九年级数学上册-认识一元二次方程第2课时一元二次方程的根及近似解教案新版北师大版
北师大版九年级数学上册《认识一元二次方程》第2课时示范公开课教学设计
第二章一元二次方程1认识一元二次方程第2课时一、教学目标1.理解方程解的概念.2.经历对一元二次方程解的探索过程能理解其意义.3.会利用“两边夹”的思想估算一元二次方程的解.4.培养学生的估算意识和能力,发展学生的数感.二、教学重难点重点:探索一元二次方程的解和近似解.难点:利用“两边夹”的思想估算一元二次方程的解. 三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【合作探究】教师活动:通过列表让学生直观的感受到方程的解满足的条件,从而引出一元二次方程的解,再通过延续上一节课的两个具体问题,引导学生估算一元二次方程的解,从而归纳得出用“两边法”求一元二次方程的基本步骤.问题1:下面哪些数是方程x2–2x–8=0的解?-4,-3,-2,-1,0,1,2,3,4预设:列表归纳:像数-2,4使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解(又叫做根).问题2:在上一课中,我们知道四周未铺地毯部分的宽度x满足方程(8-2x)(5-2x)=18,你能求出这个宽度吗?(1)x可能小于0吗?说说你的理由.预设:x不可能小于0,因为宽度不能为负.追问:x可能大于4吗?可能大于2.5吗?说说你的理由.预设:x不可能大于4,(8-2x)表示地毯的长,所以有8-2x>0,x不可能大于2.5,(5-2x)表示地毯的宽,所以有5-2x>0.(2)你能确定x的大致范围吗?预设:由(1)可知:0<x<2.5(3)填写下表:预设:(4)你知道地毯花边的宽x(m)是多少吗?预设:由(3)列表可知,当x=1时,方程两边相等,所以地毯花边的宽1m.你还有其他求解方法吗?预设:教师鼓励学生尝试别的方法,可以考虑从运算的角度18等于6×3.【做一做】问题3:在上一课中,梯子的底端滑动的距离x 满足方程72+(x+6)2=102,也就是x2+12x-15=0.(1)小明认为底端也滑动了1m,他的说法正确吗?为什么?(2)底端滑动的距离可能是2m吗?可能是3m吗?为什么?预设:(1)不正确,因为x=1时不满足方程.(2)不可能是2,因为x=2时不满足方程.不可能是3,因为x=3时不满足方程.(3)你能猜出滑动距离x(m)的大致范围吗?预设:在(1)(2)基础上列表:观察表格发现,当x=1时,x2+12x-15小于0,当x=2时,x2+12x-15大于0,所以猜测1<x<2,即滑动距离在1m到2m之间.(4)由(3)可知x的整数部分是1,那它的十分位是几?预设:下面是小亮的求解过程:可知x取值的大致范围是:1<x<1.5.进一步计算:所以1.1<x<1.2,因此x整数部分是1,十分位部分是1.【归纳】上述求解是利用了“两边夹”的思想,用“两边夹”思想解一元二次方程的步骤:①在未知数x的取值范围内排除一部分取值;②再次进行排除,取值范围确定在两个连续整数之间;③对列出能反映未知数和方程的值的表格进行再次筛选;④最终得出未知数的最小取值范围或具体数据.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例请估算出一元二次方程x2-2x-1=0的正数根(精确到0.1).分析:①先列表确定整数部分,当2<x<3时,-1<x2-2x-1<2,则正数根在2到3之间;②再列表确定十分位部分,当2.4<x<2.5时,-0.04<x2-2x-1<0.25,则正数根在2.4到2.5之间;③最后确定百分位部分,当x=2.45时,x2-2x-1的值是否大于0,若大于0,则正数根在2.40到2.45之间,若小于0,则正数根在2.45到2.50之间.再根据精确到0.1,四舍五入取值即可.解:(1)列表.依次取x=0,1,2,3,…由上表可发现,当2<x<3时,-1<x2-2x-1<2;(2)继续列表,依次x=2.1,2.2,2.3,2.4,2.5,…由表发现,当2.4<x<2.5时,-0.04<x2-2x-1<0.25;(3)取x=2.45,则x2-2x-1≈0.1025.∴ 2.4<x<2.45,∴x≈2.4即正数根为2.4.教师给出练习,随时观察学生完成情况并相应1.五个连续整数,前三个数的平方和等于后两个数的平方.您能求出这五个整数分别是多少吗?2.根据题意,列出方程,并估算方程的解:一个面积为120m2的矩形苗圃,它的长比宽多2m.苗圃的长和宽各是多少?3.有一条长为16m的绳子,你能否用它围出一个面积为15m2的矩形?若能,则矩形的长、宽各是多少?答案:1.解:设第一个整数为x.x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.3x2+6x+5=2x2+14x+25.x2-8x-20=0.列表:所以x=-2或10.所以,这五个整数分别是10,11,12,13,14或-2,-1,0,1,2.2.解:设苗圃的宽为x m,则长为(x+2)m,根据题意得:x(x+2)=120.即x2+2x-120=0.列表:所以,苗圃的宽为10m,长为12m.3.解:能,设矩形的宽为x m,则长为(8-x)m,依题意,得x(8-x)=15.即:x2-8x+15=0.列表:所以,矩形的宽为3m,长为5m.思维导图的形式呈现本节课的主要内容:教科书第35页。
北师大版九年级数学上册第二章一元二次方程《认识一元二次方程》教案1
2.1 认识一元二次方程教案 第1课时 一元二次方程1.了解一元二次方程的概念;(重点)2.掌握一元二次方程的一般形式ax 2+bx +c =0(a ,b ,c 为常数,a ≠0),能分清二次项、一次项与常数项以及二次项系数、一次项系数等,会把一元二次方程化成一般形式;(重点)3.能根据具体问题的数量关系,建立方程的模型.(难点)一、情景导入一个面积为120m 2的矩形苗圃,它的长比宽多2m ,苗圃的长和宽各是多少?设苗圃的宽为x m ,则长为(x +2)m. 根据题意,得x (x +2)=120. 所列方程是否为一元一次方程?(这个方程便是即将学习的一元二次方程.) 二、合作探究探究点一:一元二次方程的概念 【类型一】 判定一元二次方程下列方程中,是一元二次方程的是________(填入序号即可). ①4y2-y =0;②2x 2-x -3=0;③x21=3; ④x 2=2+3x ;⑤x 3-x +4=0;⑥t 2=2; ⑦x 2+3x -x 3=0;⑧=2.解析:由一元二次方程的定义知③⑤⑦⑧不是,答案为①②④⑥.方法总结:判断一个方程是不是一元二次方程,先看它是不是整式方程,若是,再对它进行整理,若能整理为ax 2+bx +c =0(a ,b ,c 为常数,a ≠0)的形式,则这个方程就是一元二次方程.【类型二】 根据一元二次方程的概念求字母的值a 为何值时,下列方程为一元二次方程?(1)ax 2-x =2x 2-ax -3;(2)(a -1)x |a |+1+2x -7=0.解析:(1)将方程转化为一般形式,得(a -2)x 2+(a -1)x +3=0,所以当a -2≠0,即a ≠2时,原方程是一元二次方程;(2)由|a |+1=2,且a -1≠0知,当a =-1时,原方程是一元二次方程.解:(1)当a ≠2时,方程ax 2-x =2x 2-ax -3为一元二次方程; (2)因为|a |+1=2,所以a =±1.当a =1时,a -1=0,不合题意,舍去.所以当a =-1时,原方程为一元二次方程.方法总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的值.【类型三】 一元二次方程的一般形式把下列方程转化成一元二次方程的一般形式,并指出二次项系数、一次项系数和常数项:(1)x (x -2)=4x 2-3x ;(2)3x2-2x +1=2-x -1;(3)关于x 的方程mx 2-nx +mx +nx 2=q -p (m +n ≠0).解析:首先对上述三个方程进行整理,通过“去分母,去括号,移项,合并同类项”等步骤将它们化为一般形式,再分别指出二次项系数、一次项系数和常数项.解:(1)去括号,得x 2-2x =4x 2-3x .移项、合并同类项,得3x 2-x =0.二次项系数为3,一次项系数为-1,常数项为0;(2)去分母,得2x 2-3(x +1)=3(-x -1).去括号、移项、合并同类项,得2x 2=0.二次项系数为2,一次项系数为0,常数项为0;(3)移项、合并同类项,得(m +n )x 2+(m -n )x +p -q =0.二次项系数为m +n ,一次项系数为m -n ,常数项为p -q .方法总结:(1)在确定一元二次方程各项系数时,首先把一元二次方程转化成一般形式,如果在一般形式中二次项系数为负,那么最好在方程左右两边同乘-1,使二次项系数变为正数;(2)指出一元二次方程的各项系数时,一定要带上前面的符号;(3)一元二次方程转化为一般形式后,若没有出现一次项bx ,则b =0;若没有出现常数项c ,则c =0.探究点二:建立一元二次方程模型如图,现有一张长为19cm ,宽15cm 的长方形纸片,需要在四个顶角处剪去边长是多少的小正方形,才能将其做成底面积为81cm 2的无盖长方体纸盒?请根据题意列出方程.解析:小正方形的边长即为纸盒的高,中间虚线部分则为纸盒底面,设出未知数,利用长方形面积公式可列出方程.解:设需要剪去的小正方形边长为x cm ,则纸盒底面的长方形的长为(19-2x )cm ,宽为(15-2x )cm.根据题意,得(19-2x )(15-2x )=81.整理,得x 2-17x +51=0(x <215).方法总结:列方程最重要的是审题,只有理解题意,才能恰当地设出未知数,准确地找出已知量和未知量之间的等量关系,正确地列出方程.在列出方程后,还应根据实际需求,注明自变量的取值范围.三、板书设计一元二次方程 项系数和一次项系数 常数项,a ,b 分别称为二次本课通过丰富的实例,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想.通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效数学模型,初步培养学生的数学来源于实践又反过来作用于实践的辩证唯物主义观点,激发学生学习数学的兴趣.第2课时 一元二次方程的解及其估算1.经历一元二次方程的解或近似解的探索过程,增进对方程解的认识;(重点) 2.会用“夹逼法”估算方程的解,培养学生的估算意识和能力.(难点)一、情景导入在上一课时情境导入中,苗圃的宽满足方程x (x +2)=120,你能求出该方程的解吗?二、合作探究探究点一:一元二次方程的解下列哪些数是方程x 2-6x +8=0的根? 0,1,2,3,4,5,6,7,8,9,10.解析:把0,1,2,3,4,5,6,7,8,9,10分别代入方程x 2-6x +8=0中,发现当x =2和x =4时,方程x 2-6x +8=0成立,所以x =2,x =4是方程x 2-6x +8=0的根.解:2,4是方程x 2-6x +8=0的根.方法总结:(1)使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫一元二次方程的根.(2)判断一个数是否为某个一元二次方程的根,我们只需要将这个数当作未知数的值分别代入原方程的左右两边,看左右两边代数式的值是否相等,若相等,则这个数是一元二次方程的根;若不相等,则这个数不是一元二次方程的根.探究点二:估算一元二次方程的近似解请求出一元二次方程x 2-2x -1=0的正数根(精确到0.1).解析:先列表取值,初步确定正数根x 在哪两个整数之间,然后再用类似的方法逐步确定出x 的近似正数根.解:(1)列表,依次取x=0,1,2,3,…由上表可发现,当2<x<3时,-1<x-2x-1<2;(2)由上表可发现,当2.4<x<2.5时,-0.04<x-2x-1<0.25;(3)取x=2.45,则x2-2x-1≈0.1025.∴2.4<x<2.45,∴x≈2.4.方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.。
新北师大版九年级上册第二章一元二次方程全章教案
第二章 一元二次方程 2.1认识一元二次方程-(1) 晋公庙中学数学组学习目标:1、会根据具体问题列出一元二次方程。
通过“花边有多宽”,“梯子的底端滑动多少米”等问题的分析,列出方程,体会方程的模型思想,2.通过分析方程的特点,抽象出一元二次方程的概念,培养归纳分析的能力 3.会说出一元二次方程的一般形式,会把方程化为一般形式。
学习重点:一元二次方程的概念学习难点:如何把实际问题转化为数学方程 学习过程:一、导入新课:什么是一元一次方程?什么是二元一次方程?? 二、自学指导:1、自主学习:自学课本31页至32页内容,独立思考解答下列问题:1)情境问题:列方程解应用题:一个面积为120 m 2的矩形苗圃,它的长比宽多2m 。
