模态分析理论

合集下载

模态分析

模态分析

[D()] 2[m] [c] [k] 0
(4)
2、模态分析理论和术语
2.2 有阻尼模态分析理论:
对于包含陀螺效应的旋转软化结构或需考虑阻尼的结构,则使用QR Damped法求解模态振型和复特征值。特征值 i 的表达式:
i i ji
i-复数特征值的实部; i -复数特征值的虚部
3、特征值和振型
特征值的平凡根等于结构的固 有频率(rad/s)
ANSYS Workbench输入和输出的 固有频率的单位为Hz,因为输入 和输出时候已经除以了2π。
模态计算中的特征向量表征了结构 的模态振型,如图所示该形状即为 假设结构按照频率249Hz振动时的 形状。
4、参与系数,有效质量
模态计算后除了能够获取结构的固有频率和振型外,还有参与 系数与有效质量,其中参与系数的计算公式:
M u Cu Ku 0 (1)
设其解为
{x} { }et
代入方程(1)得到
(2[m] [c] [k]){ } [D()]{ } {0}
(2) (3)
矩阵 [D()]称为系统的特征矩阵。方程(3)是一个“二次特征值”问题,
要(3)式有非零解的充要条件为
2、模态分析理论和术语
2.1式输出计算的固有频率:
fi

i 2
其中: fi的单位为Hz,即转/秒。 如果模型的约束不足导致产生刚体运动,则总体刚度矩阵[K]为半正
定型,则会出现固有频率为0的情况。
2、模态分析理论和术语
2.2 有阻尼模态分析理论:
有阻尼模态分析中假设结构没有外力作用,则控制方程变为
6、模态计算中接触设置
模态计算中可以定义不同结构之间的接触,但是因为模态计 算是一个纯线性分析,因此模态计算中接触定义与其他非线性 问题中定义中的接触不同,模态计算中接触的具体设置如下:

模态分析算法原理与实例

模态分析算法原理与实例

5.模态计算中接触设置
Training Manual
Advanced Contact & Fasteners
模态计算中可以定义不同结构之间的接触,但是因为模态计 算是一个纯线性分析,因此模态计算中接触定义与其他非线性 问题中定义中的接触不同,模态计算中接触的具体设置如下:
6.预应力模态分析
• 具有预应力结构的模态分析; • 同样的结构在不同的应力状态下表现出不同的动力特性。
Advanced Contact & Fasteners
i 2
其中: fi的单位为Hz,即转/秒。 如果模型的约束不足导致产生刚体运动,则总体刚度矩阵[K]为半正 定型,则会出现固有频率为0的情况。
3.模态计算的方法
在大多数情况下,建议用户选用 Program Controlled选项,程序会自 动优化进行选择算法。
Training Manual
Advanced Contact & Fasteners
用户也可以设置输出应力和应变;
注意:模态计算中的应力和应变只是一个相对值,不是真实的应 力值;应力值并没有实际意义,但如果振型是相对于单位矩阵归 一的,则可以在给定的振型中比较不同点的应力,从而发现可能 存在的应力集中。
Training Manual
Advanced Contact & Fasteners
(1)Direct-Block Lanczos
-能够处理对称矩阵; -是一种功能强大的方法,当提取中型到大型模型(50000 ~ 100000 个 自由度)的大量振型时(40+),这种方法很有效; -经常应用在具有实体单元或壳单元的模型中; -可以很好地处理刚体振型; -需要较高的内存。

