材料成型工艺基础考试复习要点精编版

合集下载

材料成形技术基础复习要点

材料成形技术基础复习要点

材料成形技术基础复习要点第一章:金属的液态成形技术1.铸造成形法:它是将液态金属浇入铸型型腔,使其冷却凝固,从而获得一定形状和性能铸件的成形方法2.金属的铸造性能:金属的流动性、充型能力、收缩、偏析和吸气性3.金属的流动性:金属液本身的流动能力;影响因素:与金属种类、化学成分、凝固方式、及其他物理性能(如粘度)有关,共晶成分的金属熔点最低、因而流动性最好,非共晶成分的金属在结晶区域内,既有形状复杂的枝晶,又有未结晶的液体金属结晶区间越大,流动性越差4.充型能力:金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力;影响因素:金属的流动性、浇注条件及铸型条件,流动性越好,液态合金充填铸型的能力越强。

浇注温度越高,液态金属的充型能力就越强,但不宜过高。

充型压力越大,充型能力越强。

但充型压力不宜过大,以免金属飞溅或因气体排出不及时而产生气孔等缺陷。

铸型条件包括铸型材料、铸型结构及铸型中的气体含量5.收缩:金属液态向固态的冷却过程中,其体积和尺寸减小的现象;影响因素:化学成分、浇注温度、铸型结构与铸型条件,液态收缩—凝固收缩—固态收缩6.缩孔:液态金属充满铸型后,铸件在凝固的过程中由于补缩不良而产生的孔洞;缩松:是铸件断面上出现的分散而细小缩孔。

从缩孔缩松的形成可以看出:金属的液态收缩和凝固收缩愈大,则收缩的体积越大,铸件越容易形成缩孔;金属的浇注温度越高,则液态收缩越大;结晶的间隔大的金属,易形成缩松。

预防措施:遵循“顺序凝固”原则,即在造型工艺上认为地设置冒口、冷铁,按照一定的冷却顺序,使缩孔移到铸件外面或消失。

7.铸造内应力:按产生原因分为热应力(铸件壁厚不均匀,收缩不一致)和机械应力(线收缩受到型芯阻碍);预防热应力的措施:尽量减少铸件各部分间的温度差,使其均匀冷却;尽量使壁厚均匀,遵循同时凝固原则,如,将内浇口开设在铸件薄壁处,为加快厚壁部分的冷却,可在厚壁处安放冷铁。

8.同时凝固原则:铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,主要用于普通灰铸铁,锡青铜等;优点是可以减少铸造内应力,防止铸件的变形和裂纹缺陷,又可不用冒口而省工省料;缺点是铸件口部容易出现缩孔或缩松。

材料成型工艺基础重点总结

材料成型工艺基础重点总结

第一章:金属旳液态成型一、充型:1.充型概念:液态合金填充铸型旳过程,简称充型。

2.充型能力:液态合金充斥铸型型腔,获得形状完整、轮廓清晰铸件旳能力。

⏹充型能力局限性时,会产生浇局限性、冷隔、夹渣、气孔等缺陷⏹影响充型能力旳重要原因⏹⑴合金旳流动性—液态合金自身旳流动能力a 化学成分对流动性旳影响—纯金属和共晶合金旳成分旳流动性好b工艺条件对流动性旳影响—浇注温度、充型能力、铸型阻力c流动性旳试验⏹⑵工艺条件:a 、浇注温度一般T浇越高,液态金属旳充型能力越强。

b、铸型填充条件—铸型旳许热应力c、充型压力:态金属在流动方向上所受旳压力越大,充型能力越强。

d、铸件复杂程度:构复杂,流动阻力大,铸型旳充填就困难e、浇注系统旳旳构造浇注系统旳构造越复杂,流动阻力越大,充型能力越差。

f、折算折算厚度也叫当量厚度或模数,为铸件体积与表面积之比。

折算厚度大,热量散失慢,充型能力就好。

铸件壁厚相似时,垂直壁比水平壁更轻易充填。

——影响铸型旳热互换影响动力学旳条件(充型时阻力旳大小),必须在保证工艺条件下金属旳流动性好充型能力才好。

二、冷却⑴影响凝固旳方式旳原因:a.合金旳结晶温度范围—合金旳结晶温度范围愈小,凝固区域愈窄,愈倾向于逐层凝固。

金属和共晶成分旳合金是在恒温下结晶旳。

由表层向中心逐层推进(称为逐层凝固)方式,固体层内表面比较光滑,流动阻力小,流动性好。

b.铸件旳温度梯度—在合金结晶温度范围已定旳前提下,凝固区域旳宽窄取决与铸件内外层之间旳温度差。

若铸件内外层之间旳温度差由小变大,则其对应旳凝固区由宽变窄。

⑵凝固:a.逐层凝固—充型能力强,便于防止缩孔、缩松。

灰铸铁和铝硅合金等倾向于逐层凝固。

b.糊状凝固—充型能力差,难以获得结晶紧实旳铸件球铁倾向于糊状凝固。

c.中间凝固—⑶收缩:a.液态收缩从浇注温度到凝固开始温度之间旳收缩。

由温度下降引起。

T浇—T液用体收缩率表达b.凝固收缩从凝固开始到凝固终止温度间旳收缩。

材料成型技术基础-总复习-知识点归纳

材料成型技术基础-总复习-知识点归纳

二、铸造1.零件结构分析:筒壁过厚;圆角过渡,易产生应力集中。

2.铸造方法:砂型铸造(手工造型)及两箱造型。

3.选择浇注位置和分型面4.确定工艺参数(1) 铸件尺寸公差:因精度要求不高,故取CT15(2) 要求的机械加工余量(RMA ):余量等级取H 级。

参考表2-6,余量值取5mm ,标注为GB/T 6414-CT15-RMA5(H)(3) 铸件线收缩率:因是灰铸铁件及受阻收缩,取0.8%(4) 起模斜度:因铸件凸缘端为机加工面,增加壁厚式,斜度值1°(5) 不铸出的孔:该铸件6个φ18孔均不铸出(6) 芯头形式:参考图2-39,采用水平芯头零件结构的铸造工艺性:1、基本原则:1) 铸件的结构形状应便于造型、制芯和清理2) 铸件的结构形状应利于减少铸造缺陷3) 对铸造性能差的合金其铸件结构应从严要求2、铸造性能要求:1) 铸件壁厚应均匀、合理(外壁>内壁>肋(筋))2) 铸件壁的连接(圆角过渡、避免交叉和锐角、避免壁厚突变 )3) 防止铸件变形(结构尽量对称)4) 避免较大而薄的水平面5) 减少轮形铸件的内应力 (避免受阻收缩)3、铸造工艺要求:1)外形铸件外形分型面应尽量少而平;避免局部凸起或凹下侧凹和凸台不应妨碍起模;垂直于分型面的非加工面应具有结构斜度2)内腔尽量采用开放式、半开放式结构;应利于型芯的固定、排气和清理3)大件和形状复杂件可采用组合结构三、塑性成形金属塑性成形的方法:锻造、冲压、挤压、轧制、拉拔自由锻1、零件结构分析2、绘制锻件图 (余块、余量、公差)3、确定变形工序(镦粗、冲孔、芯轴、拔长、弯曲、切肩、锻台阶)4、计算坯料质量(mo= (md+mc+mq) (1+δ))和尺寸 (首工序镦粗:D0≥0.8 拔长:D0≥ 零件结构的自由锻工艺性1)应避免锥形或楔形,尽量采用圆柱面和平行面,以利于锻造2)各表面交接处应避免弧线和曲线,尽量采用直线或圆,以利于锻制3)应避免肋板或凸台,以利于减少余块和简化锻造工艺4)大件和形状复杂的锻件,可采用锻—焊,锻—螺纹联接等组合结构模锻1、零件结构分析(分模面、结构斜度、圆角过渡、腹板厚度)2、绘制锻件图(余块、机械加工余量、锻件公差、模锻斜度、模锻圆角)3、确定变形工步(镦粗、拔长、滚压、弯曲、预锻、终锻)4、修整工序选择(切边、冲连皮、校正、热处理(正火或退火)、清理) 30V max Dy零件结构的模锻工艺性1)应有合理的分模面,以保证锻件从模膛中取出又利于金属填充、减少余块和易于制模2)与分模面垂直的非加工面应有结构斜度,以利于从模膛中取出锻件(圆角过渡,利金属流动,防应力集中)3)应避免肋的设置过密或高宽比过大,利于金属充填模膛4)应避免腹板过薄,以减小变形抗力以及利于金属填充模膛5)应尽量避免深孔或多孔结构,以利于制模和减少余块6)形状复杂性件宜采用锻—焊、锻—螺纹联接等组合结构,以利于模具和减少余块冲压(冲裁、弯曲、拉深、缩口、起伏和翻孔)冲裁:落料模:D凹≈(Dmin)D凸≈(D凹-Zmin)冲孔模:d凸≈(dmax)d凹≈(d凸+Zmin)弯曲:工件内侧圆角半径≥凸模圆角半径、弯曲件毛坯长度拉伸:拉深间隙、拉伸模尺寸、毛坯直径、拉深次数冲压工序:1)带孔平板件:单工序:先落料后冲孔,连续模:先冲孔后落料2)带孔的弯曲件或拉深件:热处理、拉深/弯曲、冲孔3)形状复杂的弯曲件:先弯两端、两侧,后弯中间模具:单工序模、复合模、连续模1、零件结构分析:孔边距过小,宜加大2、冲裁间隙:取大间隙Z/2=(10%~12.5%)δ故Z=0.30~0.38mm模具刃口尺寸:落料模:D凹≈(Dmin)=33.2 D凸≈(D凹-Zmin)=32.9冲孔模:d凸≈(dmax)=26.7 d凹≈(d凸+Zmin)=273、冲压工序选择工序类型:平板件,冲孔和落料工序工序顺序:大批量,先冲孔后落料4、模具类型:精度要求不高且为大批量生产,采用连续模零件结构的冲压工艺性1)材料:尽量选用价格较低的材料2)精度和表面质量:3)冲压件的形状和尺寸1)冲裁件:①形状尽可能简单、对称②圆弧过渡、避免锐角③注意孔形、孔径、孔位2)弯曲件:①形状②h、a、c≥2δ、l≥r+(1~2)δ、R/r≥0.5δ③冲孔槽防止孔变形④位置3)拉深件:①形状②转角l≥R/r+0.5δ、R≥2~4δ、r≥2δ③位置④组合工艺、切口工艺四、连接成形焊接头力学性能:相变重结晶区、焊缝金属区、母材、不完全重结晶区、熔合区、过热区焊接残余应力:调节1)设:减少焊缝的数量和尺寸并避免焊缝密集和交叉;采用刚性较小的接头2)工:合理的焊接顺序(先内后外、先短后长、交叉处不起头收尾)、降低焊接接头的刚性、加热减应区、锤击焊缝、预热和后热2、消除:1)去应力退火2)机械拉伸法3)温差拉伸法4)振动法3、焊接残余变形控制和矫正:(收缩变形、角变形、弯曲变形、扭曲变形、失稳变形)1)设:尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状2、合理安排焊缝位置2)工:反变形法、刚性固定法、合理选用焊接方法和焊接规范、选用合理的装配焊接顺序材料的焊接性:(材料的化学成分、焊接方法、焊接材料、焊件结构类型、服役要求)焊接性评价:碳当量、冷裂纹敏感系数公式金属材料的焊接:1、碳钢:(①淬硬组织、裂纹;②预热和后热;③低氢型焊条、碱度较高的焊剂;④去应力退火或高温回火)1)低碳钢、强度低的低合金结构钢:各种方法,无需采用任何工艺措施方便施焊2)中碳钢:①易②③④小电流、低焊速和多层焊。