苗圃的长和宽各是多少?设未知数列方程。
你能将方程化成ax 2+bx+c=0的形式吗? 阅读课本P48,回答问题: 1)什么是一元二次方程?2)什么是一元二次方程的一般形式?二次项及二次项系数、一次项及一次项系数、常数项?2、合作交流:1.一元二次方程应用举例:1)一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m ,宽为5m ,如果地毯中央长方形图案的面积为18m 2,那么花边有多宽?列 方程并化成一般形式。
2)求五个连续整数,使前三个数的平方和等于后两个数的平方和。
如果设中间的一个数为x ,列 方程并化成一般形式.3)如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米? 列出方程并化简。
如果设梯子底端滑动x m ,列 方程并化成一般形式。
2。
知识梳理:1)一元二次方程的概念:强调三个特征:①它是______方程;②它只含______未知数;③方程中未知数的最高次数是__________.一元二次方程的一般形式: 在任何一个一元二次方程中,_______是必不可少的项.2)几种不同的表示形式:①ax 2+bx+c=0 (a ≠0,b ≠0,c ≠0) ② ___________ (a ≠0,b ≠0,c=0) ③____________ (a ≠0,b=0,c ≠0) ④___________ (a ≠0,b=0,c=0) 三、当堂训练81、判断下列方程是不是一元二次方程,并说明理由。
九年级数学(北师大版)上册教案:认识一元二次方程
第二章一元二次方程2.1 认识一元二次方程(一)课题 2.1 认识一元二次方程课型新授课教学目标1.要求学生会根据具体问题列出一元二次方程。
通过“未铺地毯区域有多宽”,“梯子的底端滑动多少米”等问题的提出,让学生列出方程,体会方程的模型思想,培养学生把文字叙述的问题转换成数学语言的能力。
2.通过教师的讲解和引导,使学生抽象出一元二次方程的概念,培养学生归纳分析的能力。
教学重点一元二次方程的概念教学难点如何把实际问题转化为数学方程学情分析本课通过丰富的实例:未铺地毯区域有多宽、梯子的底端滑动多少米,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想。
学生在以前的学习中已经了解了方程的概念,但对于一元二次方程没有深入的理解。
通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效数学模型。
教学后记教学内容及过程教师活动学生活动一、通过实例引入新课1.在开始新的一个单元的时候,要向学生讲清楚本单元的主要内容和总体目标,这样可以让学生对本单元的内容做到整体把握和概览。
2.进人本单元的第一节:认识一元二次方程? 板书课题,明确本节课的中心任务。
3.播放“未铺地毯区域有多宽”的课件,说明题目的条件和要求,课件要求制作得精美并且可以清楚得显示出各个量之间的关系。
4.给学生时间思考:如何明确并用数学式子表示出题目中的各个量?5.让学生回答他们的答案是什么,给予点评,让学生核对答案,可以以学生举手示意的方式掌握全班的情况。
6.继续进行下二个问题:板书P31的等式,提出问题:你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?8.让学生说出自己的答案,点评,其他学1.认真听讲,对本单元(一元二次方程) 有了一个较好的总体认识,为新的内容的学习作好准备。
2.进入良好的学习状态,在教师的引导下顺利进入到新课的学习中,新颖的标题也引起了学生的兴趣;3.很有兴趣地观看课件,对“未铺地毯区域有多宽”的问题产生了很强的探究的欲望,但大部分学生不知道如何找到解决问题的方法,新的任务与原来的认知结构发生冲突。
新北师大版九上第二章一元二次方程教案
第二章一元二次方程第1节认识一元二次方程教学目标:1.经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。
2.理解一元二次方程及其相关概念。
3.经历估计一元二次方程解的过程,增进对方程解的认识,进一步培养估算意识和能力,发展数感。
教学重点:理解一元二次方程概念。
教学难点:化为一元二次方程一般式。
教学过程:2个课第一课时一元二次方程一、导入新课解决实际问题的一种手段和方法。
二、例:P31,教室地面长为8米,宽为5米。
如果地毯中央长方形图案的面积为18平方米,那么花边有多宽(四周的花花等宽)?如果设花边的宽为x米,那么地毯中央长方形图案的长为米,宽为米。
根据题意,可得方程。
三、例:P31,先观察下面等式:102+112+122=132+142你还能找到其它的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为,,,。
根据题意,可得方程。
四、例:P31,如图,一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端滑动多少米?由构股定理可知,滑动前梯子底端距墙 m,如果设梯子底端滑动xm,那么滑动后梯子底端距墙 m。
根据题意,可得方程。
五、由上面三个问题,我们可以得到三个方程:(8-2x)(5-2x)=18, x2+(x+1) 2+(x+2) 2=(x+3) 2+(x+4) 2,(x+6) 2+72=10 2上述三个方程有什么共同特点?能不能把这三个方程化简?结果是多少?(2x2-13x+11=0,x2-8x-20=0,x2+12x-15=0)注意:化简一元二次方程的要求:系数化为最简整数,等号右边为0,等号左边降幂排列,最高项系数为正数)六、归纳:1、只含有一个未知数x的整式方程,并且都可以化为ax2+bx+c=0(a,b,c为常数,a ≠0)的形式,这样的方程叫做一元二次方程。
北师大版九年级上册211 认识一元二次方程(教案)
2.1.1 认识一元二次方程教学目标知识技能:1、理解一元二次方程的概念.2、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.过程与方法:1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力.4、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.情感态度与价值观:1、培养学生主动探究知识、自主学习和合作交流的意识.2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识. 教学重难点:【重点】一元二次方程的概念及一般形式.【难点】1.由实际问题向数学问题转化的过程.2.正确识别一般形式中的“项”及“系数”.教学过程:一、新课导入:问题1:①2021年奥运会将在北京举办,许多大学生都希望为奥运奉献自己的一份力量。
现组委会决定对高校奥运志愿者进行分批培训,由已合格人员培训第一轮人员,再由前面所有合格人员培训第二轮人员,以此类推来完成此次培训任务。
②某高校学生李红已受训合格,成为一名志愿者,并由她负责培训本校志愿者。
若每轮培训中每个志愿者平均培训x人。
(1)已知经过第一轮培训后该校共有11人合格, 请列出满足条件的方程:(2)若两轮培训后该校共有121人合格,你能列出满足条件的方程吗?问题2:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒底面积为3600cm2,那么铁皮各角应切去多大的正方形?问题3:我校为丰富校园文化氛围,要设计一座2米高的人体雕像,使雕像的上部(腰以上)与全部高度的乘积,等于下部(腰以下)高度的平方,求雕像下部的高度 .通过多媒体播放视频短片,引入情境,提出问题.在第(1)问中,通过教师引导,学生列出方程,解决问题.在第(2)问中,遵循刚才解决问题的思路,由学生思考,列出方程.活动中教师应重点关注:学生对题目的理解,可举例,由特殊到一般,帮助学生理解题意,从而引导学会列出满足条件的方程通过多媒体演示,把文字转化为图形,帮助学生理解题意,从而由学生独立思考,列出满足条件的方程.此题是与实际问题结合的题目,通过演示高度关系,帮助学生理解题意,从而列出符合题意的方程。
北师大版九年级上册数学2章《认识一元二次方程》教案
第二章一元二次方程2.1认识一元二次方程第1课时一元二次方程【学习目标】1.探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识.2.在探索问题的过程中使学生感受到方程是刻画现实世界的一个模型,体会方程与实际生活的联系.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.【学习重点】一元二次方程的概念.【学习难点】如何把实际问题转化为数学方程.一、情景导入生成问题1.单项式和多项式统称为整式.2.含有未知数的等式叫做方程.3.计算:(x+2)2=x2+4x+4;(x-3)2=x2-6x+9.4.计算:(5-2x)(8-2x)=4x2-26x+40.二、自学互研生成能力知识模块一探索一元二次方程先阅读教材P31“议一议”前面的内容,然后完成下面问题:1.在第一个问题中,地毯的长可以表示为(8-2x)m,宽可以表示为(5-2x)m,由矩形的面积公式可以列出方程为(8-2x)(5-2x)=18.2.在第二个问题中,如果设五个连续整数中间的一个数为x,你又能列出怎样的方程呢?答:设五个连续整数中间的一个数为x,由题意可列方程,得(x-2)2+(x-1)2+x2=(x+1)2+(x+2)21.问题1:有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个面积相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm2,那么铁皮各角应切去多大的正方形?2.问题2:一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端滑动多少米?你能设出未知数,列出相应的方程吗?答:问题1由题意可列方程:(100-2x)(50-2x)=3600;问题2由题意可列出方程:(x+6)2+72=102.3.你能通过观察下列方程得到它们的共同特点吗?(1)(100-2x)(50-2x)=3600(2)(x +6)2+72=102归纳结论:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程.一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: ax 2+bx +c =0(a 、b 、c 为常数,a ≠0) 这种形式叫做一元二次方程的一般形式.其中ax 2是二次项,a 是二次项的系数;bx 是一次项,b 是一次项系数;c 是常数项.知识模块二 一元二次方程有关概念的应用解答下列各题:1.下列方程中,是一元二次方程的是( C )A .x 2+2y -1=0B .x +2y 2=5C .2x 2=2x -1D .x 2+1x -2=02.将方程(x +3)2=8x 化成一般形式为x 2-2x +9=0,其二次项系数为__1__,一次项系数是__-2__,常数项是__9__.典例讲解:关于x 的方程mx 2-3x =x 2-mx +2是一元二次方程,m 应满足什么条件? 分析:先把这个方程化为一般形式,只要二次项的系数不为0即可.解:由mx 2-3x =x 2-mx +2得到(m -1)x 2+(m -3)x -2=0,所以m -1≠0,即m ≠1.所以关于x 的方程mx 2-3x =x 2-mx +2是一元二次方程,m 应满足m ≠1.对应练习:1.关于x 的方程(a -1)x 2+3x =0是一元二次方程,则a 的取值范围是a ≠1.2.已知方程(m +2)x 2+(m +1)x -m =0,当m 满足m =-2时,它是一元一次方程;当m 满足m ≠-2时,它是一元二次方程.3.(易错题)已知关于x 的方程(m -2)x |m|+3x -4=0是一元二次方程,那么m 的值是( C ) A .2 B .±2 C .-2 D .1三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索一元二次方程知识模块二 一元二次方程有关概念的应用四、检测反馈 达成目标 见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:_________________________________________________ 2.