模态分析的基础理论

模态分析的基础理论

模态分析的基础理论模态分析是一种研究系统中不同模式的分布、生成和演化规律的方法。

在这个理论中,模态是指系统中不同状态或形式的存在形式,例如质量分数、温度、湿度等。

模态分析的基础理论包括概率论、统计学和模态分析技术等。

概率论是模态分析的基础之一、它研究随机事件的发生概率和规律。

在模态分析中,我们可以利用概率论来描述不同模态出现的概率分布,并通过分析系统中的模式,得出不同模态的生成规律。

通过概率论的方法,我们可以预测不同模态的变化趋势,从而指导系统的优化设计和运行管理。

统计学也是模态分析的基础理论之一、统计学研究如何收集、处理、分析和解释数据,通过对大量数据的统计分析,揭示数据背后的规律和趋势。

模态分析中,统计学的方法可以用于分析模态数据的分布情况,寻找模态之间的相关性和影响因素,并建立相应的模型来预测和优化系统的运行情况。

在模态分析技术方面,主要包括聚类分析、主成分分析和模态分析方法等。

聚类分析是一种将相似的对象分组的方法,通过对模态数据进行聚类分析,我们可以将相似的模态归为一类,从而描述系统中的不同模态分布情况。

主成分分析是一种降维技术,它可以将高维的模态数据降低到低维,并保留大部分信息。

这可以帮助我们更好地理解系统模态之间的关系和重要性。

模态分析方法包括有限元模态分析、频响函数法和模态参数识别等。

通过这些方法,我们可以对系统的模态进行分析,包括振型、频率和阻尼等,并找出模态的摄动源和分布规律。

模态分析的基础理论对于理解和优化系统具有重要意义。

通过对模态的分析和研究,我们可以了解系统的特性和不同模态之间的关系,从而指导系统的设计和运行。

同时,模态分析也可以帮助我们发现和解决系统中存在的问题,提高系统的稳定性和可靠性。

因此,深入理解和应用模态分析的基础理论对于各个领域的研究和实践具有重要价值。

单自由度模态分析理论

单自由度模态分析理论

要点二
非线性模态分析的研 究
目前,大多数模态分析研究都集中在 线性系统上。然而,在许多工程应用 中,非线性因素对结构振动的影响是 不可忽视的。因此,未来可以进一步 研究非线性模态分析方法,以更准确 地描述这些非线性效应。
要点三
智能材料和结构的应 用
随着智能材料和结构的发展,它们在 许多领域的应用越来越广泛。这些材 料和结构具有独特的动态特性,需要 新的模态分析方法来描述。因此,未 来的研究可以探索适用于智能材料和 结构的模态分析方法。
背景
随着工程结构的日益复杂化,模态分析在结构健康监测、振 动控制、地震工程等领域的应用越来越广泛。单自由度模态 分析作为模态分析的基础,为多自由度模态分析提供了理论 支持。
模态分析的定义
模态
模态是结构的固有振动特性,包 括频率、阻尼比和振型。
模态分析
模态分析是通过试验或数值方法 识别结构的模态参数的过程。
模态振型之间具有正交性, 即不同模态的振动不会相 互干扰。
选择性
在实际工程中,可以根据需要 选择特定的模态进行分析,以 简化计算和提高分析效率。
Part
03
单自由度系统的01
激振器激励
STEP 02
自由衰减振动
通过激振器对系统施加激励 ,使其产生振动响应,然后 采集响应信号进行分析。
04
单自由度系统的模态特性分析
模态正交性分析
模态正交性是指在模态空间中,不同的模态之间相互独立, 没有耦合关系。在单自由度系统中,模态正交性表现为各模 态振型函数的正交性,即它们的内积为零。
模态正交性的意义在于,它使得各模态之间互不干扰,各自 独立地响应外部激励,从而使得系统的响应可以通过叠加各 模态的响应得到。

模态分析理论基础

模态分析理论基础

有限元分析软件(如ANSYS、NASTRAN、SAP、MAC等)在结
构设计中被普遍采用,但在设计中,由于计算模型和实
际结构的误差,而且受到边界条件很难准
确确定的影响,特别是结构的形状和动态特性很复杂时,
有限元简化模型和计算的误差较大。通过对结构进行实验模态分 析,可以正确确定其动态特性,并利用动态实验结果修改有限元 模型,从而保证了在结构响应、寿命预计、可靠性分析、振动与 噪声控制分析与预估以及优化设计时获得有效而正确的结果。
•传递函数和频率响应函数
H(s)m2s(11jg)k
H()m21(1jg)k
(1+jg)k — 复刚度
–用实部和虚部表示
H ()1 k (1 1 2 )22 g2j(1 2)g 2g2
与粘性阻尼系统相比频响函数形式相同 g和2 相互置换即可得各自表达式
位移、速度和加速度传递函数
Hd (s)
e. 为结构动力学优化设计提供目标函数或约束条件
动力学设计,即对主要承受动载荷而动特性又至关重要的结构,以 动态特性指标作为设计准则,对结构进行优化设计。它既可在常规静力 设计的结构上,运用优化技术,对结构的元件进行结构动力修改;也可 从满足结构动态性能指标出发,综合考虑其它因素来确定结构的形状, 乃至结构的拓扑(布局设计、开孔、增删元件)。动力学优化设计就是 在结构总体设计阶段就应对结构的模态参数提出要求,避免事后修补影 响全局。
x(s) f (s)
Hv(s)
v(s) f (s)
Ha(s)
a(s) f (s)
• 位移、速度和加速度频率响应函数

()
x() f ()
Hv()
v() f ()
• 三者之间的关系
Ha()

多自由度模态分析理论

多自由度模态分析理论
量的数值计算,如何在保证计算精度的 前提下提高计算效率是一个重要的问题。
针对大规模系统,可以采用高效的数值算法和并行计算技术 来提高计算效率。同时,也可以采用适当的模型简化方法来 平衡计算效率和精度。
05 多自由度模态分析的未来 发展方向
混合模态分析方法
混合模态分析方法是一种结合了线性与非线性理论的分析方法,旨在更全面地描述系统的动态特性。 这种方法结合了线性模态分析的准确性和非线性模态分析的实用性,能够更好地处理复杂系统的振动 问题。
THANKS FOR WATCHING
感谢您的观看
通过建立系统的有限元模型,利用 数值方法求解特征方程得到模态参 数。
参数识别方法
包括频域法和时域法,其中频域法 通过频率响应函数识别模态参数, 时域法通过时间历程数据识别模态 参数。
03 多自由度模态分析在工程 中的应用
结构健康监测
结构损伤识别
01
多自由度模态分析能够通过比较结构在不同模态下的振动特性,
智能优化算法在模态分析中的应用
智能优化算法是一类基于人工智能的 优化算法,如遗传算法、粒子群算法 和蚁群算法等。这些算法在解决复杂 优化问题方面具有高效性和鲁棒性。
VS
在模态分析中,智能优化算法可以用 于求解系统的最优模态参数,如模态 频率、模态阻尼比和模态振型等。通 过智能优化算法,可以自动搜索系统 的最优模态参数,提高模态分析的效 率和准确性。
多自由度模态分析理论
目录
• 引言 • 多自由度模态分析理论概述 • 多自由度模态分析在工程中的应用 • 多自由度模态分析的局限性与挑战 • 多自由度模态分析的未来发展方向 • 结论
01 引言
背景介绍
机械系统振动分析
多自由度模态分析理论起源于机 械系统振动分析,用于研究复杂 机械结构的动态特性。

