的噪声。

第二个是以灰度级的差值作为函数系数生成的模板。

然后这两个模板点乘就得到了最终的双边滤波模板,最后得到双边滤波处理后的图像。

关键词:图像;去噪;双边滤波;高斯滤波AbstractThe bilateral filter is a nonlinear filtering method, is the combination of image pixel value similarity space proximity and space brought a compromise approach degree, considering the gray similarity and spatial information, to achieve the purpose of edge preserving denoising. The bilateral filter has the advantages of simple, non iterative, local. The bilateral filter is good to do edge preservation,generally used Wiener filtering or Gauss filter to denoise, will obviously fuzzy edge, for the protection of high frequency detail is not obvious. Bilateral filtering than Gauss filter has a Gauss variance, it is Gauss filter function based on the spatial distribution, so near the edge, the pixel will not affect the farther to the pixel on the edge of the value, thus ensuring the preservation of edge pixel values. But because of the high frequency information saved too much for the high frequency noise in the color image, the bilateral filter can not be completely filtered out, can only be better filtering for the low frequency information. The specific operation method has two, the first is Gauss template, scanning for each pixel in the image with a template, and then the weighted one point and its neighborhood pixels instead of the average value of a central value Gauss filters are linear smoothing filter to select the weights based on the Gauss function the shape, the Gauss filter is a linear smoothing filter for noise removal, the type is subject to normally distributed noise. The second is the difference of gray level as function coefficients generated templates. Then the two template dot get bilateral filtering template final, finally get the image after bilateral filtering.Key words: Image ;Denoising;Bilateral Filtering;Gauss Filtering目录摘要 (I)ABSTRACT (II)1 引言 (1)1.1 课题的研究背景及意义 (1)1.2 国内外研究现状 (1)1.3 图像噪声及图像去噪方法 (2)1.4 图像质量评价方法 (5)1.5论文研究目标及结构安排 (9)2 双边滤波理论 (7)2.1双边滤波定义 (7)2.2双边滤波器的设计 (7)3 图像去噪的方法 (9)3.1 中值滤波介绍 (9)3.2 高斯滤波介绍 (11)4 双边滤波实验结果 (17)4.1结果图片 (17)5 论文总结 (18)参考文献 (19)1 引言1.1 课题的研究背景及意义当今社会已经进入了一个高度信息化的阶段,人们对信息的需求越来越多。