存在困惑:_____________________________________________第2课时一元二次方程的解及其估算【学习目标】1.会进行简单的一元二次方程的试解.2.根据题意判定一个数是否是一元二次方程的根及利用试解方法解决一些具体问题.3.理解方程的解的概念,培养有条理的思考与表达的能力.【学习重点】判定一个数是否是方程的根.【学习难点】会在简单的实际问题中估算方程的解,理解方程解的实际意义.一、情景导入生成问题1.使方程左右两边相等的未知数的值叫做方程的解.2.一元二次方程(x+1)2-x=3(x2-2)化成一般形式是2x2-x-7=0.3.近似数2.36≈2.4(精确到十分位).二、自学互研生成能力知识模块一探索一元二次方程的近似解1.先阅读教材P33“做一做”前面的内容,并完成所设计的四个小问题.答:(1)x的值不能小于0,不能大于4,不能大于2.5,因为x表示四周未铺地毯部分的宽度,所以x的值不能为负,又因为(8-2x)和(5-2x)分别表示地毯的长和宽,所以有8-2x>0,5-2x>0,即x<2.5.(2)x的取值范围是0<x<2.5.(3)表格中的对应值分别为:28、18、10、4.(4)所求宽度为x=1m.2.学生活动:请同学独立完成下列问题.问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?设梯子底端距墙为xm,那么,根据题意,可得方程为x2+82=102.整理,得x2-36=0.列表:x 0 1 2 3 4 5 6 7 8 x2-36 -36 -35 -32 -27 -20 -11 0 13 28 问题2:一个面积为120m的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?设苗圃的宽为xm,则长为(x+2)m.根据题意,得x(x+2)=120.整理,得x2+2x-120=0.列表:x 5 6 7 8 9 10 11x2+2x-85 -72 -57 -40 -21 0 23 -120提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其他解吗?问题2呢?教师点评:(1)问题1中x=6是x2-36=0的解;问题2中,x=10是x2+2x-120=0的解.(2)如果抛开实际问题,问题1中还有x=-6的解;问题2中还有x=-12的解.为了与以前所学的一元一次方程只有一个解的情况区别,我们也称一元二次方程的解叫做一元二次方程的根.回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也不满足题意.知识模块二一元二次方程根的判定及应用解答下列各题:1.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为(A)A.1B.-1C.2D.-22.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足该等式方程,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.典例讲解:若x=1是关于x的一元二次方程ax2+bx+c=1(a≠0)的一个根,求代数式2016(a+b+c)的值.分析:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这一点同学们要深刻理解.解:将x=1代入得a+b+c=1,故2016(a+b+c)=2016.对应练习:1.若x=1是一元二次方程ax2+bx+c=0的解,则a+b+c=__0__;若x=-1是一元二次方程ax2+bx+c=0的解,则a-b+c=__0__.2.若x=-1是一元二次方程ax2+bx-2=0的根,则a-b=__2__.3.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.解:由已知,得a+b=-3,原式=(a+b)2=(-3)2=9三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一探索一元二次方程的近似解知识模块二一元二次方程根的判定及应用四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:___________________________________________________ 2.存在困惑:_______________________________________________。
北师大版数学九上2.1《认识一元二次方程》教案(3页)
-以x² - 5x + 6 = 0为例,详细讲解如何通过因式分解法求解一元二次方程,并让学生进行类似的练习。
-给出实际情境问题,如面积计算、年龄问题等,指导学生如何将其转化为相应的一元二次方程。
北师大版数学九上2.1《认识一元二次方程》教案(3页)
一、教学内容
本节课选自北师大版数学九年级上册第二章第1节《认识一元二次方程》。教学内容主要包括以下方面:
1.理解一元二次方程的定义,能够识别标准形式的一元二次方程:ax² + bx + c = 0(a≠0)。
2.掌握一元二次方程的解的概念,了解解的个数与判别式Δ的关系。
-在因式分解法中,学生可能会遇到难以找到合适的因式对,如对于方程x² + 4x + 3 = 0,需要引导学生思考如何分解成(x+3)(x+1)。
-对于实际问题的抽象,教师需要指导学生如何从问题中提取关键信息,如速度、时间、距离等,并建立数学模型。例如,从“一个数的平方加上这个数等于12”这个问题中,抽象出方程x² + x - 12 = 0。
五、教学反思
今天我们在课堂上学习了《认识一元二次方程》,整体来看,学生的学习态度非常积极,对一元二次方程的概念和求解方法有了基本的认识。但在教学过程中,我也发现了一些问题,值得我们共同反思。
首先,对于一元二次方程定义的理解,部分学生仍然存在困难。在讲解过程中,我意识到可能是因为我未能将概念讲解得足够直观和具体。在今后的教学中,我需要更加注意用简单易懂的语言和例子来解释抽象的数学概念,帮助学生更好地理解。
九年级数学上册 2.1 认识一元二次方程教案 (新版)北师大版
2.1 认识一元二次方程第1课时一元二次方程【知识与技能】探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识.【过程与方法】在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.【情感态度】通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.【教学重点】一元二次方程的概念.【教学难点】如何把实际问题转化为数学方程.一、创设情境,导入新课问题1:有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600 cm2,那么铁皮各角应切去多大的正方形?问题2:一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端滑动多少米?你能设出未知数,列出相应的方程吗?【教学说明】为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫.二、合作交流,探究新知你能通过观察下列方程得到它们的共同特点吗?(1)(100-2x)(50-2x)=3600;(2)(x+6)2+72=102.【教学说明】分组合作、小组讨论,经过讨论后交流小组的结论,可以发现上述方程都不是所学过的方程,特点是两边都是整式,且整式的最高次数是2.【归纳结论】方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程;一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a、b、c为常数,a≠0).这种形式叫做一元二次方程的一般形式.其中ax 2是二次项,a 是二次项的系数;bx 是一次项,b 是一次项系数;c 是常数项.活动中教师应重点关注:(1) 引导学生观察所列出的两个方程的特点;(2)让学生类比前面复习过的一元一次方程定义得到一元二次方程定义; (3)强调定义中体现的3个特征: ①整式;②一元;③2次.【教学说明】让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.三、运用新知,深化理解1.把方程-5x 2+6x +3=0的二次项系数化为1,方程可变为CA .x 2+65x +35=0B .x 2-6x -3=0 C .x 2-65x -35=0D .x 2-65x +35=0分析:注意方程两边除以-5,另两项的符号同时发生变化.2.下列方程是一元二次方程的有(5). (1)x 2+1x-5=0;(2)x 2-3xy +7=0;(3)x +x 2-1=4;(4)m 3-2m +3=0; (5)22x 2-5=0;(6)ax 2-bx =4. 3.已知方程(m +2)x 2+(m +1)x -m =0,当m 满足m =-2时,它是一元一次方程;当m 满足m ≠-2时,它是一元二次方程.分析:当m +2=0,即m =-2时,方程是一元一次方程;当m +2≠0,即m ≠-2时,方程是一元二次方程.4.一元二次方程(x +1)2-x =3(x 2-2)化成一般形式是2x 2-x -7=0.分析:一元二次方程一般形式是ax 2+bx +c =0(a ,b ,c 为常数,a ≠0),对照一般形式可先去括号,再移项,合并同类项,得2x 2-x -7=0.5.已知(m +3)x 2-3mx -1=0是一元二次方程,则m 的取值范围是m ≠-3.6.把方程(1-3x )(x +3)=2x 2+1化为一元二次方程的一般形式,并写出二次项、二次项系数、一次项、一次项系数及常数项.解:原方程化为一般形式是:5x 2+8x -2=0,其中二次项是5x 2,二次项系数是5,一次项是8x ,一次项系数是8,常数项是-2(因为一元二次方程的一般形式是三个单项式的和,所以不能漏写单项式系数的符号).7.关于x 的方程mx 2-3x =x 2-mx +2是一元二次方程,m 应满足什么条件? 分析:先把这个方程化为一般形式,只要二次项的系数不为0即可.解:由mx 2-3x =x 2-mx +2得到(m -1)x 2+(m -3)x -2=0,所以m -1≠0,即m ≠1.所以关于x 的方程mx 2-3x =x 2-mx +2是一元二次方程,m 应满足m ≠1.【教学说明】这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解,进一步巩固学生对一元二次方程的基本概念的理解.四、课堂练习,巩固提高请同学们完成《探究在线·高效课堂》“互动课堂”部分.五、反思小结,梳理新知让学生通过本节课的学习,自己归纳本节的知识要点,学会了什么?还有哪些困惑?六、布置作业1.教材习题2.1第1、2题.2.请同学们完成《探究在线·高效课堂》“课时作业”部分.第2课时一元二次方程的解和近似解【知识与技能】会进行简单的一元二次方程的试解.【过程与方法】根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.【情感态度】理解方程的解的概念,培养有条理的思考与表达的能力.【教学重点】判定一个数是否是方程的根.【教学难点】会在简单的实际问题中估算方程的解,理解方程解的实际意义.一、创设情境,导入新课学生活动:请同学独立完成下列问题.问题1:如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m,那么梯子的底端距墙多少米?设梯子底端距墙为x m,那么,根据题意,可得方程为__x2+82=102__.整理,得__x2-36=0__.问题2设苗圃的宽为x m,则长为__(x+2)__m.根据题意,得__x(x+2)=120__.整理,得__x2+2x-120=0__.列表:二、合作交流,探究新知提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少? (2)如果抛开实际问题,问题1中还有其他解吗?问题2呢?老师点评:(1)问题1中x =6是x 2-36=0的解;问题2中,x =10是x 2+2x -120=0的解.(2)如果抛开实际问题,问题1中还有x =-6的解;问题2中还有x =-12的解. 为了与以前所学的一元一次方程只有一个解的情况区别,我们也称一元二次方程的解叫做一元二次方程的根.回过头来看:x 2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x =-12也不满足题意.