模态分析的基础理论

模态分析的基础理论

运动微分方程
单自由度系统无阻尼自由振动是简谐振动

m
T 2π
n
k
fn

1 T

n


1 2π
k m
能量关系
mx dx kx dx 0 dt dt
意义:惯性力的功率Fm与弹性力的功率Fs之和为零
d dt

1 2
mx2

1 2
kx 2


0
ET

1 mx2 2
单自由度系统
自由振动 简谐振动 非周期强迫振动
自由振动
振动系统在初始激励下或外加激励消失后的 运动状态。
自由振动时系统不受外界激励的影响,其运 动时的能量来自于初始时刻弹性元件和惯性 元件中存储的能量。
振动规律完全取决于初始时刻存储的能量和 系统本身的性质。
运动微分方程
•使该矢量以等角速度在复平面内旋转(复数旋转矢量)
虚轴
ei x cos i sin
P A
t
z Acost i sint Aeit
实轴
y Asint Im z Im Aeit
运动学
速度、加速度的复数表示
位移 x Aeit
速度 x d Aeit iAAeeiitt / 2
2.0
0.5 和 0.7 临 界 阻 尼 比 无
c/cc=0
抛物线
阻尼曲线更接近理想加
1.5
速度计曲线
c/cc=0.5
1.0
c/cc=0.7
0.5
0 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

模态分析理论

模态分析理论

e t
sin dt
就是脉冲响应函数。
很容易证明频响函数和脉冲响应函数是一对傅氏变换对:
H () Fh(t)
(1) 简谐激励
结构在简谐激励下的稳态响应也是同频率的简谐振动。但有相位差。
f (t) Fe j(t ) x(t) Xe j(t )
H() X e j( )
F
工程中,应变常常是非常重要的,而且易于测量。应变片体积小、质量小、成分低,对试验结
结构动力修改
模态分析的目的是了解系统的动态特性。在已知结构动态特性参数后,我们应该寻求改进系统动态 特性的方法。 有两种情况: 1) 由于制造和设计原因,不得不对现有结构进行局部修改。
word 格式-可编辑-感谢下载支持
机械模态分析理论基础
假设:系统是线性、定常与稳定的线性时不变系统
线性:描述系统振动的微分方程为线性方程,其响应对激励具有叠加性;
定常:振动系统的动态特性(如质量、阻尼、刚度等)不随时间变化,即具有频率保持性;如系统受简谐 激励-响应的频率必定与激励一致。 稳定:系统对有限激励必将产生一个有限响应,即系统满足傅氏变换和拉氏变换的条件。 振动系统分类:
word 格式-可编辑-感谢下载支持
ˆ
2 fx
()
1
GMM G ff ()
1 1
GNN Gxx ( )
输入存在噪声,会使估计的频响函数偏小;
输出存在噪声,会使估计的频响函数偏大;
还可用下面一些估计方法:
Hˆ 3 ()
Hˆ 1 ( )
2
Hˆ 2 ()
Hˆ 4 () Hˆ1() Hˆ 2 ()
K s2M φs 0
右乘 φs ,得到:
φsT KT s2MT φr 0

模态分析理论

模态分析理论

模态叠加法一.思想要点是在积分运动方程以前,利用系统自由振动的固有振型将方程组转换为n 个相互不耦合的方程,对这种方程可以解析或数值地进行积分。

对于每个方程可以采用各自不同的时间步长,即对于低阶振型可采用较大的时间步长。

当实际分析的时间历程较长,同时又只需要少数较低阶振型的结果时,采用振型叠加法将是十分有利的。

求解步骤:1.求解系统的固有频率和振型2.求解系统的动力响应二.求解固有频率与振型(求解不考虑阻尼影响的振动方程) ..()(){0}M a t Ka t += 解可假设为:0sin ()a t t φω=-φ是n 阶向量,ω是向量φ的振动频率,t 是时间变量,0t 是由初始条件确定的时间常数。

代入振动方程,得到一个广义特征值问题:20K M φωφ-=求解可得n 个特征解221122(,),(,),ωφωφ···2,(,)n n ωφ120ωω≤<<···n ω< 特征向量12,,φφ···,n φ代表系统的n 个固有振型,幅度可按以下要求规定T i i M φφ=1(i=1,2,···,n ),这样规定的固有振型又称正则振型。

将22(,)(,)i i j j ωφωφ代回特征方程,得:2i i i K M φωφ= 2j j j K M φωφ=前式两边前乘以j φT,后式两边前乘以i φT ,得:2j i i j i K M φφωφφTT = 2i j i i jK M φφωφφT T = 由()TTj i j i i j K K K φφφφφφT T==得:22i j i j i j M K ωφφωφφT T =,推出22()0i j j i M ωωφφT-=当i j ωω≠时,有0j i M φφT =这表明固有振型对于矩阵M 是正交的,可表示为:1 ()0 ()i j i j M i j φφT=⎧=⎨≠⎩得:2 ()0 ()i i j i j K i j ωφφT ⎧==⎨≠⎩如果定义123n [ ]φφφφΦ=K21222 0 0 n ωωω⎡⎤⎢⎥⎢⎥Ω=⎢⎥⎢⎥⎢⎥⎣⎦O则特征解的性质可表示成:M K T T ΦΦ=I ΦΦ=Ω原特征值问题可表示为:K M Φ=ΦΩ三.求解动力响应1.位移基向量的变换引入变换()()1ni i i a t x t x φ==Φ=∑其中()[]12 n x t x x x =L代入运动方程,并两边前乘以T Φ,可得:()()()()()...x t C x t x t Q t R t T T +ΦΦ+Ω=Φ= 初始条件相应地转换成:..0000 x x Ma M a T T =Φ=Φ 阻尼为振型阻尼,则:()()2 i=j 0 i j i i ij C ωξφφT ⎧⎪=⎨≠⎪⎩ 或11222 0 2 0 2n n C ωξωξωξT ⎡⎤⎢⎥⎢⎥ΦΦ=⎢⎥⎢⎥⎣⎦O 其中i ξ(i=1,2,···,n )是第i 阶振型阻尼比,可得n 个相互不耦合的二阶常微分方程()()()()...22i i i i i i i x t x t x t r t ωξω++= (i=1,2,···,n )若C 是Rayleigh 阻尼,即C M K αβ=+根据试验或相近似结构的资料已知两个振型的阻尼比i ξ和j ξ,可得22222()()2()()i j j i i j j i j j i i j i ξωξωαωωωωξωξωβωω-=--=-2.求解单自由度系统振动方程在振动分析中常常采用杜哈美(Duhamel )积分,又称叠加积分,其基本思想是将任意激振力()i r t 分解为一系列微冲量的连续作用,分别求出系统对每个微冲量的响应,然后根据线性系统的叠加原理,将它们叠加起来,得到系统对任意激振的响应。

