(word完整版)高二导数讲义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数

【知识归纳】

1、导数的概念

函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值

x y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)

()(00。如果当0

→∆x 时,

x

y

∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作

f’(x 0)或y’|0x x =。 即f (x 0)=0

lim

→∆x x

y

∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。 说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x

y

∆∆有极限。如果x y ∆∆不存在极限,就说函数在

点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率

x

y ∆∆=x x f x x f ∆-∆+)

()(00;

(3)取极限,得导数f’(x 0)=x

y

x ∆∆→∆0lim 。

2、导数的几何意义

函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f /

(x 0)(x -x 0)。

3、几种常见函数的导数:

①0;C '= ②()1

;n

n x

nx

-'= ③(sin )cos x x '=; ④(cos )sin x x '=-;

⑤();x x e e '=⑥()ln x

x

a a a '=;

⑦()1ln x x '=; ⑧()1l g log a a o x e x

'=.

4、两个函数的和、差、积的求导法则

法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'

'

'

v u v u ±=±

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个

函数乘以第二个函数的导数,即:.)('

'

'

uv v u uv +=

若C 为常数,'

''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =

法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积再除以分母的平方:⎪⎭

⎝⎛v u ‘=2

''v uv v u -(v ≠0)。

形如y=f [x (ϕ])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|X = y '|U ·u '|X

5、单调区间:一般地,设函数)(x f y =在某个区间可导, 如果'

f )(x 0>,则)(x f 为增函数; 如果'f 0)(

如果在某区间内恒有'

f 0)(=x ,则)(x f 为常数; 6、极点与极值:

曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 7、最值:

一般地,在区间[a ,b]上连续的函数f )(x 在[a ,b]上必有最大值与最小值。 ①求函数ƒ)(x 在(a ,b)内的极值; ②求函数ƒ)(x 在区间端点的值ƒ(a)、ƒ(b);

③将函数ƒ )(x 的各极值与ƒ(a)、ƒ(b)比较,其中最大的是最大值,其中最小的是最小值。

【常见综合题方法导航】

1、关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决:

第一步:令0)('

=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种:

第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值;第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立

0)()()(>-=⇔x g x f x h 恒成立;

2、已知函数在某个区间上的单调性求参数的范围及函数与x 轴即方程根的个数问题; (1)已知函数在某个区间上的单调性求参数的范围的常用方法有三种:

第一种:转化为恒成立问题即0)(0)('

'

≤≥x f x f 或在给定区间上恒成立,然后转为不等式恒成立问题;用分离变量时要特别注意是否需分类讨论(看是否在0的同侧),如果是同侧则不必分类讨论;若在0的两侧,则必须分类讨论,要注意两边同处以一个负数时不等号的方向要改变呀!有时分离变量解不出来,则必须用另外的方法;

第二种:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;

第三种:利用二次方程根的分布,着重考虑端点函数值与0的关系和对称轴相对区间的位置;特别说明:做题时一定要看清楚“在(a,b )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别;(2)函数与x 轴即方程根的个数问题解题步骤 第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;

第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系; 第三步:解不等式(组)即可; 3、函数的切线问题;

问题1:在点处的切线,易求;

问题2:过点作曲线的切线需四个步骤;

第一步:设切点,求斜率;第二步:写切线(一般用点斜式);第三步:根据切点既在曲线上又在切线上得到一个三次方程;第四步:判断三次方程根的个数;

相关文档
最新文档