材料成型复习提纲(完整版)

材料成型复习提纲(完整版)

题型与比例:选择题20%,填空题30% ,是非题20%,其他30%第一章1.铸件的凝固方式有:逐层凝固、糊状凝固、中间凝固2.合金的结晶温度范围越小,凝固区域越窄,越倾向于逐层凝固。

3.液态金属本身的流动性能力称为流动性。

4.液态合金充满型腔,获得形状完整,轮廓清晰的铸件的能力,称为充型能力。

5.影响合金流动性的因素:1.合金的种类2.合金的成分3.浇注的条件4.铸型的充填条件6.灰铸铁、硅黄铜的流动性最好,铝合金次之,铸钢最差。

7.收缩是铸造合金从浇注、凝固直至冷却到室温的过程中,其体积或尺寸缩减的现象。

收缩是合金的物理本性,在铸造过程中,因收缩可能会导致铸件产生缩孔、缩松、应力、变形和裂纹等缺陷。

8.缩孔是在铸件最后凝固的部分形成容积较大而且集中的空洞。

9.缩松是细小而分散的空洞。

10.定向凝固(顺序凝固)在铸件上可能出现缩孔的厚大部位安放冒口,在远离冒口的部分安放冷铁,使铸件上远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。

11.铸造内应力按产生的原因不同,分为热应力、收缩应力、相变应力。

热应力主要是铸件冷却中,由于冷却速度不同而引起不均衡收缩所产生的应力。

热应力使冷却较慢的厚壁处或心部受拉伸,冷却较快的薄壁处或表面受压缩。

12.一般铸件冷却到弹性状态后,收缩受阻才会产生收缩应力,而且收缩应力表现为拉应力或切应力。

13.同时凝固:采取措施使铸件各部分无温差或温差尽量小,几乎同时进行凝固。

自然时效:将铸件置于露天场地半年以上,让其缓慢地发生变形,内应力消除。

热时效(人工时效)又称去应力退火,将铸件加热到550~650°C,保温2~4h,随炉慢冷至150~220°C,然后出炉。

14.热裂一般是在凝固末期,金属处于固相线附近的高温时形成的。

热裂纹的特征是裂纹短,缝隙较宽,形状曲折,裂口表面氧化较严重15.冷裂的特征是裂纹细小,呈连续直线状,具有金属光泽或微氧化色。

材料成型基础大纲

材料成型基础大纲

材料成型基础考试知识点(模具塑工)1、液态金属的结构液态金属是由许多“原子集团”组成,其中原子呈与原固体“显微晶体”类似的规则排列。

热运动剧烈,原子集团时散时聚,空位较多。

可将液态金属的结构总结为:“近程有序,远程无序”+“能量起伏、结构起伏、成分起伏”。

液态金属结构特点1)液态金属是由游动的原子集团构成。

2)液态金属中的原子热运动强烈,原子所具有的能量各不相同,且瞬息万变,这种原子间能量的不均匀性,成为能量起伏。

3)由于液态原子处于能量起伏之中,原子团是时聚时散,时大时小,此起彼伏的,成为结构起伏。

4)对于多元素液态金属而言,同一种元素在不同原子团中的分布量不同,也随着原子的热运动瞬息万变,这种现象称为成分起伏。

2、液态金属的充形能力和流动性1)充形能力:液态金属充满型腔,获得形状完整、轮廓清晰的铸件的能力。

2)流动性:液态金属本身的流动能力。

影响充形能力的因素:液态金属的流动性(金属)、铸型、浇筑条件、铸件结构。

3、铸件的凝固方式金属或合金在铸型中凝固时,可以分为三个典型的区域:1)液相区2)固液两相区3)固相区三种凝固方式:逐层凝固、体积凝固、中间凝固1)逐层凝固:铸件凝固过程中,液体和固体之前有明显的界限分开,液体向固体转变。

固体逐层加厚,这种方式称为逐层凝固。

(纯金属是典型的逐层凝固)2)体积凝固:宽结晶温度范围的合金在凝固过程中,液体和固体之前的凝固区域很宽,甚至贯穿铸件的整个断面,这种方式称为体积凝固。

3)中间凝固:介于上两者之前的凝固方式。

影响凝固方式的因素:1)结晶温度范围的影响:结晶温度范围增加,凝固由逐层凝固向体积凝固发展;结晶范围范围剑侠,凝固由体积凝固向逐层凝固发展。

2)温度梯度的影响:温度梯度增加,凝固向逐层凝固发展;温度梯度减小,凝固向体积凝固发展。

4、铸造合金的收缩铸造合金从液态冷却到室温的过程中,其体积和尺寸缩减的现象称为收缩,他主要包括液态收缩、凝固收缩和固态收缩三个阶段。

材料成型技术基础复习提纲整理

材料成型技术基础复习提纲整理

材料成型技术基础复习提纲整理第一章绪论1、现代制造过程的分类(质量增加、质量不变、质量减少)。

2、那几种机械制造过程属于质量增加(不变、减少)过程。

(1)质量不变的基本过程主要包括加热、熔化、凝固、铸造、锻压(弹性变形、塑性变形、塑性流动)、浇灌、运输等。

(2)质量减少过程材料的4种基本去除方法:切削过程;磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;超声波加工、电火花加工和电解加工;落料、冲孔、剪切等金属成形过程。

(3)材料经过渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等表面处理及快速原型制造方法属于质量增加过程。

第二章液态金属材料铸造成形技术过程1、液态金属冲型能力和流动性的定义及其衡量方法液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。

液态金属的充型能力通常用铸件的最小壁厚来表示。

液态金属自身的流动能力称为“流动性”。

液态金属流动性用浇注流动性试样的方法来衡量。

在生产和科学研究中应用最多的是螺旋形试样。

2、影响液态金属冲型能力的因素(金属性质、铸型性质、浇注条件、铸件结构)(1)金属的流动性:流动性好的液态金属,充型能力强,易于充满薄而复杂的型腔,有利于金属液中气体、杂质的上浮并排除,有利于对铸件凝固时的收缩进行补缩。