模态分析的理论介绍及目的

模态分析的理论介绍及目的

模态分析理论1模态分析简介1.1 模态简介模态是结构固有的振动特性,每一个模态具有一个特定的固有频率、阻尼比和模态振型。

这些模态参数可以由分析软件分析取得,也可以经过试验计算获得,这样一个软件或者试验分析过程称为模态分析。

这个分析结果如果是由有限元计算的方法取得的,则称为计算模态分析;如果结果是通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。

1.2 固有频率简介固有频率是物体的一种物理特性,由它的结构、大小、形状等因素决定的。

这种物理特征不以物体是否处于振动状态而转移。

当物体在多个频率上振动时会渐渐固定在某个频率上振动,当他受到某一频率策动时,振幅会达到最大值,这个频率就是物体的固有频率。

1.3 振型简介振型是指体系的一种固有的特性。

它与固有频率相对应,即为对应固有频率体系自身振动的形态。

每一个物体实际上都会有无穷多个固有频率,每一阶固有频率相对应物体相对应的形状改变我们称之为振型。

理论上来说振型也有无穷多个,但是由于振型阶数越高,阻尼作用造成的衰减越快,所以高振型只有在振动初期才较明显,以后则衰减。

因此一般情况下仅考虑较低的几个振型.1.4模态分析的目的模态分析技术从上世纪60年代开始发展至今,已趋于成熟。

它和有限元分析技术一起,已成为结构动力学中的两大支柱。

到目前,这一技术已经发展成为解决工程振动问题的重要手段,在机械、航空航天、土木建筑、制造化工等工程领域被广泛的应用。

我国在这一方面的研究,在理论上和应用上都取得了很大的成果,处于世界前列。

模态分析的最终目标就是识别出系统的模态参数,为结构系统的振动特性的分析、振动故障的诊断和检测以及结构的优化提供依据。

模态分析技术的应用可归结为以下几个方面:1) 评价所求结构系统的动态特性;2) 在新产品设计中进行结构特性的预估,优化对结构的设计;3) 诊断及预报结构系统中的故障;4) 识别结构系统的载荷。

模态分析的理论介绍及目的

模态分析的理论介绍及目的

模态分析理论1模态分析简介1.1 模态简介模态是结构固有的振动特性,每一个模态具有一个特定的固有频率、阻尼比和模态振型。

这些模态参数可以由分析软件分析取得,也可以经过试验计算获得,这样一个软件或者试验分析过程称为模态分析。

这个分析结果如果是由有限元计算的方法取得的,则称为计算模态分析;如果结果是通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。

1.2 固有频率简介固有频率是物体的一种物理特性,由它的结构、大小、形状等因素决定的。

这种物理特征不以物体是否处于振动状态而转移。

当物体在多个频率上振动时会渐渐固定在某个频率上振动,当他受到某一频率策动时,振幅会达到最大值,这个频率就是物体的固有频率。

1.3 振型简介振型是指体系的一种固有的特性。

它与固有频率相对应,即为对应固有频率体系自身振动的形态。

每一个物体实际上都会有无穷多个固有频率,每一阶固有频率相对应物体相对应的形状改变我们称之为振型。

理论上来说振型也有无穷多个,但是由于振型阶数越高,阻尼作用造成的衰减越快,所以高振型只有在振动初期才较明显,以后则衰减。

因此一般情况下仅考虑较低的几个振型.1.4模态分析的目的模态分析技术从上世纪60年代开始发展至今,已趋于成熟。

它和有限元分析技术一起,已成为结构动力学中的两大支柱。

到目前,这一技术已经发展成为解决工程振动问题的重要手段,在机械、航空航天、土木建筑、制造化工等工程领域被广泛的应用。

我国在这一方面的研究,在理论上和应用上都取得了很大的成果,处于世界前列。

模态分析的最终目标就是识别出系统的模态参数,为结构系统的振动特性的分析、振动故障的诊断和检测以及结构的优化提供依据。

模态分析技术的应用可归结为以下几个方面:1) 评价所求结构系统的动态特性;2) 在新产品设计中进行结构特性的预估,优化对结构的设计;3) 诊断及预报结构系统中的故障;4) 识别结构系统的载荷。

第二章 多自由度模态分析理论ppt课件

第二章  多自由度模态分析理论ppt课件

H lp()H lR p()jH lIp()
(2—47)
式中
H
R lp
(
)