空域滤波的过程和原理

空域滤波的过程和原理

空域滤波的过程和原理
空域滤波是一种图像处理技术,它通过对图像中每一个像素的数值进行操作,来改变图像的外观和质量。

以下是空域滤波的过程和原理:
1. 图像平滑:空域滤波常用于图像平滑操作,这是通过将每一个像素的数值与其周围像素的数值进行平均或加权平均来实现的。

这样可以减少图像中的噪声和细微变化,使图像更加平滑。

2. 图像增强:空域滤波也可以用于图像的增强操作。

这是通过将每一个像素的数值与其周围像素的数值进行比较,并进行一定的算术操作,如加法或乘法来实现的。

这样可以增加图像的对比度和亮度,使图像更加清晰和鲜明。

3. 模糊和锐化:空域滤波还可以用于图像的模糊和锐化操作。

模糊操作通过在图像中每一个像素周围取平均数或加权平均数来实现,可以降低图像的细节和清晰度,使图像看起来更加模糊。

锐化操作则是通过增加图像中每一个像素的值与其周围像素的差值来实现,可以使图像的轮廓更加清晰和锐利。

4. 过滤器选择:在空域滤波中,选择合适的过滤器是很重要的。

过滤器是一个矩阵,用于定义每一个像素与周围像素之间的操作。

常用的过滤器包括平均滤波器、高斯滤波器、中值滤波器等。

不同的过滤器可以实现不同的效果,如平均滤波器可以平滑图像,高斯滤波器可以去除噪声,中值滤波器可以去除椒盐噪声等。

总的来说,空域滤波通过对图像中每一个像素的数值进行操作,实现图像平滑、增强、模糊和锐化等效果。

选择合适的过滤器可以实现不同的图像处理目标。

请简述空域处理方法和频域处理方法的区别

请简述空域处理方法和频域处理方法的区别

空域处理方法和频域处理方法是数字图像处理中常用的两种方法。

它们有着各自独特的特点和应用场景。

本文将从原理、应用和区别三个方面对这两种处理方法进行详细比较。

一、原理1. 空域处理方法空域处理方法是指直接对图像的像素进行操作。

它是一种基于图像的原始信息进行处理的方法。

常见的空域处理操作包括亮度调整、对比度增强、图像锐化等。

这些操作都是基于每个像素点周围的邻域像素进行计算和处理的。

2. 频域处理方法频域处理方法是将图像从空间域转换到频率域进行处理。

其基本原理是利用傅里叶变换将图像信号从空间域转换到频率域,然后对频率域的图像进行滤波、增强等处理,最后再利用傅里叶反变换将图像信号转换回空间域。

二、应用1. 空域处理方法空域处理方法适用于对图像的局部信息进行处理,如调整图像的明暗、对比度和色调等。

它可以直接对原始图像进行处理,因此在实时性要求较高的场景下具有一定优势。

2. 频域处理方法频域处理方法适用于对图像的全局信息进行处理,如去除图像中的周期性噪声、增强图像的高频细节等。

由于频域处理方法能够通过滤波等手段对图像进行全局处理,因此在一些需要对图像进行频谱分析和滤波的场景下有着独特的优势。

三、区别1. 数据处理方式空域处理方法是直接对图像的像素进行操作,处理过程直接,但只能处理原始图像信息。

而频域处理方法是将图像信号转换到频率域进行处理,可以更全面地分析和处理图像的频率特性。

2. 处理效果空域处理方法主要用于对图像的局部信息进行处理,因此适合对图像的亮度、对比度等进行调整。

而频域处理方法主要针对图像的全局信息进行处理,能够更好地处理图像的频率特性,如滤波、增强等。

3. 处理速度空域处理方法直接对原始图像进行处理,处理速度较快;而频域处理方法需要将图像信号转换到频率域进行处理,处理速度相对较慢。

空域处理方法和频域处理方法分别适用于不同的处理场景。

空域处理方法主要用于对图像的局部信息进行处理,处理速度较快;而频域处理方法主要用于对图像的全局信息进行处理,能够更全面地分析和处理图像的频率特性。