【教学说明】由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.三、运用新知,深化理解1.下面哪些数是方程2x 2+10x +12=0的根? -4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把它代入等式,看它是否能使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的两根.2.若x =1是关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的一个根,求代数式2014(a +b +c )的值.分析:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这一点同学们要深刻理解.3.你能用以前所学的知识求出下列方程的根吗?(1)x 2-64=0;(2)3x 2-6=0;(3)x 2-3x =0.分析:要求出方程的根,就是要求出满足等式的数,可用直接观察并结合平方根的意义来求解.4.x (x -1)=2的两根为DA .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=1,x 2=2D .x 1=-1,x 2=2 5.方程ax (x -b )+(b -x )=0的根是BA .x 1=b ,x 2=aB .x 1=b ,x 2=1aC .x 1=a ,x 2=1aD .x 1=a 2,x 2=b 26.如果x 2-81=0,那么x 2-81=0的两个根分别是x 1= ___9___,x 2= ___-9___.7.如果x =1是方程ax 2+bx +3=0的一个根,求(a -b )2+4ab 的值. 解:由已知,得a +b =-3,原式=(a +b )2=(-3)2=9.8.如果关于x 的一元二次方程ax 2+bx +c =0(a ≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.证明:由题意可知:a +c =b ,a -b +c =0, 把x =-1代入原方程,得 ax 2+bx +c=a ×(-1)2+b ×(-1)+c =a -b +c =0.∴-1必是该方程的一个根.9.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在(x 2-1x )2-2×x 2-1x +1=0,令x 2-1x=y ,则有y 2-2y +1=0,根据上述变形数学思想(换元法)解决小明给出的问题:求(x 2-1)2+(x 2-1)=0的根.解:设y =x 2-1,则y 2+y =0,y 1=0,y 2=-1,当x 2-1=0时,x 1=1,x 2=-1;当x 2-1=-1时,x 3=x 4=0.∴x 1=1,x 2=-1,x 3=x 4=0是原方程的根.【教学说明】让学生先独立完成,而后将不会的问题同各小组交流讨论得出结果. 四、课堂练习,巩固提高请同学们完成《探究在线·高效课堂》“互动课堂”部分. 五、反思小结,梳理新知 本节课应掌握:1.一元二次方程根的概念.2.一个数是否是一元二次方程的根的判断方法. 3.求一元二次方程的根的方法. 六、布置作业1.教材习题2.2第1、2题.2.请同学们完成《探究在线·高效课堂》“课时作业”部分.。
北师大版九年级数学上册:第二章《一元二次方程》教案
第二章一元二次方程1认识一元二次方程第1课时一元二次方程的定义1.理解和掌握一元二次方程的定义,会判断一个方程是不是一元二次方程.2.了解一元二次方程的一般形式、二次项、一次项、常数项及二次项系数、一次项系数.3.能根据具体情境,列出一元二次方程.重点理解和掌握一元二次方程的相关概念.难点能根据具体情境,列出一元二次方程.一、情境导入课件出示教材第31页图2-1,提出问题:幼儿园某教室矩形地面的长为8 m,宽为5 m,现准备在地面的正中间铺设一块面积为18 m2的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?教师:你能找到图中的矩形地面、条形区域和地毯区域吗?让学生指出对应的三部分,引导学生分析所提问题满足的条件,列出相应的方程.二、探究新知1.教师:你能找到关于102、112、122、132、142这五个数之间的等式吗?学生独立完成,找出等式.教师:观察等式102+112+122=132+142,你还能找到五个连续整数,使前三个数的平方和等于后两个数的平方和吗?学生尝试解决,在难以找到的情况下,归结为方程去解决.2.课件出示教材第31页图2-2,提出问题:如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m.如果梯子的顶端下滑1 m.那么梯子的底端滑动多少米?引导学生设未知数,列出适合条件的方程.3.教师:由上面三个问题,我们可以得到三个方程:(8-2x)(5-2x)=18,x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2,(x+6)2+72=102.教师:这些方程有哪些共同特点?类比一元一次方程的定义,你能总结出一元二次方程的定义吗?学生小组讨论,派代表陈述观点,教师进一步讲解:只含有一个未知数,并且未知数的最高次项的次数为2的整式方程叫一元二次方程.一元二次方程的一般形式为ax2+bx+c=0(a≠0).ax2,bx,c分别称为二次项、一次项、常数项,a为二次项的系数,b为一次项的系数.三、举例分析例1把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.例2从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.学生独立完成,教师点评.四、练习巩固教材第32页“随堂练习”第1题.五、小结1.通过本节课的学习,你学会了什么?还有哪些困惑?2.一元二次方程的定义是什么?六、课外作业教材第32页习题2.1第1,2题.本节课通过丰富的问题情境引入一元二次方程的定义,学习中注意深刻理解定义的内涵:一元二次方程的组成;一元二次方程的成立条件等.在教学中,让学生经历提出问题到解决问题的过程,体会其中的数学思想方法.教学中有意识地提高学生对实际问题和方法的理解,鼓励学生从多角度思考问题,这有利于提高学生的思维能力和解决问题的能力.第2课时用估算法求一元二次方程的近似解1.能根据实际问题求一元二次方程的近似解.2.经历探索满足一元二次方程解或近似解的过程,促进学生对方程解的理解,发展学生的估算意识和能力.3.进一步提高学生分析问题的能力,培养学生大胆尝试的精神,体验学习数学的乐趣,培养学生的合作学习意识.重点经历探索满足一元二次方程解或近似解的过程,促进学生对方程解的理解.难点探索一元二次方程的近似解.一、情境导入教师:在上一节课中,我们得到了如下的两个一元二次方程:(8-2x)(5-2x)=18,即2x2-13x+11=0;(x+6)2+72=102,即x2+12x-15=0.上一节课的两个问题是否已经得以完全解决?你能求出各方程中x的值吗?这节课我们一起来研究一元二次方程的解.二、探究新知教师:对于前一节课第一个问题,你能设法估计四周末铺地毯部分的宽度x(m)吗?课件出示一元二次方程(8-2x)(5-2x)=18,提出问题:(1)x可能小于0吗?可能大于4吗?可能大于2.5吗?说说你的理由,并与同伴进行交流.(2)根据题目的已知条件,你能确定x的大致范围吗?(3)(4)分析:因为x表示的是所求的宽度,学生能意识到x不可能小于0;学生大多数能够从实际情况出发,意识到当x大于4或当x大于2.5时,将分别使地毯的长或宽小于0,不符合实际情况;学生在利用计算器对表格中的数据进行计算的过程中发现,当x=1时,代数式2x2-13x+11的值等于0;所求的宽度为1 m.教师:在前一节课的问题中,梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,把这个方程化为一般形式为x2+12x-15=0.引导学生思考以下问题:(1)小明认为底端也滑动了1 m,他的说法正确吗?为什么?(2)底端滑动的距离可能是2 m吗?可能是3 m吗?为什么?(3)你能猜出滑动距离x(m)的大致范围吗?(4)x的整数部分是几?十分位是几?学生思考后指名回答,教师进一步讲解:在此题中,梯子滑动的距离x>0是显而易见的,在下图中,求得BC=6 m,而BD<10 m,因此CD<4 m.所以x的取值范围是0<x<4.教师:,当x的取值是1和2时,所对应代数式的值是-2和13,而且随着x的取值越大,相应代数式的值也越大.因此若想使代数式的值为0,那么x的取值应在1和2之间.从而确定x的整数部分是1.教师启发引导学生在1和2之间继续找方程的解.学生可能有以下的做法.甲同学的做法:所以1<x<1.5.进一步计算:所以1.1<x<1.2.因此x的整数部分是1,十分位是1.乙同学的做法:因此x的整数部分是1,十分位是1.注意:对于这两种做法,教师要及时地给与肯定和鼓励,并可将二者加以比较.教师:在解决某些实际问题的时候,可以根据实际情况确定出方程的解的大致范围,进而估算出一元二次方程的近似根.一般采用“夹逼法”.采用“夹逼法”求近似值的一般步骤:(1)将方程变为一元二次方程的一般形式;(2)根据实际情况确定方程的解的大致范围;(3)根据方程的解的大致范围,在这个范围内取一个整数值,然后把这个值代入方程左边的代数式进行验证,看是否能使方程左边代数式的值为0,如果为0,则这个数是方程的解;如果不为0,则再找出一个使方程左边的值最接近于0但小于0的整数,这个数就是方程的解的整数部分;(4)保留整数部分不变,小数部分可参照整数部分的方法进行,以此类推可得出该方程更准确的近似根.三、练习巩固五个连续整数,前三个数的平方和等于后两个数的平方和.你能求出这五个整数分别是多少吗?四、小结1.通过本节课的学习,你有什么收获?2.利用“夹逼法”求近似解的一般步骤是什么?五、课外作业教材第35页习题2.2第1~3题.本节课通过日常生活中丰富有趣的问题情境让学生感受方程是刻画现实世界的有效数学模型,体会“夹逼”数学思想在现实生活中随处可见,让学生真正经历“夹逼”数学思想解题的过程,从而更好地理解“夹逼”思想解一元二次方程的意义和作用,激发学生的学习兴趣.由学生探索交流,分析此种方法的优缺点,从而概括出这种方法的实质及解题步骤,这既给学生提供了一个充分从事数学活动的机会,又体现了学生是数学学习的主人的理念.学生亲身经历了知识的形成过程,不但改变了以往学生死记硬背的学习方式,而且在教学活动中培养了学生自主探索、合作交流等良好的学习习惯.本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,在此过程中,教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学.2用配方法求解一元二次方程第1课时用配方法求解二次项系数为1的一元二次方程1.理解配方法的意义,会用配方法求解二次项系数为1的一元二次方程.2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.让学生在独立思考与合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.重点用配方法求解二次项系数为1的一元二次方程.难点了解并掌握用配方求解一元二次方程.一、复习导入1.如果一个数的平方等于4,则这个数是________,若一个数的平方等于7,则这个数是________.2.一个正数有几个平方根?它们具有怎样的关系? 3.用字母表示完全平方公式.二、探究新知1.课件出示问题:(1)你能解哪些特殊的一元二次方程?(2)你会解下列一元二次方程吗?你是怎么做的? x 2=5; 2x 2+3=5; x 2+2x +1=5; (x +6)2+72=102.(3)上节课,我们研究梯子底端滑动的距离x(m )满足方程x 2+12x -15=0,你能仿照上面几个方程的解题过程,求出x 的精确解吗?你认为用这种方法解这个方程困难在哪里?(合作交流)学生独立完成,讨论交流后发现第(3)问等号的左端不是完全平方式,不能直接化成(x +m)2=n (n ≥0)的形式,教师引导学生思考如何解决这样的方程问题.2.课件出示:填上适当的数,使下列等式成立:x 2+12x +________=(x +6)2; x 2-6x +________=(x -3)2;x 2+8x +________=(x +________)2; x 2-4x +________=(x -________)2. 学生思考后指名回答.教师:上面等式的左边,常数项和一次项系数有什么关系?对于形如x 2+ax 的式子如何配成完全平方式?