H
I lp
(
)
分别为频响函数的实部与虚部。
H lR p()rN 1K 1er(1r2)12 (r2 2rr)2 (2—48)
H lIp()rN 1K 1er(1r2 )2 2r( 2rrr)2
(2—49)
下面不讲
由复模态提取实模态
对于无刚体运动的约束系统是正定的;对于有刚体运动的 自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵 C对于无刚体运动的约束系统是正定的;对于有刚体运动的 自由系统则是半正定的。
.
X 及 F 分别为系统的位移响应向量及激励力向量,均
为 N 1 阶矩阵。即
x1
X
x2 M
x N N 1
r 1
l 式中 l r 为第 个测点、第 r 阶模态的振型系数。
由N个测点的振型系数所组成的列向量为
1
r
2 M
N r
.
(2—10)
2.3多自由度系统模态分析 在上节讨论中,我们引出了模态坐标、模态参数以及模态 正交性的概念。这些都是模态分析的基本概念。这里我们 要讨论频响函数(或传递函数)与模态参数之间的关系, 即频响函数的各种表达式。
力,在 l 点产生的复响应。由此可见,频响函数
H lp ( ) 与激励力的大小无关。
我们可对上式稍作变换,可得
Hlp()rN 1Ker[1r21 )j2rr (2—38)
式中
K er
Kr
lr pr
(2—39)

K
为等效刚度。它与测量点和激励力有关。与模态

模态分析基本理论

模态分析基本理论

得到拉氏域的系统方程(假定初始位移和速度为0):
2 0 4 - 1 6000 - 2000 [z (P)][x (P)] = (P + P + - 2000 6000 )[x (P)] = [F(P)] 1 5 0 2
2
第三节 多自由度振动系统举例 二 传递函数矩阵
λ *N {ψ}N {ψ}*N
*
第三节 多自由度振动系统举例 四 留数:定义与单自由度系统类似
[H(P)] = [z (P)]−1 = adj ([z (P)])
Q

[H(P)] =
z (P) adj ([z (P)])
r
λ1 , λ *r (r = 1, L , N )是 z (P) 的根
& & & x M1& 1 (t) + (C1 + C 2 ) x 1 (t) - C 2 x 2 (t) + ( K 1 + K 2 ) x 1 (t) - K 2 x 2 (t) = f1 (t) & & & x 2 (t) + (C 2 + C 3 ) x 2 (t) - C 2 x 1 (t) + ( K 2 + K 3 ) x 2 (t) - K 2 x 1 (t) = f 2 (t) M 2 &
λ1{ψ}1 L [φ ] = {ψ}1 L λ N {ψ}N
{ψ}N
{ψ}1 L λ* 1 {ψ}*
1
L

L λ1{ψ}1 L {ψ} = L 1 L

L λ 2 {ψ}2 L {ψ} = L 2 L

第一章模态分析理论基础

第一章模态分析理论基础

共振频率点
ds max d 1
• 粘滞阻尼系统
– Nyquist图
2
2
[H
R
( )]2
(H
I
( ))2
1
4k
1
4k
» 特点
»桃子形,阻尼比越小
轨迹圆越大
» ( 是变的,所以不是圆 )
在固有频率附近,曲线 接近圆,仍可利用圆
的特性
第20页/共60页
速度与加速度频响函数特性曲线
• 关系回顾
HR 1, 2
(
)
4k
1 (1
)
2
1
g
2
半功率带宽反映阻尼大小 阻尼越大,半功率带宽
越大,反之亦然
第17页/共60页
• 虚频图
• •
H
I
( )
g
k[(1 2 )2
(结构阻尼) (g粘2 ] 性阻尼)
• 以H结I构(阻) 尼k[为(1例:2 )22(2 )2 ]
– 系统共振时虚部达到最大值
– 系统共振时实部为零
m1
机架线
第30页/共60页
• 一般多自由度约束系统
机架线
– N自由度约束系统有N个共振频率,(N-1)个反共振频率 – 对原点函数共振反共振交替出现 – 对跨点频响函数无此规律 – 一般两个距离远的跨点出现反共振的机会比较近的跨点少
第31页/共60页
– 自由系统
• 两自由度系统运动方程(无阻尼)
第7页/共60页
单自由度系统频响函数分析
粘性阻尼系统
•阻尼力(与振动速度成正比):
•强迫fd振动方c程x 及其解
..
.
m x•解c的x形式k(xs为复f 数)及拉氏变换:

模态分析理论

模态分析理论

精心整理模态分析指的是以振动理论为基础、以模态参数为目标的分析方法。

首先建立结构的物理参数模型,即以质量、阻尼、刚度为参数的关于位移的振动微分方程;其次是研究其特征值问题,求得特征对(特征值和特征矢量),进而得到模态参数模型,即系统的模态频率、模态22¨330m 0z k 2k k z 000m 0k k z 0z +--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦(9) 定义主振型由于是无阻尼系统,因此系统守恒,系统存在振动主振型。

主振型意味着各物理坐标振动的相位角不是同相(相差0o )就是反相位(相差180o ),即同时达到平衡位置和最大位置。

主振型定义如下:()i i j ωt+i i sin ωt+=Im(e )φφi mi mi z =z z (10)其中为第i 阶频率下,各自有度的位移矢量,为第i 个特征矢量,表示第i 阶固有频率下的振型,i ω为第i 阶频率下的第i 个特征值,i φ为(去除项化简得以矩阵的形式展开得:2i 2i mi 2i k-ωm -k 0-k 2k-ωm -k z =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(15)有非零解,则2i 2i 2i k-ωm -k 0-k 2k-ωm -k =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(16)即()234222ω-m ω+4km ω-3k m =0(17)阶固有频率,每一个特征根对应一个特征矢量,表示对应模态下该由式3i i 21=z k 如果设定了1z 值,则就可以求出三个特征根值下,2z 和3z 相对于1z 的位移。