流动性不好的液态金属,充型能力弱,铸件易产生浇不足、冷隔、气孔、夹杂、缩孔、热裂等缺陷。

(2)铸型性质:铸型的蓄热系数b(表示铸型从其中的金属液吸取并储存在本身中热量的能力)愈大,铸型的激冷能力就愈强,金属液于其中保持液态的时间就愈短,充型能力下降。

(3)浇注条件:浇注温度对液态金属的充型能力有决定性的影响。

浇注温度越高,充型能力越好。

在一定温度范围内,充型能力随浇注温度的提高而直线上升,超过某界限后,由于吸气,氧化严重,充型能力的提高幅度减小。

液态金属在流动方向上所受压力(充型压头)越大,充型能力就越好。

《材料成型工艺学》复习资料

《材料成型工艺学》复习资料

1.咬入:依靠回转的轧辊和轧件之间的摩擦力,轧辊将轧件拖入轧辊之间的现象. 改善咬入条件的途径:①降低a: (1)增加轧辊直径D,(2)降低压下量实际生产:(1)小头进钢,(2)强迫咬入; ②提高:(1)改变轧件或轧辊的表面状态,以提高摩擦角;(2)清除炉生氧化铁皮;(3)合理的调节轧制速度,低速咬入,高速轧制.2.宽展:高向压缩下来的金属沿着横向移动引起的轧件宽度的变化成为宽展.3.宽展分类: ①自由宽展: 在横向变形过程中,除受接触摩擦影响外,不受任何其它任何阻碍和限制。

②限制宽展: 在横向变形过程中,除受接触摩擦影响外,还受到孔型侧壁的阻碍作用,破坏了自由流动条件,此时宽展称为限制宽展。

③强迫宽展: 在横向变形过程中,质点横向移动时,不仅不受任何阻碍,还受到强烈的推动作用,使轧件宽展产生附加增长,此时的宽展称为强迫宽展。

4.影响宽展的因素:实质因素:高向移动体积和变形区内轧件变形纵横阻力比;基本因素:变形区形状和轧辊形状。

工艺因素:①相对压下量:相对压下量越大,宽展越大。

②轧制道次:道次越多,宽展越小;单道次较大,宽展大,多道次较小,宽展小;③轧辊直径:轧辊直径增加,宽展增加;摩擦系数;④摩擦系数的增加,宽展增加(轧制温度、轧制速度、轧辊材质和表面状态,轧件的化学成分). ⑤轧件宽度的影响:假设变形区长度 l 一定:随轧件宽度增加,宽展先增加后逐渐减小,最后趋于不变。

5.前滑:轧件出口速度vh 大于轧辊在该处的线速度v,即vh>v的现象称为前滑现象。

后滑:轧件进入轧辊的速度小于轧辊该处线速度的水平分量v的现象。

前滑值:轧件出口速度vh与对应点的轧辊圆周速度的线速度之差与轧辊圆周速度的线速度之比值称为前滑值。

后滑值:后滑值是指轧件入口断面轧件的速度与轧辊在该点处圆周速度的水平分量之差同轧辊圆周速度水平分量的比值。

6.影响前滑的因素: ①压下率:前滑随压下率的增加而增加;②轧件厚度:轧后轧件厚度h减小,前滑增加;③轧件宽度:轧件宽度小于40mm时,随宽度增加前滑亦增加;但轧件宽度大于40mm时,宽度再增加时,其前滑值则为一定值;④轧辊直径:前滑值随辊径增加而增加;⑤摩擦系数:摩擦系数f越大,其前滑值越大;⑥张力:前张力增加前滑,后张力减小前滑 .7.轧制生产工艺:由锭或坯轧制成符合技术要求的轧件的一系列加工工序组合。

材料成型

材料成型

复习题(1-2章)一、名词解释1、缩孔、缩松:液态金属在凝固过程中,由于液态收缩和凝固收缩,因而在铸件最后凝固部位出现大而集中的孔洞,这种孔洞叫缩孔;细小而分散的孔洞称为缩松。

2、顺序凝固:采用各种措施保证铸件结构各部分,从远离冒口的部分到冒口之间建立一个逐渐递增的温度梯度,实现由远离冒口的部分最先凝固,再向冒口方向顺序凝固,使缩孔移至冒口中,切除冒口即可获得合格的铸件。

3、同时凝固:采取一些工艺措施,使铸件各部分温差很小,几乎同时进行凝固的工艺。

4、宏观偏析:也称区域偏析,其成分不均匀现象表现在较大尺寸范围,主要包括正偏析和逆偏析。

5、微观偏析:指微小范围内的化学成分不均匀现象,一般在一个晶粒尺寸范围左右,包括晶内偏析和晶界偏析。

6、流动性:液态金属自身的流动能力。

7、充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力。

8、正偏析:溶质的分配系数K>1的合金,固液界面的液相中溶质减少,因此愈是后来结晶的固相,溶质的浓度愈低,这种成分偏析称为正偏析。

9、逆偏析:溶质的分配系数K<1的合金进行凝固时,凝固界面上将有一部分溶质排向液相,随着温度的降低,溶质的浓度在固液界面处的液相中逐渐增加。

愈是后来结晶的固相,溶质浓度愈高,这种成分偏析称为逆偏析。

10、自由收缩:铸件在铸型中的收缩仅受到金属表面与铸型表面之间的摩擦阻力时,为自由收缩。

11、受阻收缩:铸件在铸型中的收缩受到其他阻碍,为受阻收缩。

12、析出性气孔:溶解于熔融金属中的气体在冷却和凝固过程中,由于溶解度的下降而从合金中析出,当铸件表面已凝固,气泡来不及排除而保留,在铸件中形成的气孔。

13、反应性气孔:浇入铸型的熔融金属与铸型材料、芯撑、冷铁或熔渣之间发生化学反应产生的气体在铸件中形成的孔洞。

14、侵入性气孔:浇注过程中熔融金属和铸型之间的热作用,使砂型或型芯中的挥发物挥发生成,以及型腔中原有的空气,在界面上超过临界值时,气体就会侵入金属液而不上浮逸出形成气孔。

材料成型技术基础复习

材料成型技术基础复习

1.塑性成形是利用金属的塑性,在外力作用下使金属发生塑性变形,从而获得所需要形状和性能产品的一种加工方法2.单晶体:晶格位向相同的一群同类型晶胞聚合在一起,组成单晶体。

3.各向异性:单晶体由于不同晶面和晶向上原子排列不同,使原子的密度和原子间的结合力强弱不同,因而在不同方向上其机械、物理和化学性能不同。

4.多晶体:工业用金属是由许多尺寸很小,位向不同的小的单晶体组成。

5.滑移:在剪应力的作用下,晶体的一部分相对于另一部分,沿着一定的晶面和晶向产生移动。

产生滑移的晶面和晶向,分别称为滑移面和滑移方向。

6.滑移系:通常每一种晶格有几个可能产生滑移的晶面,即同时存在几个滑移面;而每一个滑移面,又同时存在几个滑移方向。

一个滑移面和其上一个滑移方向,构成一个滑移系。

7.单晶体塑性变形的另一种方式叫双晶,又叫孪晶。

8.孪生:单晶体在剪应力作用下,晶体一部分对应一定的晶面(双晶面),沿一定的方向,进行相对移动。

结果使晶体的变形部分与未变形部分以双晶面为对称面互相对称。

9.冷成形—冷塑性成形、冷变形:金属在回复、再结晶温度以下的一种成形方法,通常在变形过程中会出现位错密度上升、发生加工硬化的现象。

10.热成形—热塑性成形、热变形:金属在再结晶温度以上进行的成形方法,通常变形过程材料软化占优势。

11.加工硬化—应变硬化:金属在低于再结晶温度时,由于塑性应变而产生塑性降低、强度和硬度增加的现象。

12.静态回复:当加热温度不高时,晶体内只有间隙原子和空位的运动。

这时变形金属晶粒的外形无明显变化,仍呈纤维状,只消除了晶格畸变,其机械性能几乎无变化,物理化学性能则大部分恢复。

随着温度的升高,原子具有了较大的活动能力,位错开始运动。

实质上是原子从高能态的混乱排列向低能态的规则排列转变的过程,结果是晶体的内应力大大下降,强度稍有下降,塑性稍有提高。

13.静态再结晶:变形金属加热到较高温度时,由于原子获得了更大的活动能力,首先在变形晶粒的晶界或滑移带、峦晶带等变形剧烈的地区产生晶核,即为一些原子规则排列的小晶块,然后晶核逐渐长大,成为具有正常晶格的新晶粒,新晶粒长大到彼此边界相遇,过程结束,这一生核、长大的过程称为再结晶。

材料成形工艺基础复习提纲用.doc

材料成形工艺基础复习提纲用.doc

第一篇:金属液态成型加工工艺第一章液态成型理论葙础一、 铸件的凝固方式金属的凝间过程是一个结晶过程,包括形核和晶体长人两个基木过程。

凝间组织对铸件的 力学性能影响很大,一般情况下晶粒越细小均匀,铸件的强度、硬度越高,塑性和韧性越 好。

铸件的凝固方式:1)逐层凝固(流动性最好)2)糊状凝固 3)中间凝固 影响凝固方式的因素:1)合金的结晶温度范围2)铸件断面的温度梯度(温度梯度t 凝 固区宽度I )二、 液态金属的工艺性能液态金属的工艺性能称铸造性能,具体乜括流动性、收缩性、吸气性、偏析等。