学生小组讨论交流,引导学生发现:要把形如x 2+ax 的式子配成完全平方式,只要加上一次项系数一半的平方,即加上⎝⎛⎭⎫a 22.三、举例分析例1 解方程:x 2+8x -9=0.(师生共同解决) 解:可以把常数项移到方程的右边,得 x 2+8x =9.两边都加上42(一次项系数8的一半的平方),得 x 2+8x +42=9+42,即(x +4)2=25.两边开平方,得x +4=±5, 即 x +4=5,或x +4=-5. 所以x 1=1,x 2=-9.例2 解决梯子底部滑动问题:x 2+12x -15=0.(仿照例1,学生独立解决) 解:移项,得x 2+12x =15.两边同时加上62,得x 2+12x +62=15+36,即(x+6)2=51.两边开平方,得x+6=±51.所以x1=51-6,x2=-51-6,但因为x表示梯子底部滑动的距离,所以x2=-51-6 不合题意舍去.所以梯子底部滑动了(51-6)米.教师:用这种方法解一元二次方程的思路是什么?其关键又是什么?小组合作交流,引导学生归纳:我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.四、练习巩固解下列方程:(1)x2-10x+25=7;(2)x2-14x=8;(3)x2+3x=1;(4)x2+2x+2=8x+4.五、小结1.通过本节课的学习,你有什么收获?2.什么叫配方法?3.用配方法解二次项系数为1的一元二次方程的一般步骤是什么?(1)移项,使方程左边为二次项和一次项,右边为常数项;(2)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x+h)2=k(k>0)的形式;(3)用直接开平方法解变形后的方程.六、课外作业教材第37~38页习题2.3第1~3题.本节课在教学过程中,采用了由简单到复杂,由特殊到一般的原则,采用了观察对比、合作探究等不同的学习方式,充分发挥学生的主体作用,让学生主动探究并发现结论,教师作为学生学习的引导者、合作者、促进者,要适时鼓励学生,实现师生互动.同时,我认识到教师不仅要教给学生知识,还要在教学中渗透数学中的思想方法,培养学生良好的数学素养和学习能力,让学生学会学习.第2课时用配方法求解二次项系数不为1的一元二次方程1.经历配方法求解一元二次方程的过程,获得解一元二次方程的基本技能.2.经历用配方法求解二次项系数不为1的一元二次方程的过程,体会其中的化归思想.3.能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养分析问题、解决问题的意识和能力.重点会用配方法求解二次项系数不为1的一元二次方程.难点能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性.一、复习导入1.用配方法求解二次项系数为1的一元二次方程的基本步骤是什么? 2.填上适当的数,使下列等式成立: (1)x 2+2x +________=(x +________)2; (2)x 2-4x +________=(x -________)2; (3)x 2+________+36=(x +________)2; (4)x 2+10x +________=(x +________)2; (5) x 2-x +________=(x -________)2.3.比较下列两个一元二次方程的联系与区别.(1)x 2+6x +8=0; (2)3x 2+18x +24=0.教师:同学们可以发现方程(2)的二次项系数为3,不符合上节课解题的基本形式,那么如何解这类方程呢?这节课我们一起来探究.二、探究新知 课件出示:解方程:3x 2+8x -3=0.教师:如何把这个方程转化为符合上节课解题的基本形式?学生:根据等式的性质,将方程两边同除以3就可以把这个方程化为二次项系数为1的一元二次方程.学生尝试解这个方程,教师板书规范解答过程. 解:方程两边都除以3,得x 2+83x -1=0.移项,得 x 2+83x =1,配方,得x 2+83x +⎝⎛⎭⎫432=1+⎝⎛⎭⎫432, 即⎝⎛⎭⎫x +432=259. 两边开平方,得 x +43=±53, 所以x 1=13,x 2=-3.三、举例分析例 一个小球从地面以15 m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10 m 高?解:根据题意得 15t -5t 2=10.方程两边都除以-5,得 t 2-3t =-2, 配方,得t 2-3t +⎝⎛⎭⎫322=-2+⎝⎛⎭⎫322, ⎝⎛⎭⎫t -322=14.两边开平方,得 t -32=±12. 所以t 1=2,t 2=1.四、练习巩固1.教材第39页“随堂练习”.2.印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮.告我总数共多少,两队猴子在一起.”大意是说:一群猴子分两队,一队猴子数是猴子总数的八分之一的平方,另一队猴子数是12,那么猴子的总数是多少?请同学们解决这个问题.解:设猴子的总数是x ,由题意可得⎝⎛⎭⎫18x 2+12=x. 解得x 1=16,x 2=48.答:这群猴子可能是16只,也可能是48只. 五、小结1.用配方法解一元二次方程的基本步骤是什么? 2.利用一元二次方程解决实际问题的思路是什么?六、课外作业1.教材第40页习题2.4第1,3题.2.一个人的血压与其年龄及性别有关,对女性来说,正常的收缩压p(毫米汞柱)与年龄x(岁)大致满足关系:p =0.01x 2+0.05x +107.如果一个女性的收缩压为120毫米汞柱,那么她的年龄大概是多少?3.用配方法探究方程ax 2+bx +c =0 (a ≠0)的解法.本节课作为用配方法求解一元二次方程的第二节课,主要是以习题训练为主.所以我依照书上的例题为重点展示了用配方法求解二次项系数不为1的一元二次方程的基本步骤;将书上的“做一做”转化成一个例题,让学生体会利用一元二次方程解决实际问题的意义;另外在作业中配套了一道血压方面的数学问题,学生可以体会到一元二次方程与我们的现实生活息息相关.3 用公式法求解一元二次方程 第1课时 用公式法求解一元二次方程1.能正确地推导出一元二次方程的求根公式,会用公式法解一元二次方程,能利用一元二次方程解决有关的实际问题.2.理解判别式的概念,会用判别式判断方程的根的情况.3.体会一元二次方程是刻画现实世界的一个有效的数学模型,体会从一般到特殊的思维方式,养成严谨、认真的科学态度和学风.重点用公式法解一元二次方程. 难点用配方法推导求根公式的过程.一、复习导入用配方法解下列方程:(1)2x 2+3=7x ;(2)3x 2+2x +1=0. 学生独立完成,指名板演.(1)2x 2+3=7x.解:将方程化成一般形式2x 2-7x +3=0. 两边都除以一次项系数2,得x 2-72x +32=0.配方,得x 2-72x +(74)2-4916+32=0,即(x -74)2-2516=0.移项,得(x -74)2=2516.两边开平方,得x -74=±54,即x =74±54.所以x 1=3,x 2=12.(2)3x 2+2x +1=0.解:两边都除以一次项系数3,得x 2+23x +13=0.配方,得x 2+23x +(13)2-19+13=0,即(x +13)2+29=0.移项,得(x +13)2=-29.因为-29<0,所以原方程无解. 二、探究新知1.一元二次方程的求根公式课件出示:用配方法解方程:ax 2+bx +c =0(a ≠0). 学生独立完成,并针对自己在推导过程中出现的问题在小范围内自由研讨.最后由师生共同归纳、总结,得出一元二次方程的求根公式.解:两边都除以一次项系数a ,得x 2+b a x +ca =0.教师:为什么可以两边都除以二次项系数a?学生:因为a ≠0.配方,得x 2+b a x +(b 2a )2-b 24a 2+ca=0,即(x +b 2a )2-b 2-4ac4a 2=0.移项,得(x +b 2a )2=b 2-4ac4a 2.教师:现在可以两边开平方吗? 学生:不可以,因为不能保证b 2-4ac4a 2≥0.教师:什么情况下可以两边开平方?学生讨论后回答:因为a ≠0,所以4a 2>0.要使b 2-4ac 4a2≥0,只要 b 2-4ac ≥0即可. 所以当b 2-4ac ≥0时,两边开平方,得 x +b2a=±b 2-4ac4a 2. 所以x =-b2a ±b 2-4ac 2a ,x =-b±b 2-4ac2a.归纳:x =-b±b 2-4ac2a 称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法.2.一元二次方程的判别式教师:如果b 2-4ac<0时,会出现什么问题?学生:方程无解.教师:如果b 2-4ac =0呢?学生:方程有两个相等的实数根.归纳:对于一元二次方程ax 2+bx +c =0(a ≠0), 当b 2-4ac>0时,方程有两个不相等的实数根; 当b 2-4ac =0时,方程有两个相等的实数根; 当b 2-4ac<0时,方程没有实数根.教师:由以上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可由b 2-4ac 来判定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母“Δ”来表示.三、举例分析 例1 解方程:(1)x 2-7x -18=0;(2)4x 2+1=4x.引导学生根据以下步骤解方程:①确定a ,b ,c 的值;②判断方程是否有根;③写出方程的根.例2 判断下列方程的根的情况:(1) 2x 2+3=7x ;(2)x 2-7x =20;(3)3x 2+2x +1=0;(4)9x 2+6x +1=0; (5)16x 2+8x =3;(6) 2x 2-9x +8=0.学生迅速演算或口算出b 2-4ac ,从而判断出根的情况.教师:第(3)题的判断,与第一环节中的第(2)题对比,哪种方法更简捷? 教师:上述方程如果有解,请求出方程的解. 学生独立完成,教师板书第(1)题.解方程:2x 2+3=7x.先将方程化成一般形式,得2x 2-7x +3=0. 确定a ,b ,c 的值 a =2, b =-7, c =3.判断方程是否有根 ∵b 2-4ac =(-7)2-4³2³3=25>0, ∴x =-b±b 2-4ac 2a =7±252³2=7±54.写出方程的根 即x 1=3,x 2=12.教师:与第一环节中的第(1)题对比,哪种解法更简捷? 四、练习巩固教材第43页“随堂练习”第1~3题. 五、小结1.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是什么? 2.如何判断一元二次方程的根的情况? 3.用公式法解方程应注意的问题是什么? 4.你在解方程的过程中有哪些小技巧?六、课外作业1.教材第43页习题2.5第1~4题.2.一张桌子长4 m ,宽2 m ,台布的面积是桌面面积的2倍,铺在桌子上时,各边下垂的长度相同,求台布的长和宽.教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整.本节课教师就根据学生的实际情况,调整了配方时的个别过程,使之与后续知识学习相一致,添加了例题和练习题.本节课不能仅仅让学生背公式、套公式解方程,而应让学生初步建立对一些规律性的问题加以归纳、总结的数学建模意识,亲身体会公式推导的全过程,提高学生推理技能和逻辑思维能力;进一步发展学生合作交流的意识和能力,帮助学生形成积极主动的求知态度.第2课时 用公式法解决一元二次方程的实际问题1.会用公式法解决一元二次方程的实际问题.2.通过一元二次方程的建模过程,体会方程的根必须符合实际意义,增强应用数学的意识,巩固解一元二次方程的方法.3.通过设计方案培养学生创新思维能力,展示自己驾驭数学去解决实际问题的勇气、才能及个性.重点会用公式法解决一元二次方程的实际问题. 难点能根据具体情境列出一元二次方程,体会方程的根必须符合实际意义.一、复习导入 教师:你能举例说明什么是一元二次方程吗?它有什么特点?怎样用配方法解一元二次方程?怎样用公式法解一元二次方程?帮助学生回忆一元二次方程及其解法,为后面说明设计方案的合理性作铺垫. 二、探究新知课件出示:在一块长16 m 、宽12 m 的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半.你觉得这个方案能实现吗?若可以实现,你能给出具体的设计方案吗?学生先自己设计,画出草图,然后到黑板上展示、交流自己的作品.在学生展示作品后,教师提出问题:(1)怎样知道你的设计是符合要求的?请说明理由?(2)以上哪些图形可以直接说明符合题目条件的?剩下的图形怎样通过计算来说明? 引导学生重点分析图⑤,图⑥,图⑦. 教师:如何设未知数?怎样列方程? 