假设m=k=1, 一阶模态,1ω=0:21z =1z ,31z =1z ,即;二阶模态,223kω=m :21z=0z,31z=-1z,即;三阶模态,23kω=m :21z=-2z,31z=1z,即。

运动方程的解耦图错误!未指定顺序。

运动方程解耦过程在进行坐标变换之前需对刚度矩阵和质量矩阵进行归一化。

模态分析理论

模态分析理论

模态分析指的是以振动理论为基础、以模态参数为目标的分析方法。

首先建立结构的物理参数模型,即以质量、阻尼、刚度为参数的关于位移的振动微分方程;其次是研究其特征值问题,求得特征对(特征值和特征矢量),进而得到模态参数模型,即系统的模态频率、模态矢量、模态阻尼比、模态质量、模态刚度等参数。

特征根问题以图3所示的三自由度无阻尼系统为例,设123m =m =m =m ,123k =k =k =k ,图 1 三自由度系统其齐次运动方程为:(8)其中分别为系统的质量矩阵和刚度矩阵,123m 00m 00m=0m 0=0m 000m 00m ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,11212221k -k 0k -k 0k=-k k +k -k =-k 2k -k 0-k k 0-k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则运动方程展开式为: ¨11¨22¨33z m 00k k 0z 00m 0z k 2k k z 000m 0k k z 0z ⎡⎤⎢⎥-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦(9)定义主振型由于是无阻尼系统,因此系统守恒,系统存在振动主振型。

主振型意味着各物理坐标振动的相位角不是同相(相差0o )就是反相位(相差180o ),即同时达到平衡位置和最大位置。

主振型定义如下:()i ij ωt+i i sin ωt+=Im(e)φφi mi mi z =z z (10)其中为第i 阶频率下,各自有度的位移矢量,为第i 个特征矢量,表示第i 阶固有频率下的振型,i ω为第i 阶频率下的第i 个特征值,i φ为初始相位。

对于三自由度系统,在第i 阶频率下,等式可以写成1m1i 2m2i i i 3m3i z z z =z sin(ωt+)z z φ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(11)mki z 表示第k 个自由度在第i 阶模态下的模态矩阵。

各种模态分析方法总结与比较

各种模态分析方法总结与比较

各种模态分析方法总结与比较一、模态分析模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。

模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。

坐标变换的变换矩阵为模态矩阵,其每列为模态振型。

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。

模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。

这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。

通常,模态分析都是指试验模态分析。

振动模态是弹性结构的固有的、整体的特性。

如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。

因此,模态分析是结构动态设计及设备的故障诊断的重要方法。

模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。

二、各模态分析方法的总结(一)单自由度法一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。

但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。

以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。

在给定的频带范围内,结构的动态特性的时域表达表示近似为:()[]}{}{T R R t r Q e t h rψψλ= 2-1而频域表示则近似为:()[]}}{{()[]2ωλωψψωLR UR j Q j h r tr r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。

模态分析理论范文

模态分析理论范文

模态分析理论范文模态分析理论的核心理念是,人们在特定的社会和文化情境下会表现出不同的态度和行为。

它认为,我们的态度、信念和行为不仅受到个体心理因素的影响,还受到社会和文化环境的影响。

因此,要全面了解一个人的态度或行为,就需要考虑到这个人所处的情境。

首先,模态指的是人们在特定情境下所采取的态度、信念和行为。

它可以通过探究个体的思考方式、观点和意见来理解。

例如,一些人可能会对一些产品持有积极的态度,这可能是因为他对产品的特点和功能有较高的认同。

其次,資源指的是人们在模态形成过程中所依赖的信息和知识。

在分析模态时,人们使用各种不同的资源来评估和形成自己的态度。

这些资源可以是个体的经验、心理特征、社会身份或文化价值观。

通过了解人们所依赖的资源,我们可以更好地理解他们的态度和行为。

最后,情境是指人们所处的社会和文化环境。

情境对个体的态度和行为具有重要的影响。

在不同的情境下,人们可能表现出不同的态度和行为。

例如,同一个人在工作时可能持有不同的观点和做法,而在家庭生活中可能又是另一种态度和行为。

模态分析理论的应用非常广泛。

在广告和市场营销领域,模态分析理论被用于理解消费者的态度和行为,从而更好地设计和推广产品。

在政治和公共政策领域,模态分析理论可以帮助政治家和政策制定者了解公众的意见和需求,有针对性地制定政策和决策。

在社会学和心理学领域,模态分析理论可以用来研究群体行为和态度的变化,揭示社会和文化因素对个体的影响。

然而,模态分析理论也存在一些限制。

首先,因为人们的态度和行为是受多个因素的影响,所以模态分析理论不能解释所有的情况。

其次,模态分析理论强调了情境对个体行为的影响,但情境本身也是由个体创造和改变的,所以情境也会受到个体行为的影响。

最后,模态分析理论对于一些复杂的社会和文化现象可能无法提供充分的解释,因为这些现象涉及多个层面和多个因素的交互作用。

总之,模态分析理论是一种有用的社会科学研究方法,可以帮助我们理解人们在特定情境下的态度和行为。

模态理论

模态理论

Tyler & Sofrin 模态分析理论非定常来流与叶片干涉产生的声波在风扇或涡轮中并非是任意形态存在的。

Goldstein 在假定平均流场有势的前提下,建立起了平均流场中任意一点的扰动量与远前方来流扰动量之间的相互关系,给出了下面的方程,()()00002000111I D D Dt c Dt ϕρϕρρρ⎛⎫-∇∇=∇ ⎪⎝⎭u (0-1)由以上方程可知,在非均匀平均流的情况下,来流扰动不仅通过边界条件与声扰动相互作用,而且在传播过程中也会与声扰动耦合,并形成如(2-2)右边所示声源[68]。