数字图像处理冈萨雷斯

数字图像处理冈萨雷斯

数字图像处理冈萨雷斯引言数字图像处理是指对数字图像进行各种操作和处理的技术和方法的总称。

冈萨雷斯是指冈萨雷斯的数字图像处理体系结构,该体系结构包含了图像增强、图像滤波、图像变换等多个模块,可以对数字图像进行全方位的处理和分析。

本文将详细介绍数字图像处理冈萨雷斯的核心方法和技术。

图像增强图像增强是数字图像处理中的重要环节,旨在提高图像的质量和观感。

冈萨雷斯提供了多种图像增强方法,包括直方图均衡化、灰度变换、空域滤波等。

直方图均衡化直方图均衡化是一种通过重新分配图像像素值来增强图像对比度的方法。

它可以增强图像的细节和边缘,并提高图像的视觉效果。

冈萨雷斯提供了直方图均衡化的算法和实现,用户可以通过简单的调用来对图像进行直方图均衡化处理。

灰度变换灰度变换是一种通过对图像的灰度级进行调整来改变图像对比度和亮度的方法。

冈萨雷斯提供了多种灰度变换函数,包括线性变换、非线性变换等。

用户可以根据自己的需求选择适合的灰度变换函数,并通过简单的调用来实现图像的灰度变换。

空域滤波空域滤波是一种通过对图像进行局部像素操作来增强图像的方法。

冈萨雷斯提供了多种空域滤波算法,包括均值滤波、中值滤波、高斯滤波等。

用户可以根据图像的特点选择适合的滤波算法,并通过简单的调用来实现图像的空域滤波。

图像滤波图像滤波是指对数字图像进行平滑或增强处理的方法。

冈萨雷斯提供了多种图像滤波算法,包括线性滤波和非线性滤波。

线性滤波线性滤波是一种通过对图像进行卷积运算来实现的滤波方法。

冈萨雷斯提供了多种线性滤波算法,包括均值滤波、拉普拉斯滤波、Sobel滤波等。

用户可以根据图像的特点选择适合的线性滤波算法,并通过简单的调用来实现图像的线性滤波。

非线性滤波非线性滤波是一种通过对图像进行非线性操作来实现的滤波方法。

冈萨雷斯提供了多种非线性滤波算法,包括中值滤波、最大值滤波、最小值滤波等。

用户可以根据图像的特点选择适合的非线性滤波算法,并通过简单的调用来实现图像的非线性滤波。

图像增强实验报告

图像增强实验报告

图像增强实验报告篇一:图像处理实验报告——图像增强实验报告学生姓名:刘德涛学号:2010051060021指导老师:彭真明日期:2013年3月31日一、实验室名称:光电楼329、老计算机楼309机房二、实验项目名称:图像增强三、实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。

图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。

空间域的增强主要有:灰度变换和图像的空间滤波。

1.灰度变换灰度变换主要有线性拉伸、非线性拉伸等。

灰度图像的线性拉伸是将输入图像的灰度值的动态范围按线性关系公式拉伸到指定范围或整个动态范围。

令原图像f(x,y)的灰度变化范围为[a,b],线性变换后图像g(x,y)的范围为[a&#39;,b&#39;],线性拉伸的公式为:b&#39;?a&#39;g(x,y)?a?[f(x,y)?a] b?a灰度图像的非线性拉伸采用的数学函数是非线性的。

非线性拉伸不是对图像的灰度值进行扩展,而是有选择地对某一灰度范围进行扩展,其他范围的灰度值则可能被压缩。

常用的非线性变换:对数变换和指数变换。

对数变换的一般形式:g(x,y)?a?ln[f(x,y)?1] blnc指数变换的一般形式:g(x,y)?bc[f(x,y)?a]?1(a,b,c用于调整曲线的位置和形状的参数。