学生独立思考,教师板书规范解题过程. 图⑤的解答:解:设小路的宽为x m ,由题意得 (16-2x)(12-2x)=16³12³12.整理,得x 2-14x +24=0. x 2-14x +49=-24+49, (x -7)2=25. x 1=12,x 2=2.教师:你认为小路的宽为12 m 和2 m 都符合实际意义吗? 图⑥的解答:解:设扇形的半径为x m ,由题意得 πx 2=16³12³12πx 2=96. x =±96π≈±5.5. x 1≈5.5,x 2≈-5.5( 舍去).指名板演图⑦的解题过程,教师点评. 三、练习巩固在一幅长90 cm、宽40 cm的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少?出示图②和图③提出问题:你认为哪一幅图是按要求镶上的金色纸边,你将如何设未知数从而列出方程?解:设金边的宽为x m,由题意得(90+2x )(40+2x) ³72%=90 ³40.解得x1=5,x2=-70(舍去).四、小结通过本节课的学习,你有哪些感悟?还有哪些困惑?五、课外作业教材第45页习题2.6第2~4题.本节课的最大特点是提出了具有思考价值的问题,以引导为主,层层深入,以问题串的形式指导学生懂得如何获得自己所需要的知识.在探究新知时,提出了这样的问题:在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半.你觉得这个方案能实现吗?若可以实现,你能给出具体的设计方案吗?当学生将自己的设计方案展示在黑板上之后,接着提出问题:你的设计一定符合要求吗?怎样知道你的设计是符合要求的?以上图形哪些可以直接说明符合题目条件的?剩下的图形怎样通过计算来说明?从课堂上学生的活动来看,学生的热情、思维与探究并进.4用因式分解法求解一元二次方程1.了解因式分解法的概念.2.会用因式分解法求解一元二次方程.3.通过因式分解法的学习,培养学生分析问题、解决问题的能力,并体会转化的思想.重点用因式分解法求解一元二次方程.难点理解因式分解法求解一元二次方程的基本思想.一、复习导入1.用配方法求解一元二次方程的关键是什么?2.用公式法求解一元二次方程应先将方程化为什么形式?3.选择合适的方法解下列方程:(1)x2-6x=7;(2)3x2+8x-3=0.二、探究新知1.课件出示:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?学生独自完成,教师巡视指导,选择不同解法的学生板演.学生A:设这个数为x,根据题意,可列方程x 2=3x ,∴x 2-3x =0.∵a =1,b =-3,c =0, ∴ b 2-4ac =9. ∴ x 1=0,x 2=3.∴这个数是0或3.学生B :设这个数为x ,根据题意,可列方程 x 2=3x , ∴ x 2-3x =0. x 2-3x +(32)2=(32)2,(x -32) 2=94,∴ x -32=32或x -32=-32.∴ x 1=3,x 2=0.∴这个数是0或3.学生C :设这个数为x ,根据题意,可列方程 x 2=3x ,∴x 2-3x =0. 即x(x -3)=0.∴x =0或x -3=0. ∴x 1=0,x 2=3.∴这个数是0或3.学生D :设这个数为x ,根据题意,可列方程 x 2=3x ,两边同时约去x ,得 ∴x =3,∴这个数是3. 教师:同学们用了多种方法解决此问题,观察以上四个同学的做法是否存在问题?你认为哪种方法更合适?为什么?学生讨论交流后回答,教师点评,明确学生C 的方法更合适,并进一步讲解: 如果a·b =0,那么a =0或b =0.这就是说:当一个一元二次方程降为两个一元一次方程时,这两个一元一次方程中用的是“或”,而不用“且”.所以由x(x -3)=0得到x =0和x -3=0时,中间应写上“或”字.我们再来看学生C 解方程x 2=3x 的方法,他是把方程的一边变为0,而另一边可以分解成两个因式的乘积,然后利用a·b =0,则a =0或b =0,把一元二次方程变成一元一次方程,从而求出方程的解.我们把这种解一元二次方程的方法称为因式分解法,即当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我们就采用因式分解法来解一元二次方程.三、举例分析 例 解下列方程: (1)5x 2=4x ;(2)x -2=x(x -2);。
初三数学上册(北师大版)《2.1一元二次方程(2) 一元二次方程的解及其估算》【教案匹配版】最新中
(2) x 可能大于 4 吗?可能大于 2.5 吗?说说你的理由. 8-2x 和5-2x分别表示地毯的长和宽, 所以8-2x>0, 因此x不可能大于4,也不可能大于2.5.
(3)你能确定 x 的大致范围吗? 0<x<2.5
5-2x>0,
第三步:在x范围内取整数值,分别代入方程,如果有一个数能够使方程
的左边等于0,则这个数就是方程的一个解。
列表
x
0
1
2
2x 2-13x+11
11
0
-7
由此看出,当x=1时,2x 2-13x+11=0,所以方程的解为x=1
故所求的宽为1m.
若在x的许可范围内取整数值,没有一个整数能够使方程左边等于 0怎么办?
问题2:如图,一个长为 10 m 的梯子斜靠在墙上,梯子的顶端距地面的 垂直距离为 8 m.如果梯子的顶端下滑 1 m,那么梯子的底端滑动多少米?
练一练
已知关于x 的一元二次方程x2+ax+a=0的一个解是3,
求a的值. 解:由题意把x=3代入方程x2+ax+a=0,得
32+3a+a=0 9+4a=0 4a=-9
a 9 4
知识点 2 一元二次方程解的估算
问题1:幼儿园某教室矩形地面的长为 8 m,宽为你能5 m设,法现估准计备四在周地面正
x x 2-x
-2 -1 0 1 2 3 … 6 2 0026…
A. x=-1 C. x=2
B. x=0 D. x1=-1,x2=2
当堂练习
2. 根据表格,选取一元二次方程ax2+bx+c=0(a≠0)
的一个近似解取值范围( C )
九年级数学上册2.1.1认识一元二次方程教案(新版)北师大版
课题:2.1.1认识一元二次方程教学目标:1.正确理解一元二次方程的概念.2.掌握一元二次方程的一般形式.3.经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型.教学重点与难点:重点:一元二次方程的概念及一般形式.难点:对一元二次方程的概念理解(特别是a≠0情况).课前准备:多媒体课件.教学过程:一、创设情境,导入新课从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.你知道竹竿有多长吗?通过这节课的学习你将会解决这个问题.设计意图:利用小故事培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,这也为新课的学习做好铺垫.二、探究学习,感悟新知活动内容1:(多媒体出示)幼儿园某教室矩形地面的长为8m,宽为5m,现准备在地面正中间铺设一块面积为18m2 的地毯(如图2-1),四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?如果设所求的宽度x m,那么你能列出怎样的方程?处理方式:要求学生从这一实物图中抽象出几何图形,自己画出所抽象出的几何图形,然后教师呈现第二幅图.地毯到教室两边宽度为x m,地毯的长用含x的代数式怎么表示?宽用含x的代数式怎么表示?设计意图:本活动的设计意在引导学生通过自主探究.合作交流,对具体问题从形象到抽象认识,训练学生从实物图中抽象出几何图形.旨在培养学生的问题意识;要求学生根据条件列出关系式,旨在提高学生分析问题的能力.提高学生抽象思维能力,同时也为后续归纳一元二次方程提供材料.活动内容2:(多媒体出示)观察下列等式102+112+122=132+142.你还能找到五个连续整数,使前三个数的平方和等于后两个数的平方和吗?如果将这五个连续整数中的第一个数设为x,那么怎样用含x的代数式表示其余四个数?根据题意,你能列出怎样的方程?处理方式:这五个连续整数有何关系?第一个数设为x,等号左边另外两个数如何表示,等号右边两个数如何表示?设计意图:先让学生猜想.学生得到的猜想是:是否还存在五个连续整数,使前三个数的平方和等于后两个数的平方和.然后让学生根据猜想继续找这样的五个连续整数,在难以找到的情况下,促使学生想办法归结为方程去解决,学生在探索-发现-归纳的过程中的主动参与程度与合作交流意识,及时给予鼓励、指导.活动内容3:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m.那么梯子的底端滑动多少米?你能计算8出滑动前梯子的底端距墙多少米?如果设梯子底端滑动x m,那么你能列出怎样的方程?处理方式:滑动前梯子的底端距墙多少米?下滑后梯子的顶端距地面的垂直距离为多少米?下滑前后梯子长度有改变吗?下滑后梯子梯子的底端距墙的距离怎么用含x的代数式表示?设计意图:先让学生理解题意,然后让一生结合图示分析题意,这样等量关系就会浮出水面.由于有了前两个环节作铺垫,学生自然地设梯子底端滑动Xm,从而列出方程,问题解决得很顺畅.活动内容4:由上面三个问题,我们可以得到三个方程:(8-2x)(5-5x)=18,x2+(x+1) 2+(x+2) 2=(x+3) 2+(x+4) 2,(x+6)2+72=102,化简得:2x2-13x+11 = 0,x2-8x-20=0,x2+12x-15 =0.上面的方程都是只含有一个未知数x的整式方程,并且都可以化为ax2+bx+c=0(a,b,c为常数, a≠0)的形式,这样的方程叫做一元二次方程.我们把ax2+bx+c=0(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中ax2, bx, c分别称为二次项、一次项和常数项,a,b分别称为二次项系数和一次项系数.设计意图:关注学生对概念的理解,通过具体的例子来归纳一元二次方程的概念,加深对概念的理解,学生基本能识别一元二次方程及各个部分.三、例题解析,应用新知活动内容:1.下列方程哪些是一元二次方程? 为什么?(1)7x2-6x=0; (2)2x2-5xy+6y=0; (3)2x2-13x-1 =0;(4)22y=0; (5)x2+2x-3=1+x2.2.关于x的方程(k-3)x2+2x-1=0,当k时,是一元二次方程.3.关于x的方程(k2-1)x2+ 2 (k-1) x+2k+2=0,当k时,是一元二次方程.当k时,是一元一次方程.4.把下列方程化为一元二次方程的形式,并写出它的二次项系数、一次项系数和常数项:5.从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.你知道竹竿有多长吗?设计意图:问题(1)(2)(3)中考察学生对一元二次方程概念的掌握,问题(4)学生对于化成一元二次方程的一般形式感觉困难不大,但写出它的二次项系数.一次项系数和常数项时,部分学生可能容易忽视符号.问题(5),实际问题,可能有部分学生不能理解题意,部分学生不能很快列出相应的方程,教师要鼓励学生自己找到等量关系,然后将直角三角形的各边表示出来.四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.学生畅谈自己的收获!设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、达标检测,反馈提高1.一元二次方程的一般形式是__________.2.将方程-5x 2+1=6x 化为一般形式为__________.3.将方程(x +1)2=2x 化成一般形式为__________.4.方程2x 2=-8化成一般形式后,一次项系数为__________,常数项为__________.5.下列方程中,不是一元二次方程的是A 、2x 2+7=0B 、2x 2+23x +1=0C 、5x 2+1x+4=0 D 、3x 2+(1+x 6.方程x 2-2(3x -2)+(x +1)=0的一般形式是A 、x 2-5x +5=0B 、x 2+5x +5=0C 、x 2+5x -5=0D 、x 2+5=0.六、布置作业,课堂延伸必做题:课本P 32 练习2.1 第1、2题.选做题:课本P 32 练习2.1 第3题.板书设计:。
北师大版数学九年级上册2.1第2课时一元二次方程的解及其估算优秀教学案例
4.教学策略的运用:运用问题导向、情境创设、小组合作等多种教学策略,引导学生主动参与学习,激发学生的学习兴趣,提高学生的学习效果。通过多种教学策略的灵活运用,可以有效地提高学生的学习兴趣和参与度,促进学生的思维发展。