充型能力:金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力。

流动性越好,充 型能力越强。

影响流动性的因素:1)合金成分2)合金种类3)浇注条件4)铸型的填充条件 铸型的填充条件包括:(1)铸型的蓄热能力(蓄热系数)(2)铸型结构(3)铸型温度(4) 铸型中气体浇注条件:浇注温度和充型压力合金成分越远离共晶成分,结晶温度范围越宽,流动性越 差。

三、合金的收缩(化学成分浇注温度铸件结构和铸型条件)1) 液态收缩:液面卜'降2) 凝闻收缩:液态收缩和凝闻收缩足铸件产生缩孔、缩松的根本原因3) 固态收缩:铸件的外形尺寸减小;川线收缩率:产生铸造应力,变形、裂纹等的原因 叙述缩孔的形成?缩松的形成?(书上有)4)缩孔和缩松的防止其产生使铸件的机械性能下降,甚至渗漏 1缩孔的防止: ① 采用定向凝固原则经冒口充型、向冒口和内浇道方向凝固、最终将缩孔转移到冒 口中、可获得致密的铸件,但使铸件各部分 温差大,易产生内应力。

冒口增加成本 用于收缩大,凝固温度范围窄的合金② 合理确定浇注系统和浇注工艺浇注系统的位置影响铸型的温度分布,进而影响其凝固定向③ 合理应用冒口、冷铁、补贴,目的为使铸件顺序凝固3铸造应力铸造应力有热应力、收缩应力和相变应力。

热应力产生原因:凝固和冷却过程屮,不同部位 由于温差造成不均匀收缩而引起的铸造应力 厚壁部分热应力拉应力,薄壁部分的热应力是拉应力 减少和消除热应力的方法:1)合理设计铸件的结构2)采取同吋凝固的工艺3)合理选川金属4)减少收缩应力5)对 铸件进行吋效热处理 铸件裂纹有热裂(常发生在铸件拐角处和截面厚度突变处等应力集中的部位或铸件最后凝固区的缩 孔附近或尾部。