)2.图像的空间滤波图像的空间滤波主要有图像的空域平滑和锐化。

图像的平滑是一种消除噪声的重要手段。

图像平滑的低频分量进行增强,同时抑制高频噪声,空域中主要的方法有领域平均、中值滤波、多帧相加平均等方法。

图像锐化能使图像的边缘、轮廓处的灰度具有突变特性。

图像的锐化主要有微分运算的锐化,包括梯度法和拉普拉斯法算子。

四、实验目的:1.熟悉和掌握利用Matlab工具进行数字图像的读、写、显示等数字图像处理基本步骤。

空域处理方法和频域处理方法的区别

空域处理方法和频域处理方法的区别

空域处理方法和频域处理方法是数字图像处理中常用的两种处理方式,它们在处理图像时具有不同的特点和优势。

本文将对这两种处理方法进行比较和分析,探讨它们的区别和应用场景。

一、空域处理方法1. 空域处理方法是指直接对图像的像素进行处理,通过对图像的像素值进行加减乘除等操作,来实现对图像的处理和增强。

2. 空域处理方法的优势在于简单直观,操作方便。

常见的空域处理方法包括灰度变换、直方图均衡化、平滑滤波、锐化滤波等。

3. 空域处理方法的缺点是无法充分利用图像的局部特征和频域信息,对某些复杂的图像处理任务效果不佳。

二、频域处理方法1. 频域处理方法是指将图像转换到频域进行处理,通过对图像的频谱进行操作,来实现对图像的处理和增强。

2. 频域处理方法的优势在于能够充分利用图像的频域信息,对图像进行更加精细和复杂的处理。

常见的频域处理方法包括傅里叶变换、频谱滤波、离散余弦变换等。

3. 频域处理方法的缺点是操作复杂,需要进行频域变换和逆变换,计算量大,处理过程较为繁琐。

三、空域处理方法和频域处理方法的区别1. 原理差异:空域处理方法是直接对图像的像素进行处理,而频域处理方法是将图像转换到频域进行处理。

2. 应用范围差异:空域处理方法适用于简单的图像处理和增强任务,频域处理方法适用于对图像进行精细和复杂的处理。

3. 操作难易度差异:空域处理方法操作简单直观,频域处理方法操作复杂繁琐。

四、空域处理方法和频域处理方法的应用场景1. 空域处理方法适用于对图像进行一些简单的增强和处理,如亮度调整、对比度增强、边缘检测等。

2. 频域处理方法适用于对图像进行复杂的增强和处理,如去除噪声、图像复原、频谱滤波等。

在实际的图像处理任务中,根据具体的处理要求和效果需求,可以灵活选择空域处理方法和频域处理方法,以达到最佳的处理效果。

总结:空域处理方法和频域处理方法在数字图像处理中各有优势和特点,应用于不同的处理场景和任务中。

了解和掌握这两种处理方法的区别和优势,能够更好地进行图像处理和增强,提高处理效率和质量。

图像增强—空域滤波实验报告

图像增强—空域滤波实验报告

图像增强—空域滤波实验报告篇一:5.图像增强—空域滤波 - 数字图像处理实验报告计算机与信息工程学院验证性实验报告一、实验目的进一步了解MatLab软件/语言,学会使用MatLab对图像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果。

了解几种不同滤波方式的使用和使用的场合,培养处理实际图像的能力,并为课堂教学提供配套的实践机会。

二、实验要求(1)学生应当完成对于给定图像+噪声,使用平均滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。

(2)利用MATLAB软件实现空域滤波的程序:I=imread('electric.tif');J = imnoise(I,'gauss',0.02); %添加高斯噪声 J = imnoise(I,'salt & pepper',0.02); %添加椒盐噪声ave1=fspecial('average',3); %产生3×3的均值模版ave2=fspecial('average',5); %产生5×5的均值模版 K = filter2(ave1,J)/255; %均值滤波3×3 L = filter2(ave2,J)/255; %均值滤波5×5 M = medfilt2(J,[3 3]);%中值滤波3×3模板 N = medfilt2(J,[4 4]); %中值滤波4×4模板 imshow(I);figure,imshow(J); figure,imshow(K); figure,imshow(L); figure,imshow(M); figure,imshow(N);三、实验设备与软件(1) IBM-PC计算机系统(2) MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox) (3) 实验所需要的图片四、实验内容与步骤a) 调入并显示原始图像Sample2-1.jpg 。

数字图像处理空域滤波

数字图像处理空域滤波

中值滤波器

中值滤波算法的特点:
(1)在去除噪音的同时,可以比较好地保
留边的锐度和图像的细节(优于均值滤波器)
(2)能够有效去除脉冲噪声:以黑白点
(椒盐噪声)叠加在图像上中。
中值滤波器
原图
3x3均值滤波
3x3中值滤波
实例
原图像
高斯噪声
高斯噪声图的5×5
十字中值滤波噪声
椒盐噪声
椒盐噪声图的5×5
两个重要性质:
(1)梯度的方向是在函数f(x,y)最大变化率方向上
(2)梯度的幅度用G[f(x,y)]表示:
对于数字图像,则用离散的式子表示
简化
f(i,j)
f(i+1,j)
f(i,j+1)
f(i,j)
f(i,j+1)
f(i+1,j) f(i+1,j+1)
Roberts梯度算子
结论
梯度的近似值和相邻象素的灰度差成正比,因此在图
k0
k1
s6
s7
s8
k6
k7
k8
y
R
X
0
x
(a)
X
0
(b)
模板的输出为: R k0 s0 k1s1 k8 s8
x
(c)
平滑空域滤波器
作用
(1)模糊处理:去除图像中一些不重要
的细节。
(2)减小噪声。
平滑空间滤波器的分类
(1)线性滤波器:均值滤波器
(2)非线性滤波器