针对九年级学生的认知特点,我设计了以下教学案例:通过创设生活情境,让学生感受到估算在实际生活中的重要作用;运用数形结合的思想,让学生在画图过程中直观地理解一元二次方程的解及其估算方法;最后,通过小组合作探究,培养学生解决实际问题的能力。在教学过程中,我注重启发学生思考,引导他们发现规律,提高学生的数学素养。
五、案例亮点
1.生活情境的创设:通过引入实际生活中的问题,如抛物线形状的物体高度与时间的关系,让学生感受到估算在解决问题中的重要作用,激发学生的学习兴趣,提高学生的应用意识。
2.数形结合的思想:利用数形结合的思想,引导学生画图直观地理解一元二次方程的解及其估算方法,提高学生的数形结合能力,帮助学生更好地理解和掌握一元二次方程的解法。
2.引导学生自主探究:在解决问题的过程中,引导学生独立思考,培养学生解决问题的能力,提高学生的自主学习能力。
(三)小组合作
1.分组讨论:将学生分成小组,让学生在小组内讨论问题,培养学生的团队协作能力和沟通能力。
2.小组汇报:各小组代表汇报讨论成果,分享解题思路和方法,激发学生的学习兴趣,提高学生的表达能力和交流能力。
5.反思与评价的结合:在教学过程中,注重学生的自我反思和同伴评价,让学生在学习过程中进行自我监控和调整,发现自己的不足,明确改进方向。同时,教师对学生的学习过程和结果进行评价,关注学生的成长,鼓励学生的优点,激发学生的学习动力。通过反思与评价的结合,可以促进学生的自我发展和提高学习能力。
2.1认识一元二次方程(第二课时)学历案北师大版九年级数学上册
2023九年级数学自主学习任务单11班级: 年级 班 姓名: 学号: 一、学习指南: 【课程名称】认识一元二次方程(2) 【知识技能目标】增进对一元二次方程解的认识. 【思维发展目标】发展估算意识和能力. 二、学习任务:【自主探究】用二分法确定一元二次方程的近似解1、对于课本P31的第一个问题,你能设法估计四周未铺地毯部分的宽度)(m x 吗? 我们知道,x 满足方程18)25)(28(=--x x 。
(1)x 可能小于0吗?可能大于4吗?可能大于吗?说说你的理由。
(2)你能确定x 的大致范围吗? (3)填写下表:(4)你知道所求宽度)(m x 是多少吗?还有其他求解方法吗?与同伴交流。
2、做一做:对于课本P31的第三个问题中,列出的方程为: 015122=-+x x (1)小明认为底端也滑动了1米,他的说法正确吗?为什么? (2)底端滑动的距离可能是2米吗?可能是3米吗?为什么? (3)你能猜出滑动距离)(m x 的大致范围吗?(4)x 的整数部分是几?十分位是几?请你完成下列表格: x 的整数部分x 的十分位部分(1)先确定方程解的大致范围,在这一范围内有规律地取一些未知数的值;(2)如果一个未知数的值代入方程使得左边的计算结果小于右边的结果,再把另一个值代入方程使得左边的计算结果大于右边的结果,则方程的解就在这两值之间。
【自我检测】1.根据下列表格中的对应值:可判断方程20ax bx c ++=(a ≠0,且a ,b ,c 为常数)一个解x 的范围是( ) A .3<x <3.23B .<x <3.24C .<x <D .<x <2.根据下面表格中的取值,方程32=+x x 的一个根x 取值范围是( )A .2.1 <x < 3.1B .3.1<x < 4.1C .4.1<x < 5.1D .5.1<<6.1 3.已知关于x 的一元二次方程x 2+2x ﹣k =0的解为x =1,则k 值为( ) A .1B .2C .3D .﹣34.若关于x 的一元二次方程x 2﹣ax +6=0的一个根是2,则a 的值为( ) A .2B .3C .4D .55.x =1是关于x 的一元二次方程x 2+ax +2b =0的解,则2a +4b =( ) A .﹣2B .﹣3C .﹣1D .﹣66.已知m 是一元二次方程x 2+x ﹣6=0的一个根,则代数式m 2+m 的值等于 . 7.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2015的值为 . 【点拨发散】1.五个连续整数,前三个数的平方和等于后两个数的平方和,求出这五个整数分别是多少? 2.阅读书中P34读一读,并做P35 T1—3。
北师大版九年级上册1认识一元二次方程第二章:认识一元二次方程课时二课程设计
北师大版九年级上册1认识一元二次方程第二章:认识一元二次方程课时二课程设计一. 教学目标知识目标•理解一元二次方程的概念,掌握一元二次方程的标准形式和求解方法。
•熟练运用一元二次方程的解法,解决具体问题。
•掌握求一元二次方程根的公式。
能力目标•培养学生的分析问题、解决问题的能力。
•培养学生的逻辑思维、抽象思维和创造性思维能力。
•培养学生的数学语言表述能力和数学实际运用能力。
情感目标•培养学生的数学兴趣和学习兴趣。
•培养学生的严谨思维和创新意识。
•培养学生的认真负责、协作共赢精神。
二. 教学重点和难点教学重点•掌握一元二次方程的标准形式和求解方法。
•熟练运用一元二次方程的解法,解决具体问题。
教学难点•掌握求一元二次方程根的公式。
•分析和解决实际问题时,将问题转化为一元二次方程。
三. 教学步骤和内容步骤一:引入问题老师可以先提问,如果一个正方形的面积等于它的周长,那么这个正方形的边长是多少?引出“认识一元二次方程”的问题。
步骤二:引入概念通过PPT展示或者黑板、白板演示,讲解一元二次方程的概念、标准形式和一次方程与二次方程的区别,并通过例题进行讲解。
步骤三:解一元二次方程•方法一:公式法通过列式子、代入公式、化简、计算求解一元二次方程的根,介绍公式法的步骤和求解方法,通过例题进行演示和讲解。
•方法二:配方法讲解配方法的基本思想和步骤,通过例题进行演示和讲解。
步骤四:解实际问题引入实际问题,如:现有一矩形,长为x+3,宽为x−1,其面积为50,求矩形的长和宽。
通过将问题转化为一元二次方程,运用公式法和配方法解决实际问题。
步骤五:小结归纳通过小结和归纳,总结掌握的知识点,如何列方程、如何求解一元二次方程、如何解决实际问题等。
四. 教学工具和设备•PPT•黑板、白板、粉笔、白板笔等教具五. 课堂练习与作业课堂练习1.解方程:x2+2x−3=02.解方程:2x2−7x=03.解方程:x2+6x+5=0作业1.课后完成课本上相关练习题;2.思考生活中的实际问题,将其转化为一元二次方程,并求解。
北师大版九年级数学上册【教案设计】《认识一元二次方程》
《认识一元二次方程》教学设计第1课时一元二次方程的定义教材分析:教科书基于学生对方程认识的基础之上,提出了本课的具体学习任务:1、经历抽象一元二次方程概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。
2、会识别一元二次方程及各部分名称。
从数学课堂的远期目标来看,还应该培养学生提出问题、分析问题、解决问题的能力。
教学目标:【知识与技能】1.一元二次方程的概念2.一元二次方程的有关概念.【过程与方法】1.经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型.2.理解一元二次方程的概念【情感态度与价值观】从生活实际中抽象出数学问题,让学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.教学重难点:【教学重点】(1)掌握一元二次方程的定义。
(2)培养学生的数学意识及解决简单的实际问题的能力。
【教学难点】会将方程化为一元二次方程的一般形式。
课前准备:多媒体教学过程:一、复习引入1.下列式子哪些是方程?2.什么叫方程?我们学过哪些方程?3.什么叫一元一次方程?【设计意图】通过这个活动,首先是学生能够主动地对相关知识有一个系统的回顾和认知,让学生以一种比较有趣的形式对这部分知识进行自主的复习,激发学生对本节知识的学习兴趣。
二、讲授新课活动内容:问题1:幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗(列出方程即可)【设计意图】提出了半开放性的问题:根据这一情境,结合这些已知量,你想求哪些量?旨在培养学生的问题意识;要求学生根据条件列出关系式,旨在提高学生分析问题的能力、提高学生抽象思维能力,同时也为后续归纳一元二次方程提供材料。
问题2:观察下面等式:102 + 112 + 122 = 132 + 142你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?【设计意图】上述问题直接给出方程没有说服力,所以先让学生猜想。
2022年北师版数学《一元二次方程的根及近似解》精品教案
第2课时一元二次方程的根及近似解【知识与技能】会进行简单的一元二次方程的试解.【过程与方法】根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.【情感态度】理解方程的解的概念,培养有条理的思考与表达的能力.【教学重点】判定一个数是否是方程的根.【教学难点】会在简单的实际问题中估算方程的解,理解方程解的实际意义.一、情境导入,初步认识学生活动:请同学独立完成下列问题.问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?设梯子底端距墙为xm,那么,根据题意,可得方程为x2+82=102.整理,得x2-36=0.列表:问题2:一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?设苗圃的宽为xm,则长为(x+2)m.根据题意,得x(x+2)=120.整理,得x2+2x-120=0.列表:【教学说明】通过列表计算使学生了解一元二次方程的解,确定未知数的大致范围.二、思考探究,获取新知提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其它解吗?问题2呢?(1)问题1中x=6是x2-36=0的解;问题2中,x=10是x2+2x-120=0老师点评:的解.(2)如果抛开实际问题,问题1中还有x=-6的解;问题2中还有x=-12的解.为了与以前所学的一元一次方程等只有一个解的情况区别,我们也称一元二次方程的解叫做一元二次方程的根.回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也不满足题意.【教学说明】由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.三、运用新知,深化理解2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把它代入等式,看它是否能使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.2.若x=1是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根,求代数式2014(a+b+c)的值.分析:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这一点同学们要深刻理解.3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0(2)3x2-6=0(3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义来求解.4.x(x-1)=2的两根为(D)=0,x21=0,x2=-11=1,x21=-1,x2=215.方程ax(x-b)+(b-x)=0的根是(B)=b,x21=b,x2=1/a1=a,x21=a2,x2=b212-81=0,那么x2-81=0的两个根分别是x1= 9 ,x2= -9 .7.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.解:由已知,得a+b=-3,原式=(a+b)2=(-3)2=92+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.解:由题意可知:a+c=b,a-b+c=0,把x=-1代入原方程,得ax2+bx+c=a×(-1)2+b×(-1)+c=a-b+c=0∴-1必是该方程的一个根.9.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在(21xx-)2-2×21xx-+1=0,令21xx-=y,则有y2-2y+1=0,根据上述变形数学思想(换元法)解决小明给出的问题:求(x2-1)2+(x2-1)=0的根.解:设y=x2-1,则y2+y=0,y1=0,y2=-1,当x2-1=0时,x1=1,x2=-1;当x2-1=-1时,x3=x4=0.∴x1=1,x2=-1,x3=x4=0是原方程的根.【教学说明】让学生先独立完成,而后将不会的问题同各小组交流讨论得出结果.四、师生互动,课堂小结本节课应掌握:1.