工程材料及成形技术基础复习重点完整版

工程材料及成形技术基础复习重点完整版

一、二元相图的建立合金的结晶过程比纯金属复杂;常用相图进行分析;相图是用来表示合金系中各金在缓冷条件下结晶过程的简明图解;又称状态图或平衡图..合金系是指由两个或两个以上元素按不同比例配制的一系列不同成分的合金.. 组元是指组成合金的最简单、最基本、能够独立存在的物质..多数情况下组元是指组成合金的元素..但对于既不发生分解、又C..不发生任何反应的合物也可看作组元; 如Fe-C合金中的Fe3相图由两条线构成;上面是液相线;下面是固相线..相图被两条线分为三个相区;液相线以上为液相区L ;固相线以下为固溶体区;两条线之间为两相共存的两相区L+ ..3 枝晶偏析合金的结晶只有在缓慢冷却条件下才能得到成分均匀的固溶体..但实际冷速较快;结晶时固相中的原子来不及扩散;使先结晶出的枝晶轴含有较多的高熔点元素如Cu-Ni合金中的Ni; 后结晶的枝晶间含有较多的低熔点元素;如Cu-Ni合金中的Cu..在一个枝晶范围内或一个晶粒范围内成分不均匀的现象称作枝晶偏析..与冷速有关而且与液固相线的间距有关..冷速越大;液固相线间距越大;枝晶偏析越严重枝晶偏析会影响合金的力学、耐蚀、加工等性能..生产上常将铸件加热到固相线以下100-200℃长时间保温;以使原子充分扩散、成分均匀;消除枝晶偏析;这种热处理工艺称作扩散退火..2、二元共晶相图当两组元在液态下完全互溶;在固态下有限互溶;并发生共晶反应时所构成的相图称作共晶相图..以 Pb-Sn 相图为例进行分析..1 相图分析①相:相图中有L、、三种相; 是溶质Sn在 Pb中的固溶体; 是溶质Pb在Sn中的固溶体..②相区:相图中有三个单相区: L、、;三个两相区: L+ 、L+ 、+ ..③液固相线:液相线AEB;固相线ACEDB..A、B分别为Pb、Sn的熔点..④固溶线: 溶解度点的连线称固溶线..相图中的CF、DG线分别为Sn在 Pb中和 Pb在 Sn中的固溶线..固溶体的溶解度随温度降低而下降..⑤共晶线:水平线CED叫做共晶线..在共晶线对应的温度下183 ℃;E点成分的合金同时结晶出C点成分的固溶体和D点成分的固溶体;形成这两个相的机械混合物LE C+D在一定温度下;由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变称作共晶转变或共晶反应..一、铁碳合金的组元和相C1. 组元:Fe、 Fe32. 相⑴铁素体——碳在-Fe中的固溶体称铁素体;用F或表示碳在–Fe中的固溶体用表示;体心立方间隙固溶体..铁素体的溶碳能力很低;在727℃时最大为0.0218%;室温下仅为0.0008%..铁素体的组织为多边形晶粒;性能与纯铁相似..2 奥氏体碳在 -Fe中的固溶体称奥氏体..用A或表示..是面心立方晶格的间隙固溶体..溶碳能力比铁素体大;1148℃时最大为2.11%..组织为不规则多面体晶粒;晶界较直..强度低、塑性好;钢材热加工都在区进行;碳钢室温组织中无奥氏体..3 渗碳体Fe3C含碳6.69%;用Fe3C或Cm表示..Fe3C硬度高、强度低 b35MPa;脆性大;塑性几乎为零..由于碳在 -Fe中的溶解度很小;因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在..重要知识点五个重要的成份点: P、S、E、C、F四条重要的线: ECF、PSK、ES、GS三个重要转变: 共晶转变反应式、共析转变反应式、包晶转变本节略二个重要温度: 1148 ℃、727 ℃第一节退火和正火一般零件的工艺路线为:毛坯铸造或锻造→退火或正火→机械粗加工→淬火+回火或表面热处理→机械精加工..退火与正火常作为预备热处理;其目的是为消除毛坯的组织缺陷;或为以后的加工作准备;淬火和回火工艺配合可强化钢材;提高零件使用性能;作为最终热处理..一、退火将工件加热到适当温度;保温一定时间;缓慢冷却热处理工艺目的根据不同情况;退火的作为可归纳为降低硬度;改善钢的成形和切削加工性能;均匀钢的化学成分和组织;消除内应力等..①调整硬度以便进行切削加工;②消除残余内应力;以防止钢件在淬火时产生变形或开裂;③细化晶粒;改善组织;提高力学性能;为最终热处理作准备..1、退火类型1 完全退火完全退火是将工件完全奥氏体化后缓慢冷却;获得接近平衡组织的退火工艺..工艺加热温度为Ac3以上20℃~30℃;保温时间依工件的大小和厚度而定;使工件热透;保证全部得到均匀化的奥氏体;冷却方式可采用随炉缓慢冷却;实际生产时为提高生产率;退火冷却至600℃左右即可出炉空冷..2球化退火工艺球化退火的加热温度为Ac1以上20℃~30℃;采用随炉缓冷;至500℃~600℃后出炉空冷;3去应力退火去除工件塑性变形加工、切削加工或焊接造成的内应力及铸件内存在的残余内应力而进行的退火工艺..工艺去应力退火加热温度较宽;但不超过AC1点;一般在500℃~650℃之间;铸铁件去应力退火温度一般为500℃ ~ 550℃;焊接工件的去应力退火温度一般为500℃ ~600℃..去应力退火的保温时间也要根据工件的截面尺寸和装炉量决定..去应力退火后的冷却应尽量缓慢;以免产生新的应力..4扩散退火为减少铸件或锻坯的化学成分和组织不均匀性;将其加热到略低于固相线固相线以下 100℃~200℃的温度;长时间保温10h~15h;并进行缓慢冷却的热处理工艺;称为扩散退火或均匀化退火..二、正火1、正火的概念工艺正火处理的加热温度通常在Ac3或Accm以上30℃~50℃..对于含有V、Ti、Nb等碳化物形成元素的合金钢;采用更高的加热温度AC3 + 100℃~150℃..正火冷却方式常用的是将钢件从加热炉中取出在空气中自然冷却..对于大件也可采用吹风、喷雾和调节钢件堆放距离等方法控制钢的冷却速度;达到要求的组织和性能..第二节钢的淬火将亚共析钢加热到Ac3以上;共析钢与过共析钢加热到Ac1以上;低于Accm的温度;保温后以大于Vk的速度快速冷却;使奥氏体转变为马氏体或贝氏体的热处理工艺叫淬火..马氏体强化是钢的主要强化手段;因此淬火的目的就是为了获得马氏体;提高钢的机械性能..淬火是钢的最重要的热处理工艺也是热处理中应用最广的工艺之一..1、淬火温度的确定淬火温度即钢的奥氏体化温度;是淬火的主要工艺参数之一..选择淬火温度的原则是获得均匀细小的奥氏体组织..亚共析钢的淬火温度一般为Ac3以上30~50℃;淬火后获得均匀细小的马氏体组织..温度过高;奥氏体晶粒粗大而得到粗大的马氏体组织;而使钢的机械性能恶化;特别是塑性和韧性降低;淬火温度低于Ac3;淬火组织中会保留未溶铁素体;使钢的强度硬度下降..4、钢的淬透性1淬透性与淬硬性的概念钢的淬透性是指奥氏体化后的钢在淬火时获得马氏体的能力也称为淬透层深度;其大小用钢在一定条件下淬火获得的淬硬层深度来表示..淬硬层深度指由工件表面到半马氏体区50%M + 50%P的深度..淬硬性是指钢淬火后所能达到的最高硬度;即硬化能力..淬透性与淬硬层深度的关系同一材料的淬硬层深度与工件尺寸、冷却介质有关..工件尺寸小、介质冷却能力强;淬硬层深.. 淬透性与工件尺寸、冷却介质无关..它只用于不同材料之间的比较;通过尺寸、冷却介质相同时的淬硬层深度来确定的..2淬透性的测定及其表示方法同一材料的淬硬层深度与工件的尺寸;冷却介质有关;工件尺寸小、冷却能力强;淬硬层深;工件尺寸小、介质冷却能力强;淬硬层深;而淬透性与工件尺寸、冷却介质无关;它只用于不同材料之间的比较;是在尺寸、冷却介质相同时;用不同材料的淬硬层深度进行比较的..淬透性常用末端淬火法测定如下图所示;将标准化试样奥氏体化后;对末端进行喷水冷却..然后从水冷段开始;每隔一定距离测量一个硬度值;即可得到试样沿轴向的硬度分布曲线;称为钢的淬透性曲线..即用 表示J 表示末端淬透性;d 表示半马氏体区到水冷端的距离;HRC 为半马氏体区的硬度..3 影响淬透性的因素钢的淬透性取决于临界冷却速度V K ; V K 越小;淬透性越高..V K 取决于C 曲线的位置;C 曲线越靠右;V K 越小..凡是影响C 曲线的因素都是影响淬透性的因素;即除Co 外;凡溶入奥氏体的合金元素都使钢的淬透性提高;奥氏体化温度高、保温时间长也使钢的淬透性提高..影响淬硬层深度的因素淬透性 冷却介质 工件尺寸对于截面承载均匀的重要件;要全部淬透..如连杆、模具等..对HRC J d于承受弯曲、扭转的零件可不必淬透淬硬层深度一般为半径的1/2-1/3;如轴类、齿轮等..淬硬层深度与工件尺寸有关;设计时应注意尺寸效应..第三节钢的回火回火——将淬火钢加热到Ac1以下的某温度保温后冷却的热处理工艺..1、回火的目的消除或减少淬火内应力;防止工件变形或开裂;获得工艺所要求的力学性能;稳定工件尺寸..淬火马氏体和残余奥氏体都是非平衡组织;有自发向平衡组织铁素体加渗碳体转变的倾向..回火可使马氏体和残余奥氏体转变为平衡或接近平衡的组织;防止使用时变形..对于未经淬火的钢;回火是没有意义的;而淬火钢不经回火一般也不能直接使用;为避免淬火件在放置过程中发生变形或开裂;钢件经淬火后应及时回火..3、回火工艺1低温回火<250℃低温回火后得到回火马氏体组织..其目的是降低钢的淬火应力和脆性;回火马氏体具有高的硬度一般为58~64HRC、强度和良好耐磨性..低温回火特别适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火等工求高硬度和耐磨性的工件..2中温回火350-500℃中温回火时发生如下变化;得到T回组织;即为在保持马氏体形态的铁素体基体上分布着细粒状渗碳体的组织..使钢具有高的弹性极限;较高的强度和硬度一般为35 ~ 50HRC;良好的塑性和韧性..中温回火主要用于各种弹性元件及热作模具..3高温回火>500℃高温回火后得到回火索氏体组织;即为在多边性铁素体基体上分布着颗粒状Fe3C的组织 ..工件淬火并高温回火的复合热处理工艺称为调质..高温回火主要适用于中碳结构钢或低合金结构钢制作的曲轴、连杆、螺栓、汽车半轴、等重要的机器零件..4、回火时的性能变化回火时力学性能变化总的趋势是随回火温度提高;钢的强度、硬度下降;塑性、韧性提高..5、回火脆性淬火钢的韧性并不总是随温度升高而提高..在某些温度范围内回火时;会出现冲击韧性下降的现象..1低温回火脆性淬火钢在250℃~350℃范围内回火时出现的脆性叫做低温回火脆性..几乎所有的钢都存在这类脆性..这是一种不可逆回火脆性;目前尚无有效办法完全消除这类回火脆性..所以一般都不在250℃~350℃这个温度范围内回火..2高温回火脆性淬火钢在500℃~650℃范围内回火时出现的脆性称为高温回火脆性;称为第二类回火脆性..这种脆性主要发生在含Cr、Ni、Si、Mn等合金元素的结构钢中..这种脆性与加热、冷却条件有关..加热至600℃以上后;以缓慢的冷却速度通过脆化温度区时;出现脆性;快速通过脆化区时;则不出现脆性..此类回火脆性是可逆的;在出现第二类回火脆性后;重新加热至600℃以上快冷;可消除脆性..第四节钢的表面淬火钢的表面热处理有两大类:一类是表面加热淬火热处理;通过对零件表面快速加热及快速冷却使零件表层获得马氏体组织;从而增强零件的表层硬度;提高其抗磨损性能..另一类是化学热处理;通过改变零件表层的化学成分;从而改变表层的组织;使其表层的机械性能发生变化..1、表面淬火表面具有高的强度、硬度和耐磨性;不易产生疲劳破坏;而心部则要求有足够的塑性和韧性..采用表面淬火可使钢的表面得到强化;满足工件这种“表硬心韧”的性能要求..1 表面淬火目的使表面具有高的硬度、耐磨性和疲劳极限;心部在保持一定的强度、硬度的条件下;具有足够的塑性和韧性..适用于承受弯曲、扭转、摩擦和冲击零件2 表面淬火用材料0.4-0.5%C的中碳钢..含碳量过低;则表面硬度、耐磨性下降含碳量过高;心部韧性下降;铸铁提高其表面耐磨性..3 预备热处理工艺对于结构钢为调质或正火..前者性能高;用于要求高的重要件;后者用于要求不高的普通件..目的①为表面淬火作组织准备②获得最终心部组织..表面淬火后的回火采用低温回火;温度不高于200℃..目的为降低内应力保留淬火高硬度耐磨性..表面淬火+低温回火后的组织:表层组织为M回;心部组织为S回调质或F+S正火..第五节化学热处理化学热处理是将钢件置于一定温度的活性介质中保温;使一种或几种元素渗入它的表面;改变其化学成分和组织;达到改进表面性能;满足技术要求热处理过程..目的1、提高渗层硬度和耐磨性;如渗碳、氮等;2、提高零件接触疲劳强度和提高抗擦伤能力;渗氮等;3、提高零件抗氧化、耐高温性能;如渗入铝、铬等;4、提高零件抗蚀性;如渗入硅、铬等..化学热处理基本过程1介质的分解—即加热时介质中的化合物分子发生分解并释放出活性原子;2工件表面的吸收—即活性原子向固溶体中溶解或与钢中某些元素形成化合物;3原子向内部扩散—即溶入的元素原子在浓度梯度的作用下由表层向钢内部的扩散..1、渗碳原理渗碳是指向钢表面渗入碳原子的过程..渗碳是为了使低碳钢工件含碳量为0.1%~0.25%表面获得高的碳浓度0.85%~1.05%;从而提高工件表面的硬度、耐磨性及疲劳强度;同时保持心部良好的韧性和塑性..若采用中碳以上的钢渗碳;则将降低工件心部的韧性..渗碳主要用于那些对耐磨性要求较高、同时承受较大冲击载荷的零件..2渗碳件用钢一般采用碳质量分数为0.1%~0.25%的低碳钢或低碳合金钢;20、20Cr、20CrMnTi等..可使渗碳件表面高硬度、耐磨;心部高强韧性、承受较大冲击..3渗碳后的热处理及性能渗碳缓冷后组织:表层为P+网状Fe3CⅡ; 心部为F+P;中间为过渡区..渗碳后必须经淬火+低温回火后才能满足使用性能的要求..热处理后使渗碳件表面具有马氏体和碳化物的组织;表面硬度58~64HRC..而心部根据采用钢材淬透性的大小和零件尺寸大小;获得低碳马氏体或其他非马氏体组织;具有心部良好强韧性..常用方法是渗碳缓冷后;重新加热到Ac1+30-50℃淬火+低温回火..表层:M回+颗粒状碳化物+A’少量; 心部:淬透时;M回+F..2、渗氮渗氮是在一定温度下于一定介质中使氮原子渗入工件表层的化学热处理工艺..方法主要有气体渗氮和离子渗氮等..1气体渗氮渗氮温度一般为500~560℃;时间一般为20~50小时;采用氨气NH3 作渗氮介质..氨气在450℃以上温度时即发生分解;产生活性氮原子: 2NH3——3H2+2N2渗氮的特点渗氮件的表面硬度高达;相当于65HRC~72HRC..并可保持到560~600℃而不降低..氮化后钢件不需其他热处理;渗氮件的变形小..渗氮后具有良好的耐腐蚀性能..这是由于渗氮后表面形成致密的氮化物薄膜;气体渗氮所需时间很长;渗氮层也较薄一般为0.3-0.6mm;38CrMoAl钢制压缩机活塞杆为获得0.4-0.6mm的渗氮层深度气体渗氮保温时间需60h左右..氮化缺点工艺复杂;成本高;氮化层薄..用于耐磨性、精度要求高的零件及耐热、耐磨及耐蚀件..第六节铸铁一、铸铁的成分、组织和性能特点1、铸铁的成分特点a. 含碳量理论上含C:2.11%~ 6.69% 的铁碳合金都属于铸铁; 但工业上常用铸铁的含碳量一般在:2.50%~4.00%之间..三、铸铁的分类1、灰口铸铁普通铸铁石墨呈片状;典型灰口铸铁;这类铸铁机械性能不高;但生产工艺简单;价格低廉;工业上所用铸铁几乎全部属于这类铸铁..灰口铸铁又根据第三阶段石墨化程度的不同分为:铁素体灰铁、 F+P灰铁、珠光体灰铁2、白口铸铁炼钢生铁第一、二、三阶段石墨化过程完全被抑制;Fe-C合金完全按照Fe-Fe3CC形式存在组织中存在莱氏体组织;断口呈白亮结晶而得到的铸铁;以Fe3色;故得名白口铸铁..白口铸铁硬脆;主要作为炼钢原料..3、可锻铸铁韧性铸铁;玛钢C分解而得到团石墨呈团絮状;用白口铸铁经长时间高温退火后;Fe3絮状石墨组织的铸铁..由于石墨呈团絮状;对基体的割裂作用比片状石墨小一些;故机械性能尤其冲击韧性高于灰口铸铁..可锻铸铁由于生产工艺复杂;成本较高;应用很少..4、球墨铸铁石墨组织呈球状;这种铸铁强度高;生产工艺比可锻铸铁简单;且可通过热处理进一步提高强度..球墨铸铁既保持了铸铁的特点;又具钢的高强度、高韧性;故应用越来越多..1球化处理与孕育处理Ⅰ球化处理铁水浇铸前;加入一定量的球化剂镁;硅铁-镁;铜-镁系;以促使石墨结晶时生长成为球状的工艺;称为球化处理..Ⅱ孕育处理变质处理球化处理只能在铁水中有石墨核心产生时;才能促使石墨生长成球状;而球化剂都是阻碍石墨化的元素;所以必须进行孕育处理变质处理;往铁水中加入变质剂75% Si-Fe..第七节铝及铝合金1性能特点纯铝银白色金属光泽;密度小2.72;熔点低660.4℃;导电导热性能优良..耐大气腐蚀;易于加工成形 ..具有面心立方晶格..铝合金一般具有有限固溶型共晶相图..可将铝合金分为变形铝合金和铸造铝合金两大类..3形变铝合金的牌号、性能变形铝及铝合金牌号表示方法;国标规定;变形铝及铝合金可直接引用国际四位数字体系牌号或采用国标规定的四位字符牌号..GB 3190-82中的旧牌号表示方法为防锈铝合金:LF +序号硬铝合金: LY +序号超硬铝合金:LC +序号锻铝合金: LD +序号4铸造铝合金牌号、分类Al- Si系:代号为ZL1+两位数字顺序号Al-Cu系:代号为ZL2+两位数字顺序号Al-Mg系:代号为ZL3+两位数字顺序号Al-Zn系:代号为ZL4+两位数字顺序号二、铜及铜合金1性能特点纯铜呈紫红色;又称紫铜;具有面心立方晶格;无同素异构转变;无磁性..纯铜具有优良的导电性和导热性;在大气、淡水和冷凝水中有良好的耐蚀性..塑性好..2黄铜以Zn为主要合金元素的铜合金称为黄铜..黄铜按化学成分可分为普通黄铜和特殊黄铜..按工艺可分为加工黄铜和铸造黄铜..单相黄铜塑性好;常用牌号有H80、H70、H 68..适于制造冷变形零件;如弹壳、冷凝器管等..三七黄铜两相黄铜热塑性好; 强度高..常用牌号有H59、H62..适于制造受力件;如垫圈、弹簧、导管、散热器等..四六黄铜3青铜青铜主要是指Cu-Sn合金..加工青铜的牌号为:Q +主加元素符号及其平均百分含量 + 其他元素平均百分含量.. QSn4-3含4%Sn 3%Zn 常用青铜有锡青铜、铝青铜、铍青铜、硅青铜、铅青铜等..常用牌号有:QSn4-3、QSn6.5-0.4、ZCuSn10Pb1轴承合金制造滑动轴承的轴瓦及其内衬的耐磨合金称为轴承合金..滑动轴承是许多机器设备中对旋转轴起支撑..由轴承体和轴瓦两部分组成..与滚动轴承相比滑动轴承具有承载面积大;工作平稳;无噪音及拆装方便等优点..一、组织性能要求速旋转时;轴瓦与轴颈发生强烈摩擦;承受轴颈施加的交变载荷和冲击力..⑴足够的强韧性;承受交变冲击载荷;⑵较小的热膨胀系数;良好的导热性和耐蚀性;以防止轴与轴瓦之间咬合;⑶较小的摩擦系数;良好的耐磨性和磨合性;以减少轴颈磨损;保证轴与轴瓦良好的跑合..为满足上述性能要求;轴承合金的组织应是软的基体上分布着硬的质点..当轴旋转时;软的基体或质点被磨损而凹陷;减少了轴颈与轴瓦的接触面积;有利于储存润滑油..软基体或质点还能起嵌藏外来硬杂质颗粒的作用;以避免擦伤轴颈..这类组织承受高负荷能力差;属于这类组织的有锡基和铅基轴承合金;又称为巴氏合金babbitt alloy1、锡基轴承合金以锡为主并加入少量锑、铜等元素组成的合金熔点较低;是软基体硬质点组织类型的轴承合金..锡基轴承合金具有较高的耐磨性、导热性、耐蚀性和嵌藏性;摩擦系数和热膨胀系数小;但疲劳强度较低;工作温度不超过150 ℃;价格高..广泛用于重型动力机械;如气轮机、涡轮机和内燃机等大型机器的高速轴瓦..2、铅基轴承合金以铅为主加入少量锑、锡、铜等元素的合金;软基体硬质点型轴承合金;ZChPbSb16Sn16Cu2..铅基轴承合金的强度、硬度、耐蚀性和导热性都不如锡基轴承合金;但其成本低;高温强度好;有自润滑性..常用于低速、低载条件下工作的设备;如汽车、拖拉机曲轴的轴承等..。