最大值滤波器
-1
-1
-1
-1
0
1
0
0
0
-1
0

数字图像处理期末考试答案

数字图像处理期末考试答案

实用文档数字图像处理期末考试答案数字图像处理》复指南选择题1.在采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对哪一类图像进行的?(B)A。

图像整体偏暗B。

图像整体偏亮C。

图像细节淹没在暗背景中D。

图像同时存在过亮和过暗背景2.图像灰度方差说明了图像的哪一个属性?(B)实用文档A。

平均灰度B。

图像对比度C。

图像整体亮度D。

图像细节3.计算机显示器主要采用哪一种彩色模型?(A)A。

RGBB。

CMY或CMYKC。

HSI4.采用模板[-11]T主要检测哪个方向的边缘?(A)A。

水平实用文档B。

45度C。

垂直D。

135度5.下列算法中属于图像锐化处理的是:(C)A。

低通滤波B。

加权平均法C。

XXX滤波D。

中值滤波6.维纳滤波器通常用于哪种情况?(C)实用文档A。

去噪B。

减小图像动态范围C。

复原图像D。

平滑图像7.彩色图像增强时,可以采用哪种处理方法?(C)A。

直方图均衡化B。

同态滤波C。

加权均值滤波D。

中值滤波实用文档8.在对图像进行复原的过程中,B滤波器需要计算哪些功率谱?(B)A。

逆滤波B。

维纳滤波C。

约束最小二乘滤波D。

同态滤波9.XXX滤波后的图像通常较暗,为改善这种情况,可以将高通滤波器的转移函数加上一定的常数以引入一些低频分量。

这样的滤波器称为什么?(B)A。

XXX高通滤波器B。

高频提升滤波器实用文档C。

高频加强滤波器D。

理想高通滤波器10.图像与灰度直方图之间的对应关系是什么?(B)A。

一一对应B。

多对一C。

一对多D。

都不对应11.下列算法中属于图像锐化处理的是:(C)A。

低通滤波B。

加权平均法实用文档C。

XXX滤波D。

中值滤波12.一幅256x256的图像,若灰度级数为16,则存储它所需的比特数是多少?(A)A。

256KB。

512KC。

1MD。

2M13.一幅灰度级均匀分布的图像,其灰度范围在[0,255],则该图像的信息量为多少?(D)实用文档A。

0B。

255C。

6D。

814.下列算法中属于局部处理的是什么?(D)A。

空间域滤波器(实验报告)

空间域滤波器(实验报告)

数字图像处理作业——空间域滤波器摘要在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。

本文利用matlab软件,采用空域滤波的方式,对图像进行平滑和锐化处理。

平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。

本文使用的平滑滤波器有中值滤波器和高斯低通滤波器,其中,中值滤波器对去除椒盐噪声特别有效,高斯低通滤波器对去除高斯噪声效果比较好。

使用的锐化滤波器有反锐化掩膜滤波、Sobel边缘检测、Laplacian边缘检测以及Canny算子边缘检测滤波器。

不同的滤波方式,在特定的图像处理应用中有着不同的效果和各自的优势。

1、分别用高斯滤波器和中值滤波器去平滑测试图像test1和2,模板大小分别是3x3 , 5x5 ,7x7;利用固定方差 sigma=1.5产生高斯滤波器. 附件有产生高斯滤波器的方法。

实验原理分析:空域滤波是直接对图像的数据做空间变换达到滤波的目的。

它是一种邻域运算,其机理就是在待处理的图像中逐点地移动模板,滤波器在该点地响应通过事先定义的滤波器系数与滤波模板扫过区域的相应像素值的关系来计算。

如果输出像素是输入像素邻域像素的线性组合则称为线性滤波(例如最常见的均值滤波和高斯滤波),否则为非线性滤波(中值滤波、边缘保持滤波等)。

空域滤波器从处理效果上可以平滑空间滤波器和锐化空间滤波器:平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。