一元二次方程根的概念;2.一个数是否是一元二次方程的根的判断方法;3.求一元二次方程的根的方法.1.布置作业:教材“”第1、2题.2.完成练习册中相应练习.本节课通过列表计算使学生了解一元二次方程的解,确定未知数的大致范围,从而会进行简单的一元二次方程的解的计算.第2课时代数式的求值知识技能目标1.了解代数式的值的概念;2.会求代数式的值.过程性目标1.经历求代数式的值的过程,初步体会到数学中抽象概括的思维方法和事物的特殊性与一般性可以相互转化的辩证关系;2.探索代数式求值的一般方法.教学过程一.创设情境现在,我们请四位同学来做一个传数游戏.游戏规则:第一位同学任意报一个数给第二位同学,第二位同学把这个数加上1传给第三位同学,第三位同学再把听到的数平方后传给第四位同学,第四位同学把听到的数减去1报出答案.活动过程:四位同学站到台前,面向全体学生,再请一位同学担任裁判,面向这四位同学.教师站到黑板前,当听到第一位同学报出数字时马上在黑板上写出答案,然后判断和第四位同学报出的数是否一致(可试3~4个数).师:为什么老师会很快地写出答案呢(根据学生的回答,教师启发学生归纳出计算的代数式:(x+1)2-1)?二.探究归纳1.引导学生得出游戏过程实际是一个计算程序(如下图):当第一个同学报出一个数时,老师就是在用这个具体的数代替了代数式(x +1)2-1中的字母x,把答案很快地算了出来.掌握了这个规律,我们每位同学只要知道第一位同学报出的数都可以很快的得出游戏的结果.2.代数式的值的概念像这样,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果称为代数式的值(value of algebraic expression).通过上面的游戏,我们知道,同一个代数式,由于字母的取值不同,代数式的值会有变化.三.实践应用例1当a=2,b=-1,c =-3时,求下列各代数式的值:(1)b2-4ac;(2)a2+b2+c2+2ab+2bc+2ac;(3)(a+b+c)2.解(1)当a=2,b =-1,c=-3时,b2-4ac=(-1)2-4×2×(-3)=1+24=25.(2)当a=2,b=-1,c=-3时,a2+b2+c2+2ab+2bc+2ac=22+(-1)2+(-3)2+2×2×(-1)+2×(-1)×(-3)+2×2×(-3)=4+1+9-4+6-12=4.(3)当a =2,b=-1,c=-3时,(a+b+c)2=(2-1-3)2=4.注:1.比较(2)、( 3 ) 两题的运算结果,你有什么想法?2.换a =3 , b=-2 , c=4 再试一试,检验你的猜想是否正确.3.对于这一猜想,我们通过学习,将来有能力证实它的正确性.例2某企业去年的年产值为a亿元,今年比去年增长了10% .如果明年还能按这个速度增长,请你预测一下该企业明年的年产值将达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?解由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)=1.21a(亿元).若去年的年产值为2亿元,则明年的年产值为1.21a=1.21×2 =2.42(亿元).答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.例3当x=-3时,多项式mx3+nx-81的值是10,当x=3时,求该代数式的值.解当x=-3时,多项式mx3+nx-81=-27m-3n-81,此时-27m-3n-81=10, 所以27m+3n=-91.则当x=3,mx3+nx-81=( 27m+3n )-81=-91-81=-172.注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法.练习1.按下图所示的程序计算,若开始输入的n值为2,则最后输入的结果是____________.2.根据下列各组x、y的值,分别求出代数式x2+2xy+2y2 与x2-2xy+y2 的。
九年级数学上册2.1第2课时一元二次方程的解及其估算教案2北师大版
第2课时 一元二次方程的解及其估算教 学目 标 1、会用估算的方法探索一元二次方程的解或近似解。
2、经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力。
重点:探索一元二次方程的解或近似解 难点:培养学生的估算意识和能力 【教学过程】 一、温故而知新1、什么叫一元二次方程?它的一般形式是:_________________________.2、指出下列方程的二次项系数,一次项系数及常数项。
(1)2x 2―x+1=0 (2)―x 2+1=0(3)x 2―x=0(4)- 3 x 2=0二、问题探究:探索1:上节我们列出了与地毯的花边宽度有关的方程。
地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18 也就是:2x 2―13x+11=0你能估算出地毯花边的宽度x 吗?(1)x 可能小于0吗?说说你的理由;_________________。
(2)x 可能大于4吗?可能大于2.5吗?为什么? (3)完成下表(4)你知道地毯花边的宽x (m )是多少吗?还有其他求解方法吗?与同伴交流。
x 00.51 1.52 2.52x 2—13x+11备注备注探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x0x2+12x-15所以 ___<x<___进一步计算xx2+12x—15所以 ___〈x〈___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
北师大版九年级上册1认识一元二次方程第二章:认识一元二次方程课时一课程设计
北师大版九年级上册1认识一元二次方程第二章:认识一元二次方程课时一:认识一元二次方程本节课将介绍一元二次方程的概念和基本形式,并让学生了解二次函数的图像和性质,掌握求解一元二次方程的方法。
一、概念及基本形式•一元二次方程的定义:形如ax2+bx+c=0的方程,其中a eq0。
•一元二次方程的一般形式:ax2+bx+c=0,其中a、b、c是常量,x是未知数。
•一元二次方程的特殊形式:x2+px+q=0,其中$p=\\dfrac{b}{a}$,$q=\\dfrac{c}{a}$,a eq0。
二、图像及性质•二次函数的图像为抛物线,开口方向取决于a的正负性。
•当a>0时,抛物线开口向上,最小值为 $y=\\dfrac{4ac-b^2}{4a}$。
•当a<0时,抛物线开口向下,最大值为 $y=\\dfrac{4ac-b^2}{4a}$。
•对称轴方程为 $x=-\\dfrac{b}{2a}$,顶点坐标为 $\\left(-\\dfrac{b}{2a},\\dfrac{4ac-b^2}{4a}\\right)$。
三、求解一元二次方程•解法一:配方法。
通过变形,将一元二次方程化为(x+p)2+q=0的形式,再通过开方即可求得解。
•解法二:公式法。
通过求解一元二次方程公式 $x=\\dfrac{-b\\pm\\sqrt{b^2-4ac}}{2a}$,可得出一元二次方程的解。
•解法三:图像法。
通过绘制二次函数的图像,找出y=0的解即可。
四、课堂练习1.求解方程2x2+3x−4=0。
2.求解方程x2+x−6=0。
3.求解方程(x−1)2−4=0。
4.画出函数y=x2+2x−3的图像,求解方程x2+2x−3=0。
五、课后作业1.课后完成课本上关于一元二次方程的习题。
2.在纸上练习配方法和公式法解一元二次方程的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时一元二次方程的根及近似解
【知识与技能】
会进行简单的一元二次方程的试解.
【过程与方法】
根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.
【情感态度】
理解方程的解的概念,培养有条理的思考与表达的能力.
【教学重点】
判定一个数是否是方程的根.
【教学难点】
会在简单的实际问题中估算方程的解,理解方程解的实际意义.
一、情境导入,初步认识
学生活动:请同学独立完成下列问题.
问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?
设梯子底端距墙为xm,那么,
根据题意,可得方程为x2+82=102.
整理,得x2-36=0.
列表:
问题2:一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?
设苗圃的宽为xm,则长为(x+2)m.
根据题意,得x(x+2)=120.
整理,得x2+2x-120=0.
列表:
【教学说明】通过列表计算使学生了解一元二次方程的解,确定未知数的大致范围. 二、思考探究,获取新知
提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?
(2)如果抛开实际问题,问题1中还有其它解吗?问题2呢?
老师点评:(1)问题1中x=6是x2-36=0的解;问题2中,x=10是x2+2x-120=0的解.
(2)如果抛开实际问题,问题1中还有x=-6的解;问题2中还有x=-12的解.
为了与以前所学的一元一次方程等只有一个解的情况区别,我们也称一元二次方程的解叫做一元二次方程的根.
回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也不满足题意.
【教学说明】由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.
三、运用新知,深化理解
1.下面哪些数是方程2x2+10x+12=0的根?
-4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把它代入等式,看它是否能使等式两边相等即可.
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.
2.若x=1是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根,求代数式2014(a+b+c)的值.
分析:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这一点同学们要深刻理解.
3.你能用以前所学的知识求出下列方程的根吗?
(1)x2-64=0(2)3x2-6=0
(3)x2-3x=0
分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义来求解.
4.x(x-1)=2的两根为(D)
A.x1=0,x2=1
B.x1=0,x2=-1
C.x1=1,x2=2
D.x1=-1,x2=2
5.方程ax(x-b)+(b-x)=0的根是(B)
A.x1=b,x2=a
B.x1=b,x2=1/a
C.x1=a,x2=1/a
D.x1=a2,x2=b2
6.如果x2-81=0,那么x2-81=0的两个根分别是x1= 9 ,x2= -9 .
7.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.
解:由已知,得a+b=-3,
原式=(a+b)2
=(-3)2
=9
8.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.
解:由题意可知:
a+c=b,a-b+c=0,
把x=-1代入原方程,得
ax2+bx+c
=a×(-1)2+b×(-1)+c
=a-b+c
=0
∴-1必是该方程的一个根.
9.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在(
21
x
x
-
)2-2
×
21
x
x
-
+1=0,令
21
x
x
-
=y,则有y2-2y+1=0,根据上述变形数学思想(换元法)解决小明给出
的问题:求(x2-1)2+(x2-1)=0的根.
解:设y=x2-1,则y2+y=0,y1=0,y2=-1,
当x2-1=0时,x1=1,x2=-1;
当x2-1=-1时,x3=x4=0.
∴x1=1,x2=-1,x3=x4=0是原方程的根.
【教学说明】让学生先独立完成,而后将不会的问题同各小组交流讨论得出结果.
四、师生互动,课堂小结
本节课应掌握:
1.一元二次方程根的概念;
2.一个数是否是一元二次方程的根的判断方法;
3.求一元二次方程的根的方法.
1.布置作业:教材“习题
2.2”第1、2题.
2.完成练习册中相应练习.
本节课通过列表计算使学生了解一元二次方程的解,确定未知数的大致范围,从而会进行简单的一元二次方程的解的计算.。