材料成型技术基础复习重点

材料成型技术基础复习重点

1.11.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么?塑性,弹性,刚度,强度,硬度,韧性1.2金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。

细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。

合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。

固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。

1.3铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体1.4钢的牌号和分类影响铸铁石墨化的因素主要有化学成分和冷却速度1.5塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。

热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。

热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。

橡胶橡胶是可改性或已被改性为某种状态的弹性体。

1.6复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。

通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。

1.8工程材料的发展趋势据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。

今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。

2.0材料的凝固理论凝固:由液态转变为固态的过程。

结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。

粗糙界面:微观粗糙、宏观光滑;将生长成为光滑的树枝;大部分金属属于此类光滑界面:微观光滑、宏观粗糙;将生长成为有棱角的晶体;非金属、类金属(Bi、Sb、Si)属于此类偏析:金属凝固过程中发生化学成分不均匀的现象宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象2.1铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。

材料成型技术基础复习提纲整理

材料成型技术基础复习提纲整理

材料成型技术基础复习提纲整理第一章绪论1、现代制造过程的分类(质量增加、质量不变、质量减少)。

2、那几种机械制造过程属于质量增加(不变、减少)过程。

(1)质量不变的基本过程主要包括加热、熔化、凝固、铸造、锻压(弹性变形、塑性变形、塑性流动)、浇灌、运输等。

(2)质量减少过程材料的4种基本去除方法:切削过程;磨料切割、喷液切割、热力切割与激光切割、化学腐蚀等;超声波加工、电火花加工和电解加工;落料、冲孔、剪切等金属成形过程。