模板在源图像中移动的过程中,当模板的一条边与图像轮廓重合后,模板中心继续向图像边缘靠近,那么模板的某一行或列就会处于图像平面之外,此时最简单的方法就是将模板中心点的移动范围限制在距离图像边缘不小于(n-1)/2个像素处,单处理后的图像比原始图像稍小。

如果要处理整幅图像,可以在图像轮廓边缘时用全部包含于图像中的模板部分来滤波所有图像,或者在图像边缘以外再补上一行和一列灰度为零的像素点(或者将边缘复制补在图像之外)。

空域滤波技术根据功能主要分为平滑滤波与锐化滤波1

空域滤波技术根据功能主要分为平滑滤波与锐化滤波1

空域滤波技术根据功能主要分为平滑滤波与锐化滤波,平滑滤波能减弱或消除图像中的高频率分量而不影响低频分量。

因为高频分量对应图像中的区域边缘等灰度值具有较大变化的部分,平滑滤波可将这些分量滤去减少局部灰度起伏,是图像变得比较平滑。

实际应用中,平滑滤波还可用于消除噪声,或在提取较大目标前去除太小的细节或将目标的小间断连接起来。

锐化滤波正好相反,实际应用中锐化滤波常用于增强被模糊的细节或目标的边缘。

空域滤波是在图像空间通过邻域操作完成的,实现的方式基本都是利用模板(窗)进行卷积来进行,实现的基本步骤为:1、将模板中心与图中某个像素位置重合;2、将模板的各个系数与模板下各对应像素的灰度值相乘;3、将所有乘积相加,再除以模板的系数个数;4、将上述运算结果赋给图中对应模板中心位置的像素。

常见的空域滤波器:1、邻域平均:将一个像素邻域平均值作为滤波结果,此时滤波器模板的所有系数都取为1。

2、加权平均:对同一尺寸的模板,可对不同位置的系数采用不同的数值。

实际应用中,常取模板周边最小的系数为1,而取内部的系数成比例增加,中心系数最大。

加权平均模板示例:1 2 12 4 21 2 13、高斯分布:借助杨辉三角对高斯函数进行近似。

高斯模板系数:11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 14、中值滤波:中值滤波是一种非线性滤波方式,可用如下步骤完成。

(1)将模板在图中漫游,并将模板中心与图中某个像素位置重合;(2)读取模板下各对应像素的灰度值;(3)将这些灰度值从小到大进行排序;(4)找出中间值并赋给对应模板中心位置的像素。