在航空发动机叶轮机内部,最重要的边界条件就是管道效应,由于管道边界的限制,声波在其中只能以特定的形态出现,也就是我们常说的模态。

在均匀平均流中,考虑一个环形管道,硬壁条件,对小扰动有下面的对流波动方程[12],2222222110i M p p x x r r r r ωυ⎛⎫∂∂∂∂∂⎛⎫+-+++= ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭ (0-2)波动方程描述的特征值问题是可解的,环形管道中我们可以将它的一般解展开为傅里叶-贝塞尔形式的模态()()()1,,m m ik x ik x im m m m m p x r A e B e U r e μμθμμμμθ+-∞∞---=-∞==+∑∑ (0-3)这里径向模态和径向、轴向波数分别满足()22222210m m m m m m m m m U U U r r Mk k k μμμμμμμμααω±⎛⎫'''++-= ⎪⎝⎭=--= (0-4) 其中,径向特征模态()m U r μ以贝塞尔函数的形式出现,m 和μ分别表示周向和径向模态数。

满足上述波动方程的声波解在环形或圆形管道中会以图2-4所示的螺旋波形式出现和传播。

Tyler 和Sofrin 是最早研究叶轮机内部叶片非定常气动力旋转模态特征的学者,他们的研究结果已经成为当代航空燃气涡轮发动机气动声学设计的主要理论基础之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模态分析理论Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT模态分析指的是以振动理论为基础、以模态参数为目标的分析方法。

首先建立结构的物理参数模型,即以质量、阻尼、刚度为参数的关于位移的振动微分方程;其次是研究其特征值问题,求得特征对(特征值和特征矢量),进而得到模态参数模型,即系统的模态频率、模态矢量、模态阻尼比、模态质量、模态刚度等参数。

特征根问题以图3所示的三自由度无阻尼系统为例,设123m =m =m =m ,123k =k =k =k ,图三自由度系统其齐次运动方程为:mz̈+kz =0(8)其中m ,k 分别为系统的质量矩阵和刚度矩阵,123m 00m 00m=0m 0=0m 000m 00m ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,11212221k -k 0k -k 0k=-k k +k -k =-k 2k -k 0-k k 0-k k ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则运动方程展开式为:¨11¨22¨33z m 00k k 0z 00m 0z k 2k k z 000m 0k k z 0z ⎡⎤⎢⎥-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦(9) 定义主振型由于是无阻尼系统,因此系统守恒,系统存在振动主振型。

主振型意味着各物理坐标振动的相位角不是同相(相差0o )就是反相位(相差180o ),即同时达到平衡位置和最大位置。

主振型定义如下:()i i j ωt+i i sin ωt+=Im(e )φφi mi mi z =z z (10)其中z i 为第i 阶频率下,各自有度的位移矢量,z mi 为第i 个特征矢量,表示第i 阶固有频率下的振型,i ω为第i 阶频率下的第i 个特征值,i φ为初始相位。

对于三自由度系统,在第i 阶频率下,等式可以写成1m1i 2m2i i i 3m3i z z z =z sin(ωt+)z z φ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(11)mki z 表示第k 个自由度在第i 阶模态下的模态矩阵。

特征值对式(10)二次求导,得2i i i =-ωsin(ω+)φ¨i mi z z (12)代入齐次运动方程得m [−ωi 2z mi sin (ωi +i )]+k [z mi sin (ωi +i )]=0(13)去除sin (ωi +i )项化简得 (k −ωi 2m )z mi =0(14)以矩阵的形式展开得:2i 2i mi 2i k-ωm -k 0-k 2k-ωm -k z =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(15) z mi 有非零解,则2i 2i 2i k-ωm -k 0-k 2k-ωm -k =00-k k-ωm ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(16)即()234222ω-m ω+4km ω-3k m =0(17)方程解如下:1ω=0,2ω=±,3ω=±。

三个解对应该系统的前三阶固有频率,每一个特征根对应一个特征矢量z i ,表示对应模态下该系统的振型。

特征矢量由式 (k −ωi 2m )z mi =0得矩阵展开形式:2i m1i 2i m2i 2i m3i k-ωm -k 0z -k 2k-ωm -k z =00-k k-ωm z ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(18) 展开第一行和第二行,忽略下脚标m 和i ,得()()2i1221i3k-ωm z -kz =0-kz 2k-ωm kz+-=(19)得22i 124223ii21z k-ωm =z k z m ω-3km ω+k =z k (20)如果设定了1z 值,则就可以求出三个特征根值下,2z 和3z 相对于1z 的位移。

假设m=k=1,一阶模态,1ω=0:21z =1z ,31z =1z ,即z 1=[111];二阶模态,223k ω=m :21z =0z ,31z =-1z ,即z 2=[10−1];三阶模态,23kω=m :21z =-2z ,31z =1z ,即z 3=[1−21]。

模态矩阵所谓模态矩阵就是指各列由各阶模态特征矢量构成的矩阵,如图4所示。

图模态矩阵对于前面提到的三自由度系统,模态矩阵如下:z m =[11110−21−11]运动方程的解耦对于一个复杂的系统,在物理坐标系统中建立的运动方程之间存在耦合关系,因此求解起来比较麻烦,因此需要进行坐标系转化,将耦合的运动方程变为非耦合的运动方程,再将求得的结果转化为物理坐标系下的结果,运动方程解耦过程如下图5:图运动方程解耦过程在进行坐标变换之前需对刚度矩阵和质量矩阵进行归一化。