(3)材料经过渗碳、渗氮、氰化处理、气相沉积、喷涂、电镀、刷镀等表面处理及快速原型制造方法属于质量增加过程。

第二章液态金属材料铸造成形技术过程1、液态金属冲型能力和流动性的定义及其衡量方法液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力。

液态金属的充型能力通常用铸件的最小壁厚来表示。

液态金属自身的流动能力称为“流动性”。

液态金属流动性用浇注流动性试样的方法来衡量。

在生产和科学研究中应用最多的是螺旋形试样。

2、影响液态金属冲型能力的因素(金属性质、铸型性质、浇注条件、铸件结构)(1)金属的流动性:流动性好的液态金属,充型能力强,易于充满薄而复杂的型腔,有利于金属液中气体、杂质的上浮并排除,有利于对铸件凝固时的收缩进行补缩。

流动性不好的液态金属,充型能力弱,铸件易产生浇不足、冷隔、气孔、夹杂、缩孔、热裂等缺陷。

(2)铸型性质:铸型的蓄热系数b(表示铸型从其中的金属液吸取并储存在本身中热量的能力)愈大,铸型的激冷能力就愈强,金属液于其中保持液态的时间就愈短,充型能力下降。

(3)浇注条件:浇注温度对液态金属的充型能力有决定性的影响。

浇注温度越高,充型能力越好。

在一定温度范围内,充型能力随浇注温度的提高而直线上升,超过某界限后,由于吸气,氧化严重,充型能力的提高幅度减小。

液态金属在流动方向上所受压力(充型压头)越大,充型能力就越好。

材料成型工艺基础复习提纲

材料成型工艺基础复习提纲

材料成型工艺基础复习提纲第1章铸造工艺1、铸造的实质及优缺点;2、常用合金的铸造性能和使用性能;3、特种铸造方法的特点及选用(了解);4、铸造工艺方案的确定及工艺图的绘制;5、铸件结构的工艺性。

作业1:图示槽形梁,铸造后立即进行了机械加工,使用一段时间后在梁的长度方向发生了弯曲变形,试分析:①该梁壁厚均匀,为什么还会变形?判断梁的变形方向;②有何铸造工艺措施能减少变形?③为防止铸件变形,请改进槽型梁的结构。

作业2:下图为底座铸件,材料HT150,采用砂型铸造方法生产。

(1)指出该铸件结构工艺性不合理之处,并分析其对铸件质量带来的影响。

(2)在不改变铸件外形轮廓尺寸的前提下,改进铸件的结构(直接在图上修改) (3)用规定的铸造工艺符号,在图上标注出分型面、浇注位置、砂芯及芯头,使其能铸造成形。

答:(1) 50孔周围壁过厚,应挖空使其壁厚均匀,同时设计4个肋板,增加铸件的刚度。

内腔为封闭结构,型芯的固定、排气和清理困难,应将底部开通。

(2)铸件结构改进方案见右图。

(3)铸造工艺示意图见右图。

修改后:作业3:确定图4-27所示铸件的铸造工艺方案,要求如下:(1)按单件、小批生产和大量生产两种条件分析最佳方案;(2)按所选方案绘制铸造工艺图(包括浇注位置、分型面、分模面、型芯及芯头)。

第2章锻压工艺1、锻造的实质及优缺点;2、各种模锻方法的特点、模锻工步的选择、锻件图的绘制;3、冲压工艺方案的确定、拉深系数的计算。

4、其它塑性成形方法的特点及选用(了解);图示零件采用锤上模锻方法制坯,结构上有哪些不合理的地方?拟定模锻工步,定性地绘出锻件图。

作业:用低碳钢板大批量生产右图所示冲压件,(1)试拟订其生产基本工序,并画出工序简图;(2)生产冲孔模具时,应先制造凹模还是凸模? 为什么?(3)若模具间隙过大,对冲压件切断面的质量有何影响?答: (1)该冲压件的生产基本工序为: 1.落料-冲孔 2.弯曲 3.冲两侧孔(2)生产冲孔模具时,应先制造凸模。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料成型工艺基础考试复习要点公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-材料成型工艺基础复习资料13上午九到十一点一号公教楼4071铸件的凝固方式及其影响因素凝固方式:(l)逐层凝固方式(2)糊状凝固方式(3)中间凝固方式影响因素:(l)合金的结晶温度范围:结晶温度范围越小,凝固区域越窄,越倾向于逐层凝固。

低碳钢近共晶成分铸铁倾向于逐层凝固,高碳钢、远共晶成分铸铁倾向于糊状凝固。

(2)逐渐的温度梯度:在合金的结晶温度范围已定时,若铸件的温度梯度↑由小到大,则凝固区由宽变窄,倾向于逐层凝固。

2铸造性能含义及其包括内容,充型能力含义,影响合金流动性因素(合金种类、成分、浇注条件、铸型条件)铸造性能:合金铸造成形获得优质铸件的能力,、合金的铸造性能:主要指合金的流动性、收缩性和吸收性等充型能力:液态合金充满铸型型腔,获得形状完整轮廓清晰的铸件的能力。

影响合金流动性因素:(l)合金的种类。

灰铸铁、硅黄铜流动性最好,铝合金次之,铸钢最差。

(2)合金的成分。

同种合金,成分不同,其结晶特点不同,流动性也不同。

(3)浇注温度越高,保持液态的时间越长,流动性越好;温度越高,合金粘度越低,阻力越小,充型能力越强。

在保证充型能力的前提下温度应尽量低。

生产中薄壁件常采用较高温度,厚壁件采用较低浇注温度,(4) l.铸型的蓄热能力越强,充型能力越差2.铸型温度越高,充型能力越好3.铸型中的气体阻碍充型3合金的收缩三阶段,缩孔、缩松、应力、变形、裂纹产生阶段l.收缩。

合金从液态冷却至常温的过程中,体积或尺寸缩小的现象。

合金的收缩过程可分为三阶段(l)液态收缩(2)凝固收缩(3)固态收缩缩孔(1)形成条件:金属在恒温或很窄的温度范围内结晶,铸件壁以逐层凝固方式凝固。

(2)产生原因:是合金的液态收缩和凝固收缩值大于固态收缩值,且得不到补偿。

(3)形成部位:在铸件最后凝固区域,次区域也称热节。

缩松(1)形成条件:形成铸件最后凝固的收缩未能得到补足,或者结晶温度范围宽的合金呈糊状凝固,凝固区域较宽,液、固两相共存,树枝晶发达,枝晶骨架将合金液分割开的小区难以得到补缩所致。

(2)形成部位:一般出现在铸件壁的轴线区域、热节处、冒口根部和内浇口附近,也常分布在集中缩孔的下方。

其热应力形成过程分三阶段第一阶段。

两者都塑性变形,无热应力;第二阶段,一塑性一弹性,仍无热应力;第三阶段,两者均弹性变形,冷却慢的受拉,快的受压。

铸件的变形:残留铸造应力超过铸件材料的屈服极限时产生的翘曲变形。

后部、心部受拉应力,出现内凹变形。

薄部、表面受压应力,出现外凸变形。

铸件的裂纹:当铸件应以超过金属的强度极限时。

铸件便产生裂纹,分为热裂和冷裂。

4铸造内应力分类及其各自产生原因热应力:铸件在凝固和冷却过中,不同部位由于不均衡的收缩而引起的应力,称热应力收缩应力:铸件在固态收缩时,因受铸型、型芯、浇冒口等外力的阻碍而产生的应力称收缩应力固态下发生相变的合金,由于部分冷却速度不同,到相变温度的时间不同,而且发生相变程度不同由此产生的应力5什么是定向凝固原则什么是同时凝固原则其目的是什么需要采取什么措施来实现定向(顺序)凝固:就是在铸件上可能出现缩孔的厚大部位安放冒口,使铸件上远离宜口的部位先凝固然后是靠近冒口的部位凝固,最后才是冒口本身的凝固。

远离冒口→冒口附近→冒口本身同时凝固:就是采取必要的工艺措施,使铸件各部分冷却速度尽量一致。

实现定向凝固的措施是:设置冒口;合理使用冷铁。

它广泛应用于收缩大或壁厚差较大的易产生缩孔的铸件,如铸钢、高强度铸铁和可锻铸铁等。

实现同时凝固的措施是:将浇口开在铸件的薄壁处,在厚壁处可放置冷铁以加快其冷却速度。

它应用于收缩较小的合金(如碳硅质量分数高的灰铸铁)和结晶温度范围宽,倾向于糊状凝固的合金(如锡青铜),同时也适用于气密性要求不高的铸件和壁厚均匀的薄壁控制铸件凝固方式的方法:(1)正确布置浇注系统的引入位置,控制浇注温度、浇注速度和铸件凝固位置;(2)采用冒口和冷铁;(3)改变铸件的结构;(4)采用具有不同蓄热系数的造型材料。