一般情况下中值滤波的效果要比邻域平均处理的低通滤波效果好,主要特点是滤波后图像中的轮廓比较清晰。

5、最频值滤波:通过直方图统计中心像素点的灰度分布情况,将出现次数最多的灰度值(即直方图波峰位置)赋给中心位置的像素。

如果直方图是对称的且仅有一个峰,那么均值、中值和最频值相同。

数字图像处理数字图像处理第二章(第二讲)空域变换、频率域变换

数字图像处理数字图像处理第二章(第二讲)空域变换、频率域变换
国家级精品资源共享课
➢ 从影像到地图的几何校正方法 亮度采样
确定像元亮度值。然而,输入像元值和输出像元坐标 之间没有直接的一一对应关系。校正后的输出影像像元需 要填入一定的亮度值,但该像元栅格并非刚好落在规则行 列坐标上,因此必须采用某种方法来确定校正后输出像元 的亮度值 (BV ) 这一过程称为亮度采样。
国家级精品资源共享课
➢ 从影像到地图的几何校正方法 基于坐标转换的空间插值
从影像到地图的校正采用最小二乘法对地面控制点数据 拟合多项式方程,而不需要知道确切的几何误差源。根据 不同的影像畸变,地面控制点数量以及地形投影差,可能 需要建立更高次的多项式对数据进行几何校正。 这里的次 即多项式的最高次幂。
➢ 从影像到地图的几何校正方法
Байду номын сангаас
空间插值方法
这种方法填充从非平面 化影像拟合到具有标准 地图投影影像的输出图 像的矩阵。
x ' a0 a1x a2y y ' b0 b1x b2y
x' 382 .2366 (0.034187 )x (0.005481 ) y y' 130162 (0.005576 )x (0.0349150 ) y
国家级精品资源共享课
➢ 从影像到地图的几何校正方法
计算逆向映射函数的均方根误差
通过6个坐标转换系数模拟原始影像畸变,可以采用从输出到输 入(逆向)映射方法,将原始影像中的(x, y )像元值转换(重定位)到 输出影像栅格(x, y)中。 但是,在利用这些系数创建校正的输出影 像之前,重要的是要确定,由原始 GCP 数据采用最小二乘回归得到 的这6个系数对输入影像中的几何畸变的校正精度。 最常用的方法 是计算每个地面控制点的 均方根误差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳大学实验报告课程名称:数字图像处理
实验项目名称:图像的灰度变换与空域滤波学院:信息工程学院
专业:电子信息工程
指导教师:***
报告人:学号:班级:
实验时间:2016.4.14
实验报告提交时间:2016.4.20
教务部制
实验代码及结果:
(一)代码:
I = imread('A.tif');
J = imadjust(I, [0 1], [1 0]); subplot(2,2,1),imshow(I) subplot(2,2,2),imshow(J)
subplot(2,2,3),imhist(I)
subplot(2,2,4),imhist(J)
结果:
(二)
代码:
I = imread('B.tif');
J = histeq(I);
subplot(2,2,1),imshow(I) subplot(2,2,2),imshow(J)
subplot(2,2,3),imhist(I) subplot(2,2,4),imhist(J)
(三)
代码:
I = imread('C.tif');
J = imnoise(I,'gaussian',0.02);
h=fspecial('average',[3,3]);
I1=filter2(h,J);
h=fspecial('average',[13,13]);
I2=filter2(h,J);
subplot(2,2,1),imshow(I),title('Ô-ͼ');
subplot(2,2,2),imshow(J),title('¼Ó¸ß˹ÔëÉù');
subplot(2,2,3),imshow(I1,[]),title('½øÐÐ[3x3]¾ùÖµ¹ýÂË') subplot(2,2,4),imshow(I2,[]),title('½øÐÐ[13x13]¾ùÖµ¹ýÂË')
(4)代码
I = imread('C.tif');
J = imnoise(I,'gaussian',0.02);
I1=medfilt2(J,[3,3]);
I2=medfilt2(J,[5,5]);
I3=medfilt2(J,[10,10]);
I4=medfilt2(J,[20,20]);
subplot(3,2,1),imshow(I),title('原图');
subplot(3,2,2),imshow(J),title('加高斯噪声');
subplot(3,2,3),imshow(I1,[]),title('进行[3x3]中值过滤') subplot(3,2,4),imshow(I2,[]),title('进行[5x5]中值过滤') subplot(3,2,5),imshow(I3,[]),title('进行[10x10]中值过滤') subplot(3,2,6),imshow(I4,[]),title('进行[20x20]中值过滤')
(5)代码:
I=imread('B.tif');
J1=im2double(I)*255;
[m,n]=size(J1);
p=zeros(1,256);
for k=1:256
p(k)=sum(sum(J1==k-1))/(m*n); end
for i=2:256
p(i)=p(i)+p(i-1);
end
for i=1:256
p(i)=round(p(i)*255);
end
for i=1:m
for j=1:n
J1(i,j)=p(J1(i,j)+1);
end
end
figure();
subplot(1,2,1),imshow(I); J1=im2uint8(J1/255); subplot(1,2,2),imshow(J1);实验结果:。

相关文档
最新文档