任意上面的三自由度系统为例,由式m [−ωi 2z mi sin (ωi +i )]+k [z mi sin (ωi +i )]=0得ωi 2mz mi =kz mi (21)ωj 2mz mj =kz mj (22)对式(21)左乘z mj T 得ωi 2z mj T mz mi =z mj Tkz mi (23)又因为ωj 2z mj T m T =z mj T k T因为系统对称所以,m T =m ,k T =k ,则:ωj 2z mj T m =z mj Tk (24)对式(24)右乘z miωj 2z mj T mz mi =z mj Tkz mi (25)则式(23)—式(25)得(ωi 2−ωj 2)z mj T mz mi =0(26)当(ωi 2−ωj 2)≠0时,则z mj Tmz mi =m ji =0(27)当(ωi 2−ωj 2)=0,即i =j ,则z mj T mz mi 可以为任何值,令z mj Tmz mi =m ii (28)则对质量矩阵和刚度矩阵的归一化结果如下:m n =z m T mz m (29)k n =z m Tkz m (30)特征矢量的归一化由于特征矢量只是位移之比,而不是绝对振幅,因此可以对其进行归一化处理。

令z ni T mz ni =1.0,其中z ni =z mi[z mi T mz mi ]12=z mi q i(31)q i =[∑z mji (∑m jk z mki n k=1)n j=1]12(32)对于对角质量矩阵q i =[∑m k z mki 2n j=1]12(33)则三自由度系统:z m =[11110−21−11](34)=00n z (35) 则归一化的质量矩阵为100010001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Tn n n m =z mz (36) 同理归一化后的刚度矩阵为000k =010m003⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦n k (37) 可以看出归一化后的刚度矩阵对角线上的各项就是各阶模态固有频率的平方。

运动方程解耦将物理坐标系下的运动方程¨11¨22¨33z m 00k -k 0z 0 0m 0z +-k 2k -k z =000m 0-k k z 0z ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦按照前面介绍的归一化方法转化为主坐标系下的运动方程,其结果如下:¨p1p1¨p2p2¨p3p30z 00z 0k 00z +-k z =0m 00z 03k z 0-km 001101⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦38) 可以看出在主坐标系中的运动方程之间没有耦合关系,分别单独描述各阶模态的运动特性。

初始条件和激励的坐标转换物理坐标系中的非齐次运动方程为..mz+kz =F (39)做如下变形..T-1T -1Tn n nn n n n z mz z z+z kz z z =z F (40)其中T nn z mz ,Tn n z kz 就是前面介绍的质量和刚度矩阵的对角化。

令Tp n n m =z mz ,主坐标质量矩阵; T p n n k =z kz ,主坐标刚度矩阵; ....-1p nz z =z ,主坐标系加速度矢量;-1n p z z =z ,主坐标系位移矢量; T n p z F =F ,主坐标系激励矢量。

同样的关系也适用于初始位移和速度:-1op n o ..-1op noz =z z z =z z (42)两种坐标系的对比动模态下的位移和速度。

由主坐标系转变为物理坐标系前面介绍了物理坐标系与主坐标系之间的关系为-1n p z z =z (43)对式(41)左乘n z ,变为=-1n n n p z z z =z z z (44)同理p =..n z z z (45)非参数模型传递函数传递函数由系统的本质特性所决定,与系统的输入输出无关。

知道了系统的传递函数就可以根据输入求输出或根据输出求输入。

以图2的单自由度粘性阻尼系统为例,图单自由度系统则该系统的运动方程为:...m z +c z +kz=F (1)其中m 为质量,c 为阻尼系数,k 为刚度系数,z ,ż,z̈分别为位移、速度和加速度。

对二阶微分方程进行拉普拉斯变换,其中二阶导数项的拉普拉斯变换为:ℒ{z̈(t)}=s 2z (s )−sz (0)−ż(0)(2)假设初始位移和速度都为零,则ℒ{z̈(t)}=s 2z (s )(3)则经过拉普拉斯变换后的运动方程为:ms 2z (s )+csz (s )+kz (s )=F(s)(4)求解拉氏方程得传递函数:22z(s)11/m==c kF(s)ms +cs+k s +s+m m(5)其中定义2n kω=m为非阻尼系统的固有频率,rad/sec;cr c =界阻尼值,ζ为阻尼比,一般为阻尼与临界阻尼的比值,crc=c ζ,则n c 2ω=mζ。

则传递函数又可以写成:22n n z(s)1/m=F(s)s +2ωs+ωζ(6) 频响函数FRF用“j ω”代替s ,得系统的频响函数,其中j 是虚数项:()()22n n 22n n z(j ω)1/m=F(j ω)j ω+2ζωj ω+ω1/m=-ω+2ζωωj+ω(7)其中n kω=m,ζ,则频响函数可以写成 2z(j ω)1=F(j ω)-m ω+j ωc+k(8) 质量、阻尼、刚度对FRF 的影响刚度增大导致共振频率的增大,并且降低FRF 在低频段的幅值。

增加阻尼会使共振频率略微减小,但它的主要作用是减小频响函数在共振点的幅值,同时使相位的改变较为平缓。

如果阻尼为零,在共振点振动振幅将趋于无穷大,相位会突变180o 。

增大质量会降低共振频率,同时也降低FRF 在高频段的幅值。

相关文档
最新文档