6防止或减少铸件应力与变形的措施?(1)合理设计铸件结构在设计铸件时应尽量使铸件形状简单、对称、壁厚均匀。

(2)尽量选用先收缩率小、弹性模量小的合金(3)采用同时凝固的工艺(4)设法改善铸型型芯的退让性,合理设置浇冒口(5)对铸件进行时效处理。

自然时效热时效(去应力退火)和共振时效1熔模铸造工艺过程,特点及适用范围,(不可用金属型)工艺过程:制造蜡模→制壳→脱蜡→熔烧→浇注工艺特点:(l)铸得的精度和质量高。

(2)可制造形状复杂的铸件。

(3)适用各种合金铸件,尤其是高熔点和难以加工的高合金钢,如耐热合金,不锈钢,磁钢等。

(4)生产批量不受限制,单件小批量大批量均可使用。

(5)工艺过程较复杂,生产周期长,使用费和消耗的材料费较贵。

=>成本高适用范围:熔摸制造适用于制造形状复杂,难以加工的高熔点合金既有特殊要求的精密铸件.主要有汽轮机,燃气轮机叶片,切削刀具,仪表原件,汽车,拖拉机及机床等零件的生产2金属性铸造应采取怎么样的工艺措施来保证产品质量(预热、喷涂料、控开型、提高浇注温度)铸件特点、应用范围(1)金属型的预热(预热温度一般不低于150℃)。

(2)涂料(耐火涂料的厚度为0.3~0.4mm)利用涂料厚度的厚薄,来调节铸件的冷却速度,保护金属型,防止高温金属液对型壁的冲蚀和热击;利用涂料储气排气。

(3)控制开型时间。

(4)提高浇注温度和防止铸件产生“白口”。

2铸造特点:(1)可承受多次浇注,便于实现机械化生产;(2)铸件精度和表面质量高;(3)铸件的结晶组织致密机械性能高,铸件质量稳定,废品率低。

(4)金属型成本高,周期长,铸造主艺严格,3适用范围适用于大批量生产有色金属铸件,如铝合金活塞、汽缸体等。

3离心铸造特点及应用概念特点:(1)利用旋转表面生产圆筒形铸件,省去型芯和浇注系统,大大简化生产过程节约了金属,(2)离心力作用:铸件由外向内的顺序凝固,而气体和残渣因比重轻向内腔移动而排除,铸件组织致密,极少有缩孔、气孔、夹渣等缺陷。

(3)合金的充型能力强便于流动性差的合金及薄件的生产,便与制造双金属件。

但是铸件易产生偏析,铸件内表面较粗糙。

内表面尺寸不易控制。

应用:离心铸造主要用于大批量生产管、套类零件。

如铸铁管、铜套、气缸套等。

4压力铸造的特点及应用(薄壁、精密件、镶嵌件、不能热处理)特点:(l)铸件精度高;可以做形状复杂的薄壁件;(2)力学性能好;(3)生产率高50 - 150次/小时;(4)但设备投资大,铸型周期长,只适用于大批量生产,而且不能进行切削余量加工,防止孔洞外漏。

应用:用于生产有色金属的精密铸件。

第四章1铸件结构设计的要求(理解工艺要求铸造性能要求)工艺要求:1外形设计应避免外形凹,简化工艺2外形设计凸台应考虑便于造型3减少型芯数量,利于型芯的固定排气和清理4应合理确定结构的斜度性能要求:1铸件壁厚的设计(1)铸件的壁厚厚度要合理,铸件壁厚介于临界壁厚和最小壁厚之间(2)铸件壁厚应均匀,避免厚大截面,使过热(3)铸件内壁应薄于外壁,内外壁厚差约10-30%2铸件壁链接(1)铸件的各壁之间应均匀过度,两个非加工表面所形成的内角应设计成圆角(2)避免锐角连接(3)减缓肋、辅收缩的阻碍3避免铸件大的水平平面结构4避免铸件产生翘曲变形5对铸钢件,审查实现定向凝固的可行性2浇注位置选择原则.分型面选择原则浇注:1铸件的重要加上面应朝下或位于侧面2铸件的宽大平面应朝下3铸件局部薄壁部位朝下4利于铸件顺序凝固和补缩厚大部位在上5应尽量减少型芯的数量,便于型芯安放、固定和排气分型:1型面的确定应能方便、顺利的取出模样或铸件,分型面一般选在铸件的最大截面处2分型面应避免曲折,数量应少,最好是一个,且为平面3最适宜采取哪种铸造方法铝合金活塞原型铸造;发动机铯背铜套离心铸造;铸铁水管离心铸造;车床床身砂型铸造;汽轮机叶片熔模铸造第五章1冷热变形的含义,变形后组织性能特点冷变形:金属在再结晶温度以下进行的塑性变形特点:1晶粒沿变形方向被拉长2晶粒破碎3晶粒择优取向,形成变形织构4残余内应力区别在于塑性变形在再结晶温度热变形:金属在再结晶温度以上进行的塑性变形特点:1金属致密度提高↑2组织细化,力学性能提高↑3出现锻造流线2回复与再结晶含义,回复:将冷成形后的金属加热至一定温度后,使原子回复到平衡位置,晶内残余应力大大减小的现象组织与性能:(1)使晶格畸变↓减轻或消除,但晶粒的大小和形状并无改变(2)消除了晶格扭曲↓及大部分内应力↓(3)力学性能变化不大,强度、硬度塑性略有提高,内应力大大降低再结晶:塑性变形后金属被拉长了的晶粒出现重生核、结晶,变为等轴晶粒的现象组织与性能:(1)再结晶通过形核、长大的方式进行。

得到细小均匀等轴晶粒(2)消除了残余应力↓和加主硬化↓现象,塑性↑提高,再结晶退火3锻造流线对性能影响事如何利用?锻造流线使金属性能呈现异向性:沿着流线方向(切向)抗拉强度较高,而垂直于流线方向(法向)抗拉强度较低。

合理利用纤绯组织:(1)应使零件在工作中所受的最大正应力方向与纤维方向重合(2)最大切力方向与零件的轮廓相符合,尽量不被切断4什么是金属的可锻性,影响可锻性的因素各自如何起作用金属的可锻性:金属材料在受锻压后,可改变自己的形状而不产生破裂。

是衡量金属通过塑性加工获得优质零件难易程度的工艺性能影响因素:(1)金属的本质a化学成分纯金属,合金碳化物形成元素使塑性加工性下降b金属组织纯金属和固溶体,碳化物粗晶粒,均匀细小晶粒(2)加工条件a变形温度锻造温度始锻温度越高,可锻性好b变形速度,速度增加,一方面,回复和再结晶来不及进行,塑性下降,变形抗力增加;另一方面,热效应明显,塑性提高,变形抗力下降。

变形速度较小时,以强化为主,较大时以热效应为主c应力状态压应力↑数目越多,塑性越好d胚料表面质量表面粗糙度↓低,塑性越好第六章1自由锻工序,特点,制定自由锻工艺规程的主要内容工艺余块含义工序:(1)基本工序用来改变胚料的形状尺寸的主要工序,主要包括:镦粗、拔长、冲孔、弯曲、扭转、错移、切割(2)辅助工序为了完成基本工序而进行的预先变形工序,主要包括:压钳口、倒棱、压肩(3)修整工序用来提高锻件尺寸及位置精度的工序,主要包括:校正、滚圆、平整特点:自由锻根其所用设备分为手工自由锻和机器自由锻,手工自由锻只能生产小型锻件,生产效率低,机器自由锻则是自由锻的主要生产方法,重型锻唯一可行的生产方法收是自由锻工艺规程:绘制锻件图→计算胚料的重量和尺寸→确定变形工步→选定设备和工贝→确定锻造温度范围→加热、冷却及热处理的方法及规范等绘图→计算→工步→设备→锻温→热处理工艺余块:为了简化锻件形状而加上去的那部分金属=>多余的2与自由锻相比,模锻有什么特点模膛分类飞边、冲孔连皮含义拔长、滚压模膛作用胎模锻特点(1)由于有模膛引导金属的流动性,锻件的形状可以比较复杂(2)锻件内部的锻造流线比较完整,从而提高了零件的力学性能↑和使用寿命↑(3)锻件表面光洁,尺寸精度高,节约材料的切削加工工时因此生产率较高操作简单易于实现机械化生产批量越大成本越低(4)模锻是整体成形,摩擦阻力大,故只适用于中小型锻件的成批或大批生产模膛分类:1模锻模膛2制胚模膛飞槽边锤上模锻锻模上的组成部分,用以增加金属从模膛中流出的阻力,促使金属充满模,同时容纳多余的金属冲孔连皮:模锻件上的通孔,不能直接锻出,只能锻成盲孔,中间留有一定厚度的金属层拔长模锻的作用:用它来减少坯料某部分的横截面积↓,以增加该部分的长度↑液压模锻的作用:用它来减少坯料某部分的横截面积↓,以增加另一部分的横截面积↑3模锻件为什么要有斜度和圆角与模膛深度有什么关系内外斜度和圆角取值有何不同(1)为取出模锻件,在平行于锤击方向的表面设计斜度。

相关文档
最新文档